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The Path To Relaxation
Understanding thermal conduction in twisted stacks
with non-equilibrium phonon dynamics
Patrik Wallin Hybelius
Department of Physics
Chalmers University of Technology

Abstract
In this work, the details of thermal transport in graphite is studied. The aim is to un-
derstand a striking anisotropy observed in the thermal conductivity of twisted stacks
of van-der-Waals thin sheets, as well as to explore the limitations of the relaxation
time approximation of the Boltzmann transport equation. To this end, classical
molecular dynamics simulations were performed, and analyzed using projection onto
phonon modes. Atomic forces were modeled using neuroevolution potentials previ-
ously trained on results from density functional theory, and gpumd was used to run
simulations on graphical processing units. Phonon modes were defined from Second-
order force constants extracted from the neuroevolution potential using hiphive.
The simulations were done both in equilibrium and in variations of non-equilibrium.
The equilibrium phonons were modeled using Langevin dynamics to extract their
lifetimes and finite-temperature renormalized frequencies. Non-equilibrium states
were studied by exciting individual out-of-plane modes to extreme amplitudes be-
fore running the simulations, and then following the energy as it was distributed
from the pumped modes to the rest of the system. Contrary to the exponential
decay predicted by the relaxation time approximation, energy was observed to os-
cillate back and forth between modes when initially excited to a sufficient degree.
Furthermore, the system was observed to reach a long-lived quasi-equilibrium state,
where a set of coupled modes collectively retained an above-equilibrium energy for
an extended period of time. The quasi-equilibrium lifetime was found to depend
negatively on the size of the simulated system, but the limit at large sizes remains
unknown.

Keywords: phonons, thermal transport, non-equilibrium, molecular dynamics,
graphite, two-dimensional materials, moiré structures.
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1
Introduction

1.1 Background
In the development of higher performing computer hardware, circuits are reducing
in size to the point where fulfilling Moore’s law becomes increasingly challenging
[1]. In order to keep increasing performance despite the difficulty in further size
reduction, manufacturers are moving towards increasingly complex transistor and
circuit structures [22]. This creates a demand for fine-tunable thermal management
able to deal with highly heterogeneous temperature profiles at the die level [24].
A recent study demonstrated the possibility to construct materials with extremely
anisotropic thermal conductivity by stacking randomly rotated van-der-Waals (vdW)
thin films consisting of transition metal dichalcogenides (TMDs) such as MoS2 [19].
Such materials could enable highly controlled heat management at the nanometer
level. The study showed that such stacks of MoS2 films exhibit high in-plane thermal
conductivity due to the crystallinity within each layer, and simultaneously possess
low through-plane conductivity caused by the random stacking angles leading to
glass-like transport properties.

1.2 Aim
The aim of this thesis is to build on the results of Kim et al. [19] by studying the
effects of twist angle and materials choice on the in-plane and through-plane thermal
conductivities. Furthermore, specific mechanisms of thermal conduction are to be
investigated by looking at phonon relaxation paths and lifetimes.

1.3 Limitations
Since the inclusion of the electronic contribution to the thermal conductivity would
drastically increase the complexity of the problem due to electron-phonon interac-
tions, and since the lattice thermal conductivity (LTC) is the dominant contribu-
tion in the materials of interest [25], electron dynamics will not be included in the
analysis or simulations. Similarly, impurities and in-plane structural boundaries,
which are unavoidable in experiments and real-world realizations of the materials
under consideration, will be neglected here since they are not directly related to the
phenomena of interest. Regarding the realism of the simulations, two additional
limitations come into play. Firstly, the model to be used is built to approximate
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1. Introduction

the energy landscape described by density functional theory (DFT) using a specific
functional. Regardless of the limitations of DFT, however, the results should be in
qualitative agreement with reality, and the correct mechanisms of phonon interac-
tions should be incorporated. Secondly, many of the simulations to be performed are
based on classical physics and will thus disregard quantum effects. Still, the most
relevant phenomena for the considered systems at finite temperatures are expected
to be captured through the use of Bose-Einstein statistics.

1.4 Specification of issue under investigation
Three main objectives underlie this thesis. The first goal is to find an optimal twist
angle between atomic layers that minimizes the through-plane LTC for the consid-
ered materials. While it would be possible to accomplish this by simulating heat
conduction in a selection of systems with various twist angles, a more enlightening
approach is to attempt to find an optimum on a theoretical basis. Therefore, the sec-
ond goal is to provide physical insight into the mechanisms behind the reduction of
the through-plane LTC in twisted vdW thin film stacks compared to the untwisted
counterparts. One of the more common theories of crystalline thermal transport
is the Boltzmann transport equation (BTE) in the relaxation time approximation
(RTA). The RTA relates the LTC in a system near equilibrium to phonon mode life-
times and group velocities, under the assumption that phonons in different modes
decay independently [29]. In glasses, however, the RTA tends to perform poorly
[26]. Therefore, since the low through-plane thermal conductivity observed by Kim
et al. [19] is attributed to glass-like thermal transport, the applicability of the RTA
in the present cases is put into question. For this reason, the third goal is to examine
the suitability of the RTA in describing the LTC of the considered systems. This
goal will be accomplished by directly simulating the relaxation of individual phonon
modes excited far beyond equilibrium, outside the regime of the RTA. Furthermore,
these simulations have an experimental analogue where specific modes can be ex-
cited in a sample by the use of laser pulses of appropriate frequency [15], meaning
the results produced here will be experimentally testable.
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2
Theory

2.1 Phonons

For a given system satisfying the Born-Oppenheimer approximation, the lattice part
of the Hamiltonian is given by

H =
∑
nµ

p2
µ

2mnµ

+ U({Rnµ}), (2.1)

where n and µ are the unit cell and site indices, respectively. The first term is the
kinetic energy and the second term describes the potential energy for a set of atom
positions Rnµ = Rn + rµ, where Rn denotes the origin of unit cell n and rµ is the
position of atom µ in the unit cell. Taylor expanding the potential energy around
R0
nµ gives

U =
∑
nµα

Φα
nµu

α
nµ + 1

2!
∑
nµα

∑
n′µ′α′

Φαα′

nn′µµ′uαnµu
α′

n′µ′

+ 1
3!
∑
nµα

∑
n′µ′α′

∑
n′′µ′′α′′

Φαα′α′′

nn′n′′
µµ′µ′′

uαnµu
α′

n′µ′uα
′′

n′′µ′′ + . . .

=
∑
nµα

Φα
nµu

α
nµ + 1

2!
∑
n′µ′α′

Φαα′

nn′µµ′uαnµu
α′

n′µ′

+ 1
3!

∑
n′µ′α′

∑
n′′µ′′α′′

Φαα′α′′

nn′n′′
µµ′µ′′

uαnµu
α′

n′µ′uα
′′

n′′µ′′ + . . .


=
∑
nµ

Unµ,

(2.2)

where unµ = Rnµ − R0
nµ and Φ are the force constants (FCs), defined as the partial

derivatives of U with respect to unµ. The superscripts α denote cartesian directions
and are used to accurately express scalar products, unµ · un′µ′ = ∑

α u
α
nµu

α
n′µ′ . In

the last line, Unµ is the potential energy of atom (nµ), although this is not the only
way to define it. The energy is taken to be zero at unµ = 0, and by selecting R0

nµ

to be the atom positions at rest, i.e., a minimum of U , the first order terms can be
dropped. Truncating U at the second-order (harmonic) term gives H in the form of
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2. Theory

a set of coupled harmonic oscillators

Hharm = 1
2
∑
nµα

(pαnµ)2

mµ

+ 1
2
∑
nµα

∑
n′µ′α′

Φαα′

nn′µµ′uαnµu
α′

n′µ′ .

(2.3)

Phonon modes and frequencies are given as eigenfunctions to this Hamiltonian,
expressed as

ω2
qjA

α
µj(q) =

∑
µ′α′

Dαα′

µµ′ (q)Aα′

µ′j(q) (2.4)

with the dynamical matrix

Dαα′

µµ′ (q) = 1
N

1
√
mµmµ′

∑
nn′

Φαα′

nn′µµ′e−iq·(Rn−Rn′ ), (2.5)

eigenfunctions Aαµj(q) and crystal momentum vector q. Upon normalization the
eigenfunctions naturally form a complete and orthonormal basis set,∑

µµ′

∑
αα′

Aα ∗
µj A

α′

µ′j′ = δjj′ , (2.6)

and can thus be used to express uαnµ in terms of normal coordinates

uαnµ = 1√
N

1
√
mµ

∑
qj

Aαµj(q)eiq·R0
nQj(q), (2.7)

with the inverse
Qj(q) = 1√

N

∑
nµα

√
mµA

α ∗
µj (q)e−iq·R0

nuαnµ. (2.8)

Here, N is the number of unit cells and j enumerates the eigenvectors of Dαα′
µµ′ (q).

Since the dynamical matrix at q has shape 3p× 3p, where p is the number of atoms
in a unit cell, there is 3p eigenvectors, each corresponding to a so-called phonon
band. Hence, j is referred to as the band index. The conjugate momentum

Πj(q) = Q̇j(q) (2.9)

can be defined similarly. This enables a compact expression of the harmonic Hamil-
tonian

Hharm = 1
2
∑
qj

(
Π∗
j(q)Πj(q) + ω2

j (q)Q∗
j(q)Qj(q)

)
. (2.10)

Some symmetries between q and −q can be identified here, namely

Q∗
j(q) = Qj(−q),

Π∗
j(q) = Πj(−q),
ωj(q) = ωj(−q),
vj(q) = −vj(−q),

(2.11)
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2. Theory

where vj(q) = ∇qωj(q) is the group velocity. Interpreting Qj(q) and Πj(q) as
operators lets us define phonon annihilation and creation operators

bqj =
√
ωj(q)

2ℏ Qj(q) + i

√
1

2ℏωj(q)Πj(−q)

b†
qj =

√
ωj(q)

2ℏ Qj(−q) − i

√
1

2ℏωj(q)Πj(q),
(2.12)

which fulfill bosonic commutation relations
[bqj, bq′j′ ] = [b†

qj, b
†
q′j′ ] = 0

[bqj, b
†
q′j′ ] = δqq′δjj′

(2.13)

and enable a final simplification of the harmonic Hamiltonian

Hharm =
∑
λ

ℏωλ
(
b†
λbλ + 1

2

)
=
∑
λ

ℏωλ
(
nλ + 1

2

)
, (2.14)

where λ = qj is a composite index and nλ = b†
λbλ is the phonon mode occupation

number operator [32].

2.2 Molecular dynamics
Molecular dynamics (MD) simulations is a method for (usually classically) simulat-
ing the time evolution of a system to calculate properties such as the LTC. To this
end, the potential energy U(Rn,µ) needs to be described by some model. Two mod-
els will be used in this thesis. Firstly, we will use force constant potentials (FCPs),
which are obtained by fitting the FCs in Eq. (2.2) directly to DFT results. Secondly,
we will employ the neuroevolution potential (NEP) approach [14], which represents
U(Rn,µ) using a neural network trained on DFT data. In either case, the model is
used to evaluate atomic forces [4]

Fα
nµ = − ∂U

∂uαnµ
, (2.15)

which are in turn used to evolve the system in time by integrating the equations of
motion

u̇αnµ = ∂H

∂pαnµ
=

pαnµ
mnµ

ṗαnµ = − ∂H

∂uαnµ
= Fα

nµ.

(2.16)

The integration is commonly done via the velocity Verlet algorithm [27], where
particle positions and velocities are updated at some time step interval ∆t according
to

v′
nµ,i = vnµ,i + 1

2
F nµ,i

mnµ

∆t

unµ,i+1 = unµ,i + v′
nµ,i∆t

vnµ,i+1 = v′
nµ,i + 1

2
F nµ,i+1

mnµ

∆t,

(2.17)
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2. Theory

where vnµ,i and vnµ,i are positions and velocities at time t = t0 + i∆t and v′
nµ,i is

the intermediate velocity at time t = t0 + (i+ 1/2)∆t.

Simulating a system as described above naturally preserves the number of parti-
cles, the system volume, and the total energy due to conservation laws fulfilled by
the classical equations of motion, be it in the form of Newton, Euler-Lagrange or
Hamiltonian. In other words, the simulation describes a system in the microcanon-
ical (NVE) ensemble. However, for the quantities of interest here, it is necessary
to control the system temperature rather than the total energy. A system where
the number of particles, volume and temperature are conserved is said to be in the
canonical (NVT) ensemble. Likewise, if the number of particle, pressure and tem-
perature are conserved the system is said to be in the isothermal-isobaric (NPT)
ensemble.

To preserve the temperature during MD simulation, a thermostat needs to be intro-
duced, which controls the particle velocities such that the equipartition theorem is
fulfilled on average,

∑
nµ

1
2mµv

2
nµ = 3

2pNkBT. (2.18)

One common class of thermostats are velocity rescaling methods, perhaps the most
advanced of which is the Bussi-Donadio-Parrinelo thermostat [5, 3]. In the simplest
version of this thermostat, at the end of each time step, the velocities are rescaled
such that the total kinetic energy K equals a target Kt, which is a stochastic variable
drawn from the probability distribution of the total kinetic energy in a canonical
ensemble in equilibrium at some temperature T . That is, the velocities are updated
as follows

vnµ → αvnµ, where

α =
√
Kt

K
,

K =
∑
n,µ

1
2mnµv

2
nµ,

P (Kt) ∝ K3pN−1
t e−Kt/kBT .

(2.19)

The method can also be adapted to update velocities more smoothly by using a
thermostat time parameter and letting Kt depend on K [5].

Another thermostat, not based on velocity rescaling, is the Nosé-Hoover chain
method, which uses additional degrees of freedom to model a heat bath [23]. Hamil-
ton’s equations are extended to include a chain of M heat bath variables ζi with

6



2. Theory

masses Qi according to

u̇nµ = pnµ

ṗnµ = F nµ − pnµ
ζ1

Q1

ζ̇1 =
∑
nµ

p2
nµ

mnµ

− pNkBT − ζ1
ζ2

Q2

ζ̇i = ζ2
i−1
Qi−1

− kBT − ζi
ζi+1

Qi+1
, 1 < i < M

˙ζM = ζ2
M−1
QM−1

− kBT.

(2.20)

The thermostat used in the present work is based on Langevin dynamics, which can
be considered a modification of the classical equations of motion by inclusion of a
friction term and a term modeling random collisions between particles,

u̇nµ = pnµ

ṗnµ = F nµ − γpnµ +
√

2mµkBTW (t),
(2.21)

where γ is a friction coefficient and W (t) is a three-dimensional stochastic variable
of mean zero, normalized such that ⟨W (t) · W (t′)⟩ = δ(t− t′) [6].

2.3 Boltzmann transport
In Boltzmann transport theory, the phonon mode occupation numbers are repre-
sented by a distribution function nλ(t) giving the average number of phonons in
mode λ at time t. The evolution of this distribution in time is governed by diffusion
and scattering, and is described by the BTE [32]

∂nλ
∂t

+ vλ · ∂nλ
∂r

= ∂nλ
∂t

∣∣∣∣∣
c

. (2.22)

The second term on the left is the diffusion term, and in the case of the thermal
conductivity the spatial dependence of nλ originates from a temperature gradient,
whence

∂nλ
∂r

= ∂nλ
∂T

∇T. (2.23)

The term on the right is the scattering or collision term, describing interactions
between phonons where energy and momentum is transferred between modes. There
are no such interactions in the harmonic picture, so in order for the BTE to be useful
for phonon dynamics, some anharmonic terms need to be kept in the potential
energy expansion. Normally, the third-order terms, corresponding to three-particle
interactions, are kept while higher order terms are discarded. This is done because
the number of n-particle interaction terms increases combinatorially with n, while
their magnitudes tend to decrease even faster. Hence there is a high cost and (often)
low gain in keeping higher-order terms. The BTE is usually solved via linearization

nλ(t) = n0
λ + n1

λ(t).

7



2. Theory

Here, n0
λ is the time-independent equilibrium solution, given by the Bose-Einstein

distribution
n0
λ = 1

eℏωλ/kBT − 1 ,

which does not contribute to the collision term. The collision term caused by an-
harmonic interactions as well as the temperature gradient ∇T are treated as per-
turbations, giving rise to a change in the phonon distribution that is linear in time,
n1
λ(t). The linearized Boltzmann equation (LBTE) becomes, upon dropping second

order perturbation terms,

∂n1
λ

∂t
+ vλ · ∇T ∂n

0
λ

∂T
= ∂n1

λ

∂t

∣∣∣∣∣
c

. (2.24)

The collision term can be expressed in terms of the third-order FCs and phonon
eigenfunctions [32, 29, 8] by using Fermi’s golden rule

∂n1
λ

∂t

∣∣∣∣∣
c

= Γin
λ − Γout

λ ,

where Γin
λ and Γout

λ are total scattering rates into and out of mode λ given by

Γin
λ =

∑
λ′λ′′

(
(1 + nλ)(1 + nλ′)nλ′′P λλ′

λ′′ + 1
2(1 + nλ)nλ′nλ′′P λ

λ′λ′′

)

and
Γout
λ =

∑
λ′λ′′

(
nλnλ′(1 + nλ′′)P λ′′

λλ′ + 1
2nλ(1 + nλ′)(1 + nλ′′)P λ′λ′′

λ

)
.

Here, P λ′′
λλ′ is the intrinsic scattering rate of λ with λ′ under formation of λ′′ and

P λ′λ′′
λ is the decay rate of λ into λ′ and λ′′. The scattering rates are given by

P λ′′

λλ′ = 2π
ℏ2 |Φλλ′−λ′′ |2δ(ωλ + ωλ′ − ωλ′′)

and
P λ′λ′′

λ = 2π
ℏ2 |Φλ−λ′−λ′′ |2δ(ωλ − ωλ′ − ωλ′′),

where Φλλ′λ′′ is the Fourier representation of the third-order force constants

Φλλ′λ′′ = 1√
N

∑
µα

∑
µ′α′

∑
µ′′α′′

AαµjA
α′

µ′j′Aα
′′

µ′′j′′

√√√√ ℏ
2mµωλ

√√√√ ℏ
2mµ′ωλ′

√√√√ ℏ
2mµ′′ωλ′′

×
∑
n′n′′

Φαα′α′′

nn′n′′
µµ′µ′′

e
−iq′·R0

n′µ′e
−iq′′·R0

n′′µ′′ ∆(q + q′ + q′′).
(2.25)

In the final line, ∆(q + q′ + q′′) is one if q + q′ + q′′ is a reciprocal lattice vector
and zero otherwise. This ensures conservation of crystal momentum, while the delta
functions δ(·) in P λ′′

λλ′ and P λ′λ′′
λ ensure conservation of energy. By assumption, the

collision term is zero in equilibrium, which means contributions to Γin
λ and Γout

λ from
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n0
λ cancel to zero. Hence, the two scattering rates can be expressed more compactly

as
Γin
λ = n1

λ

∑
λ′λ′′

(
(1 + nλ′)nλ′′P λλ′

λ′′ + 1
2nλ

′nλ′′P λ
λ′λ′′

)
and

Γout
λ = n1

λ

∑
λ′λ′′

(
nλ′(1 + nλ′′)P λ′′

λλ′ + 1
2(1 + nλ′)(1 + nλ′′)P λ′λ′′

λ

)
.

Furthermore, due to symmetries in Ψλλ′λ′′ , the terms in Γin
λ and Γout

λ can be conve-
niently factored by expressing the intrinsic scattering rates as

P λλ′

λ′′ =2π
ℏ

|Ψ−λλ′λ′′|2δ(ωλ + ωλ′ − ωλ′′)

P λ
λ′λ′′ =2π

ℏ
|Ψ−λλ′λ′′|2δ(ωλ − ωλ′ − ωλ′′)

P λ′′

λλ′ =2π
ℏ

|Ψ−λλ′λ′′|2δ(ωλ + ωλ′ − ωλ′′)

P λ′λ′′

λ =2π
ℏ

|Ψ−λλ′λ′′|2δ(ωλ − ωλ′ − ωλ′′).

Combining the sums in Γin
λ and Γout

λ , we get

Γin
λ − Γout

λ =
2π
ℏ2 n

1
λ

∑
λ′λ′′

|Ψ−λλ′λ′′ |2
[(

(1 + nλ′)nλ′′ − nλ′(1 + nλ′′)
)
δ(ωλ + ωλ′ − ωλ′′)

+ 1
2
(
nλ′nλ′′ − (1 + nλ′)(1 + nλ′′)

)
δ(ωλ − ωλ′ − ωλ′′)

]
=

2π
ℏ2 n

1
λ

∑
λ′λ′′

|Ψ−λλ′λ′′ |2
[
(nλ′′ − nλ′)δ(ωλ + ωλ′ − ωλ′′)

− 1
2(1 + nλ′ + nλ′′)δ(ωλ − ωλ′ − ωλ′′)

]
.

Finally, since the summation includes each pair λ′, λ′′ twice in opposite orders, it
can be made more symmetrical by replacing

(nλ′′ − nλ′)δ(ωλ + ωλ′ − ωλ′′)

with
1
2(nλ′′ − nλ′)δ(ωλ + ωλ′ − ωλ′′) + 1

2(nλ′ − nλ′′)δ(ωλ − ωλ′ + ωλ′′) =
1
2(nλ′′ − nλ′)

(
δ(ωλ + ωλ′ − ωλ′′) − δ(ωλ − ωλ′ + ωλ′′)

)
,

giving

Γin
λ − Γout

λ = − π

ℏ2n
1
λ

∑
λ′λ′′

|Ψ−λλ′λ′′ |2
[
(1 + nλ′ + nλ′′)δ(ωλ − ωλ′ − ωλ′′)

+ (nλ′ − nλ′′)
(
δ(ωλ + ωλ′ − ωλ′′) − δ(ωλ − ωλ′ + ωλ′′)

)]
.

(2.26)
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A simpler approximation to the collision term in Eq. (2.24) is the RTA

∂n1
λ

∂t

∣∣∣∣∣
c

= −n1
λ

τλ
.

Intuitively, this means the specific phonon mode interactions are smoothed out, and
each mode is instead assumed to relax on a constant time scale τλ due to interaction
with a reservoir consisting of all the other modes. An expression for the relaxation
time or lifetime, in the case of scattering described by third-order force constants,

can be acquired by comparing ∂n1
λ

∂t

∣∣∣∣∣
c

as given by the RTA with the one given by

Fermi’s golden rule.

1
τλ

= Γout
λ − Γin

λ

n1
λ

=

π

ℏ2

∑
λ′λ′′

|Ψ−λλ′λ′′|2
[
(1 + nλ′ + nλ′′)δ(ωλ − ωλ′ − ωλ′′)

+ (nλ′ − nλ′′)
(
δ(ωλ + ωλ′ − ωλ′′) − δ(ωλ − ωλ′ + ωλ′′)

)]
(2.27)

The RTA is thus a good approximation when phonon occupations nλ are roughly
constant in time, i.e., near equilibrium and in steady state, but is likely to fail if
the system is far from equilibrium and varies strongly in time. Using the RTA, the
LBTE Eq. (2.24) simplifies to

∂n1
λ

∂t
+ vλ · ∇T ℏωλ

kBT 2n
0
λ(n0

λ + 1) = −n1
λ

τλ
, (2.28)

with the solution

n1
λ(t) = −τλvλ · ∇T ℏωλ

kBT 2n
0
λ(n0

λ + 1) + δnλ exp(−t/τλ), (2.29)

where δnλ is determined by the initial perturbation n1
λ(t = 0).

Once the LBTE is solved and the n1
λ are obtained, the thermal conductivity can be

calculated from Fourier’s law

Jα = −καβ∇βT = 1
V

∑
λ

ℏωλvαλnλ, (2.30)

where the rightmost expression describes the sum of individual mode energy fluxes.
In equilibrium nλ = n−λ (where −λ = (−q)j), and since vαλ = −vα−λ and ωλ = ω−λ,
the contribution to Jα from n0

λ cancels that from n0
−λ. Therefore Jα can be simplified

to
Jα = 1

V

∑
λ

ℏωλvαλn1
λ. (2.31)

Using the steady state LBTE solution under the RTA, the heat current becomes

Jα = − 1
V

∑
λ

kB

(
ℏωλ
kBT

)2

n0
λ(n0

λ + 1)τλvαλv
β
λ∇βT. (2.32)
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Identifying the specific heat of mode λ

cλ = ∂Eλ
∂T

= ∂

∂T
(ℏωλnλ) = kB

(
ℏωλ
kBT

)2

n0
λ(n0

λ + 1), (2.33)

Jα can be further simplified as

Jα = − 1
V

∑
λ

cλτλv
α
λv

β
λ∇βT. (2.34)

Finally, the thermal conductivity tensor is obtained by comparison with Fourier’s
law Eq. (2.30)

καβ = 1
V

∑
λ

cλτλv
α
λv

β
λ . (2.35)

Hence, under these approximations, the thermal conductivity is determined by the
relaxation times and group velocities of the phonon modes. Contributions to καβ are
dominated by modes with high group velocities, i.e., predominantly acoustic modes.

2.4 Mode projection

Phonon mode occupation numbers nλ(t) can be acquired during MD simulations
by projecting real state space coordinates unµ(t) and pnµ(t) onto phonon mode
coordinates Qλ(t) and Πλ(t) using some appropriate choice of basis functions Aµj.
The basis can be defined by diagonalizing the dynamical matrix Dαα′

µµ′ (q), but a full
diagonalization for a large system can be computationally prohibitive. Instead, one
option is to calculate Dαα′

µµ′ (q) only for the q which are to be studied. This would
result in an incomplete set of basis functions, and is only a problem if the phonon
coordinates need to be transformed back into real-space coordinates.
At finite temperatures, the presence of higher-order force contributions change the
average forces between pairs of atoms from those given by the 0 K second-order
force constants. As a result, the optimal definition of basis functions would re-
quire constructing and diagonalizing Dαα′

µµ′ (q) from the renormalized second-order
force constants. Alternatively, the 0 K eigenvectors can be paired with renormalized
phonon mode frequencies ωλ(T ) to accurately describe the system if higher-order
effects are small enough to be considered perturbations. The following section de-
scribes how to use phonon coordinates acquired from MD simulations to calculate
the renormalized frequencies as well as the phonon mode lifetimes used to describe
the LTC in section 2.3.
Some unexpected problems arise when trying to set phonon coordinates to specific
values and transforming them to atomic coordinates. Since this is precisely what
need to be done to create initial states for mode pumping experiments, the final
section in this chapter describes the arising problems and how to handle them.
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2.4.1 Time evolution of phonon coordinates
If the system used in a MD simulation is purely harmonic, then the equation for the
mode displacement of some mode λ is described by

∂2

∂t2
Qλ + ω2

λQλ = 0, (2.36)

and the resulting Qλ(t) and Πλ(t) will be sinusoidal with some amplitude B and
phase φ,

Qλ(t) = B sin(ωλt+ φ)
Πλ(t) = ωλB cos(ωλt+ φ).

(2.37)

The potential and kinetic energies of mode λ can be identified in Eq. (2.10) and are
simply Uλ = 1

2ω
2
λ|Qλ(t)|2 and Kλ = 1

2 |Πλ(t)|2, respectively. The total energy of the
mode can therefore be expressed in terms of the mode amplitude as Eλ = ω2

λ|B|2.
In equilibrium at temperature T , the system would have an energy of 1

2kBT per
degree of freedom, according to the equipartition theorem. Since each phonon mode
represents two degrees of freedom, the average energy per mode is ⟨Eλ⟩ = kBT in
equilibrium. This means the average mode amplitude at temperature T is

⟨|B|⟩ (T ) =
√
kBT

ωλ
, (2.38)

which gives a convenient measure for B. Instead of directly stating the value of B,
which has dimensions (mass) 1

2 ·(length), it can be stated in terms of the temperature
at which B would be the mean amplitude.

2.4.2 Damped harmonic oscillator
In the presence of anharmonicities, Eq. (2.36) can be adjusted by including a damp-
ing term Γ(T ) ∂

∂t
Q describing relaxation and a force term f(t) describing thermal

fluctuations,
∂2

∂t2
Qλ + Γ(T ) ∂

∂t
Qλ + ωλ(T )2Qλ = f(t). (2.39)

This is a Langevin equation, modeling Qλ and f(t) as random variables, where f(t)
is assumed to behave as white noise, meaning ⟨f(t)⟩t = 0 and ⟨f(t)f ∗(t+ ∆t)⟩t =
Fδ(∆t). Furthermore, the oscillation frequency and damping factor are explicitly
written to be temperature dependent to account for any thermal softening and
hardening due to the anharmonic force contributions. For simplicity, however, we
drop the temperature dependence in the following.
Solving Eq. (2.39) for Qλ(t) directly would be troublesome and not very useful due
to the inclusion of the random force. Instead, the equation can be used to model
the autocorrelation function of Πλ = ∂

∂t
Qλ. Fourier transforming Eq. (2.39) gives[

−ω2 + iΓω + ω2
λ

]
Q̂λ(ω) = f̂(ω), (2.40)

where
û(ω) = F [u(t)](ω) =

∫ ∞

−∞
u(t)e−iωt dt

12
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is the Fourier transform of u(t), and F [ ∂n

∂tn
u] = (iω)nF [u] has been used. According

to the Wiener-Khinchin theorem, the autocorrelation function of a function u(t)

Cu(∆t) = ⟨u(t)u∗(t+ ∆t)⟩t

obeys
Ĉu(ω) = |û(ω)|2. (2.41)

In other words, the autocorrelation function is given by the inverse Fourier transform
of the power spectrum. Taking the absolute value squared of Eq. (2.40), using
F [δ(∆t)] = 1, and rearranging gives the power spectrum [17]

ĈQλ
(ω) = |Q̂λ(ω)|2 = F

(ω2 − ω2
λ)2 + Γ2ω2 . (2.42)

Inverse Fourier transforming this expression for ωλ > Γ/2 gives

CQλ
(∆t) = F

2Γωλ
e− 1

2 Γ|∆t|
[
cos(ωe∆t) + Γ

2ωe
sin(ωe|∆t|)

]
, (2.43)

where ωe =
√
ω2
λ − 1

4Γ2. At this point the relaxation time can be identified from the
exponent as τλ = 2

Γ . The autocorrelation function for Πλ can be derived from CQλ

by noting that

ĈΠλ
= |Πλ|2 = |−iωQλ|2 = ω2|Qλ|2 = ω2ĈQλ

= F
[
− ∂2

∂∆t2CQλ

]
,

meaning
CΠλ

(∆t) = − ∂2

∂∆t2CQλ
(∆t).

Taking the second derivative of Eq. (2.43) thus yields

CΠλ
(∆t) = ωλ

2ΓFe
− 1

2 Γ|∆t|
[
cos(ωe∆t) + Γ

2ωe
sin(ωe|∆t|)

]
.

Since the average kinetic energy of mode λ is Kλ = 1
2 |Πλ|2 = 1

2CΠλ
(0) and the

equipartition theorem states Kλ = 1
2kBT , in equilibrium the force factor F must be

F = 2ΓkBT
ωλ(T )

and

CΠλ
(∆t) = kBTe

− 1
2 Γ|∆t|

[
cos(ωe(T )∆t) + Γ

2ωe(T ) sin(ωe(T )|∆t|)
]
. (2.44)

Next, the phonons are assumed to oscillate much faster than they relax, so that Γ ≪
ωλ(T ). As a result ωe(T ) ≈ ωλ(T ) and Γ

2ωe(T ) ≈ 0. The momentum autocorrelation
function is simplified to

CΠλ
(∆t) ≈ kBTe

− 1
2 Γ|∆t| cos(ωλ(T )∆t), (2.45)
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and its power spectrum to

ĈΠλ
(ω) ≈ (Γ/2)kBT

(ω − ωλ(T ))2 + (Γ/2)2 . (2.46)

Finally, expressing the power spectrum in terms of the relaxation time gives a
Lorentzian function

ĈΠλ
(ω) = τλ(T )kBT

1 + τλ(T )2(ω − ωλ(T ))2 . (2.47)

Projecting a MD trajectory onto phonon mode coordinates, calculating the power
spectrum of Πλ, and fitting a Lorentzian function to it is thus a way to calculate
the renormalized frequencies ωλ(T ) and relaxation times τλ(T ).

2.4.3 Mode pumping
When projecting atomic displacements uαnµ and momenta pαnµ onto normal coor-
dinates Qj(q) and Πj(q), the process is straightforward, since Eq. (2.8) can be
calculated directly. Some care must, however, be taken when the aim is to choose
uαnµ and pαnµ to attain a set of Qj(q) and Πj(q). This is the case in mode pump-
ing simulations, where an equilibrated system is altered such that a specific mode
(q, j) acquires a desired energy ℏωj(q)(nqj + 1

2) = 1
2 |Πj(q)|2 + 1

2ωj(q)2|Qj(q)|2. The
situation is complicated by the fact that phonon eigenvectors Aαµj can have an arbi-
trary complex phase which factors into Qj(q) and Πj(q). If, for a given Aαµj, Qj(q)
and Πj(q) are set to specific amplitudes consistent with some mode occupation nqj

but with arbitrary phases, then the resulting computed atomic displacements and
momenta are likely to be complex. What follows is an investigation of the optimal
choice of complex phase for Qj(q) to obtain a purely real set of displacements uαnµ.
For simplicity, consider a system where only a single mode (q, j) is occupied, Q′

j(q′) ∝
δq′,±qδj′,j. The displacements uαnµ can readily be expressed in terms of Qj(q) as

uαnµ = c√
Nmµ

Re
[
Aαµj(q)eiq·R0

nQj(q)
]
, (2.48)

where c = 1 if q and −q are separated by a reciprocal lattice vector and c = 2
otherwise. In the former case q and −q are equivalent when folded into the first
Brillouin zone (BZ), while in the latter case, the factor of two appears because both
Qj(q) and Qj(−q) appear in the sum and their terms are complex conjugates.
For brevity, the notation is simplified,

uαnµ = u,

1√
Nmµ

Aαµj(q)eiq·R0
n = A = Ar + iAi

Qj(q) = Qr + iQi,

(2.49)

whence
u = cRe[QrAr −QiAi + i(QrAi +QiAr)]. (2.50)
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To pump the mode qj, a complex phase ϕ needs to be chosen, where Q = |Q|eiϕ,
such that the real part in Eq. (2.50) is maximized independent of the amplitude |Q|.
The quantity to maximize is

|QrAr −QiAi|2/|Q|2 = |Ar cosφ− Ai sinφ|2

= |Ar|2 cos2 φ+ |Ai|2 sin2 φ− 2Ar · Ai cosφ sinφ

= 1
2 |A|2 + 1

2
(
|Ar|2 − |Ai|2

)
cos 2φ− Ar · Ai sin 2φ.

(2.51)

The first term is constant and can be dropped. The remaining terms can be rewritten
by using the trigonometric relation

a cos θ + b sin θ =
√
a2 + b2 cos(θ − ψ), where cosψ = a√

a2 + b2
. (2.52)

The expression to maximize becomes√
1
4
(
|Ar|2 − |Ai|2

)2
+
(
Ar · Ai

)2
cos(2φ− ψ), where

cosψ = |Ar|2 − |Ai|2√(
|Ar|2 − |Ai|2

)2
+ 4

(
Ar · Ai

)2
.

(2.53)

Since cos θ has its maximum at θ = 0, the expression is maximized by φ = ψ
2 . This

solution can also be expressed as

cos 2φ = cosψ = |Ar|2 − |Ai|2√(
|Ar|2 − |Ai|2

)2
+ 4

(
Ar · Ai

)2
, (2.54)

which gives computationally convenient access to the real and imaginary parts of Q
through

cosφ = ±
√

1 + cos 2φ
2

sinφ = ±
√

1 − cos 2φ
2 ,

(2.55)

where the choice of sign is arbitrary.
An issue remains regarding Eq. (2.54), though, which is what happens at the limits
|Ar|2 = |Ai|2 and/or Ar · Ai = 0. If either, but not both, quantity is zero then the
result is straightforward. In case |Ar|2 = |Ai|2 and Ar · Ai ̸= 0, then Eq. (2.54)
is simply zero. Similarly, if |Ar|2 ̸= |Ai|2 and Ar · Ai = 0, then the expression
reduces to sgn(|Ar|2 − |Ai|2). If, however, both quantities are zero, then Eq. (2.54)
is undefined, and its limit depends on how the two quantities approach zero. The
explanation is given in the last line of Eq. (2.51), which in this case simplifies to

|QrAr −QiAi|2 = 1
2 |QA|2, (2.56)

i.e., the vector whose norm we want to maximize has constant norm. The choice of
complex phase φ is thus completely arbitrary in this case.
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The remaining obstacle is to determine when the case |Ar|2 − |Ai|2 = Ar · Ai = 0
occurs. Consider

A = 1√
Nmµ

Aαµj(q)eiq·R0
n (2.57)

in the case of a monatomic linear chain of length N , with atomic weight mµ = m.
The distance vector between two neighboring atoms is denoted A. Fixing one atom
in the chain to equilibrium position R0

0 = 0, the remaining equilibrium positions
are described by R0

n = nA, n = 0, . . . , N − 1. The single reciprocal lattice basis
vector is denoted b and fulfills A · b = 2π. Commensurate wave vectors can then
be expressed as ql = l

N
b, where integers l = −(N − 1)/2, . . . , (N − 1/2) if N is odd

and l = −(N − 2)/2, . . . , N/2 if N is even. The vector under consideration can now
be expressed as

Aαk (l) = 1√
Nm

Aα0 (l)ei2π nl
N (2.58)

Two classes of wave vectors can be identified. Zero and BZ boundary points, l = 0
and l = N/2, cause the exponent 2πnl/N to be an integer multiple of π, meaning
the phase factor eiql·R0

n becomes entirely real. If the eigenvector components Aα0 (l),
corresponding to displacements of the first atom, are real, then the entire eigenvector
is real. Similarly, if Aα0 (l) has a complex phase then the full eigenvector will have
the same complex phase, and the preceding real part maximization can be used to
find this complex phase. The other class consists of all the other wave vectors, and
encompasses almost all l if N is not small. The real and imaginary parts of A,
assuming for simplicity Aα0 (l) is real, are

Aαkr(l) = 1√
Nm

Aα0 (l) cos
(

2πnl
N

)

Aαki(l) = 1√
Nm

Aα0 (l) sin
(

2πnl
N

)
.

(2.59)

Their magnitudes are

|Ar(l)|2 = 1
Nm

∑
α

(Aα0 (l))2
N−1∑
n=0

cos2
(

2πnl
N

)

= 1
2Nm

∑
α

(Aα0 (l))2
N−1∑
n=0

[
1 + cos

(
4πnl
N

)]

= 1
2m

∑
α

(Aα0 (l))2

(2.60)

and
|Ai(l)|2 = 1

Nm

∑
α

(Aα0 (l))2
N−1∑
n=0

sin2
(

2πnl
N

)

= 1
2Nm

∑
α

(Aα0 (l))2
N−1∑
n=0

[
1 − cos

(
4πnl
N

)]

= 1
2m

∑
α

(Aα0 (l))2,

(2.61)
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where ∑N−1
n=0 cos(4πnl/N) = 0 has been used. This equality holds for 0 < l < N/2,

and can be understood by considering the regular polygon described by exp(i4πnl/N)
in the complex plane. This polygon has d = N/(2 gcd(l, N)) edges and by symmetry,
the sum of its edge coordinates is zero. If l = 0 or l = N/2 then d = 1 and the sum
is nonzero. The important result here is that, for the class of l under consideration,
|Ar(l)|2 = |Ai(l)|2. For the other important quantity, a similar calculation yields

Ar(l) · Ai(l) = 1
Nm

∑
α

(Aα0 (l))2
N−1∑
n=0

cos
(

2πnl
N

)
sin

(
2πnl
N

)

= 1
2Nm

∑
α

(Aα0 (l))2
N−1∑
n=0

sin
(

4πnl
N

)
= 0.

(2.62)

Hence, for wave vectors away from zero and the BZ boundary, the amplitude of the
real part of QA is constant, |QrAr − QiAi|2 = |QA|2/2. Furthermore, since the
constant c = 2 when q and −q are not equivalent and this occurs exactly when q is
away from zero and the BZ boundary, the norm of Eq. (2.50) is simply

|u|2 = 2|QA|2 (2.63)

for these wave vectors. For the zero and BZ boundary points, the result is the same
but without the factor 2 when the phase of Q has been optimized.
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3
Results

3.1 Overview
The posed problem was investigated by the use of large-scale MD simulations of
stacks of graphene using graphical processing units (GPUs) via the gpumd package
[13] and its calorine Python interface [7]. Graphene was chosen since it is a
prototype material for thin film stacks and is simple to model due to consisting
entirely of a single element and having a simpler structure than, e.g., TMDs. In
order to model stacks of rotated graphene sheets, some care is required. Two stacked
layers with a random twist angle generally do not result in a fully periodic system,
or at least not in a system with short enough period lengths. This is a problem for
computational methods such as MD simulations, since crystals are most commonly
modeled using periodic boundary conditions to avoid edge effects. In order to get
around this problem, moiré lattices [18] were used.

Figure 3.1: Comparison between regular graphite and a moiré lattice. The panels
show two atomic layers of graphite (left) and the simplest moiré structure (right).
All atoms are carbon, but for legibility the front layer atoms are shown in blue and
the back layer atoms in purple. Not that the moiré lattice is periodic, even though
it’s layers are rotated (θ = 21.8°) relative to each other.

Each such stacked structure is characterized by one twist angle, which is the relative
rotation between the two layers in the conventional unit cell. As the unit cell is
repeated in a supercell, the layers are thus stacked with alternating rotations.
All calculations were managed using Python, and all atomic structures were repre-
sented and handled using ase [21]. Throughout all simulations, the potential energy
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was modeled using NEPs [14] trained on the results of DFT calculations. FCs were
constructed by fitting FCPs to the NEPs using the hiphive package [12], in con-
junction with some features of the phonopy package [30]. The FCs were then used
to construct dynamical matrices, which in turn were diagonalized to obtain phonon
eigenvectors and harmonic frequencies.
To obtain equilibrium phonon lifetimes and anharmonic frequencies, MD simulations
were performed where an initial equilibration period in the NVT ensemble using the
Langevin thermostat was followed by a production run in the NVE ensemble. All
MD simulations were performed on GPUs on high-performance computing clusters
using gpumd. While this allows for simulations of systems on the order of 105 to
107 atoms [13], such sizes are not necessary for the task at hand. Rather priority
was given to performing a variety of simulations and repeating them to acquire good
statistics. Hence, system sizes between 103 and 104 atoms were used. This was small
enough to enable efficient calculations and data management, while still being large
enough to represent a thermodynamic ensemble. Furthermore, it was large enough
to resolve the BZ well enough to include the modes most relevant for scattering
with the modes of interest. Too small simulation cells would not be able to account
for prominent relaxation paths, and lifetimes would thus appear longer. All MD
simulations were performed with a time step of 1 fs.
Each time step in the resulting trajectories was projected onto phonon coordinates to
obtain phonon mode displacements Qλ(t) and momenta Pλ(t) as functions of time.
Modeling the momenta as amplitudes of independent damped harmonic oscillators
then enabled the extraction of equilibrium lifetimes and renormalized frequencies,
differing from the harmonic eigenfrequencies due to the presence of anharmonic force
contributions.
Next, phonon mode relaxation simulations were performed by projecting the po-
sitions and velocities of thermally equilibrated structures onto Qλ(0) and Pλ(0).
For the pumped mode, Qλ(0) was then set to zero, while Pλ(0) was set to a value
consistent with the desired pumping temperature. After projecting the modified
phonon displacements and momenta back onto atomic positions and velocities, the
resulting structures were used as the initial states in NVE ensemble MD simulations.
The resulting trajectories were once again projected onto Qλ(t) and Pλ(t) to obtain
phonon mode energies as a function of time, and the energy of the pumped mode
was analyzed to find relaxation paths and non-equilibrium lifetimes.

3.2 Energy Landscape
A NEP was trained on data from DFT calculations using the vdW-DF-CX func-
tional [2, 20, 10] to use as the model for the potential energy U in Eq. (2.1) for all
calculations [11]. The validity of the trained NEP is indicated in Figs. 3.2 and 3.3,
where potential energies predicted by the NEP are compared to those from DFT
calculations. Figure 3.2 shows the binding energy curve, i.e., the potential energy
as a function of inter-layer distance. In Fig. 3.3, slip surface plots are shown, illus-
trating how the potential energy varies as neighboring atomic layers are displaced
relative to each other along two directions (Fig. 3.3a) and along a line crossing both
the minimum and maximum energy (Fig. 3.3b).
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Figure 3.2: Binding energy. The potential energy from DFT (light blue dots) and
the NEP (solid purple line) is shown as a function of the distance between atomic
layers in graphite.

In order to construct the harmonic FCs in Eqs. (2.2) and (2.3), the structures
were first relaxed to minima in U using the ase implementation of the Broyden-
Fletcher-Goldfarb-Shanno optimization algorithm. For the most stable structure,
regular graphite, the symmetry was also kept fixed by the use of a FixSymmetry [31]
constraint. At 0 K, a UnitCellFilter [28] was additionally used to enable relaxation
of lattice parameters. At nonzero temperatures, the lattice parameters were instead
determined from MD simulations in the NPT ensemble. A model was fitted [11]
for in-plane and out-of-plane lattice constants a(T ) and c(T, θ), respectively, as a
function of temperature T and twist angle θ.

a(T ) = a0(1 + λaT )
c(T, θ) = cAA(T ) + (cAB(T ) − cAA(T ))e−k(T )θ,

(3.1)

where

cX(T ) = cX,0(1 + λXT ), X ∈ {AA,AB}
k(T ) = k0(1 − λkT ).

A plot of c(T, θ) is shown in Figure 3.4 and the model parameters are shown in
Table 3.1. Here, θ is the twist angle in degrees between the two graphene layers in
the conventional unit cell. The case θ = 60° corresponds to AA stacking, meaning
atoms in the two layers are vertically aligned, while θ = 0° corresponds to AB
stacking, where atoms in one layer are aligned with the gaps between atoms in the
other layer.
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Figure 3.3: Slip surface. The potential energy from DFT and the NEP is shown as
a function of the in-plane displacement of one layer relative to the relaxed structure,
i.e., AB-stacking at X = Y = 0. Displacements in X and Y are given in coordinates
relative to the primitive cell and due to the periodic boundary conditions, the slip
surface is periodic in X and Y with period 1. (a) Potential energy as a function of
relative displacement in X and Y from the NEP (left) and from DFT (right). (b)
Potential energy as a function of the displacement along the diagonal X = Y from
the NEP (solid purple line with circles) and from DFT (solid light blue line with
crosses).
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Figure 3.4: Out-of-plane lattice constant c(T, θ) in Eq. (3.1) for a variety of twist
angles and temperatures. θ = 0° corresponds to AB stacked graphite, while θ = 60°
corresponds to AA stacking.

Table 3.1: Graphene moiré structure thermal expansion parameters.

a0 = 2.4673 Å λa = 1.3944×10−6 K−1 cAB,0 = 6.547 Å λAB = 27.133×10−6 K−1

k0 = 0.799 λk = 40.021×10−6 K−1 cAA,0 = 6.697 Å λAA = 27.857×10−6 K−1

3.3 Harmonic Phonons
The relaxed primitive structures were then used with hiphive and phonopy to
train FCPs, which in turn were used to extract FCs for supercells. In order to train
a FCP, an array of input structures along with their atomic forces as returned by the
NEP was generated. Such input structures are often generated by randomly rattling
the relaxed supercells but in order to improve the quality of the FCP and FCs, a
few extra steps were taken to generate physically probable atomic displacements.
First, the primitive structure was repeated in every direction until no atom was
closer to a periodic image of itself than the distance of the highest NEP cutoff
(8.0 Å). In other words, the supercell was made large enough that the model never
needs to evaluate the interaction of an atom with its periodic image. phonopy
was used to construct an initial set of FCs, which is a relatively fast operation
but results in FCs that lack permutation symmetries. To improve the FCs, the
generate_phonon_rattled_structures function of hiphive was employed next
to generate a set of physically probable training structures. This was done by con-
structing phonon modes based on the phonopy FCs, and then displacing atomic
positions according to the phonon modes with amplitudes randomly sampled from
a thermal distribution at 5 K. This temperature was selected since it was consid-
ered low enough that thermal mode softening would essentially be non-existent, and
the resulting structures could still be considered perturbations of the relaxed refer-
ence structure. Indeed, the average atomic displacement was below 0.05 Å, which
can be compared to the interatomic distance between nearest neighbors of between
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Figure 3.5: Harmonic phonon dispersion along the path ΓMKΓA. The panel on
the left shows the dispersion for AB-stacked graphite, while the panel on the right
shows the dispersion for the simplest moiré structure.

2.8 Å and 3.7 Å. This set of training structures was then used to train the final
FCP, simultaneously enforcing translation and permutation symmetries in the later
extracted FCs.
The number of training structures in the final step was chosen to be at least five,
such that the number of force components present in total in the training set was
at least ten times the number of degrees of freedom in the hiphive cluster space
generated for the primitive structure. The cluster space was in turn generated using
an interaction cutoff of 6.0 Å and a symprec, the tolerance for numerical deviations
from exact spatial symmetry related quantities, of 1.0×10−3.
Finally, phonopy was used to calculate harmonic dispersions from the FCs. Fig-
ure 3.5 shows the resulting band structure at T = 0 K for AB stacked graphite
(θ = 0°) and the simplest moiré structure (θ = 21.8°).
Since the out-of-plane modes are of particular interest, Figure 3.6 shows the acoustic
bands between Γ and A for graphite and the five simplest moiré structures. As the
twist angle decreases and the unitcell increases in size, more optical bands appear.
The figure illustrates that some of the added optical mode lie quite close to the
longitudinal acoustic (LA) band at small twist angles. Note that the lowest band is
negative for θ = 6.0°, indicating an unsuccessful structure relaxation, but that the
qualitative picture for the other bands is still useful.
From the dispersions, phonon frequencies and group velocities were extracted be-
tween Γ (q = [0, 0, 0]) and A (q = [0, 0, 1/2], where the last coordinate is the
out-of-plane direction), both of which are shown for the LA and transverse acoustic
(TA) modes at T = 0 K in Figure 3.7. Frequencies were extracted in the A point,
and group velocities were extracted near Γ.
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Figure 3.6: Harmonic phonon dispersion between Γ and A, zoomed in on the
acoustic modes and nearby optical modes.

0° 10° 20°
Angle θ

0

2

4

12

13

ω
λ

(m
eV

)

LA
TA

(a)

0° 10° 20°
Angle θ

0

5

10

15

42

44

46

48

v g
(m

s−1
)

LA
TA

(b)

Figure 3.7: (a) Frequencies at the A-point and (b) group velocities at Γ in the
direction of A as a function of twist angle. Frequencies and group velocities are
shown in purple for the TA mode and red for the and LA mode. The dashed lines
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In Figure 3.7, it is clear that increasing the twist angle above θ ≈ 8° has little
effect on the frequencies and group velocities. Smaller angles, on the other hand,
are likely to show a stronger angle dependence. Unfortunately, smaller angle Moiré
structures require larger unit cells, which becomes computationally prohibitive and
is why Fig. 3.7 contains one more point for the LA mode than for the TA mode.
The size of the θ = 6.0° structure caused small inaccuracies in relaxation and force
constant determination, which resulted in the computed TA band being imaginary.
Since the LA band is further from zero, it’s determination is more robust against
such inaccuracies, which is why it is still included in the figure.

3.4 Equilibrium Molecular Dynamics
For AB stacked graphite at T = 300 K, 400 K, several equilibrium MD runs were
performed. These runs consisted of an equilibration period of 200 ps in the NVT
ensemble at the desired temperature, with a Langevin thermostat and a coupling
factor γ∆t = 100, see Eq. (2.21). The equilibration period was followed by a pro-
duction period of 1 ns in the NVE ensemble, where atomic positions, velocities and
forces were stored every 20 fs, resulting in trajectories of snapshots of said quantities.
A supercell consisting of a 12 × 12 × 8 repeated graphite unitcell (4608 atoms in
total) was used in all simulations described in the following. The outputs were then
used in two ways.
Firstly, a total of 20 snapshots evenly spaced in time were extracted from two sepa-
rate MD runs, to be used as samples of the initial structure in thermal equilibrium.
For T = 400 K, 20 snapshots additional snapshots were extracted from two simu-
lations using a 12 × 12 × 16 supercell (9216 atoms in total). The time difference
between snapshots of 100 ps was chosen such that the samples can be considered
uncorrelated.
Secondly, the velocities of all snapshots from three separate runs were projected onto
phonon modes along a standard BZ path, giving a collection of phonon momenta
time series. For each phonon mode, the momentum autocorrelation function was
then modeled as a damped harmonic oscillator as described in section 2.4.2. Each
run was split into four 250 ps time series individually used to calculate the mode
momentum power spectra, resulting in a total of 12 power spectrum samples per
temperature. The curve_fit function of SciPy was used to fit Eq. (2.47) to the
sample means, with the sample standard deviations representing data uncertainties.
In this way, the renormalized frequencies ωλ(T ) and relaxation times τλ(T ) were
obtained.
Since the sampling period was only 20 fs, corresponding to a sampling frequency
of 50 THz, phonons bands with frequencies above the Nyquist frequency of 25 THz
were analyzed through undersampling. If the harmonic frequency ωλ of a band was
above the Nyquist frequency ωNyquist, then the attained power spectrum at frequen-
cies below ωNyquist was assumed to be an alias of the power spectrum at frequencies
NωNyquist < ω < (N + 1)ωNyquist, where N = ⌊ωλ/ωNyquist⌋. This assumption is usu-
ally problematic when the power spectrum is nonzero near the frequency interval
borders, since in that case the aliasing distorts the power spectrum. These cases,
however, were rare, and only happened for bands for which the renormalized fre-
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quency was the primarily desired quantity. Hence, the distortion was not an issue,
fitting the Lorentzian function still worked as a peak finding method, albeit the
extracted lifetime was likely erroneous in those cases. The renormalized frequencies
at 400 K are shown along with the harmonic dispersion at the same temperature in
Fig. 3.8.
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Figure 3.8: Phonon dispersion for AB-stacked graphite at 400 K. The solid purple
line shows the harmonic frequencies of the relaxed structure, calculated as for the
T = 0 K case, but using a structure with lattice constants thermally expanded at
T = 400 K. The turquoise circles show renormalized frequencies extracted through
fitting of damped harmonic oscillators.

Figure 3.8 shows that the renormalized frequencies are very close to the ones de-
rived via the dynamical matrix with thermally expanded lattice constants. This
means that most of the thermal mode softening or hardening can be accounted for
by thermal expansion at these temperatures. It also indicates that the harmonic
approximation works quite well for graphite at these temperatures, since anhar-
monic force contributions are not large enough to significantly disturb the harmonic
picture.

3.5 Non-equilibrium Molecular dynamics
For the next series of runs, two phonon modes of particular interest were selected,
a transverse optical (TO) mode at the Γ-point and a LA mode halfway between
the Γ and A-points. For both selected phonon modes, and for both background
temperatures, each of the 20 uncorrelated equilibrium 12×12×8-supercell graphite
snapshots was prepared in the following way. The displacement and momentum of
the selected phonon mode was first set to zero in the snapshot structure by adjusting
atomic positions and velocities via inverse phonon mode projection. Then, a series
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of phonon pumped structures was prepared by setting the phonon momentum to
a collection of amplitudes corresponding to the average kinetic energies at certain
temperatures, Tpump = 1250 K, 2500 K, 5000 K, 10 000 K and 20 000 K.
Each of these TO-pumped (LA-pumped) structures was then used as the initial
state in a 200 ps (20 ps) MD run in the NVE ensemble, where atomic positions and
velocities were stored every 20 ps (2 ps). For every one of the 20 resulting trajectories,
the atomic positions were projected onto phonon displacements and momenta, which
were in turn used to calculate the kinetic, potential, and total energies of phonon
modes. The energies from the 20 runs were finally used to calculate the energy mean
and variance for the pumped mode. For the Γ-TO mode, the mean and variance
were also calculated for the sum of the pumped mode energy with the energy of the
other, degenerate, TO mode.
The same preparation as described above was done for the 20 12 × 12 × 16-supercell
snapshots, but only for the LA mode at T = 400 K and Tpump = 20 000 K. These
structures, along with the corresponding 20 12×12×8-supercell structures, were then
used as initial states in MD simulations spanning 200 ps, where atomic coordinates
were stored every 10 ps. Finally, the phonon energies were calculated as described
for the previous runs.

3.5.1 Bayesian modeling
For all but the 200 ps LA pumping runs, the time series of the total energy of the
pumped mode was then fitted to a decaying exponential function to extract the non-
equilibrium lifetime. It should be noted that an exponential fit is a rather coarse
approximation to the complex behavior observed in the data (see Figure 3.9). Firstly,
the energy and time units were standardized to prevent numerical errors. Time was
scaled relative to one picosecond, with time steps tn ranging from t1 = 0.02 (0.002)
to t10 000 = 200 (20) for the TO (LA) mode. The first time step was offset from
zero because the initial states of the MD runs were excluded from this analysis.
Energies were scaled relative to the pumped mode energy kBTpump in the initial
state, such that the first energy in each time series E1 ≈ 1. When modeling the
sum of energies of the two degenerate TO modes, the substitutions Teq → 2Teq
and Tpump → Tpump + Teq were made to account for the higher equilibrium energy.
Secondly, in order to reduce correlations between data points close in time, block
averaging was used. The 10 000 energy data points En = E(tn) where split into 100
blocks of consecutive values, which were then averaged to attain the block energies
Eb,i = Eb(tb,i), where tb,i = tn=100i is the time coordinate of the start of the block.
The block energy variances were calculated using

V ar(X) = X2 −X
2
,

where X denotes the mean of the random variable X. This was done by using
the fully time resolved energy means En = (E)n and variances σ2

n = V ar(E)n to
calculate (E2)n, block averaging this quantity to get (E2

b )i, and subtracting the
squared block averaged energies (E2

b )i = (Eb
2)i.

Energies were modeled using three parameters,

Em(tn; τ, Epump, Eeq) = (Epump − Eeq)e−ti/τ + Eeq,
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Table 3.2: Gamma prior parameters.

τ (TO) τ (LA) σ Eeq

mode 40 10
(∑100

i=1
1
σ2

i

)−1/2
Teq
Tpump

variance 502 52 0.12
(

Teq
2Tpump

)2

where Em is the model energy, τ is the relaxation time, Epump is the initial energy
of the pumped mode and Eeq is the equilibrium energy, i.e., the average energy of
the pumped mode after relaxation. The block averaging was accounted for by the
inclusion of a correction factor derived by block averaging the exponential model

Λ = 1
100

e−100∆t/τ − 1
e−∆t/τ − 1 ,

where ∆t = 0.02 (0.002) for the TO (LA) mode. The model for block averaged
energies was thus

Eb,m(tb,i; τ, Epump, Eeq) = Λ(Epump − Eeq)e−ti/τ + Eeq.

Deviations in the data from the model were, in turn, modeled using a weighted
multivariate normal distribution with an error scale parameter σ and with a weight
matrix derived from the block variances σ2

i ,

Wij =
1
σ2

i∑100
i=1

1
σ2

i

δij.

Here, the weight matrix is diagonal as indicated by the Kronecker delta, and nor-
malized such that Tr(W ) = 1. The data likelihood was thus described by

p(Ed|τ, σ, Epump, Eeq) = |W |1/2

(2πσ2)100/2 exp
(

−(Ed − Ed,m)TW (Ed − Ed,m)
2σ2

)
.

For τ , σ and Eeq, Gamma distribution priors were used, with parameters chosen by
selecting physically motivated modes and variances for the distributions, and from
them deriving the shape parameters. For Epump, a normal distribution was used as
the prior, with mean 1 and standard deviation Teq/Tpump. The Gamma prior modes
and variances are shown in Table 3.2. Finally, the posterior was sampled using
the EnsembleSampler in the emcee package [16], with 1000 burn-in steps, 4000
production steps and 8 walkers. The number of posterior samples was verified to be
greater than or close to 50 times the sample autocorrelation times, in accordance
with emcee documentation, and the acceptance rate was about 0.6 for all runs.
Figure 3.9 shows the results of the Bayesian modeling at Teq = 300 K, where the
medians of the model posteriors are illustrated by dashed black lines along with
the underlying data as solid purple lines. It is evident that the exponential model
does not capture the full behavior of the relaxation. As the pumping temperature in-
creases, an oscillatory component in the decaying mode energy becomes increasingly
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Figure 3.9: Exponential models for the energy of pumped modes Γ TO and 1
2A LA

at a background temperature of Teq = 300 K and effective pumping temperatures
of 1250 K, 2500 K, 5000 K, 10 000 K and 20 000 K. The dashed black lines show the
median of the model posteriors, fitted to the MD data, in turn shown as solid purple
lines. The background temperature is indicated as dotted red lines, and all values
are shown normalized to the pumping temperatures.

apparent, see subsection 3.5.2 for details. Furthermore, although the exponential
model seems to extract the sought relaxation times at a low pumping temperature
(Tpump = 1250 K), this is not the case when the system is driven farther from equilib-
rium. Instead, the exponential models plateau at temperature far above the actual
background temperature, and so the extracted relaxation time does not measure the
time taken for the system to return to equilibrium, but rather to reach the plateau.
This is at least partially a size effect caused by the moderate simulation cell size,
and is discussed in more detail in the following section.

3.5.2 Longitudinal Acoustic mode pumping

Figure 3.10 shows how the energy is distributed from the pumped 1
2A (q = [0, 0, 1/4])

LA mode into other modes along the ΓA band at a pumping temperature of Tpump =
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Figure 3.10: Phonon energy over time after pumping the LA mode halfway be-
tween Γ and A (q = [0, 0, 1/4]) to an effective temperature of Tpump = 20 000 K from
an equilibrium temperature of Teq = 400 K.

20 000 K. The pumped mode seems most strongly coupled to the degenerate LA and
longitudinal optical (LO) modes (j = 5 and j = 6) at A, since these are the first
modes that are excited as the pumped mode decays. Energy even seems to oscillate
back and forth between the 1

2A LA mode and the two A modes with a period time of
about 5.5 ps (equivalent to 0.18 THz). Shorter oscillations are also present in these
modes, with a period of about 0.25 ps (equivalent to 4.0 THz) for the pumped mode,
but are most likely caused by calculating the mode energies using the harmonic
frequencies, rather than the renormalized ones. Energy oscillating back and forth
between modes is, however contrary both to the RTA and to the exponential model.
On the other hand, the strong coupling between these modes is consistent with
Fermi’s golden rule and the scattering described in Eq. (2.26), with λ representing
either of the A modes and λ′ = λ′′ both being the pumped mode. In other words,
pairs of pumped mode phonons scatter to form A LA and LO phonons, conserving
crystal momentum. Comparing with Figure 3.8, it is clear the total energy is also
conserved, as all three (two degenerate) acoustic bands between Γ and A are almost
completely linear. After about 2.5 ps, the 3

4A (q = [0, 0, 3/8]) LA mode (j = 5)
is significantly excited. This energy transfer, however, is not well explained by
Eq. (2.26), even when taking into account scattering between the pumped mode
and the two excited A modes. The only three-phonon interaction that includes
the 1

2A and 3
4A modes and conserves crystal momentum is the one where a single

1
2A mode decays into two 3

4A phonons, but this would violate energy conservation.
Energy is rather most likely transferred to the 3

4A mode through a higher-order
interaction such as the one where a 1

2A and an A phonon scatter to form two 3
4A

phonons. This would explain the delay in the excitation of the 3
4A mode, as the

scattering cannot occur to a significant degree until the A modes are excited. At
around 5 ps four more modes are distinctly out of equilibrium. All four modes are at
the A point and degenerate, with two being TA (j = 1, 2) and the other two being
TO (j = 3, 4). Again, the interaction is not perfectly explained by Eq. (2.26), as
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Figure 3.11: Energy density as a function of time after pumping the LA mode
halfway between Γ and A (q = [0, 0, 1/4]) to an effective temperature of Tpump =
20 000 K from an equilibrium temperature of Teq = 400 K. The simulated supercell
is a 12×12×8 repeated graphite unitcell in (a), and a 12×12×16 repeated unitcell
in (b).

a pair of 1
2A phonons scattering into one of the four modes would merely conserve

momentum but not energy. A single A LA phonon has a bit more than twice the
energy of the four modes, but if the band linewidths are large enough this might be
the most probable scattering path. Taking into account four-phonon processes, a
similar path might be available if two 1

2A phonons scatter and form two TA or TO
phonons at A. Finally, a single A LA phonon could decay into three phonons in the
lower bands if linewidths are large enough.
More modes start getting excited after about 7.5 ps, likely due to scattering involving
the hitherto latest excited transversal A modes. Instead of further examining the
scattering details, it is at this point more interesting to consider the situation at
around 10 ps and onward. The pumped mode seems to have stabilized in an excited
state, with the exponential fit leveling out at a background temperature of about
2500 K. Similarly, the other excited modes level out and seem to remain out of
equilibrium for a long time. This phenomenon could be explained by the collection
of excited modes being in a quasi-equilibrium, where scattering between excited
modes merely moves energy around within the collection, and interactions are rare
that leak energy to the rest of the system.
Figure 3.11a shows the phonon energy density across all modes as a function of
time up to t = 200 ps, with the same initial state as in Figure 3.10, but with a
time resolution of 10 ps. The quasi-equilibrium persists for a rather long time, as
the system still has not fully relaxed after 200 ps, indicating a collective lifetime far
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above the exponentially fitted τ = 1.44+0.14
−0.12 ps. This is, however, partially caused

by the finite size of the simulation cell, as can be seen by comparing Figs. 3.11a
and 3.11b. The left and right figures show the time evolution when the simulated
supercell comprises 12 × 12 × 8 and 12 × 12 × 16 unitcells, respectively. Since the
latter systems is twice as large in the out-of-plane direction, the reciprocal lattice
q resolution is twice as high between Γ and A, meaning more phonon modes are
available for scattering. As a result, the quasi-equilibrium relaxes faster in the larger
simulation cell, albeit still slower than the initial exponential fit would indicate.
Investigating whether and when this size dependence converges is beyond the scope
of this work, but should be the subject of future research.

3.5.3 Transversal optical mode pumping
Figure 3.12 shows how the energy is distributed among phonon modes after pumping
one of two degenerate TO modes (j = 4) at Γ to an effective temperature of 5000 K
from equilibrium temperatures of (a) 300 K and (b) 400 K. The situation here is
considerably simpler than when pumping the LA mode. Most of the pumped energy
simply transfers to the unpumped degenerate mode (j = 5), and no other modes
are significantly excited. This result is somewhat unexpected, as three other modes
seem reachable via third-order scattering according to Eq. (2.26), namely the q =
±[0, 0, 1/8] LA mode and q = ±[0, 0, 3/8] TA modes (twice degenerate). Looking
at Fig. 3.8, energy and crystal momentum could be conserved when a single Γ TO
phonon decays into one +q and one −q phonon of either of these modes. Since
neither of these modes are excited in Fig. 3.12, the third-order force constants for
these interactions are likely small. The most prominent fourth-order interaction
is with the q = ±[0, 0, 1/4] TO mode, where two Γ TO phonons scatter under
formation of one +q and one −q TO phonons. This mode is faintly visibly excited
to an effective temperature of about 500 K as a thin gray line in Fig. 3.12a between
t = 50 ps and t = 125 ps.
Comparing the two figures, the excited modes relax faster when the background tem-
perature is higher. This is expected, as a higher background is equivalent to higher
average occupation numbers for all modes, which in turn increases all scattering
rates. Although weak, the two excited modes lose energy to the rest of the system
through higher-order scattering interactions, which nevertheless happens more fre-
quently at higher temperatures. The consequence is a temperature dependence in
the pumped relaxation time τ .
The simplicity of the situation facilitates a straightforward analysis of the quasi-
equilibrium model introduced in the previous section. Since the two degenerate TO
modes can be considered to compose the full collective excitation, the sum of their
energies is the energy of the collective mode. This sum is illustrated in Fig. 3.12 as
the light orange lines. Exponential fits to this energy sum are also shown, and the
extracted relaxation times of the collective excitation are significantly longer than
those of the pumped mode, at both background temperatures. This gives credence
to the quasi-equilibrium model, and suggests a similar analysis could be done for
more complicated relaxation paths, if all substantially excited modes are included in
the sum. Such an analysis is another potential target for future work. Rather than
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performing full pumped MD simulations to find which modes should be included
in a particular collective excitation, the third-order force constants in Eq. (2.26)
could likely be analyzed to find groups of phonon modes which are coupled strongly
internally, and weakly externally.
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Figure 3.12: Phonon energy over time after pumping the TO mode halfway at
Γ to an effective temperature of Tpump = 5000 K from equilibrium temperatures of
Teq = 300 K (a) and Teq = 400 K (b).

3.5.4 Non-equilibrium lifetimes
Figure 3.13 shows the median posterior lifetimes extracted via Bayesian modeling
for the two pumped modes, at background temperatures of 300 K (purple lines)
and 400 K (red lines) as a function of pumping temperature. The dashed lines
in the upper figure shows the lifetimes of the composite mode, modeled as the
sum of energies of the two degenerate Γ TO modes. Additionally, the figure shows
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Figure 3.13: Pumped mode lifetimes as a function of pumping temperature for
Γ TO and 1

2A LA at background temperatures of 300 K (purple lines) and 400 K
(red lines). Equilibrium lifetimes are shown as dots with error bars (calculated
from equilibrium MD) and as crosses without error bars (calculated by numerically
solving the LBTE). The equilibrium MD error bars show one standard deviation
and the non-equilibrium MD error bars show the 5th and 95th percentiles. In the
upper figure, the dashed lines show the non-equilibrium lifetimes of the composite
mode consisting of the two degenerate Γ TO modes.

the equilibrium lifetimes calculated via autocorrelation analysis of equilibrium MD
phonon momenta (dots with error bars), and by numerically solving the LBTE
using phono3py [29] (crosses without error bars). When solving the LBTE, a
system size of 30 × 30 × 10 unitcells was used [11], giving a resolution in reciprocal
space of 6 q-points between the Γ and A points, inclusive. The error bars for
the autocorrelation lifetimes show one standard deviation, extracted as the square
root of the lifetime variance in the covariance matrix returned by curve_fit used
as described in section 3.4. As for the non-equilibrium lifetimes, the errors bars
instead show the 5th and 95th percentiles of the lifetime posteriors from the Bayesian
modeling. Note that these errors show the uncertainty in the lifetime under the
assumption that the energies relax exponentially. As can be seen in Fig. 3.9, this
assumption is flawed, and as such the lifetime uncertainties should be interpreted
carefully. Furthermore, the exponential model lifetimes themselves measure the time
for the pumped mode to reach quasi-equilibrium and not true equilibrium, especially
at higher pumping temperatures. This effect is more pronounced for the LA mode,
as can be seen in Fig. 3.9, because quasi-equilibrium is reached quickly but relaxes
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to true equilibrium slowly. A likely explanation is simply the fact that more modes
are part of the collective excitation for the LA mode than for the TO mode. Hence,
the initially pumped LA mode has more paths available to distribute its energy to
the other modes in the quasi-equilibrium.
Some patterns can be identified in Fig. 3.13. For the TO mode, the lifetime de-
pendence on pumping temperature is weak or nonexistent, but the lifetimes of the
composite mode are consistently higher than the one of the pumped mode alone.
Furthermore, this effect is more pronounced at the lower background temperature.
A probable explanation is that, once both degenerate modes are excited, the scat-
tering rate between them is independent of the background temperature, while the
scattering rate to other modes increases with the background temperature. The
relative rate of external scattering compared to internal scattering of the composite
mode therefore increases with the background temperature, causing the composite
mode to relax faster.
As for the LA mode, there is a clear negative dependence of the lifetime on the
pumping temperature. In other words, quasi-equilibrium is reached faster at higher
pumping temperatures. This can be explained by the fact that scattering rates
between strongly coupled modes increase the occupations of the scattering modes.
A higher initial energy of the pumped mode would more quickly excite strongly
coupled modes, which would in turn further increase scattering rates out of the
pumped mode.
The decreasing relaxation time to quasi-equilibrium is probably in contrast to the
relaxation time to true equilibrium, which is expected to show the opposite behavior,
as more energy in the collective excitation should take longer to dissipate to the rest
of the system. This expectation is motivated by the fact that the collective excita-
tion is, by definition, more weakly coupled to other modes, and so higher pumping
temperatures should increase internal scattering while barely affecting external scat-
tering. At the least, this is expected to be the case as long as the modes are not
driven out of equilibrium, i.e., as long as the rest of the system behaves as a heat
bath of constant temperature. If external modes are driven out of equilibrium the
external scattering rate would increase and the quasi-equilibrium lifetime decrease,
meaning there must be a pumping temperature at which the lifetime is maximized.
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In this work, the details of thermal transport in vdW thin film stacks have been
investigated by studying phonon modes important for the LTC, using graphite as a
prototype material.
The goal of finding an optimal twist angle for maximizing the LTC anisotropy has not
been reached, as time-consuming obstacles were reached when attempting to perform
MD simulations and phonon mode projection of moiré structures. When performing
MD simulations of twisted structures using similar supercell sizes as for regular
graphite, individual atomic films randomly drifted in the in-plane directions. This
happened to such a degree that the harmonic approximation of the potential energy
completely failed, as atoms ended up further from their own equilibrium positions
than from those of other atoms. Two potential fixes exist, both of which were too
inefficient to use. Firstly, the atoms could be re-indexed in each time step of the
MD simulation so the index of each atom matches the index of the nearest possible
equilibrium position. This is an example of the linear assignment problem, which
is solvable in polynomial time in the number of atoms [9], and an implementation
using scipy turned out to be unfeasibly slow. The other, preferable, solution would
be to use a larger simulation cell, which would cause performance and memory
resource issues with the implementation of the dynamical matrix construction used
in the present work. The size in memory of the full set of force constants used to
calculate the dynamical matrix scales quadratically with the number of atoms in the
supercell. This could be substantially reduced by keeping the sparse representation
used in hiphive as force constants between atoms far apart are practically zero. In
the present work, however, fully dense force constant arrays were used for ease of
implementation. The performance issue was caused by using a naive implementation
for calculating the Fourier transformed FCs, with a scaling of at least O(N3) in the
number of atoms. Using the Fast Fourier Transform algorithm instead, it would
be possible to bring this scaling down to O(N2 logN) or O(N logN), which would
enable using vastly larger system sizes.
Another goal was explaining the extreme anisotropy in the thermal conductivity of
twisted stacks, which was for similar reasons not directly investigated. Indirectly,
however, the investigation of out-of-plane phonon modes in graphite can be used
to predict the mechanism of thermal transport in the twisted structures. Since
the LA band is predicted to dominate though-plane heat conduction and is almost
identical between graphite and the first moiré structure (see Fig. 3.5), the results
found for graphite can provide some insight for the twisted structures as well. The
non-equilibrium MD simulations where the 1

2A LA mode was pumped (see Fig. 3.10)
showed that the majority of scattering occurred within the LA band, with modes
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in the TA band only joining in via rare fourth-order interactions. Furthermore,
the scattering was initially dominated entirely by the two degenerate LA and LO
modes at A. This could be expected to match the situation in equilibrium, since the
observed scattering to other modes only occurred once the initial two had been driven
far from equilibrium. The concluding prediction for the simplest twisted structure,
then, is that the lifetimes of LA modes, and hence likewise the though-plane thermal
conductivity, should largely be the same as in graphite. For smaller twist angles,
however, Fig. 3.6 gives a different idea. Although the acoustic mode itself remains
largely unchanged as the twist angle decreases, optical modes appear in greater
numbers and gradually inches closer in energy to the LA mode. If out-of-plane LA
phonons in twisted structures still predominantly scatter with other modes between
Γ and A, these adjacent optical bands could provide new relaxation pathways. This
would, as predicted, decrease the LA phonon lifetimes, which would in turn explain
the low through-plane thermal conduction observed in [19]. Running mode pumping
simulations for twisted structures with small twist angles would potentially be able
to confirm or disprove these suspicions.
The third and final objective was to explore the limitations of the RTA to describe
the LTC of thin vdW stacks. This was accomplished with the mode pumping sim-
ulations, as pushing even a single mode in the system far from equilibrium was
enough to invoke behavior at odds with the RTA. Perhaps the most obvious exam-
ple is Fig. 3.9, where the RTA would predict exponential curves akin to the dashed
lines in the figure. Instead, the observed relaxation curves deviate from this predic-
tion progressively as the effective pumping temperature increases, and even display
oscillatory behavior. This can be understood by examining Fig. 3.10, in which it
is evident the energy, rather than dissipating to the rest of the system, oscillates
back and forth between a few strongly coupled modes. The other, potentially more
interesting, observed violation of the RTA is the formation of a long-lived quasi-
equilibrium state visible in Figs. 3.10 and 3.11. As the quasi-equilibrium lifetime
was observed to be size-dependent, more work is needed to determine when this
size-dependence converges. If the effect persists in large enough crystals, it might
be possible to experimentally verify by the following method. The particular quasi-
equilibrium observed here consisted largely of out-of-plane modes contributing to
the LTC. Hence, if the mode pumping simulations are emulated experimentally by
the excitation via laser of the same modes, it should be possible to observe an
increased out-of-plane LTC. Tuning of the laser and measuring the decay time of
the increased thermal conductivity would be a direct measurement of the quasi-
equilibrium lifetime. Furthermore, varying the amplitude of the laser would affect
the quasi-equilibrium temperature and hence also the LTC. Below a certain limit,
amplitudes would not be enough to create a quasi-equilibrium, so the LTC depen-
dence on amplitude below and above this limit should be characteristically different.
Progressively increasing the amplitude from zero and observing whether the ther-
mal conductivity shows such a change in characteristics would thus be a way to test
whether a quasi-equilibrium forms.
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