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Abstract
Molecular solar thermal storage (MOST) systems is a type of energy storage system
which consist of photo switchable molecules that can convert solar energy into
chemical energy which can be released on demand. One important property of a
MOST system is that it the energy storage time should be long which means that
the so-called back-conversion barrier should be large. Recently an experimental
study showed that a substitution in the ortho position of the molecular photo
switch norbornadiene leads to a significant increase of the back-conversation barrier.
However in the same study the back-conversion barrier was also investigated with
electronic structure calculations and this behavior was not seen. This thesis aimed
to understand this discrepancy by investigating the temperature dependence of the
back-conversion for two derivatives of norbornadiene by combining a machine learning
(ML) method called symmetric gradient domain machine learning (sGDML) with
electronic structure calculations to obtain computationally efficient models describing
the dynamical landscape of the molecules studied. It was seen that sGDML models
could describe the dynamical landscape of such molecules to a good approximation,
however more work is required to obtain models which are accurate enough to to
study the temperature dependence of the back-conversion.

Keywords: molecular solar thermal storage, photo switches, machine learning,
sGDML, potential energy surfaces.
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1. Introduction

In the last decades the mean surface temperature on earth has increased by approxi-
mately 1 °C due to increased usage of non-renewable energy resources such as oil,
gas, and coal. In order to avoid further temperature increase several countries aim
to reach net zero emissions between the years 2045 and 2060 [1]. However, as the
majority of energy is still generated from non-renewable energy sources and the world
wide energy consumption continues to increase by about 2% per year there is a need
for an increased usage of renewable energy sources.

One of the most prominent renewables is solar energy as the sun is a virtually
inexhaustible energy source. Currently one of the limitations with solar energy
are the fluctuations in both supply and demand. A solution to this issue is to use
existing energy storage technologies such as batteries which, however, rely on rare
or depletable materials. One technology that has the possibility to overcome this
issue is based on molecular solar thermal storage (MOST) systems which consist
of molecular photo-switches [2], which are molecules that can absorb photons and
transform them into chemical energy. The chemical energy can then later be released
by either a catalytic or thermally induced reaction, which enables storing solar energy.
In this thesis the dynamics of two MOST system based on norbornadiene will be
studied using computational methods. Specifically, machine learning models for the
interatomic interactions in norbornadiene will be developed with the purpose of
using these models to study the free energy behavior of different molecular states.
The reminder of this chapter will consist of a more extensive description of the
background to the subject.

1.1 Background
MOST systems consist of molecular photo-switches which have the ability to both
absorb and store solar energy. Figure 1.1 illustrates the main concepts of how a
MOST operates. By absorbing a photon, a low energy isomer can get excited from
the electronic ground state (S0) to an excited state (Sn with n > 0), where n = 1
in Figure 1.1. Secondly, the excited molecule can with a certain probability, the
photoisomerization quantum yield, undergo a photoconversion process into a higher
energy isomer. This is known as photoisomerization. The time that the molecule
will remain in the higher energy isomer state is related to the height of the energy
barrier that separates the higher energy isomer from the lower energy isomer. The
height of the energy barrier is the difference in enthalpy between the higher energy
isomer and the saddle point, the point with the highest energy along the reaction
pathway between the higher and lower energy isomer. Thirdly, the higher energy

1



1. Introduction

Figure 1.1: Schematic which illustrates the main concepts of how a MOST
operates.

isomer can be back-converted to the lower energy isomer by a catalytic (or thermal)
reaction releasing an amount of energy equal to the difference between the higher
and lower energy isomer [2].

For a molecular system to effectively function as a MOST system there are several
qualities that need to be fulfilled: (1) For the lower energy isomer to become excited
due to solar irradiation the absorption spectrum of the lower energy isomer needs to
overlap with the solar spectrum, in which 50 % of the incoming photons originate
from the interval between 300 and 800 nm. (2) The time that the energy can be
stored should be high, meaning that the energy barrier between the higher energy
isomer and the lower energy isomer should be large. (3) The energy storage density
should be high, meaning that both the amount of energy that can be stored as
well as the molecular weight need to be considered. (4) The photoisomerization
quantum yield should be close to one such that there is a high probability for photo
isomerization to occur. (5) There should exist an efficient catalytic reaction such
that the stored energy can be released when desired. (6) The absorption spectrum
of the higher energy isomer should not overlap with the lower energy isomer to avoid
competition of absorption between the states. (7) The system should be able to
sustain several cycles of charge and discharge without any performance loss. (8) The
MOST system should preferably not contain any toxic compounds [2], [3].
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1.1. Background

Figure 1.2: Illustration of the unsubstituted norbornadiene-quadricyclane
(N-Q) system. Norbornadiene (1N) can via photoabsorption and photoiso-
merization convert to quadricyclane (1Q) where energy can be stored. The
energy can later be released in the form of heat.

In this thesis MOST systems which are based on the N-Q system, where norbornadiene
is the lower energy isomer and quadricyclane is the higher energy isomer, are studied.
In Figure 1.2 the unsubstituted N-Q system is illustrated, and throughout this
thesis this system will be refereed to as 1, norbornadiene will be refereed to as N,
quadricyclane as Q and the saddle point as S. Generally, 1 cannot effectively function
as a MOST system. Although it has a high energy storage density, the absorption
spectrum of 1N does not overlap sufficiently with the solar spectrum, the system
has a relatively short lifetime, and a low photoisomerization quantum yield. It is
however possible to functionalize the molecule by adding substituents and it has
been observed that certain substituents can increase the photoisomerization yield
and red-shift the absorption spectrum such that it better overlaps with the solar
spectrum [2].

In a previous study it was also experimentally observed that a substitution in the
so-called ortho position of an aromatic substituent can have a large effect on the
back conversion rate, leading to a larger back conversion barrier and a longer energy
storage time [4]. In this study the back-conversion barrier was extracted by measuring
the so-called back-conversion rate

k = kbT

h
e

−∆G‡
RT = kbT

h
e

∆S‡
R e− ∆H‡

RT . (1.1)

Here, kb is Boltzmann’s constant, T is the temperature, h is Planck’s constant, R is
the gas constant, ∆G‡ = ∆H‡ − T∆S‡ is the Gibbs energy of activation, ∆S‡ is the
entropy of activation, and ∆H‡ is the enthalpy of activation (back-conversion barrier).
Note that here the entropy (enthalpy) of activation refers to the difference in entropy
(enthalpy) between S and Q. By measuring the rate of back-conversion at a fixed
temperature one can extract the value of ∆G‡ at that temperature. Furthermore
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1. Introduction

by measuring rate of back-conversion for several temperatures one can obtain the
values of ∆S‡ and ∆H‡, assuming that they have no temperature dependence. In
the same study, the back-conversion barrier (∆H‡) was computed using electronic
structure calculations , which showed a large discrepancy between these calculations
and the experimental value for molecules with substitutions in the ortho position of
an aromatic substituent.

To understand this discrepancy, here, the goal is to compute ∆G‡ at different
temperatures. This is, however, difficult as this requires an accurate description
of the dynamics of the atoms in each molecule along the reaction path. Methods
which are sufficiently accurate for this purpose are all based on electronic structure
calculations, which is a set of quantum mechanical methods that allow one to compute
energies and forces for a system of atoms. An issue with these method is however
that they scale poorly with system size, i.e., the number of electrons in the system. In
fact, for the systems considered in this thesis it is practically impossible to compute
∆G‡ at non-zero temperatures by only using electronic structure calculations. A
possible solution to circumvent this issue is the use of machine learning (ML) models.
By training a ML model on forces and energies from electronic structure calculations
it should be possible to obtain a computationally efficient model with an accuracy
comparable to the underlying quantum mechanical method. Thus by the use of ML
models it should be possible to compute the Gibbs free energy at finite temperatures.

The purpose of this thesis is therefore to develop ML models to describe the dynamical
landscape along the reaction path between N and Q with the overarching motivation
of developing a method to explain why molecules with substitutions in the ortho
position of an aromatic substituent have a substantially higher back-conversion
barrier. To do so two, derivatives of the N-Q system will be studied, referred to
as 2 and 3. In Figure 1.3 these two derivatives are illustrated in their N and Q
forms. The only difference between these two molecules is that 2 has the fluorine (F)
atom in the para position while 3 has the F atom in the ortho position. Thus, the
experiment performed in [4] measured a substantially higher back conversion barrier
for 3, while the computational calculations made in the same study predicted 2 and
3 to have approximately the same back-conversion barrier.

When constructing ML models to study these two systems it is important to control
that the ML models can in fact describe the relevant properties. Apart from the fact
that the ML models should be able to describe the general dynamical landscape of
these molecules, they should also be able to describe the reaction path between N
and Q and according to [4] a specifically important property is the rotation of the
side group containing the F atom. This rotation is illustrated by the dashed arrows
in Figure 1.3 and is of specific interest, since if this rotation is limited it can affect
the entropy of the system and thus also the Gibbs free energy.

An important limitation that needs to be discussed is that in this thesis project the
difference in electronic energies will be considered instead of the difference in enthalpy.
This is motivated by a previous study which has shown that the main contribution

4



1.1. Background

Figure 1.3: Illustration of derivatives of norbornadiene which will be studied
in this thesis. The curved arrow illustrates that the side group containing the
F atom can rotate.

to the difference in enthalpy is due to the difference in electronic energies [3]. Thus
∆E‡ is considered instead of ∆H‡ and the Gibbs free energy is replaced with the
Helmholtz free energy, which will be referred to as the free energy, F = U − TS
where U is the internal energy, i.e the potential and kinetic energy of the molecule.
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2. Methodology

As mentioned in the previous chapter this thesis project combines ML models with
quantum mechanical calculations to study a specific type of molecules. In this
chapter it will firstly be explained how a molecule is described in the context of
quantum mechanics. Secondly, density functional theory (DFT) which is a quantum
mechanical method to solve the electronic Schrödinger equation will be explained.
Thirdly, a ML model called symmetric gradient domain machine learning (sGDML)
will be introduced. Lastly, molecular dynamics simulations and statistical mechanics
will be discussed.

2.1 The molecular Hamiltonian
A molecule can be described as a quantum mechanical system that is characterized
by its wave function. To obtain the wave function for a molecule consisting of Ne

electrons at positions r = (r1, r2, ..., rNe), Ni ions at positions R = (R1,R2, ...,RNe),
with charges (Z1, Z2, ..., ZNi

) and masses (M1,M2, ...,MNi
) one in principle needs to

solve the Schrödinger equation

ĤΨ(r,R) =
[
T̂e + T̂i + V̂ee + V̂ei + V̂ii

]
Ψ(r,R) = EΨ(r,R). (2.1)

The Hamiltonian, which specifies the total energy of a system, is for a molecule given
by the sum of the kinetic energy of the electrons T̂e, the kinetic energy of the ions
T̂i, the potential energy between the electrons V̂ee, the potential energy between the
electrons and the ions V̂ei, and the potential energy between the ions V̂ii

T̂e = −
Ne∑
i=1

ℏ2

2me

∇2
ri

T̂i = −
Ni∑
i=1

ℏ2

2Mi

∇2
Ri

V̂ee =
Ne∑
i=1

Ne∑
i<j

e2

4πϵ0|ri − rj|
V̂ei = −

Ne∑
i=1

Ni∑
i<j

Zie
2

4πϵ0|ri − Rj|

V̂ii =
Ni∑
i=1

Ni∑
i<j

ZiZje
2

4πϵ0|Ri − Rj|
.

(2.2)

Unfortunately there is no analytical solution to this equation (except for the hydrogen
atom) and due to the pairwise interactions present in the terms V̂ee, V̂ei and V̂ii

it is very computationally demanding to solve the equation numerically for larger
molecules. One approximation which can be used to simplify this problem is the
Born-Oppenheimer (BO) approximation.
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2. Methodology

2.1.1 Born-Oppenheimer approximation
The BO approximation is the assumption that the motion of the electrons and the
motion of the ions can be separated [5]. This is possible since the motion of the
electrons is much faster than the motion of the ions due to the large mass difference
between electrons and protons/neutrons. Under this approximation the Schrödinger
equation can be split into two parts. One part that describes the electronic wave
function for fixed positions of the ions

Ĥeψ(r) =
[
T̂e + V̂ee + V̂ei + V̂ii

]
ψ(r) = E(R)ψ(r) (2.3)

and one part that describes the motion of the ions

i
∂

∂t
χ(R, t) =

[
T̂n + E(R)

]
χ(R, t). (2.4)

By solving Eq. (2.3) for a specific value of the atomic configuration R′, the potential
energy of the system E(R′) is obtained. Solving this equation for all possible values
of all R yields the potential energy surface (PES) E(R). As the ions are assumed to
be static the PES describes the energy of the system at zero Kelvin. By analyzing the
PES it is possible to identify (meta)stable states of a molecule as they correspond to
minima of the PES; one can also calculate reaction paths between two stable states
by computing the minimum energy pathway between these two states. Furthermore,
one can also use the PES in Eq. (2.4) to solve for the wave function χ(R, t) which
enables one to also account for the dynamics of the ions such that one can compute
quantities, such as the back-conversion barrier, at finite temperature. For the purpose
of this thesis this is, however, too computationally demanding and instead a classical
approximation will be made for the ions. This implies that quantum mechanical
properties, such as tunnelling and zero point vibrations, are neglected and Eq. (2.4)
is replaced with Newton’s equation of motion

Fi = −∂E(R)
∂Ri

= Mi
d2Ri

dt2
= Miai. (2.5)

2.2 Density functional theory
To evaluate states on the PES Eq. (2.3) needs to be solved. This is a challenging
problem as the wave function depends on 3Ne spatial coordinates. In DFT this is
circumvented by instead working with the ground state density

n(r) = Ne

∫
d3r2· · ·

∫
d3rNe|ψ(r, r2, . . . rNe)|2. (2.6)

The advantage of working with the density is that it only depends on three spatial
coordinates and according to the first Hohenberg-Kohn theorem all observables in
the ground state can be expressed as functionals of this quantity [6]. Furthermore,
according to the second Hohenberg–Kohn theorem the ground state density can be

8



2.2. Density functional theory

found by minimizing the total energy with respect to the ground state density. By
defining T [n(r)], the kinetic energy functional for interacting electrons, and U [n(r)],
the potential energy functional for interacting electrons, the total energy functional
(in Hartree units) can be written as

E[n(r)] =
∫
vei(r)n(r)dr + T [n(r)] + U [n(r)] + Eii, (2.7)

where
vei(r) = −

Ni∑
i=1

Zi

|r − Ri|
(2.8)

is the potential between the electrons and the ions. From this equation it is clear
that to write the total energy as a functional of the density one needs to write the
kinetic and potential energy as functionals of the density. For interacting electrons
this is, however, not trivial and one instead uses the Kohn-Sham approach.

2.2.1 Kohn-Sham DFT
In the Kohn-Sham approach of DFT the system of interacting electrons is replaced by
a system of non-interacting electrons and to account for all interaction related effects
the so-called exchange-correlation functional Exc[n(r)] is introduced [7]. The exact
form of this functional is not known and therefore it has to be approximated. There
are many different types of approximations and some of them will be discussed in
section 2.2.2. The total energy functional for the system of non-interacting electrons
is given by

E[n(r)] =
∫
vei(r)n(r)dr + Ts[n(r)] + EH [n(r)] + Exc[n(r)] + Eii. (2.9)

with
EH [n(r)] = 1

2

∫ n(r)n(r′)
|r − r′|

drdr′ (2.10)

and Ts[n(r)] being the kinetic energy of non-interacting electrons. From this expres-
sion the effective potential of the system can be found as

vs(r) = vei(r) +
∫ n(r′)

|r − r′|
dr′ + vxc[n(r)] vxc[n(r)] = δExc[n(r)]

δn(r) . (2.11)

The Schrödinger equation for this system is[
−1

2∇2 + vs(r)
]
ϕi(r) = ϵiϕi(r), (2.12)

and as the electrons are non-interacting the density is given by

n(r) =
Ne∑
i

|ϕi(r)|2, (2.13)

where the sum is over the Ne orbitals with the lowest energy. If vs(r) is known it is
in principle possible to directly solve for n(r). This is, however, not possible as vs(r)

9



2. Methodology

is a function of n(r). To deal with this issue one instead solves the above equations
iteratively until self consistency is reached as illustrated in Figure 2.1.

Guess initial density n[(r)]

Use n[(r)] to calculate vs(r)

Solve[
−1

2∇2 + vs(r)
]
ϕi(r) = ϵiϕi(r)

Mix the densities
n(r) = βn′(r) + (1 − β)n(r)

Calculate new density
n′[(r)] = ∑Ne

i |ϕi(r)|

Check if |n′[(r)] − n[(r)]| < ϵ

Iteration complete
n′[(r)] = n0[(r)]

No

Yes

Figure 2.1: Illustration of the self consistent iteration used to find the ground
state density in DFT.

An initial density is guessed and Eq. (2.12) is solved to obtain a new density. If
the difference between the two densities is smaller than some convergence criterion
the iteration is complete otherwise the density is updated using a mixing parameter
β ∈ (0, 1].

Once the ground state density is found one can evaluate the energy of the system
and the force on each atom as

Fi = − ∂E

∂Ri

= −
∫
drn(r)∂vei(r)

∂Ri

− ∂Eii

∂Ri

. (2.14)

2.2.2 Exchange-correlation functionals
Comparing Eq. (2.7) with (2.9) it is clear that the role of the exchange-correlation
functional is to account for the fact that T [n(r)] is replaced with Ts[n(r)] and U [n(r)]
is replaced by EH [n(r)]. The exchange correlation functional is thus given by

Exc[n(r)] =
(
T [n(r)] − Ts[n(r)]

)
+

(
U [n(r)] − EH [n(r)]

)
. (2.15)

As neither T [n(r)] nor U [n(r)] are known this expression has to be approximated.
The simplest approximation is the so-called local density approximation (LDA). In
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this approximation the exchange correlation functional is approximated as

Exc[n(r)] =
∫
drn(r)εhom

xc (n(r), r), (2.16)

with εhom
xc (n(r), r) being the exchange-correlation energy per electron of the homo-

geneous electron gas. This is often a reasonable approximation for solids as their
electronic structure resembles that of an uniform electron gas [8]. A more general
approximation is a class of exchange-correlation functionals known as generalized
gradient approximations (GGAs). In this approximation the exchange correlation
functional is approximated as

Exc[n(r)] =
∫
drn(r)εhom

x (n(r), r)Fxc(n(r), |∇n(r)|), (2.17)

where Fxc is a function which differs between GGAs [8]. In comparison to the LDA,
GGAs tend to be better at predicting total energies, structural energy differences,
and energy barriers but can sometimes soften bonds [9]. Furthermore there are
hybrid functionals, which are obtained by combining (semi-local) density depen-
dent functionals with exact or screened exchange at the level of the Hartree-Fock
approximation.

In the context of this thesis the most important observation from this section is that
there are several different types of exchange-correlation functionals and that the result
of a DFT calculation is sensitive to the choice of exchange-correlation functional. In
this thesis the functional was used is the so-called B3LYP functional [10], [11]. This
is motivated by the fact that it has been used in previous studies of norbornadienes
and shown results in good agreement with experiments [3]. Furthermore, the software
that was used for DFT calculations was NWchem [12].

2.2.3 Limitations of DFT
A limitation of DFT is that the underlying electronic wave function essentially is
assumed to be a Slater determinant of one kind of atomic orbitals,

Ψ(r1, r2, . . . , rNe) = 1√
Ne!

∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ2(r1) · · · ϕNe(r1)
ϕ1(r2) ϕ2(r2) · · · ϕNe(r2)

... ... . . . ...
ϕ1(rNe) ϕ2(rNe) · · · ϕNe(rNe)

∣∣∣∣∣∣∣∣∣∣∣
= det(ϕ(r)). (2.18)

This is problematic for the system studied in this thesis as this means that only
one type of orbitals can be occupied. In N only π-orbitals are occupied, in Q only
σ-orbitals are occupied, whereas in S both π and σ orbitals are occupied. Thus
regular DFT can describe both N and Q well but fails to describe S [3]. To accurately
describe S one needs to use so-called multi-reference methods, in which the underlying
wave function is allowed to be a linear combination of several Slater determinants
such that several kinds of orbitals can be (fractionally) occupied. These method are,
however, computationally much more demanding than regular DFT calculations and
in this thesis the electronic structure of S will be approximated by using unrestricted
open-shell DFT. This has been done in previous studies and it was observed to be a
viable approximation [4].

11



2. Methodology

2.3 Symmetric gradient domain machine learning
In the previous section it was discussed how DFT can be used to calculate energies
and forces for different atomic geometries. As mentioned this is, however, a computa-
tionally demanding method. To obtain a more computationally efficient model, ML
models can be trained using forces and energies from DFT calculations to obtain an
approximation of the PES and the interatomic forces. In this thesis, the ML model
that will be used is sGDML. This is a specific type of gradient domain machine
learning (GDML), which also exploits the symmetries of the system. To understand
how sGDML works it is required to understand the basics of GDML.

2.3.1 Gradient domain machine learning
In GDML energy conserving force fields are explicitly constructed by inferring the
known relation between the energy of the molecule and the forces acting on each
atom,

f̂F (x⃗) = −∇f̂E(x⃗). (2.19)

Here, x⃗ ∈ R3N corresponds to the positions of the N atoms in the molecule, f̂F (x⃗) :
R3N −→ R3N is the estimator for the forces and f̂E(x⃗) : R3N −→ R is the estimator
for the energy of the system.

In GDML the estimator for the energy is modeled as a Gaussian process (GP) with
a zero mean function,

f̂E(x⃗) ∼ GP [0, k(x⃗, x⃗′)]. (2.20)

As f̂F (x⃗) = −∇f̂E(x⃗) the forces can be expressed as

f̂F (x⃗) ∼ GP [0,∇x⃗k(x⃗, x⃗′)∇T
x⃗′ ]. (2.21)

Here, k(x⃗, x⃗′) is the covariance function also referred to as the kernel function. It is
important to note that the estimator for the energies is a single-output GP whereas
the estimator for the forces is a multi-output GP predicting forces on the atoms in all
spatial dimensions with the covariance function ∇x⃗′k∇T

x⃗′ = Hessx⃗(k) = kH(x⃗, x⃗′) ∈
R3N×3N .

Assuming one has a set of training geometries the predictor for the forces is firstly
constructed as

f̂F (X⃗ ′) = α⃗KH(X⃗ ′, X⃗)T =
M∑
i

3N∑
j

(αi)j
∂

∂xj

∇k(X⃗ ′, X⃗i) (2.22)

with
α⃗ = (KH(X⃗, X⃗) + λI)−1y⃗F , (2.23)

where X⃗ ∈ RM×3N are the training geometries, y⃗F ∈ R3NM are the forces correspond-
ing to the training geometries (flattened into a one-dimensional vector), X⃗ ′ ∈ RL×3N

are the L geometries we wish to predict the forces for, k(X⃗ ′, X⃗i) ∈ RL is a vector of
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2.3. Symmetric gradient domain machine learning

covariances between X⃗ ′ and X⃗i and λ is a regularization parameter. Furthermore the
matrix KH(A⃗, B⃗) with A⃗ ∈ RL×3N and B⃗ ∈ RK×3N corresponds to a block matrix
with block elements KH(A⃗, B⃗)lk = kH(a⃗l, b⃗k) with 1 ≤ l ≤ L and 1 ≤ k ≤ K such
that KH(A⃗, B⃗) ∈ R3NL×3NK .

Secondly, a predictor for the energies can be obtain by integrating Eq. (2.22)

f̂E(X⃗ ′) = α⃗KG(X⃗ ′, X⃗)T =
M∑
i

3N∑
j

(αi)j
∂

∂xj

k(X⃗ ′, X⃗i) + c, (2.24)

where c is the integration constant

c = 1
M

M∑
i

[Ei + f̂E(X⃗i)] (2.25)

with Ei being the energy of training geometry i [13].

The reason for firstly constructing a predictor for the forces and then integrating
that predictor to obtain the energies is due to error-propagation. In essence, the
error for the predictor of the energies will be smaller than the error for the predictor
of the forces due to integrating the force predictor to obtain the energy predictor. If
one were to construct a predictor for the energies first and then take the derivative
to obtain the predictor for the forces the energy would instead be amplified [14].

2.3.2 Descriptors
The Cartesian coordinates are not well suited to describe a specific atomic geometry
since they are neither rotationally nor translationally invariant. A more common
way to describe a particular atomic geometry is therefore via descriptors that map
the Cartesian coordinates of a atomic geometry to another set of coordinates which
are invariant to symmetries, i.e.,

x⃗ −→ D(x⃗), (2.26)

where D(x⃗) is the descriptor function. When using descriptors in GDML, the kernel
functions introduced above become

k(x⃗, x⃗′) −→ JD∇DkD (2.27)

and
kH(x⃗, x⃗′) −→ JD(∇DkD∇T

D′)JT
D′ , (2.28)

with kD = k(D(x⃗), D(x⃗′)) being the covariance is descriptor space and JD being the
jacobian of the descriptor function.

2.3.3 From GDML to sGDML
Although descriptors can be used to account for general symmetries such as rotational
and translational symmetries, specific molecules have specific kinds of symmetries.
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2. Methodology

To estimate the forces and the potential energy surface using fewer training points,
leading to better data efficiency, these symmetries need to be taken into account.
Normally extracting symmetries of a molecule requires knowledge about the system at
hand. However, in sGDML permutation matrices P⃗ (τ), corresponding to symmetries
in the molecules, are discovered automatically with the use of a method called
data-driven multi-partite matching. With this method a set of matrices are obtained
{P⃗a}S

a=1 one for each symmetric transformation. As the permutation matrices
transform an atomic geometry into a physically equivalent, yet different, atomic
geometry they can be inserted into Eqs. (2.22) and (2.24) to account for symmetries
[15],

f̂F (X⃗ ′) =
M∑
i

3N∑
j

S∑
q

(P⃗qαi)j
∂

∂xj

∇k(X⃗ ′, P⃗qX⃗i) (2.29)

and
f̂E(X⃗ ′) =

M∑
i

3N∑
j

S∑
q

(P⃗qαi)j
∂

∂xj

k(X⃗ ′, P⃗qX⃗i) + c. (2.30)

In this thesis a Python implementation of sGDML is used [16]. The descriptor used
in this implementation is a flattened matrix with entries

D(x⃗i, x⃗j) =

||x⃗i − x⃗j||−1 i > j

0 i ≤ j
, (2.31)

where x⃗i corresponds to the Cartesian coordinates of the i-th atom in the molecule.
The kernel function used in this implementation is the 5/2-Matérn kernel

k(x⃗, x⃗′) =
1 +

√
5||x⃗− x⃗′||

σ
+ 5||x⃗− x⃗′||2

3σ2

 exp
−

√
5||x⃗− x⃗′||

σ

 , (2.32)

with σ being the length scale, a hyperparameter that needs to be determined through
training and testing. When deciding what value to use for the length scale it is
important to consider that the kernel function essentially describes how correlated
two points are. For example, if x⃗ is known and x⃗′ is unknown the kernel function
k(x⃗, x⃗′) describes how much the value of x⃗ should affect the prediction of x⃗′. Thus
if two points x⃗ and x⃗′ are highly correlated and ||x⃗− x⃗′|| = ℓ then the length scale
should be on the order of ℓ such that the kernel function between these points is
non-zero. If, however, x⃗ and x⃗′ are not correlated at all then the length scale should
be much smaller then ℓ such that the kernel function between these points is close to
zero.

As mentioned previously, the kernel function is used to construct a matrix R3NM×3NM

where N is the number of atoms in the molecule and M is the number of training
points. A large limitation when training a sGDML model is the possibility of storing
this matrix in memory as the dimensions of this matrix quickly blows up. For
example, to store a float in memory one need 4 bytes; thus to train a model with 26
atoms on 1,000 training geometries requires (4 × 78, 000)2 bytes or ≈ 24Gb.
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2.4. Molecular dynamics & statistical mechanics

2.4 Molecular dynamics & statistical mechanics
Solving the electronic Schrödinger equation allows one to compute the electronic
properties of the molecule. To compute thermodynamic properties of a molecule,
however, one needs to consider the dynamics of the atoms in the molecule. By
generating data using DFT calculations and training a sGDML model a method to
compute the forces on all atoms can be obtained. Under the classical approximation
discussed in section 2.1.1 the forces can be used in combination with Newton’s
equations of motion to numerically calculate the positions and momenta of all atoms
as a function of time. This is known as performing a molecular dynamics (MD)
simulation. Knowing the positions and momenta of all atoms is of course not very
interesting as these are not the quantities that can be measured experimentally.
In general quantities that are measured in experiments are macroscopic quantities
averaged over a large number of particles and averaged over time. To compute such
quantities one needs knowledge from statistical mechanics.

2.4.1 The microcanonical ensemble
Statistical mechanics provides a framework that relates the microscopic properties of
atoms/molecules to macroscopic quantities. To understand how this works we will
consider an isolated system of N identical particles with positions

R = (r1, r2, ..., rN) (2.33)

and momenta
P = (p1,p2, ...,p3) (2.34)

confined to a volume V . The time evolution of the system is governed by the
Hamiltonian of the system

H = P2

2m + V (R), (2.35)

which depends on the positions and the momenta. For this system the macroscopic
variables (N, V,E) are all conserved and (N, V,E) is refereed to as a macrostate of
the system. In general, there are many combinations of the microscopic variables
(R,P), the combination of which is referred to as a microstate, that yield the
same macrostate and the collection of all possible state of this system is known
as the microcanonical ensemble. In real physical situations the conditions for the
microcanonical ensemble are not particularly common as most physical systems can
in some way exchange energy with their environment. It is, however, a good starting
point for introducing the main concepts of statistical mechanics.

An important underlying assumption of statistical mechanics is the assumption of
equal a priori probabilities. This means that all microstates with the same energy
are visited for an equal amount of time. This enables us to relate time averages
which is what is measured in an experiment

f̄ = lim
t−→∞

1
t

∫ t

0
f(R(t),P(t))dt, (2.36)
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to ensemble averages
⟨f⟩ =

∫
f(R,P)ρ(R,P)dRdP∫

ρ(R,P)dRdP , (2.37)

which is an average over all microstates of a system. Here, ρ(R,P) is a density
function describing how likely it is to visit the microstate and f(R,P) is an observable.
As the total energy of this system is conserved the density is

ρ(R,P) = δ(E − H(R,P)) (2.38)

and
⟨f⟩ =

∫
f(R,P))dΩ(E)

Ω(E) (2.39)

where Ω(E) is the number of microstates with energy E and
∫
dΩ(E) is the integral

over all microstates with energy E. Furthermore, as each microstate with energy E
is assumed to be visited for an equal amount of time we have

f̂ = ⟨f⟩. (2.40)

This is know as the ergodicity hypothesis which enables us to relate time-averaged
properties, which can be obtained from MD simulations, to thermodynamic properties
derived as ensemble averages [17].

2.4.2 The canonical ensemble
As mentioned above, the microcanonical ensemble is not particularly relevant for
most physical systems. In the scope of this thesis the most relevant ensemble is rather
the canonical ensemble. This ensemble deals with a system on N particles at constant
volume V and constant temperature T . In this system the density function is given
by ρ(R,P) = e−βH(R,P) where β = 1/kBT with kB being Boltzmann’s constant.
Ensemble averages can then be written as [17]

⟨f⟩ =
∫
f(R,P)e−βH(R,P)dRdP

Z
Z =

∫
e−βH(R,P)dRdP . (2.41)

Here, Z is called the partition function, from which several ensembles averages can
be calculated from. In the scope of this thesis the most important quantity is the
free energy

F = U − TS = −kbT ln(Z). (2.42)
The free energy of a system describes the maximum amount of thermodynamic work
that a system can perform at a constant temperature. In the above equation, the free
energy is a constant, describing the free energy of the entire system. In this thesis,
however, we are mainly interested in computing the difference in free energy between
different molecular configurations. If we denote the variables that characterizes these
states as Γ and denote all other degrees of freedom as Ω, the partition function can
be computed as a function of Γ via

Z(Γ) =
∫
ρ(Γ,Ω)dΩ =

∫
e−βH(Γ,Ω)dΩ = P (Γ). (2.43)
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In this context the partition function corresponds to a probability distribution of
the variables Γ, and under the assumption that the system is ergodic the probability
distribution can be computed as

P (Γ = Γ′) = lim
t−→∞

1
t

∫ t

0
p(Γ′(t))dt, (2.44)

where p(Γ′) is a function which counts the number of times that Γ falls within some
interval of Γ′. In the exact case the width of this interval is infinitesimal but in
actual calculations it is a finite width that essentially determines the resolution of
the probability distribution with respect to Γ [18]. From the probability distribution
for Γ the free energy can be computed as a function of Γ

F (Γ) = −kbT ln(Z(Γ)). (2.45)

With ΓS being the value of Γ in S and ΓQ being the value of Γ in Q, the free energy
difference between S and Q, can be computed as ∆F ‡ = F (ΓS) − F (ΓQ).

2.4.3 Molecular dynamics in the canonical ensemble
As mentioned previously MD simulations is a numerical method for solving Newton’s
equations of motion to obtain positions and momenta for a system of N atoms a
function of time. If the forces on all atoms, F = (F1,F2, ...,FN), are known for all
possible positions of the atoms a straightforward approach is to use, e.g., the so-called
velocity-Verlet algorithm [19]. This algorithm numerically solves Newton’s equation
for the positions, R = (R1,R2, ...,RN) and the velocities, v = (v1,v2, ...,vN), of all
atoms using a finite time step ∆t. At each time step the positions and velocities are
updated according to

v(t+ ∆t/2) = v(t) + F(t)∆t
2M

R(t+ ∆t) = R(t) + v(t+ ∆t/2)

v(t+ ∆t) = v(t+ ∆t/2) + F(t+ ∆t)∆t
2M

,

(2.46)

where M = (M1,M2, ...,MN ). As this algorithm solves Newton’s equations and F is a
conservative force field the total energy is conserved, i.e., this algorithm leads to a MD
simulation in the microcanonical ensemble. To instead perform a MD simulation in
the canonical ensemble, the system should rather have constant temperature. There
are several ways to achieve this but in this thesis an implementation of Langevin
dynamics in the Python package Atomic Simulation Environment is used [20]. In
this approach the force is altered by adding a small friction term and a fluctuating
force for each atom. The force on all atoms then becomes

F′ = F +


−γM1v1 + f1
−γM2v2 + f2

...
−γMNi

vNi
+ fNi

 , (2.47)
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where fj = [fx
j , f

y
j , f

z
j ] is a vector of random numbers drawn from the normal

distribution with zero mean, µ = 0, and variance σ2
j = 2MjγkBT/∆t where T is the

desired temperature of the MD simulation.

By combining the above expression for the force with the velocity-Verlet algorithm,
it is possible to run a MD simulation at constant temperature. This procedure is
illustrated in Figure 2.2. Firstly one needs to choose an initial configuration for
the atoms. In general the initial configuration of the atoms should be compatible
with the type of structures one aims to simulate. It is also important to select a
reasonable value of the time step. If it is too small one will not be able to run
sufficiently long MD simulations, and if it is too large the algorithm can be unstable
and the dynamics of the atoms might not be accurately resolved. In general the
time step should be at least one to two orders of magnitude lower than the fastest
occurring process in the system. For the molecule studied in this thesis, the fastest
occurring process are the carbon-hydrogen bond vibrations, which have a vibrational
frequency of about 3000cm−1. This process thus occurs on a timescale of about 10 fs
and a reasonable time step is 0.5 fs. With a chosen time step, an initial configuration
and a function which computes the forces on all atoms it is straightforward to run
Langevin dynamics by combining Eqs. (2.46) and (2.47) and running the iteration
for a sufficiently long time.

Choose initial configuration, time step and temperature.
Let n = 0, t = n∆t, R(n∆t) ≡ Rn and v(n∆t) ≡ vn

Calculate Rn+1 and vn+1 using Eqs. (2.46) and (2.47).

Has the MD simulation run for a sufficiently long time?

Done

Yes

No
n = n+ 1

Figure 2.2: Illustration an MD simulation.

After having run a MD simulation one will have obtained a discrete set of positions
and velocities as a function of time

RMD = (R0,R1, · · · ,RN), (2.48)

and
vMD = (v0,v1, · · · ,vN), (2.49)

where N is the number of time steps that the MD simulation was run. By the
ergodicity hypothesis discussed in section 2.4.1, it is possible to use these sets to
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estimate ensemble-averaged quantities and probability distributions such as the one
in Eq. (2.44), which allows the computation of free energy differences. One should
however note that the microscopic temperature of the simulation which is a function
of the temperature,

T (t) =
Ni∑
i=1

Mi[vi(t)]2
kb(3Ni − 3) , (2.50)

might not stabilize around the desired value for the first few steps as here we use an
initial velocity of zero. It is therefore important to analyze the temperature (and
other quantities of interest) as a function of time before computing averages and
probabilities. If the temperature has not stabilized around the desired value for the
first few iteration these should be discarded.

2.4.4 Umbrella sampling
To be able to accurately estimate the free energy as a function of some variables Γ
from a MD simulation it is important that all relevant values of Γ are sufficiently
sampled in the MD simulation. In general a MD simulation samples regions around
local minima well, but struggles to accurately sample regions with higher energies
and therefore it is difficult to compute F (Γ) by only using standard MD simulations.
There are several techniques that can be used to sample regions with higher energy
such that F (Γ) can be computed but in this project a method called umbrella
sampling will be used.

The general idea of umbrella sampling is to add a bias potential, V (Γ), to a MD
simulation with the intent of balancing out the energy differences such that values of
Γ that correspond to high-energy regions are sampled accurately. The addition of an
external potential will alter the probability distribution of Γ but can be normalized
to the unbiased probability distribution via

Pu(Γ) = Pb(Γ) exp(βV (Γ))⟨exp(−βV (Γ))⟩ β = 1
kbT

, (2.51)

where the subscripts u and b indicate biased and unbiased probability distributions,
respectively. Choosing a bias potential is not an easy task and the outcome of the
sampling is heavily dependent on choosing a bias potential such that all relevant
values of Γ are well sampled. A common approach is to sample Γ in windows where
each window m consists of a MD simulation with a harmonic bias potential with
strength k centered around the value Γm

wm(Γ) = k

2(Γ − Γi)2. (2.52)

By adding sufficiently many windows, it is possible to assure that all relevant values
of Γ are sampled [18].

When using this approach the biased probabilities cannot be converted into unbiased
probabilities with the help of Eq. (2.51). The equation holds for each window, i.e.,

Pm
u (Γ) = Pm

b (Γ) exp(βwm(Γ))⟨exp(−βwm(Γ))⟩, (2.53)
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but each window will only sample Γ around Γm. To compute the probability
distribution for all values of Γ the windows need to be combined which can be
achieved using a method called weighted histogram analysis method (WHAM). In
this method the total unbiased probability is written as a weighted sum over the
unbiased probabilities from each window

Pu(Γ) =
N∑
m

pmP
i
b (Γ), (2.54)

where pm are the weights that minimize the variance of Pu(Γ)

∂σ2(Pu(Γ))
∂pm

= 0, (2.55)

with the constraint that ∑N
m pm = 1. It is possible to show that

pm = am∑
j aj

with ai(Γ) = Nm exp(−βwi(Γ) + βFi), (2.56)

where Nm is the number of sampled point in each window and

exp(−βFm) =
∫
Pu(Γ) exp(−βwm(Γ))dΓ. (2.57)

As Fm is a function of the unknown probability distribution Pu(Γ), the above equation
has to be solved iteratively until Pu(Γ) has converged This means that an initial
guess for Pu(Γ) has to be made, secondly pi can be computed for all windows, and
thirdly Pu(Γ) can be recomputed. This procedure is continued until Pu(Γ) changes
less then some small tolerance [18].

20



3. Model Construction

The purpose of this thesis is to create ML models that can describe the energy
landscape along the reaction path between N and Q for 2 and 3, i.e., models that
can accurately describe the PES and the forces on all atoms. In this chapter, the
process of constructing these models will be described. Firstly, 1 will be considered
to describe how training data for the models were generated, how the models were
validated, and the importance of choosing a suitable value of the kernel length scale
will be discussed. Secondly, the models for 2 and 3 will be considered and it will
be shown how well they can predict PES and forces, especially for the side group
rotation and the reaction path.

3.1 Models for 1
As both the time of an DFT calculation and the time of training of an sGDML
model scale with system size it is convenient to test the process of data generation
and training on a small system. Thus before considering 2 and 3 which consist of it
26 atoms is reasonable to first consider 1 which only consist of 15 atoms.

3.1.1 Models for 1N and 1Q
Before creating models that incorporate data from 1N, 1S, and 1Q, two separate
models were created. One with the aim of describing 1N, and one with the aim of
describing 1Q. The reason for doing so is because N and Q are local minima, thus
these regions are stable and should be easier to describe. Furthermore, according to
the discussion in section 2.2.3, regular DFT calculations can be used to calculate
energies and forces for atomic geometries in these neighborhoods. To this end, two
ML models were trained on energies and forces from 230 atomic geometries, one
model for 1N and 1Q each and as the data is noiseless the regularization term was
chosen to be a small value, λ = 10−12. As the performance of a ML model generally
is heavily dependent on the quality of the training data it is important to address
how these geometries were generated.

Mainly two different types of approaches were used to generate data for these models:
randomly displacing all atoms starting from an initial configuration of the molecule,
and generating atomic geometries by running a MD simulation with a ML model
trained on such geometries. Initially, only the atomic geometries for N and Q were
known and to generate more training data all atoms of these two geometries were
randomly displaced to generate 50 additional geometries. The random displacement
was done by by adding ϵ = [ϵx, ϵy, ϵz] to each atom’s position, where ϵx, ϵy, ϵz are
random numbers generated from a normal distribution with zero mean and σ =0.03 Å.
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Figure 3.1: Illustrating how the energy/force root-mean-square errors (RM-
SEs) decrease when adding more data to the models for 1N and 1Q.

By computing energies and forces via DFT for these 50 atomic geometries an initial
model could be trained. Although the initial models were not very accurate they
could be used to perform a MD simulation to generate more atomic geometries.
By calculating the forces and energies on these atomic configurations via DFT the
training set could be extended to include more points and the model could be
retrained. This procedure was repeated until an accurate enough model had been
obtained. It should be noted that MD simulations performed using a model trained
on ≤ 150 atomic configurations were not stable, i.e., after some time the energy
diverged and unrealistic geometries were obtained, such configurations were however
not included in the training set.

To see how the model improves over several generations, one can look at how the
model predicts the forces and energies for atomic geometries that are not in the
training set. Here, this is achieved by monitoring the energy RMSE

ERMSE =

√√√√ N∑
i=1

(Epredicted − Etarget)2

N
(3.1)

and the force RMSE

FRMSE =

√√√√ N∑
i=1

(Fpredicted − Ftarget)2

3N . (3.2)
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Here, Epredicted and Fpredicted are the energies and forces that the model predicts and
Etarget and Ftarget are the respective target values, i.e., in the present thesis values
from DFT calculations. The sum is taken over a validation set, consisting of N
atomic geometries. In Figure 3.1 the energy and force RMSEs are illustrated for the
1N and 1Q models. The validation set which was used to compute the RMSEs in
Figure 3.1 was constructed by using the models trained on 230 training geometries to
run an MD simulation and extracting 50 atomic geometries, and then using DFT to
calculate the target energies and forces. It is seen that the RMSE decreases as more
training data is added. This indicates that the method for generating data described
above is an acceptable method for generating training data of decent quality.

3.1.2 Model for 1NSQ
To be able to compute the reaction path between 1N and 1Q, a model which can
simultaneously describe 1N, 1Q, 1S, and points in between these regions was trained.
For brevity this type of model will be referred to as 1NSQ. To train such a model
additional training geometries had to be generated. The training geometries used
to train the models for 1N and 1Q can be reused but new data around 1S and in
between 1N and 1Q needs to be generated. These regions are not local minima
and therefore standard MD simulations cannot be used to generate data for these
regions as MD only samples regions of low energy well. However, as the atomic
geometry of 1S is known from previous studies, [3], training data could be generated
by randomly displacing the atoms of this geometry. Furthermore, to generate atomic
geometries between 1N, 1Q, and 1S linear paths between theses atomic geometries
were computed.

As discussed in section 2.2.3, regular DFT calculations cannot be used to describe
atomic geometries close to the saddle points and therefore unrestricted open shell
DFT calculations were used as an approximation to compute forces and energies
for the training geometries. In total 446 training geometries were used to train the
model for 1NSQ and in Figure 3.2a the energy and force RMSEs are illustrated as a
function of the kernel length scale σ, which is a hyper parameter that needs to be
optimized. The model was validated on validation data from 1N, 1S, and 1Q. The
validation errors for the energies are lower for smaller values of σ while validation
errors for the forces are large for σ = 1Å, then exhibit a sharp drop and for the data
from 1N and 1S the error increases with σ while the opposite is seen for data from
1Q.

This kind of behavior is not seen for the models only trained on either 1N and 1Q
(and also only validated on either 1N and 1Q). In Figure 3.2b the validation errors
for both of these models are illustrated as a function of σ and it is seen that the
validation errors are quite small for all values of σ and that both the force and energy
RMSEs have a minimum at around σ = 25Å. From these results it is clear that when
creating a model for NSQ the choice of σ is much more relevant for the performance
of the model. From Figure 3.2a choosing σ = 2Å yields both relatively low energy
and force RMSEs. From the discussion of the kernel length scale in section 2.3.3 it
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3. Model Construction

is reasonable that one should choose a shorter length scale when training a model
which contains data from N, S, and Q since atomic geometries from N should not
have a large influence on the prediction of atomic geometries close to S or Q.

(a) Illustration of how the validation er-
rors for the 1NSQ model varies with the
kernel length scale. The model is vali-
dated on data from N, S, and Q.

(b) Illustration of how the validation er-
rors for the 1N and 1Q models varies
with the kernel length scale. The model
for 1N (1Q) is validated on data from N
(Q).

Figure 3.2: Illustration of how the validation errors varies with the kernel
lengthscale.

3.2 Models for 2 and 3
After testing the process of data generation and model validation on 1 models for 2
were created by following a similar approach.

3.2.1 Models for 2N, 2Q, 3N and 3Q
Following the approach in section 3.1.1 models for describing 2N, 2Q, 3N and 3Q
were also created. The models were validated by running an MD simulation at 300 K
for 10−2 ns, selecting 50 atomic geometries from the obtained trajectory, calculating
the energy and forces for each atomic configuration with DFT, and then comparing
with the predicted energies and forces. In Table 3.1 the RMSEs for the validation
data is provided. The RMSEs for all models are relatively low and that all models
have comparable RMSEs for the energy and the forces.

2N 2Q 3N 3Q
RMSE Energy (meV) 7.42 10.12 11.39 10.76
RMSE Force (meV/Å) 36.73 49.81 48.80 58.05

Table 3.1: The energy and force RMSEs for the models 2N, 2Q, 3N and
3Q.
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As mentioned in section 1.1 an important property of 2 and 3 is the rotation of the
side groups. To analyze how well the models can predict this property the so-called
rotational energy landscape was calculated. The rotational energy landscape is
essentially the minimal potential energy for each molecule under the constraint that
the side group is rotated by a specific angle. To calculate this quantity constrained
energy minimization was performed, i.e., for each model the energy was minimized
while fixing the angle, θ, for the side group to a specific value. By performing the
minimization for several θ ∈ [0, 360] the rotational energy landscape was obtained.
To validate the performance of the models DFT calculations were carried out for the
atomic geometries obtained through constrained energy minimization. In Figure 3.3
the predicted rotational energy landscape for all models is shown along with the
corresponding DFT data. It is seen that the sGDML models predict the rotational
energy landscape with high accuracy.

From the results shown in this section it can be concluded that sGDML can success-
fully interpolate the knowledge in the training data to predict with high accuracy
the PES for other atomic geometries sufficiently similar to the training data. This
is apparent from the fact that the RMSEs for the validation data along the MD
trajectories are relatively low for all models and the predictions of the rotational
energy landscapes agree with DFT data.

3.2.2 Models for 2 and 3
After validating that sGDML can with a high accuracy be used to describe 2N, 2Q,
3N, and 3Q, models for 2NSQ and 3NSQ were trained following the approach
in section 3.1.2 with σ = 2Å and λ = 10−12. Both training sets consisted of
approximately 900 atomic geometries and in Table 3.2 and Table 3.3 the RMSEs
for validation data in N, S, and, Q is shown for the two models. It is seen that
the RMSEs are larger than for the models trained only on either N or Q. This is,
however, expected as the models are trained on much more diverse atomic geometries,
which influence the predictions.

2N 2S 2Q
RMSE Energy (meV) 30.90 66.29 17.59
RMSE Force (meV/Å) 91.63 103.81 77.91

Table 3.2: The energy and force RMSEs for model 2NSQ validated on data
from 2N, 2S and 2Q.

3N 3S 3Q
RMSE Energy (meV) 35.39 54.10 26.77
RMSE Force (meV/Å) 78.50 108.35 84.16

Table 3.3: The energy and force RMSEs for model 3NSQ validated on data
from 3N, 3S and 3Q.
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Following the approach in the previous section the rotational energy landscapes were
also calculated for N, Q, and S using the 2NSQ and 3NSQ models. Figure 3.3
shows the rotational energy landscape predicted by these models for N and Q along
with DFT data and the rotational energy landscape for the models only trained on
either N or Q. It is seen that the models for 2NSQ and 3NSQ can predict the
rotational energy landscape to the same accuracy as the previous models, in fact for
3N and 3Q it appears even to be more accurate than the previous models. This
can be explained by the fact that points along the rotational energy landscapes were
inserted into the training set when training these models. The reason for doing so is
that according to the discussion in section 1.1 it is important that the models can
predict the side group rotation with good accuracy when computing the free energy
difference along the reaction path. In Figure 3.4 the predicted rotational energy
landscape at S is seen for the two models along with DFT calculations on atomic
geometries from the predicted rotational energy landscapes. In general the sGDML
models predict the rotational energy landscapes well but there are some small errors,
around 90◦ and 270◦ for 2S, and between 150◦ and 230◦ for 3S.

Figure 3.3: Illustration of the predicted rotational energy landscapes for 2N,
2Q, 3N and 3Q along with DFT calculations on atomic geometries from the
predicted rotational energy landscapes. The yellow lines corresponds to the
models for 2N, 2Q, 3N or 3Q and the green lines correspond to the 2NSQ
and 3NSQ models.
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3.2. Models for 2 and 3

Figure 3.4: Illustration of the predicted rotational energy landscapes for 2S
and 3S along with DFT calculations on atomic geometries from the predicted
rotational energy landscapes.

As mentioned in section 1.1, the reason for investigating the rotation is that it can
affect the entropy of the system and in turn the free energy. The entropy of the
system corresponds to the number of accessible states and by analyzing the rotational
energy landscape it is possible to investigate how the entropy should differ between
the molecules based on how the rotation of the side group is limited. From Figure 3.4
one can see that the rotation in S should be limited for both 2 and 3 as the energy
differences between the different angles are large. For 2 the rotational angle should
be confined to around 0◦ or 180◦ and for 3 the rotational angle should be confined
to around 0◦. From Figure 3.3 one can see that the rotation in Q should not be too
limited for 2 as the energy is fairly low for all angles and that the rotation should
be considerably more limited for 3 as the energies are larger. Based on the above
discussion it is reasonable that the entropy differences between S and Q, ∆S‡, differ
between 2 and 3. Therefore the difference in free energy between S and Q should
have a different temperature dependence according to ∆F ‡ = ∆U ‡ − T∆S‡ which
could be the reason for 3 having a substantially lower back-conversion rate than 2.

To be able to compute ∆F ‡ it is important that the models can accurately describe
the reaction from from N to Q. Therefore the minimum energy path (MEP) between
between N and Q was computed using the trained models. The MEP is the path
between N and Q which requires the least amount of energy to cross. The point
with the highest energy on this path is the transition state which is a saddle point,
i.e., S [21]. The physical significance of this path is that it is the most probable path
for the reaction between N and Q and from this path one can determine the smallest
amount of energy that needs to be supplied for the reaction to occur. To obtain this
path the nudged elastic band method was used [22].

In Figure 3.5 the MEPs obtained by using the nudged elastic band method with
the trained sGDML models is shown along with DFT calculations on the atomic
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Figure 3.5: Illustration of the predicted MEPs along with DFT calculations
on the atomic geometries obtained along the path. The left figure is the MEP
for 2 and the right figure is the MEP for 3.

geometries obtained along the path. It is seen that the predicted energies along the
MEP agree well with the DFT calculations close to N, Q, and S but that there
are some points which the models fail to predict accurately. These points lie on
the part of the MEP where the slope is the largest making them harder to predict.
Furthermore, the majority of the training data were atomic geometries close to either
N, Q, and S and therefore it is expected that these models are worse at predicting
energies in between these points. The most crucial property that both models succeed
in predicting is the back-conversion barrier. From Figure 3.5 it is apparent that
the back-conversion barrier for 2 and 3 are similar but that 3 is slightly larger.
This agrees with the previous computational study [4] but does not agree with the
experimental findings in the same study. This is, however, expected as evaluating the
MEP directly from the PES corresponds to the MEP at 0 K and thus the entropic
contribution to the free energy is zero.
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Figure 3.6: Illustration of the two interatomic distances which can be used
to describe the transition between N and Q.

From the obtained MEPs it is possible to investigate the reaction mechanism, i.e.,
how the reaction from N to Q occurs. The transition between N and Q can be
conveniently described using the two interatomic distances d1 and d2 illustrated in
Figure 3.6 for 3N. For N both of these distances are approximately 2.5 Å and for Q
both of these distances are approximately 1.5 Å. In Figure 3.7 the MEPs and the
energy landscape is illustrated as a function of these two distances along with the
locations of N, Q, and S. It is seen that at Q both d1 and d2 are approximately
1.5 Å, at S d1 has increased to approximately 2.4 Å and d2 has only increased to
about 1.6 Å and at N d1 and d2 has increased to approximately 2.5 Å.

Figure 3.7: Illustration of the MEPs as a function of d1 and d2 along with the
energy landscape as a function of d1 and d2. The left figure is the MEP and
energy landscape for 2 and the right figure is the MEP and energy landscape
for 3.
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From the results illustrated in this section it can be concluded that the sGDML
models can be generalized, such that one model can be used to describe N, S, and
Q. Although the RMSEs on the validation data are larger for these models than for
the models for only N or Q, they can still accurately describe the rotational energy
landscapes and the MEPs. Thus by using the models constructed in this section it
should be possible to investigate the temperature dependence of ∆F ‡ and thereby
explain the difference in back-conversion barriers for 2 and 3.

30



4. Free energy calculations

From the analysis of the constructed models in the last chapter it was seen that
the combined models, trained on data from N, S, and Q, for 2 and 3 could, to a
good approximation, describe both the side group rotations and the reaction path at
0 K. Here the models will firstly be used in combination with umbrella sampling,
which was discussed in section 2.4.4, to calculate the free energy along the MEPs to
investigate the temperature dependence of ∆F ‡. Secondly, the models will be used
to calculate the rotational free energy landscapes.

4.1 Free energy along the MEPs
In section 3.2.2 it was shown that the two main differences between N, S, and Q
are the two distances d1 and d2 illustrated in Figure 3.6 and it was also discussed
that these two distances comprise the main reaction mechanism along the MEPs.
Therefore, to investigate the temperature dependence of ∆F ‡, the free energy was
computed as a function of these two distances, for T ∈ [200, 250, 300, 350, 400] K,
along the MEPs using umbrella sampling. It should be noted that when computing
the free energy as a function of d1 and d2 it is not possible to assure that the rotational
angle of the side group of the system is fully sampled which will affect the computed
value of ∆F ‡. The reason for not including the rotational angle as a parameter in
the umbrella sampling routine, which would solve this issue, was due to the time
limitations of this thesis project. Furthermore, it was also thought that the sampling
of the rotational angle would be sufficiently good to still see a qualitative difference
for the temperature dependence of ∆F ‡ for 2 and 3, assuming that the models can
still describe all the relevant properties at finite temperatures.

For both 2 and 3 the umbrella sampling was performed using 40 windows with spring
constants kd1 , kd2 = 50 eV and in Figure 4.1 the location of the 40 different potentials
are seen. For each temperature, window and molecular system a MD simulation was
run for 2 ns with a time step of 0.5 fs and the first 0.25 ns of these trajectories were
discarded as the temperature had not yet reached the required value. By using the
WHAM the free energy was obtained as a function of d1 and d2 along the MEPs.
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Figure 4.1: Illustration of the location of the bias potentials used when
performing umbrella sampling to compute the free energy as a function of d1
and d1 along the MEPs.

In Figure 4.2 the free energy is seen for four different temperatures along the MEPs
where the 0 K curves correspond to the difference in potential energy, ∆E, and are
the MEPs from section 3.2.2. It is seen that the curves for T ∈ [200, 300, 400] K all
have a similar shape to the 0 K curve which indicates that the models can, to a good
approximation, be used to sample the MEP at finite temperatures. Generally the
curves for ∆F should have a similar shape as the curves for ∆E as ∆E should be
the largest contribution to ∆F while the difference kinetic energy due to a finite
temperature as well as the entropy should, for these temperatures, be a smaller and
mainly alter the amplitude of the free energy. For 2 the free energy at S is relatively
unchanged for T ∈ [200, 300, 400] K and the largest changes occur at Q where the
free energy increases much between 200 K and 300 K but is relatively unchanged
between 300 K and 400 K. For 3 the free energy decreases with temperature at S and
decreases slightly with temperature at Q. Furthermore, in Figure 4.3 the difference in
free energy between S and Q is seen as a function of temperature and it is seen that
both 2 and 3 share the same approximately linear temperature dependence. From
the discussion in section 3.2.2 it was excepted that the temperature dependence of
the free energy should differ between 2 and 3 due to the difference of the rotational
energy landscapes between the two molecular systems. A reason for not seeing
a different temperature dependence can be that the rotational angle is not fully
sampled in the MD simulation, but it can also be that the models cannot describe the
rotational energy landscapes correctly at finite temperatures. To further analyze the
temperature dependence of ∆F ‡ it is therefore relevant to investigate the temperature
dependence of the rotational energy landscape, i.e compute rotational free energy
landscapes.
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Figure 4.2: Illustration of the predicted free energy along the MEPs for
T ∈ [0, 200, 300, 400] K. The left figure is the MEP for 2 and the right figure
is the MEP for 3.

Figure 4.3: Illustration of predicted temperature dependence of ∆F ‡ and a
linear fit of ∆F ‡.

4.2 Rotational free energy landscapes
To compute rotational free energy landscapes the free energy was calculated, with
umbrella sampling, as a function of the angle describing the side group rotation.
This was done for N, S and Q, for both 2 and 3, and for T ∈ [200, 300, 400] K. For
each temperature and state, 36 windows were used which were centered at θi = 10i◦
for i ∈ [0, 35]. For N and Q the value of the spring constant was chosen to be
k =1.5 eV and for S the value of the spring constant was chosen as k =3 eV. In each
window a MD simulation was run for 1 ns and the first 0.25 ns of these trajectories
were discarded as the temperature had not yet reached the required value. By using
WHAM the free energy was obtained as function of θ for both 2 and 3 in N, S and
Q.

In Figure 4.4 the predicted rotational free energy landscape is seen for 2N, 2Q, 3N,
and 3Q for T ∈ [0, 200, 300, 400] K, where the 0 K curves correspond to the rotational
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energy landscape in Figure 3.3. It is seen that the curves for T ∈ [200, 300, 400] K all
have a similar shape to the 0 K curve which according the the discussion in section 4.1
indicates that the models can, to a good approximation, describe the rotational
energy landscape at finite temperatures. For 2N, 3N and 3Q it is predicted that
free energy decreases with temperature and the most pronounced decrease is seen in
3Q at the angles ≈ 110◦ and ≈ 250◦ where the free energy drops to zero at 400 K.
For 2Q it is predicted that the free energy increases with temperature and the most
pronounced increase is at the two local minimums at ≈ 50◦ and ≈ 230◦. Based only
on these results one would still expect a different temperature dependence of ∆F ‡

for 2 and 3 as the number of accessible state should become increasingly limited for
2Q and increasingly more accessible for 3Q as the temperature increases. To further
investigate the temperature of ∆F ‡ the rotational free energy landscape for S must
also be considered.

Figure 4.4: Illustration of the predicted rotational free energy landscapes at
N and Q for T ∈ [0, 200, 300, 400] K.

In Figure 4.5 the predicted rotational free energy landscape is seen for 2S and 3S
for T ∈ [0, 200, 300, 400] K where the 0 K curves correspond to the rotational energy
landscape in Figure 3.4. It is seen that the shape of the curves for T ∈ [200, 300, 400]
K differs a lot from the rotational energy landscape at 0 K and that in general the
free energy is predicted to be much smaller than than at 0 K. For 2S the two peaks at
around ≈ 90◦ and ≈ 270◦ are still somewhat present at 200 K but are unrealistically
low and for 300 K and 400 K they are further decreased. For 3S the peak at ≈ 280◦

is present for T ∈ [200, 300, 400] although it seems to be a bit low and slightly shifted
to the right where as the other parts of the rotational free energy landscape does
not share a resemblance with the rotational energy landscape at 0 K. These results
illustrates that the models cannot accurately describe the rotation of the side group
in S at finite temperatures. Furthermore, as the models predict rotational energy
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landscapes of much smaller energies than expected they in turn predict that the side
group is relatively free to rotate and therefore the hypothesis that the temperature
dependence of the ∆F ‡ should differ between 2 and 3, due to the difference in
rotational energy landscapes, cannot be investigated with the current state of the
models.

Figure 4.5: Illustration of the predicted rotational free energy landscapes at
S for T ∈ [0, 200, 300, 400] K.

To explain why the model fails to describe the side group rotation at S it is important
to consider how the training data was generated. For both N and Q it was possible to
run MD simulations to iteratively add training geometries in N and Q as explained in
section 3.1.1, however for S this was not possible as MD simulations does not sample
S well and instead geometries were mainly added through random displacements and
adding geometries along the rotational energy landscape. It is thus reasonable that
the models fail to accurately describe the rotational energy landscape in S at finite
temperatures as the model has not seen enough data in S at finite temperatures.
However as the models can successfully describe the rotation of the side groups at N
and Q it should be possible for the models to also describe the side group rotation
in S by adding more data in this state. This can for example be done by extracting
atomic geometries from the MD simulations performed with umbrella sampling in
S and add them to the training set. This would likely improve the accuracy of the
models at S and should yield a different temperature dependence of ∆F ‡ than the
one seen in Figure 4.3 which could explain the difference in back-conversion barriers
for 2 and 3.
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In this chapter the results of this thesis project will firstly be summarized to conclude
the main outcome of this study. Secondly, possible improvements to the results and
the training of the models will be discussed. Lastly, future opportunities will be
discussed.

5.1 Summary & conclusion
In this thesis project ML models for describing the dynamical landscape of 2 and
3 has been developed with the motivation of developing a method to explain why
molecules with substitutions in the ortho position of an aromatic substituent have
a substantially higher back-conversion barrier. In section 3.1.1 and section 3.1.2
the main process of data generation and model validation was shown for 1 and in
section 3.2.1 it was shown that it is possible to train accurate sGDML models which
describes either 2N, 2Q, 3N or 3Q. In section 3.2.2 this result was generalized to
create models which can describe N, S, Q and points in between these regions. It
was seen that these models had relatively low RMSEs on validation data and that
they could, to a good approximation, describe rotational energy landscapes in N, S
and, Q, and the MEPs from N to Q. In section 4.1 it was seen that the models could
be used to compute the free energy along the MEPs to investigate the temperature
dependence of ∆F ‡ and in section 4.2 it was seen that the models could be used
to also compute the free energy rotational energy landscape in N, S, and Q. The
prediction of the rotational free energy landscapes at N and Q seems reasonable
however at S the models predicted free energies of much smaller amplitude than
reasonable. As the models failed to predict the rotational free energy landscape at
S it was not possible to properly investigate the temperature dependence of ∆F ‡

from the free energy along the MEPs. However, as the models could, to a good
approximation, describe the rotational free energy landscape at N and Q it should
be possible to also acquire an accurate description of the rotational free energy
landscape at S by adding more training data in this state. Furthermore, with an
accurate description of the rotational free energy landscape at S it should be possible
to use the models to properly investigate the temperature dependence of ∆F ‡ for 2
and 3 and explain why 3 has a substantially larger back-conversion barrier. From
the discussion above it can be concluded that sGDML can be used to create models
which can, to a good approximation, describe the dynamical landscape of 2 and 3,
and that with a sufficient amount of training data it should be possible to use these
models to investigate why molecules with substitutions in the ortho position of an
aromatic substituent have a substantially higher back-conversion barrier.
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5.2 Improvements
An important approximation that was made in this study was the treatment of
atomic geometries close to S where unrestricted open-shell DFT was used instead of
using multi-reference methods as they are much more computationally demanding.
Although unrestricted open-shell DFT has been shown to be a viable approximation
for S it is hard to quantify how viable this approximation is for points which are
somewhere between N, S, and, Q. As such points were included in the training
set there might exist points in the training set for which this approximation is not
viable. Therefore, when performing a more conclusive study one should instead use
multi-reference methods to compute the forces and energies. However, if following
the same approach regarding data generation as in this thesis project, i.e iteratively
adding more data points in regions where the model performs badly, it is reasonable
to use unrestricted open-shell DFT while building up the training set and then use
the multi-reference calculations on the final training set as they are much more
computationally demanding.

A second improvement which can be done is to develop a better method for generating
atomic geometries for the training set. The method which was used in this thesis
required retraining the model several times, and at each step MD simulations,
evaluations of the rotational energy landscapes and/or the MEP had to be made
to generate more atomic geometries. This was the most time-consuming process
of this thesis project and therefore it would be a drastic improvement if one had
an effective method for generating atomic geometries. An example of how such a
method could theoretically work is that one could generate a large set of atomic
geometries by random displacements of all atoms and then select to most varied
subset of N geometries. To quantify the most varied subset one must have an
measure which can describe how different the atomic geometries are, i.e some kind
of measure which can describe the entropy of the selected dataset. If such a method
were available it would be much more straight forward to train the models as one
could essentially generate all training data at once, compute energies and forces with
electronic structure calculations, and then train the models.

5.3 Future opportunities
In this thesis project two derivatives of norbornadiene were studied and only the
electronic ground state was considered. It is however possible to use sGDML for many
other purpose by, e.g., training sGDML models to study other kinds of molecules
and consider excited states. When training sGDML for other kinds of molecules it
is important to consider the size of the molecule, i.e the number of atoms in the
molecule. As shown in section 2.3.3 the kernel function is used to construct a square
matrix with dimensions 3NM with N being the atoms in the molecule and M being
the number of training points, thus if the molecule is too large the training of the
sGDML models can become infeasible. To train sGDML models for excited states
the DFT calculations should be replaced with time dependent density functional
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theory calculations which is a method of computing forces and energies for excited
states. If one has a cheap method for computing dipole matrix elements it should be
possible to compute optical spectra with sGDML by training sGDML models for the
electronic ground state and the excited states.
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