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Abstract

Energy management is arguably one of the defining challenges for our modern
societies. An ever-increasing demand for energy has to be balanced with the re-
quirement for a sustainable energy economy that minimizes the human impact on
the environment. Materials and their ability to transport both electrical and ther-
mal currents play a key role in this area as they are essential components in en-
ergy extraction, transport, storage, and consumption technologies. On the macro-
scopic level, electrical and thermal transport in materials can be described by a
set of coupled phenomenological relations that contain material specific transport
coefficients. On the microscopic level, these transport coefficients are governed
by chemical composition and the specific arrangement of the constituent atoms,
the so-called microstructure. Since relatively small differences in this regard can
have a dramatic impact on the macroscopic behavior of a material, a detailed un-
derstanding of the underlying processes and couplings is essential for materials
development and optimization.

In this thesis, the thermal conductivity in two classes of materials of current and
future technological importance has been investigated using electronic structure
calculations (density functional theory) in combination with methods from statis-
tical physics (Boltzmann transport theory). The first two papers included in this
thesis deal with van-der-Waals solids, layered materials that are currently attract-
ing tremendous attention in the scientific community due to their exciting combi-
nation of electrical, optical, and thermal properties. In this context, the present
thesis provides predictions and a detailed analysis of the lattice thermal conduc-
tivity in Mo and W-based transition metal dichalcogenides. Furthermore, a model
is developed to explain the extreme structure sensitivity of the conductivity and
calculations are presented that elucidate chemical trends and establish bounds.

The third and fourth paper deal with clathrates, inclusion compounds that have
been found to exhibit a combination of transport properties that are very well
suited for thermoelectric applications. These materials exhibit extremely small
thermal conductivities. The present thesis provides an in-depth analysis of the lat-



tice dynamics of these materials, with a special focus on the thermal conductivity
and the so-called phonon-glass behavior.

The present thesis provides a stepping stone for future investigations of transport
processes in van-der-Waals solids and clathrates, which eventually should lead to
the development of devices with higher energy efficiency and better materials for
energy extraction technologies.

Keywords: thermal conductivity, electronic structure calculations, Boltzmann trans-
port theory, phonons, van der Waals solids, layered compounds, clathrates
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1
Introduction

1.1 Energy as a resource

It is easy to take energy for granted. At dining tables around the world it is safe
to say that the common theme of discussion probably is not the amount of joules
needed for enabling the meal at hand. Yet, many joules were spent along the chain
from production, to transportation and final preparation.

Energy is such an integral part of our lives that its importance can be hardly
overstated, as modern societies are entirely dependent on it. On a personal level
for water and food, sanitation, transportation, Internet and communication as well
as lighting and heating of our homes. The questions concerning the availability of
resources for energy production1, and their stability over time must be considered
among the most important questions for our societies today and in the future.

So, are there any reasons toworry about the available amount of energy in the fu-
ture? If one compares the total primary energy supply (TPES, An estimate of the
available primary energy sources in a region) of the world in 1973 to 2013 the sup-
ply has roughly doubled from 6.1Gtoe (Giga ton of oil equivalent) to 14Gtoe [2]
(Fig. 1.1). At the same time the population has increased from 3.9 to 7.2 billion peo-
ple, roughly a doubling as well. There is a strong positive correlation between the
world population and the global energy consumption. This can be seen when com-
paring available data for the world population with the global energy consumption
in the span from 1980 to 2012 (Fig. 1.2 (a)). Assuming that the world population

1Energy production and consumption are here used in the more colloquial sense, not in the
sense as a violation of the first law of thermodynamics which states that energy cannot be created
or destroyed, only transformed from one form to another [1].
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Chapter 1. Introduction

Figure 1.1: Total primary energy supply in the world for different primary energy
sources in 1973 and 2013. The data is from the IEA report Key World Energy
Statistics 2015 [2]. The categoryOther includes smaller sources such as geothermal,
solar and wind.

is a good estimator for the global energy consumption, up to linear order2, a linear
least squares fit provides a model for estimating the energy consumption based on
population size. Using projections of the future world population [4] it is possi-
ble to estimate the future energy needs. In a high population scenario the global
energy consumption is estimated to steadily increase. Also in a low population sce-
nario the global energy consumption is estimated to increase up until 2050 when
it will reach 16Gtoe after which the demand will start to decline (Fig. 1.2 (b)).

To enable this increase in energy consumption, energy supply must increase as
well. In 2013 the global TPES was 81.4% of the available energy in the form of
fossil fuels (coal, oil and natural gas), a small reduction from the 86.2% in 1973.
The oil and gas repositories formed over the last 600 million years [5]. Also coal
formed over geological time scales and the fossil fuels are limited resources in that
there are finite reserves to extract. Since the reserves are finite the extraction must
at some point reach its maximal rate and this sets a physical limit to the possible
supply. The point in time where this happens has been coined the oil peak [6, 7].
The term peak may be used in the context of any type of finite resource and it
is reasonable to talk about peak coal and peak gas besides peak oil. Since the
contribution of fossil fuel to the TPES is so dominant there is a real concern if the
fossil fuels peak without a realistic alternative at hand. According to the estimate

2There are some deviations from a linear relation connected to economic cycles and stock mar-
ket crashes. Following the Black Monday stock market crash of October 1987 [3] there is a pause
in the growth of global energy consumption during the following years. Similar, in 2009 there is a
violation of the linear trend following the stock market crash of 2008.
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1.1. Energy as a resource
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Figure 1.2: (a) Correlation of the world population and yearly total primary en-
ergy consumption between the year 1980 and 2011. The data is normalized to the
unit interval and received from[4, 10]. (b) Estimations of the future global energy
consumption based on three different projections of low, medium and high pop-
ulation growth[4]. The estimates are calculated with a linear model from a least
squares fit to the data in the left pane. This gives a connection between yearly
energy consumption and the population used in the projections.

the supply necessarily needs to steadily increase. Although debated, claims that
the peak of oil is close have been made [8, 9].

There is another concern in the use of fossil fuels as well. The energy source
mainly consists of carbon and combustion results in production of carbon dioxide,
CO2, that is deposited into the atmosphere. Carbon dioxide is a so called green-
house gas in that it is infrared active. The greenhouse gases allow high frequency
sunlight to enter the Earth system, heating the ground without any interference.
But since the frequencies of the thermal radiation leaving the Earths surface is
shifted to the infrared range, some of the radiation will interact with the green-
house gases and be trapped in the atmosphere. In effect this results in a reduction
of the energy flux out of the Earth system resulting in Global Warming. The pre-
dicted climate change associated with Global Warming is assumed to present a
future threat if the emission of CO2 is not reduced in time to halt the increasing
mean temperature of the Earth [11].

The dominating position of fossil fuels in the energy economy makes an ex-
change of the used resources to alternatives based on the current technologies
unrealistic in the near future. And although the power of serendipity can be huge,
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Chapter 1. Introduction

it is an unreliable force. Either way, better administration of fossil fuels is a reason-
able strategy to handle either fossil peaks or overconsumption resulting in global
warming. Increasing the efficiency of energy consumption e.g., by recuperation of
waste heat can make a substantial contribution to the solution of this problem.

1.2 Energy transport

Most of the energy we utilize originates from the sun, where fusion of hydrogen re-
leases large amounts of energy that reach the Earth in the form of electromagnetic
radiation. On Earth the biosphere assimilates the energy mainly through photo-
synthesis. Historically a lot of this energy has been stored in the form of fossil fuels
(oil, coal and natural gas), which formed as the result of geological processes. Be-
sides the sun, we also utilize energy stored in nuclear fuels and to a lesser extent
geothermal energy originating from the Earth’s core. Solar, nuclear, and geother-
mal are examples of primary energy sources, that is energy captured directly from
the environment. Secondary forms of energy have been derived from a primary
source; this includes for example electricity but also fossil as well as synthetic fuels
such as gasoline, ethanol and hydrogen [12].

Electricity is often the most useful form of energy in terms of applications. Sev-
eral processes can be used for transforming different types of energy into electric-
ity, including e.g., electromagnetic induction, the piezoelectric effect, the photo-
electric effect, and the thermoelectric effect. Among these, electromagnetic in-
duction dominates as it is the process used in almost all commercial generation of
electricity. With respect to this thesis the thermoelectric effect is very interesting
because of its importance of low lattice conductivity for the efficiency in thermo-
electric materials [13, 14].

1.2.1 Energy transport as a challenge

The energy stored in fossil fuels can not be used directly, it has to be processed
and converted to a form suitable for use. This is a general theme3 for any kind of
utilization of an energy source (Fig. 1.3). There are three fundamental sources of
energy [12]. Dominating is energy originating from the sun, followed by nuclear
energy and lastly geothermal energy originating from inside the Earth. Fossil fuels
originated as energy from the sun accumulating in the biomass from where parts
eventually ended up in sedimentary rocks that under the right conditions trans-
formed into coal, oil and gas. To access the stored energy the fuel needs to be

3With some exceptions, heating by direct sunlight is one such exception.
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1.2. Energy transport

Figure 1.3: After extraction from the energy source it is necessary to store the
energy if not directly used. Regardless of the path taken transport processes are
present and also one to several types of energy conversion steps.

Figure 1.4: Schematics of energy interacting with a system. The energy input is
converted and transported through a redirection resulting in useful energy output
of transported/converted energy. At the same time, inevitably energy is dissipated
to the surrounding environment due to irreversible processes within the system.

5



Chapter 1. Introduction

combusted and further transformed into a useful form e.g., electricity or mechani-
cal work.

In any type of process involving energy transport or conversion there will be en-
ergy dissipation to internal degrees of freedom due to irreversibility [15, 16]. This
dissipation will eventually transfer into the surrounding environment resulting in
energy losses (Fig. 1.4). The result is a degradation of the energy used as input. For
thermal processes these losses are substantial. The disadvantage with dissipated
energy is its disordered nature with no clear direction. This makes utilization diffi-
cult.

1.2.2 Scavenging (waste) heat

Because of the dominating position of thermal processes in the economy, technolo-
gies that scavenge dissipated energy and thereby raise the overall energy efficiency
are of great interest.

Heat engines convert heat into useful, most commonly mechanical or electrical,
energy. A specific type of heat engine is the thermoelectric generator (TEG) [13],
which converts heat into electrical current by exploiting the thermoelectric effect.
The efficiency is here dependent on several factors, one of which is the thermal
conductivity with lower values providing better efficiency. To make TEGs eco-
nomically feasible the efficiency needs to be high enough, higher than it is today.
Because of this an understanding how to engineer the thermal conductivity is im-
portant.

At the same time, knowledge about how to lower the conductivity can be used
to achieve the opposite, namely increasing the conductivity. This has important
implications for heat management in devices. In particular, a high thermal conduc-
tivity is important for applications in electronics and opto-electronics to prevent
overheating and potential loss of components.

6



2
Background

2.1 Overview

Thermal transport and conversion can quantitatively be understood from either
the macroscopic or the microscopic perspective. Macroscopic theories regarding
energy transport are within the field of thermodynamics for systems out of equilib-
rium. In section 2.2 is non-equilibrium thermodynamics introduced. The notion of
entropy in a non-equilibrium setting is discussed, together with its relation to ther-
modynamic forces and fluxes in the case of thermal and charge imbalance. The
corresponding phenomenological laws with the Onsager coefficients are then in-
troduced, together with the relations for the electrical and thermal conductivity,
as well as the Seebeck and Peltier coefficients. Because of the close relation to
non-equilibrium thermodynamics, and the potential role in heat recuperation, the
section ends with an introduction to thermoelectric generation and efficiency, to-
gether with the concept of the thermoelectric figure-of-merit.

The following section 2.3, takes a qualitatively look on thermal transport from
the kinetic point of view. An estimate for the thermal conductivity is derived by
the introduction of a mean free path, mean velocity and specific heat for fluxes
of particles in a temperature gradient, while connecting the energy flux with the
temperature gradient through Fourier’s law.

Section 2.4 introduces quantitative microscopic transport theory through Boltz-
mann transport theory for both electrons and phonons. The relaxation time ap-
proximation is introduced together with a discussion of lifetimes.

Finally, section 2.5 introduces the two classes of material of interest, van der
Waals solids and inorganic clathrates.

7



Chapter 2. Background

2.2 Non-equilibrium thermodynamics

Tracing all degrees of freedom on the atomic scale is all but tractable since the
number of constituents in an analysis of everyday objects typically is of the order
1023. The pragmatic stance is to look for and analyze properties where the degrees
of freedom collectively average into macroscopically observable effects, including
time- as well as spatial averaging.

In general, classical thermodynamics is the study of the macroscopic properties
of systems in equilibrium. When in equilibrium, the macroscopic properties are
both static and spatially homogeneous, i.e., they do not vary with time and remains
constant over the extent of the system. The macroscopic properties are used as
state variables, i.e., macroscopic variables that as a set uniquely define the equilib-
rium state of the system.

One obvious limitation of this description is the lack of time-dependence. In
reality, systems can change states from one instant to another. A hot cup of coffee
left on the desk is out of equilibrium, it will continuously lose energy through heat
until reaching the equilibrium temperature of its surroundings. The end of this
process is naturally called the final state of the cooling process. Further, assuming
spatial homogeneity, one can imagine the beginning of this cooling process as being
released from another equilibrium state at a higher temperature, then called the
initial state. Classical thermodynamics here brackets the cooling process but gives
little insight into the actual progression of the cooling. When regarding change
within the context of classical thermodynamics, at best, one can view the system
as changing from one equilibrium state into another, without departure from the
continuum of equilibria. One prerequisite for such evolution is that the transition
between states is slow enough, even infinitesimally slow to ensure that the system
never leaves equilibrium. Such a process is then called quasi-static. At best, this
would be an approximation of the real change, and as important, it says nothing
about real rates.

A reversible process is by definition a quasi-static process, such that both the
system and its surroundings go back to the original states if the process is reversed.
Such requirements rule out the previous example of cooling. Since cooling is the
process of losing energy to the surroundings through heat, the process reversed
would be the surroundings losing energy to the coffee through heat. For such re-
versal, the ambient temperature needs to be higher than the temperature of the
coffee, all the way up to the temperature at the initial state. A process that is
not reversible is called irreversible and includes quasi-static processes that are not
reversible, as well as processes that evolve in finite time.

In contrast to the limitations due to lack of dynamics in classical thermodynam-

8



2.2. Non-equilibrium thermodynamics

ics,1 non-equilibrium thermodynamics concerns the study of systems with macro-
scopic properties subject to time-dependence as well as spatial variations. This
time-dependence essentially makes non-equilibrium thermodynamics to be of an
irreversible nature, and the general theory is interchangeably referred to as irre-
versible thermodynamics.

In practice, to treat irreversible systems, the most common approach is suitable
when processes responsible for internal equilibration occur on time-scales much
shorter than the time-scale for macroscopic change in the state variables. It is
then possible to evoke the local-equilibrium hypothesis. The hypothesis postu-
lates that the total system in question can be artificially divided into subsystems, in
such a way that each sub-system is effectively in equilibrium, and can be treated as
a macroscopic thermodynamic system. The advantage is that classical thermody-
namics is valid within each sub-system and all thermodynamic variables are locally
well defined, including entropy and temperature. The hypothesis further assumes
that the equilibrium state in a sub-system can change in time due to interactions
with neighboring sub-systems and that the state variables can be assumed to be
continuously dependent on time and spatial coordinates. In this thesis, the focus
will be on systems where the local-equilibrium hypothesis is assumed to be valid.

2.2.1 Entropy and the second law of thermodynamics

In classical thermodynamics, entropy has a central role due to the second law of
thermodynamics, which states that the total entropy in a closed system always in-
creases. From a macroscopic perspective when concerned with thermal interac-
tions, the entropy 𝑆 in thermodynamics is naturally defined as the state function
related to the exact differential one obtains after dividing the inexact differential of
added heat 𝛿𝑄 with the system temperature 𝑇 , which gives the relation d𝑆 = 𝛿𝑄/𝑇 .
Hence, entropy depends on the temperature being a well-defined quantity. For a
system out of equilibrium, the assumption of a local-equilibrium provides a bridge
to definitions of entropy in systems out of equilibrium.

The validity of the local-equilibrium hypothesis implies that the description of
local state variables in equilibrium is valid even when the full system is out of equi-
librium. The hypothesis enables a definition of entropy for a system out of equi-
librium in such a way that the out of equilibrium entropy depends on the same
state variables as for the system in equilibrium. The specific entropy, defined as
the entropy per unit mass, is then a continuous function in space and time. When
the system is described as a fluid of 𝑁 different components, the specific entropy is
a function of the specific energy 𝑢, specific volume 𝑣, as well as the mass fractions

1One can argue that thermodynamics, in this regard is an unfortunate name, thermostatics
would be more proper. However, as for now, the name is cemented into the subject.
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Chapter 2. Background

𝑐𝑗 of species 𝑗

𝑠(𝒓, 𝑟) = 𝑠[𝑢(𝒓, 𝑡), 𝑣(𝒓, 𝑡), 𝑐1(𝒓, 𝑡), … , 𝑐𝑁 (𝒓, 𝑡)]. (2.1)

In the absence of convective transport, the equivalent differential form is

d𝑠 = (
𝜕𝑠
𝜕𝑢)𝑣,𝑐𝑘

d𝑢 + (
𝜕𝑠
𝜕𝑣)𝑢,𝑐𝑘

d𝑣 +
𝑁

∑
𝑗≠𝑘 (

𝜕𝑠
𝜕𝑐𝑘 )𝑢,𝑣,𝑐𝑗

d𝑐𝑘, (2.2)

where the expansion coefficients are defined as 1/𝑇 , 𝑝/𝑇 and 𝜇𝑘/𝑇 respectively.
Here, 𝑇 is the temperature, 𝑝 the pressure and 𝜇𝑘 the chemical potential for parti-
cle species 𝑘. With these quantities defined, we have the following equation

d𝑠 = 1
𝑇 d𝑢 + 𝑝

𝑇 d𝑣 −
𝑁

∑
𝑘=1

𝜇𝑘
𝑇 d𝑐𝑘. (2.3)

When the local equilibrium hypothesis holds, the intensive parameters are effec-
tively in equilibrium on the macroscopic scale. Still, there is a macroscopic evolu-
tion dependent on local interactions between subsystems. The time evolution of
the specific entropy is directly expressed through the time derivative of Eq. (2.3)

d𝑠
d𝑡 = 1

𝑇
d𝑢
d𝑡 + 𝑝

𝑇
d𝑣
d𝑡 −

𝑁

∑
𝑘=1

𝜇𝑘
𝑇

d𝑐𝑘
d𝑡 . (2.4)

This equation is central in the theory, since it is used for identification of entropy
production. Using conservation laws for the total energy balance, total mass bal-
ance, as well as mass fraction balance, Eq. (2.4) is a general statement determining
the time evolution of the specific entropy. As discussed in appendix A.2, the equa-
tion for local entropy balance is

𝜌d𝑠
d𝑡 = −∇ ⋅ 𝑱𝑠 + 𝜎𝑠, (2.5)

where the entropy flux 𝑱𝑠 originates from thermodynamic imbalance to neighbor-
ing systems, and the entropy production term is subject to a local constraint 𝜎𝑠 ≥ 0.

2.2.2 Thermodynamic forces and fluxes

When there is a temperature difference in a system, the response is an energy flux
with an equilibrating effect on the temperature difference. This equilibration is
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2.2. Non-equilibrium thermodynamics

associated with heat transport through a heat flux 𝑱𝑞. Assuming a linear response,
the phenomenological law for heat conduction, Fourier’s law, is written as

𝑱𝑞 = −𝜅∇𝑇 , (2.6)

where the proportionality tensor 𝜅 is known as the thermal conductivity. When
entropy is a dependent quantity, the entropic representation is more suitable, in
which case Fourier’s law is expressed through 2

𝑱𝑞 = 𝜅𝑇 2∇ 1
𝑇 . (2.7)

The gradient of the inverse of the temperature field acts as the cause, producing
the effect of a heat current. It is natural to interpret this cause as a thermodynamic
force. When there is no volume change or exchange of matter, Eq. (2.3) reduces
to

𝑇 d𝑠
d𝑡 = d𝑢

d𝑡 . (2.8)

With the use of the corresponding balance equation for the internal energy

𝜌d𝑢
d𝑡 = −∇ ⋅ 𝑱𝑞, (2.9)

and Eq. (2.5) for entropy balance, the entropy production associated with heat
conduction is

𝜎𝑞
𝑠 = 𝑱𝑞 ⋅ ∇ 1

𝑇 , (2.10)

given that the entropy flow is defined through the heat flow

𝑱𝑠 =
𝑱𝑞
𝑇 , (2.11)

in analogy with classical thermodynamics. The entropy production term is in the
form of a flux multiplied by the corresponding thermodynamic force.

If a system is at a constant temperature but has a difference in the electrochemi-
cal potential due to an external potential 𝜑 = 𝜇/𝑒, an electric current flows through
the system. According to Ohm’s law, the electric current 𝑒𝑱𝑛 3, defined as the par-
ticle flux times the elementary charge, is the effect of the external potential acting
as a force

𝑒𝑱𝑛 = −𝜎 ⋅ ∇𝜑, (2.12)

2Using the identity 𝜕
𝜕𝑥

1
𝑇 = −𝑇 −2 𝜕𝑇

𝜕𝑥 .
3The electrical current is here defined so that the direction of positive charge carriers corre-

sponds to a positive current.
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Chapter 2. Background

where 𝜎 is the electrical conductivity tensor. Following a treatment similar to the
case of heat flow, with the addition of charge/mass conservation, the entropy flux
is

𝑱𝑠 = 𝜑
𝑇 𝑒𝑱𝑛 = 𝜇

𝑇 𝑱𝑛, (2.13)

The entropy production is then

𝜎𝑠 = − 1
𝑇 ∇ (

𝜇
𝑒 ) ⋅ (−𝑒𝑱𝑛) = 1

𝑇 ∇𝜇 ⋅ 𝑱𝑛. (2.14)

The entropy production is here associated with potential energy transforming into
heat.
If both the temperature and the electrochemical potential varies in the system,

the heat flux and the electrical current couples. Assume the system operates under
steady state, so that any time dependence vanish. For the coupled system, define
a total energy density current 𝑱𝑢, a particle current 𝑱𝑛 and an entropy current 𝑱𝑠.
Both the total energy current and the particle current is source free, and must
therefore be divergence free, i.e., both∇⋅𝑱𝑢 and∇⋅𝑱𝑛 are equal to zero. The entropy
on the other hand is not source free, and has source term 𝜎𝑠, so that ∇ ⋅ 𝑱𝑠 = 𝜎𝑠.
From the corresponding balance equations, Eq. (2.3) gives a relation between the
fluxes

𝑇 𝑱𝑠 = 𝑱𝑢 − 𝜇𝑱𝑛. (2.15)

By taking the divergence of this relation, using that the total energy and the particle
current is source free, gives the entropy production as

𝜎𝑠 = ∇ ⋅ 𝑱𝑠 = ∇ 1
𝑇 ⋅ 𝑱𝑢 − ∇ 𝜇

𝑇 ⋅ 𝑱𝑛. (2.16)

Define the heat current as 𝑱𝑞 = 𝑇 𝑱𝑠, then Eq. (2.15) gives the heat flux as

𝑱𝑞 = 𝑱𝑢 − 𝜇𝑱𝑛. (2.17)

This definition agrees with the intuition of heat as the difference between the total
energy and energy related to external energy. The divergence of this expression
gives the relation

∇ ⋅ 𝑱𝑞 = −∇𝜇 ⋅ 𝑱𝑛, (2.18)

that is, increase in the heat current corresponds to the decrease in the potential
energy flux, the potential energy converts into heat. Expressing the entropy pro-
duction with the use of heat flux gives

𝜎𝑠 = ∇ 1
𝑇 ⋅ 𝑱𝑞 − 1

𝑇 ∇𝜇 ⋅ 𝑱𝑛. (2.19)

12



2.2. Non-equilibrium thermodynamics

Using Eq. (2.18) the entropy production can be expressed in a symmetric form

𝜎𝑠 = ∇ 1
𝑇 ⋅ 𝑱𝑞 + 1

𝑇 ∇ ⋅ 𝑱𝑞, (2.20)

showing that the entropy production in part is due to heat transfer caused by a
temperature gradient, and part from dispersion of potential energy into heat.

2.2.3 Phenomenological laws and transport coefficients

In general, assuming linear coupling, each flux component can be expanded with
phenomenological constantsmultiplying the corresponding thermodynamic forces
causing the fluxes. The phenomenological constants are then to be determined ei-
ther by experiment or by microscopic theory. The coupling between flux compo-
nents and the thermodynamics forces 𝐹𝑗 are expressed through the relations

𝐽𝑖 = ∑
𝑗

𝐿𝑖𝑗𝐹𝑗 . (2.21)

The phenomenological coefficients 𝐿𝑖𝑗 are also known as Onsager coefficients or
kinetic coefficients. As shown by Onsager, the off-diagonal coefficients fulfill a
symmetry condition 𝐿𝑖𝑗 = 𝐿𝑗𝑖 when the system is microscopically reversible as a
result of the time reversal invariance of physical laws. When the entropy produc-
tion is stated as the sum of flux and force pairs, using the Onsager coefficients, the
entropy production is

𝜎𝑠 = ∑
𝑖

𝐽𝑖𝐹𝑖 = ∑
𝑖,𝑗

𝐹𝑖𝐿𝑖𝑗𝐹𝑗 ≥ 0. (2.22)

In the case of coupled heat and electron transfer, the phenomenological equations
are

−𝑱𝑛 = 𝐿11
1
𝑇 ∇𝜇 + 𝐿12∇ 1

𝑇 , (2.23)

𝑱𝑞 = 𝐿21
1
𝑇 ∇𝜇 + 𝐿22∇ 1

𝑇 , (2.24)

when the fluxes are chosen as the heat flux and the particle flux. 4
Ohm’s law states that the electrical conductivity is the ratio between the electric

current and the gradient of the chemical potential at thermal equilibrium. Solving

4To simplify, it is here assumed that the system is isotropic, so that each type of Onsager coef-
ficient can be represented with a single value instead of a second rank tensor.
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Chapter 2. Background

Figure 2.1: Schematic of a thermocouple consisting of joined materials 𝐴 and 𝐵,
probedwith an ideal voltagemeter. The junctions are assumed to bemaintained at
temperatures 𝑇1 and 𝑇2, resulting in the build-up of an electrochemical potential 𝜇.
The voltmeter is assumed to block the charge current, while fully permitting heat
to flow so that the temperature is the same on both the immediate left and right
side of the voltmeter.

for the ratio −𝑒𝑱𝑛/∇(𝜇/𝑒) when ∇(1/𝑇 ) = 0 in the first phenomenological equation,
directly gives the electrical conductivity 𝜎 as

𝜎 = 𝑒2 𝐿11
𝑇 . (2.25)

The thermal conductivity varies with temperature through an explicit factor of 1/𝑇 .
Inverting the expression gives the first Onsager coefficient as

𝐿11 = 𝜎
𝑒2 𝑇 , (2.26)

expressed through measurable properties.
According to Fourier’s law, the thermal conductivity is the heat current per unit

thermal gradient when there is no particle current. Assuming 𝑱𝑛 = 0, solving for
the ratio −𝑱𝑞/∇𝑇 in the phenomenological equations, while making use of the reci-
procity 𝐿12 = 𝐿21, gives the thermal conductivity 𝜅 expressed in Onsager coeffi-
cients and the temperature

𝜅 =
𝐿11𝐿22 − 𝐿2

12
𝐿11𝑇 2 . (2.27)

Showing that the thermal conductivity should have a temperature dependence
with an explicit factor of 1/𝑇 2.

The phenomenological equations can also be applied to a thermocouple (Fig.
2.1). A thermocouple consists of two different conductors or semiconductors,

14



2.2. Non-equilibrium thermodynamics

joined at each end. Keeping each junction at different temperatures induces charge
carrier diffusion in the system and the build-up of a chemical potential. Assume
an idealized voltage meter inserted into one of the legs of the thermocouple. The
voltage meter is assumed to block passage of electric current, while freely allow-
ing heat to flow. The electrochemical potential will then be different on each side
of the voltage meter, while the temperature will be the same. When there is no
current, i.e., 𝑱𝑛 = 0, the first phenomenological equation gives the relation

∇𝜇 = 𝐿12
𝐿11𝑇 ∇𝑇 . (2.28)

This equation can be solved along three different paths, one over thematerial 𝐴, as
well as the two separate parts in material 𝐵, separated by the volt meter (Marked
as 1, 2 and 3 in Fig. 2.1), which gives the system of equations

𝜇2 − 𝜇1 = ∫
𝑇2

𝑇1

𝐿12,𝐴
𝑇 𝐿11,𝐴

d𝑇 , (2.29)

𝜇2 − 𝜇𝐿 = ∫
𝑇2

𝑇

𝐿12,𝐵
𝑇 𝐿11,𝐵

d𝑇 , (2.30)

𝜇𝑅 − 𝜇1 = ∫
𝑇

𝑇1

𝐿12,𝐵
𝑇 𝐿11,𝐵

d𝑇 . (2.31)

These equations can be solved for the potential 𝑉 over the voltage meter by elim-
inating 𝜇1 and 𝜇2

𝑉 = 𝜇𝑅 − 𝜇𝐿
𝑒 = ∫

𝑇2

𝑇1
(

𝐿12,𝐴
𝑒𝑇 𝐿11,𝐴

−
𝐿12,𝐵

𝑒𝑇 𝐿11,𝐵 )d𝑇 . (2.32)

Defining the absolute Seebeck coefficient for material 𝐴 as

𝛼𝐴 = −
𝐿12,𝐴

𝑒𝑇 𝐿11,𝐴
, (2.33)

and define 𝛼𝐵 similarly for material 𝐵, gives the Seebeck coefficient for the ther-
mocouple as

𝛼𝐴𝐵 = 𝛼𝐵 − 𝛼𝐴. (2.34)

The sign in Eq. (2.33) is chosen such that an increase in 𝛼𝐴𝐵 corresponds to a parti-
cle current in the 𝐴 to 𝐵 direction at the hotter junction. With the use of Eq. (2.26)
the 𝐿12 coefficient is expressed through physical parameters

𝐿12 = −𝛼𝑒𝑇 𝐿11 = −𝛼𝜎𝑇 2

𝑒 . (2.35)
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Chapter 2. Background

With expressions for 𝐿12 and 𝐿11, the 𝐿22 coefficient in Eq. (2.27) can be solved
for

𝐿22 = 𝛼2𝜎𝑇 3 + 𝜅𝑇 2. (2.36)

With 𝐿11, 𝐿12 and 𝐿22 determined, it is now possible to express the entropy flux in
terms of measurable quantities

𝑱𝑠 = 𝛼𝑒𝑱𝑛 + 𝜅𝑇 ∇ 1
𝑇 . (2.37)

This expression presents a physical interpretation of the Seebeck coefficient, as the
amount of entropy transported by each charge carrier in the charge carrier flux.
This is an additional contribution to the entropy flux, compared to the decoupled
entropy current that is directly associated with the heat current 𝑱𝑞.

In the special case of charge carrier flux under isothermal conditions, the heat
flux in the phenomenological equation, Eq. (2.24), can be solved in terms of mea-
surable quantities

𝑱𝑞 = 𝛼𝑇 𝑒𝑱𝑛. (2.38)

If this flux is within a thermocouple, over a junction from material 𝐴 to material
𝐵, the difference in heat current over the junction has to be discontinuous by an
amount

Δ𝑄𝐴𝐵 = 𝑱𝑞,𝐵 − 𝑱𝑞,𝐴 = (𝛼𝐵 − 𝛼𝐴)𝑇 𝑒𝑱𝑛 = 𝛼𝐴𝐵𝑇 𝑒𝑱𝑛. (2.39)

The Peltier coefficient, denoted 𝜋𝐴𝐵, is now defined as the amount of heat per unit
current that must be supplied, or dissipated, at the junction

𝜋𝐴𝐵 = Δ𝑄𝐴𝐵
𝑒𝑱𝑛

= 𝛼𝐴𝐵𝑇 . (2.40)

This shows that the Peltier- and Seebeck coefficients are dependent to each other,
related by a factor of 𝑇 . The two physical effects are not independent. The See-
beck effect corresponds to thermoelectric a transformation of heat flow into an
electromotive force. The Peltier effect is the process in reverse, transformation of
electric energy into external heat flow.

2.2.4 Thermoelectric generation and thermodynamic
efficiency

Aheat engine operates under theworking principle of transporting thermal energy
from a heat source into the engine consisting of some thermodynamic substance
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2.2. Non-equilibrium thermodynamics

capable of converting part of the transported energy into power output. The work-
ing substance then rejects the excess energy to a colder reservoir. This rejection is
necessary which can be understood by considering a heat engine working in cycles.
Along with the thermal energy transported, there is an influx of entropy to the
working substance. If the engine is irreversible, there is also entropy produced in
the conversion process. For the thermodynamic system to go back to the original
state of the cycle, entropy must leave the system, usually by transport of heat to
the heat sink.

The efficiency 𝜂 of the energy conversion is defined as the ratio between the
energy transformed into work and the energy supplied to the heat engine. For
an idealized reversible heat engine there is no entropy produced and therefore
characterizes the maximal efficiency achievable by a heat engine. The efficiency of
a reversible heat engine is called the Carnot efficiency and is only dependent on
the temperature of the energy source 𝑇𝐻 and the temperature of the reservoir for
heat rejection 𝑇𝐶 , such that

𝜂𝐶𝑎𝑟𝑛𝑜𝑡 = 1 − 𝑇𝐶
𝑇𝐻

. (2.41)

For real heat engines the production of entropy further reduces the efficiency by
some factor. The factor

𝛾 = 𝜂
𝜂𝐶𝑎𝑟𝑛𝑜𝑡

(2.42)

is then a measure of the deviation from an ideal heat engine, and the value of 𝛾 is
one important factor when choosing an engine for real applications.

The thermoelectric generator constitutes a specific class of heat engines. The
basic unit in the generator is two semiconductors, one of n-type and the other of
p-type, joined by a conductor at the hotter side to form a thermocouple. At the
colder side, external conductors are attached to the thermocouple (Left panel in
Fig. 2.2) allowing for charge carrier diffusion, with the effect of increasing elec-
trostatic potential between the attached wires. The n-type semiconductor has a
negative Seebeck coefficient resulting in electrons being diffused from the hotter
side to the colder side. In the p-type semiconductor the Seebeck coefficient is posi-
tive, so that electron holes is the charge carrier diffusing to the colder side. Closing
the circuit over an electric load results in an electric current powering the load, as
long as there is a thermal difference maintained over the thermocouple.

A large thermopower together with a high capability of charge conduction and
ability to maintain a thermal gradient is essential for an efficient thermoelectric
generator. High thermopower strengthens the coupling between heat and the
charge carrier current, a large electric conductivity reduces energy losses due to
Joule heating, and low thermal conductivity ensures that the thermal gradient
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Chapter 2. Background

Figure 2.2: The left panel shows the schematics of a basic thermoelectric generator
consisting of a thermocouple with legs out of an n-type semiconductor and a p-
type semiconductor. The Semiconductors are directly joined by a conductor at
the hotter end. At the colder end conducting wires are attached to each leg. The
right panel shows the schematics of a thermoelectric generator (TEG) as a heat
engine. The generator absorbs heat 𝑄𝑖𝑛 at the hotter end, converts a portion of
𝑄𝑖𝑛 to electric power 𝑃𝑒𝑙., and disposes excessive heat 𝑄𝑜𝑢𝑡 to the heat sink.
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Figure 2.3: The left panel shows the thermodynamic efficiency 𝜂 (solid lines) for a
thermoelectric generator operating at three different temperatures relative a heat
sink at 300K. The vertical dashed lines show the efficiency for heat engines op-
erating at 30% of the Carnot efficiency at the same set of working temperatures.
The right panel shows the reduced efficiency factor 𝛾 for the same temperature
differences as in the left panel.
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sustains. By formulating a dimensionless parameter, the thermoelectric figure of
merit 𝑧𝑇 , a first measure of a materials suitability for thermoelectric applications
is given as

𝑧𝑇 = 𝛼2𝜎
𝜅 𝑇 . (2.43)

To estimate the efficiency of a thermoelectric generator the ratio between the
power output 𝑃𝑒𝑙. and the heat absorbed from the heat source 𝑄𝑖𝑛 is formed (Fig.
2.2). With the use of the phenomenological expressions for the charge current and
the heat current an expression for the reduced efficiency factor 𝛾 is derived

𝛾 = √1 + 𝑍𝑇𝑎𝑣 − 1
√1 + 𝑍𝑇𝑎𝑣 + 𝑇𝐶 /𝑇𝐻

. (2.44)

Here, 𝑇𝑎𝑣 is the average temperature of the heat source and the cooler reservoir,
and 𝑍𝑇 a figure of merit suitable when two materials are combined into a thermo-
couple

𝑍𝑇 =
(𝛼𝑝 − 𝛼𝑛)2𝑇

(√𝜅𝑛/𝜎𝑛 + √𝜅𝑝/𝜎𝑝)
2 . (2.45)

Even though the material parameters in general are temperature dependent, the
use of average values should produce values of 𝑍𝑇 that are within 10% of the true
𝑍𝑇 values [17]. In the theoretical limit of really high 𝑍𝑇 s, the factor 𝛾 approaches
one, and with that the efficiency approaches the Carnot efficiency (Right panel,
Fig. 2.3).

When comparing the reduced efficiency for a thermoelectric generator, to the
efficiency of other heat engines, it is seen that a thermoelectric generator with a
𝑍𝑇 above three starts to become competitive to heat engines operating at 30% of
the full Carnot efficiency (Left panel Fig. 2.3). Today, realistic values of 𝑍𝑇 val-
ues is about one, a factor of three from being competitive with other technologies,
efficiency considered. At the same time, others factors than the efficiency can be
crucial for how suitable the technology is. Thermoelectric generators have attrac-
tive properties in that they are silent, reliable and scalable. These set of properties
makes thermoelectric generators ideal for small-scale distributed power genera-
tion, for instance in remote locations [13].

2.3 Transport theory

Materials and their ability to transfer charge (electrical currents) and heat (ther-
mal currents) play a key role in energy management as they are essential compo-

19
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nents in energy extraction, transport, storage, and consumption technologies. On
a macroscopic level electrical and thermal conduction in a material can be conve-
niently described using phenomenological theories e.g., in the form of Ohm’s law
in the case of electrical conduction and Fourier’s law in the case of thermal conduc-
tion (see below). The corresponding equations contain transport coefficients such
as the electrical conductivity, the Seebeck coefficient, or the thermal conductivity.
These are tensorial quantities that are material specific and quantify the response
to an external force such as an electric field or a thermal gradient[18].
For example, the thermal conductivity can be phenomenologically defined through

Fourier’s law

𝑱 = −𝜅 ⋅ ∇𝑇 , (2.46)

where 𝑱 is the heat current, which quantifies the rate at which thermal energy
is transported as the result of a thermal gradient ∇𝑇 , and 𝜅 denotes the thermal
conductivity tensor.

It is illuminating to examine thermal conductivity from a kinetic point of view
as a transport problem in a monatomic gas. To this end, let us assume a station-
ary thermal gradient in the 𝑥-direction. When a particle moves from a region at
temperature 𝑇 + Δ𝑇 to a colder region at temperature 𝑇 where it thermalizes it
needs to give up an energy of 𝐶Δ𝑇 from the hotter region to equilibrate, where 𝐶
is the specific heat. The particle will now be in thermal contact with the new region.
Assuming that the length scale for thermalization is ℓ (Fig. 2.4), the expression for
the temperature difference is

Δ𝑇 = ℓ𝜕𝑇
𝜕𝑥 . (2.47)

The thermal energy is proportional to the temperature 𝐸 ∼ 𝑇 and the mean veloc-
ity squared 𝐸 ∼ 𝑣2. Hence, the mean velocity is proportional to the square root of
the temperature and the mean velocity at temperature 𝑇 + Δ𝑇 is

𝑣 ∼ √𝑇 + Δ𝑇 = √𝑇 √1 + Δ𝑇
𝑇 ≈ √𝑇 (1 + 1

2
Δ𝑇
𝑇 ) = √𝑇 + 1

2
Δ𝑇
√𝑇

. (2.48)

For relatively small Δ𝑇 the mean velocities are therefore the same.
The particle flux per unit area is given by the mean velocity multiplied with the

particle density. The energy flux is then the particle flux multiplied by the average
energy 𝜀 the particles in the stream are transporting. Over a mean free path ℓ
there will be a ballistic transport in both directions. The net flux over the middle
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Figure 2.4: The physical picture of the mean free path ℓ in kinetic theory as the
length scale between thermalization of a particle propagating in a thermal gradient
field.

Figure 2.5: The heat flux at 𝑥0 is the net energy flux resulting from ballistic trans-
port over the mean free path ℓ in both directions.
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of ℓ (Fig. 2.5) is then

𝐽 = 1
2𝑛𝑣𝜀|𝑥0−ℓ/2 − 1

2𝑛𝑣𝜀|𝑥0+ℓ/2 = 1
2𝑣𝜀(𝑛(𝑥0 − ℓ/2) − 𝑛(𝑥0 + ℓ/2))

≈ −1
2𝑣𝜀d𝑛

d𝑥ℓ = −1
2𝑣ℓ d

d𝑇 (𝜀𝑛)d𝑇
d𝑥 = −1

2𝑣ℓ𝑐d𝑇
d𝑥 , (2.49)

where 𝑐 denotes the specific heat per unit volume. An estimate for the thermal
conductivity can then be identified from Fourier’s law as

𝜅 ∼ 𝑣ℓ𝑐. (2.50)

This illustrates that the thermal conductivity ought to depend on themean velocity
with which the energy is transported, the length scale for that transport without
inelastic scattering as well as the average energy that a carrier transfers.
In this derivation we implicitly assumed local equilibration such that a thermal

gradient can be established. This shows that heat is transported downhill with
respect to the thermal gradient in accordance with the second law of thermody-
namics as stated by Clausius[1]:

No process is possible whose sole result is the transfer of heat from a colder to a
hotter body.

For two regions that are thermally connected therewill thus always be heat transfer
from the hotter to the colder side, unless there is an additional process reversing
the heat current.

Equation Eq. (2.50) was derived for a gas of classical particles but can be used
to understand the thermal conductivity in solids as well. The heat carriers in solids
are electrons and phonons, and the picture above can be adapted by observing
that both of these quasi-particles behave as quantum gases for which the correct
statistics have to be used.5

2.4 Boltzmann transport theory

The book keeping associated with tracking the dynamical variables in one mole of
substance is an infeasible task. One attempt at a remedy is to severely reduce the
system size, impose suitable boundary conditions and see if this reduction still man-
ages to capture the relevant physics. If this does not work or becomes to difficult
an alternative strategy is to abandon exact knowledge of the system and instead
give a statistical description. For mechanical systems the concept of distribution
functions that tracks the number density over phase space is useful.

5For electrons, which are fermions, Fermi-Dirac statistics apply, whereas phonon as bosons
obey Bose-Einstein statistics.
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2.4. Boltzmann transport theory

Figure 2.6: Schematic representation of two different views on distribution den-
sities over phase space. (a) Tracking the amount of time a system spends in the
neighborhood of a specific phase space point (the red paths) gives a measure for a
distribution function. (b) A large enough collection of independent system repli-
cas gives an alternative measure for a distribution function as the ratio between
states within a neighborhood to (𝒒, 𝒑) and all states.
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The phase space for a system of 𝑁 particles is 6𝑁 dimensional where 3𝑁 of
the coordinates corresponds to the different particles generalized positions labeled
𝑞𝛼. The remaining 3𝑁 degrees of freedom correspond to the different canonical
momenta labeled 𝑝𝛼. One can introduce Γ as the set {𝑞1, … , 𝑞3𝑁 , 𝑝1, … , 𝑝3𝑁} as a
specific point in phase space with corresponding volume element 𝑑Γ. A complete
description of the dynamical state of a system constitutes then a point Γ. If the
system behaves classically6 and a governingHamiltonian is known, in principal the
dynamical evolution can be calculated by integrating the canonical equations [19]

𝑞𝛼(𝑡) = 𝜕𝐻
𝜕𝑝𝛼

𝑝𝛼(𝑡) = −𝜕𝐻
𝜕𝑞𝛼

(2.51)

given initial conditions at time 𝑡0. This constitutes 6𝑁 equations and is an impos-
sible task since 𝑁 is large, typically at the order of 1023 or more for macroscopic
systems. In principle though, if the equations were solved the solution would map
out a path through the phase space. This can be used to define the notion of a
distribution function over the phase space in two different ways.

If a system is observed for a long time 𝜏 and the time spent in the neighborhood
of a certain point in phase space is denoted as Δ𝑡 (see Fig. 2.6 (a)), then the limit

𝜌𝑁 (Γ, 𝑡)𝑑Γ = lim
𝜏→∞

Δ𝑡(Γ, 𝑡)
𝜏 (2.52)

defines a 𝑁 particle probability density 𝜌𝑁 (Γ) corresponding to the uniform proba-
bility of finding the system of 𝑁 particles in a specific state Γ at some time 𝑡. Alter-
natively, one can introduce a large collection constituting independent copies of
the system randomly distributed over the phase space. Such a collection is called
an ensemble (Fig. 2.6 (b)). One can define the probability density as the ratio be-
tween the number of points within the neighborhood of a point Γ and the total
number of points.

In Appendix B the Liouville equation that governs the evolution of 𝜌 is derived.
With the use of the Poisson bracket7 it is written as

𝑑𝜌𝑁
𝑑𝑡 = 𝜕𝜌𝑁

𝜕𝑡 + {𝜌𝑁 , 𝐻} = 0. (2.54)

6Classical in the sense that the system is well described by Newtonian mechanics.
7The Poisson bracket on quantity 𝐴 is defined as

{𝐴, 𝐻} =
3𝑁

∑
𝑖=1 (

𝜕𝐴
𝜕𝑞𝑖

𝜕𝐻
𝜕𝑝𝑖

− 𝜕𝐴
𝜕𝑝𝑖

𝜕𝐻
𝜕𝑞𝑖 ) (2.53)
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2.4. Boltzmann transport theory

Solving the Liouville equation exactly is an impossible task, but there is some im-
portant knowledge gained by its introduction. Due to the conformity to the canon-
ical equations the behavior of the distribution function is that of an incompressible
fluid. This has the important implication that a volume element in phase space is
invariant in time, a result known as Liouville’s theorem. The main issue with 𝜌𝑁 is
that it contains to much information. Integrating over all but one of the subspaces,
using 𝑑Γ1 = 𝑑𝑞1𝑑𝑝1, produces a new density

𝜌1(𝒒, 𝒑, 𝑡) = 𝑉 ∫
𝑑Γ
𝑑Γ1

𝜌𝑁 (Γ) (2.55)

called the one particle density representing a single particle in the averaged envi-
ronment of all other particles in the system. The volume 𝑉 of the system is needed
so that the probability of finding the particle in a neighborhood of the six dimen-
sional point (𝒒, 𝒑) is

𝜌1(𝒒, 𝒑)
𝑉 𝑑Γ1. (2.56)

Integrating Liouville’s equation over 𝑑Γ/𝑑Γ1 results in

𝜕𝜌1
𝜕𝑡 + {𝜌1, 𝐻} − (

𝜕𝜌1
𝜕𝑡 )|𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

= 0, (2.57)

where the remaining parts of higher order densities have been collected in the last
term, subscripted by scattering since this term contains the interaction between the
isolated particle and all other particles. Using the canonical equations this may be
reformulated in vector form

𝜕𝜌1
𝜕𝑡 = − 𝒗⏟

= 𝜕𝒒
𝜕𝑡

⋅∇𝜌1 − 𝑭𝑒𝑥𝑡.⏟
= 𝜕𝒑

𝜕𝑡

⋅∇𝒑𝜌1 + (
𝜕𝜌1
𝜕𝑡 )|𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

. (2.58)

The first term on the right hand side can be identified with a diffusive process and
the second one as influenced by external forces so the equation can be written as

𝜕𝜌
𝜕𝑡 = (

𝜕𝜌
𝜕𝑡 )|𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

+ (
𝜕𝜌
𝜕𝑡 )|𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑓 𝑖𝑒𝑙𝑑𝑠

+ (
𝜕𝜌
𝜕𝑡 )|𝑠𝑐𝑎𝑡𝑡.

. (2.59)

This is theBoltzmann equation in its general form for a classical distribution of dis-
tinguishable particles. It states that the change in the one particle distribution is
due to a balance between diffusion, external influence from e.g., electromagnetic
or gravitational fields and internal scattering. It is an elegant compact descrip-
tion of the complex situation where external fields accelerate the particles feeding
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Chapter 2. Background

Figure 2.7: Due to scattering processes different paths in phase space may ex-
change states. Here it is schematically shown how states of certain momenta are
scattered into the neighborhood of the path from the top path while states of cer-
tain momenta are scattered out of the neighborhood to the bottom path.

energy into the system shifting the occupation function while scattering events re-
distribute the energy dissipating it into the structure and relax the perturbed occu-
pation function.

There is an alternative way to derive the Boltzmann equation via Liouville’s the-
orem, that includes some physical intuition. To this end, one starts with neglecting
scattering, which is reasonable for a sufficiently diluted system. Then one intro-
duces a distribution 𝑓(𝒓, 𝒑, 𝑡) in the form of an occupation function that counts the
number of states at 𝒓 that have momenta 𝒑 at time 𝑡. Because of Liouville’s theo-
rem the number of states in a neighborhood of the point at (𝒓, 𝒑) at time 𝑡 must all
have been transported from another point in accordance with Newton’s equations

d𝒓 = 𝒗d𝑡
d𝒑 = 𝑭d𝑡. (2.60)
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2.4. Boltzmann transport theory

Within the neighborhood, using a Taylor expansion the following holds true to first
order in 𝑑𝑡

𝑓(𝒓, 𝒑, 𝑡) = 𝑓(𝒓 − 𝒗d𝑡, 𝒑 − 𝑭d𝑡, 𝑡 − d𝑡)

= 𝑓(𝒓, 𝒑, 𝑡) + 𝜕𝑓
𝜕𝑟𝛼 |(𝒓,𝒑,𝑡)

𝑣𝛼d𝑡 + 𝜕𝑓
𝜕𝑝𝛼 |(𝒓,𝒑,𝑡)

𝐹𝛼d𝑡 + 𝜕𝑓
𝜕𝑡 |(𝒓,𝒑,𝑡)

d𝑡 (2.61)

where the Einstein sum convention applies. Canceling 𝑓(𝒓, 𝒑, 𝑡), identifying the
total derivative and writing the equation in vector notation gives

𝑑𝑓
𝑑𝑡 = 𝜕𝑓

𝜕𝑡 + 𝒗 ⋅ ∇𝑓 + 𝑭 ⋅ ∇𝒑𝑓 = 0 (2.62)

which must hold in each point of phase-space. Increasing the concentration the
particles start to scatter. This means that particles with a certain momentum may
be scattered in to a neighboring point in phase space. Alternatively, particles with
a certain momentum can scatter out from a neighborhood (Fig. 2.7). This may be
expressed symbolically by introducing a transition probability operator 𝑃𝒑′→𝒑(𝒓, 𝒑)
giving the rate for states into the phase space point (𝒓, 𝒑). Similarly 𝑃𝒑→𝒑′ is the
operator that expresses the rate of the states going out from (𝒓, 𝒑) as a result of
scattering. Under normal circumstances it is reasonable to assume the principle of
detailed balance, which means that in equilibrium the number of states scattered
into a phase space point is balanced by an equal amount of states scattered out of
the point. The effect of scattering vanishes and so the scattering term disappears.
This suggests that the scattering term should appear as the difference of the two
transition rates as

𝑺 = 𝑃𝒑′→𝒑 − 𝑃𝒑→𝒑′ . (2.63)

The rate of states transitioning into and out from the phase space point due to
scattering must balance the total change of the occupation function. Including
this effect of scattering in Eq. (2.64) the Boltzmann equation becomes

𝑑𝑓
𝑑𝑡 = 𝜕𝑓

𝜕𝑡 + 𝒗 ⋅ ∇𝑓 + 𝑭 ⋅ ∇𝒑𝑓 = 𝑺𝑓. (2.64)

2.4.1 The semiclassical assumption

The Boltzmann equation Eq. (2.64) may be rewritten using the quantum mechan-
ical expression for the crystal momentum 𝒑 = ℏ𝒌

𝑑𝑓
𝑑𝑡 = 𝜕𝑓

𝜕𝑡 + 𝒗 ⋅ ∇𝑓 + 𝑭
ℏ ⋅ ∇𝒌𝑓 = (

𝜕𝑓
𝜕𝑡 )|𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

. (2.65)
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The appearance of ℏ indicates that the equation may be applied in a quantum
mechanical setting under certain conditions.

The distribution function needs to take into account that particles are indistin-
guishable. This is accomplished by letting the equilibrium distribution function
describe either bosonic or fermionic statistics. In practice this means that the equi-
librium distribution is either the Bose-Einstein or the Fermi-Dirac distribution.

In the quantummechanical description the particles are described by wavefunc-
tions. This has the implication that the velocity appearing in Eq. (2.65) is identified
with the group velocity of the waves associated with the states in 𝑓 . Particle po-
sition and momentum then cannot be determined simultaneously with arbitrary
precision. Being conjugate operators with a non-vanishing commutator the uncer-
tainty principle limits the precision to

Δ𝑥Δ𝑝 ≥ ℏ. (2.66)

This is fine as long as Δ𝑥 can be taken large enough to ensure low uncertainty in
𝑝. Since ℏ is of the order 10−34 Js a granular view of 𝑥 may be sufficient and still
produce enough precision for theBoltzmann equation. The granularity is sufficient
as long as the spatial extent of the wave packet is on a scale less than the mean free
path between particle collisions.

According to theEhrenfest Theorem the center of a wavepacket follows the path
of a classical particle in a potential [20]. If the wavepacket is sufficiently localized
on the scale of the potential the particle may, to a good approximation, be viewed
as a classical particle in that potential. This has the implication that the potential
must be slowly varying on the length scale of the wave packet. For time varying
fields this also sets a temporal constraint so that the frequency associated with the
time variation of the field may not become to large.

This is the basis for the semiclassical assumption and restricts the application
of the Boltzmann equation to situations, in which quantum interference is not ex-
pected.

2.4.2 The relaxation time approximation

The scattering term in Eq. (2.64) is in general a complicated operator. Assuming
that there are no external fields and that the system is spatially homogeneous the
Boltzmann equation reads

𝜕𝑓
𝜕𝑡 = 𝑺𝑓. (2.67)

If we assume that the system is close to equilibrium the distribution function should
be the equilibrium distribution 𝑓0 with an added small perturbation formally writ-
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2.4. Boltzmann transport theory

ten as

𝛿𝑓 = 𝑓 − 𝑓0. (2.68)

If the internal scattering is assumed to relax the system, the simplest way to model
this is to assume that the rate of change in the distribution function is reduced by
the magnitude of the perturbation to the state, over a time scale 𝜏. Equation 2.67
then becomes

𝜕𝑓
𝜕𝑡 = 𝜕(𝛿𝑓)

𝜕𝑡 = −𝛿𝑓
𝜏 . (2.69)

with the solution

𝛿𝑓 = 𝛿𝑓(0)𝑒−𝑡/𝜏 (2.70)

indicating exponential decay of the perturbations over a characteristic time 𝜏. It
is natural to call this the relaxation time and the inclusion of the scattering term as
in Eq. (2.70) for the relaxation time approximation (RTA).

2.4.3 Boltzmann transport for electrons in an electric field

As an example of a solution to the Boltzmann equation within the RTA the case
of electrons in a static electric field is presented in this section. The next section
considers the Boltzmann equation for phonons in a thermal gradient.

Electrons are fermions and as such obey Fermi-Dirac statistics. This is a result
of the Pauli exclusion principle, which states that two fermions can not simulta-
neously be in the same quantum state. The occupation in thermal equilibrium at
temperature 𝑇 is then described by the Fermi-Dirac distribution

𝑓0 = 1
exp(

𝜀−𝜇
𝑘𝐵𝑇 ) + 1

, (2.71)

where 𝜀 is the energy of an electron with wave vector 𝒌 and 𝜇 is the chemical
potential of the electrons.

If a static electric field 𝑬 is applied to thematerial the electrons will experience a
Coulomb force accelerating them in the direction opposite to the the electric field.
If the fundamental charge is 𝑞 then the force on the electrons will be𝑭 = −𝑞𝑬. The
electron energy and the chemical potential will then become spatially dependent.
Assuming that theRTAholds in the steady state theBoltzmann transport equation
is stated as

𝑑𝑓
𝑑𝑡 = 𝜕𝑓

𝜕𝑡⏟
=0

+𝒗 ⋅ ∇𝑓 − 𝑞𝑬
ℏ ⋅ ∇𝒌𝑓 = −𝛿𝑓

𝜏 . (2.72)
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If the perturbations are small compared to 𝑓0 the variation in 𝛿𝑓 will be negligible
compared to variations in 𝑓 . The gradients of 𝛿𝑓 may then be dropped and the
equation becomes

𝒗 ⋅ ∇𝑓0 − 𝑞𝑬
ℏ ⋅ ∇𝒌𝑓0 = −𝛿𝑓

𝜏 . (2.73)

The perturbations may then be solved for algebraically as

𝛿𝑓 = −𝜏 (𝒗 ⋅ ∇𝑓0 − 𝑞𝑬
ℏ ⋅ ∇𝒌𝑓0) . (2.74)

Since the equilibrium distribution is known, this presents a full solution within
the RTA up to the free parameters in the form of the relaxation times 𝜏. These
parameters must be measured, estimated or calculated from first principles.

Figure 2.8: A particle experiencing several scattering events here shown in posi-
tion space.
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2.4.4 Boltzmann transport for phonons

In a crystal in thermal equilibrium at temperature 𝑇 the phonon modes are dis-
tributed according to the Bose-Einstein distribution [18]

𝑛0,𝜆 = 1
exp (ℏ𝜔𝜆/𝑘𝐵𝑇 ) − 1

. (2.75)

The distribution function counts the number of phonon modes in state 𝜆. Here
𝜆 = (𝒒, 𝑝) is a collective index for a phonon mode with wave-vector 𝒒 and band
index 𝑝. The energy carried by a single phonon mode 𝜆 is

𝐸𝜆 = ℏ𝜔𝜆
exp (ℏ𝜔𝜆/𝑘𝐵𝑇 ) − 1

. (2.76)

The specific heat 𝑐𝜆 associated with phonon mode 𝜆 is then

𝑐𝜆 = 𝜕𝐸𝜆
𝜕𝑇 = 𝑘𝐵(

ℏ𝜔𝜆
𝑘𝐵𝑇 )

2
𝑛0,𝜆(𝑛0,𝜆 + 1). (2.77)

When there is a thermal gradient present the temperature becomes position de-
pendent. The phonons in question are assumed not to interact with the electro-
magnetic field and so the force related term drops out. Then in the steady state
only the diffusive term from the total derivative survives

𝑑𝑛𝜆
𝑑𝑡 = 𝜕𝑛𝜆

𝜕𝑡⏟
= 0

+𝒗𝜆 ⋅ ∇𝑛𝜆 + 𝑭 𝜕𝑛𝜆
𝜕𝑝⏟

= 0

= (𝒗𝜆 ⋅ ∇𝑇 (𝒓))
𝜕𝑛0,𝜆
𝜕𝑇 . (2.78)

where in the second step the diffusive term has been linearized. Introducing the
scattering operator 𝑺 acting on the distribution the linearized phonon Boltzmann
equation in its canonical form reads

−(𝒗𝜆 ⋅ ∇𝑇 (𝒓))
𝜕𝑛0,𝜆
𝜕𝑇 + 𝑺𝑛𝜆 = 0 (2.79)

emphasizing the balance between diffusion and scattering in a specific mode. So
there is thus a balance between a diffusive process and scattering. Introducing the
RTA the scattering term is

𝑺𝑛𝜆 = −
𝑛𝜆 − 𝑛0,𝜆

𝜏𝜆
= −𝛿𝑛𝜆

𝜏𝜆
. (2.80)

and solving for the perturbation gives the solution

𝛿𝑛𝜆 = −𝜏𝜆(𝒗𝜆 ⋅ ∇𝑇 (𝒓))
𝜕𝑛0,𝜆
𝜕𝑇 = −𝜏𝜆(𝒗𝜆 ⋅ ∇𝑇 (𝒓))

ℏ𝜔𝜆
𝑘𝐵𝑇 2 𝑛0,𝜆(𝑛0,𝜆 + 1). (2.81)

for a specific phonon mode 𝜆.
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2.4.5 Lattice thermal conductivity within the RTA

The microscopic thermal energy current 𝑱𝑄 resulting from phonon transport is the
sum of the occupation weighted energy flux of individual phononmodes. The heat
flux in the Cartesian direction 𝛼 is

𝐽𝑄,𝛼 = 1
𝑉 ∑

𝜆
ℏ𝜔𝜆𝑛𝜆𝒗𝜆,𝛼 = 1

𝑉 ∑
𝜆

ℏ𝜔𝜆𝛿𝑛𝜆𝒗𝜆,𝛼. (2.82)

Here 𝑉 is the volume of the system under consideration, 𝜔𝜆 is the frequency, 𝑛𝜆
is the occupation and 𝒗𝜆 = ∇𝒒𝜔𝜆 the group velocity. In the second step the distri-
bution has been replaced with the perturbation. This is because of time reversal
symmetry. In equilibrium there will be no energy current since each phonon mode
will have an associated mode with an equally energetic phonon in the opposite di-
rection. The terms in Eq. (2.82) cancels in pairs.

Inserting the solution (2.81) in Eq. (2.82) gives an expression for the heat current

𝐽𝑄,𝛼 = − 1
𝑉 ∑

𝜆
𝜏𝜆(𝑣𝜆,𝛽𝜕𝛽𝑇 ) 𝑘𝐵(

ℏ𝜔𝜆
𝑘𝐵𝑇 )

2
𝑛0,𝜆(𝑛0,𝜆 + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

= 𝑐𝜆

= −(
1
𝑉 ∑

𝜆
𝜏𝜆𝑣𝜆,𝛼𝑣𝜆,𝛽𝑐𝜆)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= 𝜅𝛼,𝛽(𝑇 )

)𝜕𝛽𝑇

= −𝜅𝛼,𝛽(𝑇 )𝜕𝛽𝑇 (2.83)

where repeated Cartesian index 𝛽 is implicitly summed. The introduced quantity
𝜅𝛼,𝛽 can be identified through Fourier’s law

𝑱𝑄 = −𝜅 ⋅ ∇𝑇 (2.84)

as the thermal conductivity tensor. The expression for the lattice thermal conduc-
tivty has one flaw. It contains free parameters in the 𝜏𝜆.

2.4.6 Determination of lifetimes

2.4.6.1 The perturbed lattice Hamiltonian

If a unit cell has the position vector 𝒍 and an atom in that cell has the relative
position 𝒃 the position of the atom may be denoted 𝒓(𝒍𝒃), where 𝒍 and 𝒃 label the
atom, and a displacement of this atom will then be

𝒖(𝒍𝒃) = 𝒓(𝒍𝒃) − 𝒍 − 𝒃. (2.85)
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For small displacements in a classical crystal the change in the potential energy can
be expressed as a Taylor series in the displacements. Formally this is expressed as

𝑈 = 𝑈0+ ∑
𝒍𝒃

𝜕𝑈
𝜕𝑢𝛼(𝒍𝒃)|0

𝑢𝛼(𝒍𝒃)

+1
2 ∑

𝒍𝒃
∑
𝒍′𝒃′

𝜕2𝑈
𝜕𝑢𝛼(𝒍𝒃)𝜕𝑢𝛽(𝒍′𝒃′) |0

𝑢𝛼(𝒍𝒃)𝑢𝛽(𝒍′𝒃′)

+1
6 ∑

𝒍𝒃
∑
𝒍′𝒃′ ∑

𝒍″𝒃″

𝜕3𝑈
𝜕𝑢𝛼(𝒍𝒃)𝜕𝑢𝛽(𝒍′𝒃′)𝜕𝑢𝛾 (𝒍″𝒃″) |0

𝑢𝛼(𝒍𝒃)𝑢𝛽(𝒍′𝒃′)𝑢𝛾 (𝒍″𝒃″) + … .

(2.86)

The repeatedGreek indices, representingCartesian directions, are implicitly summed
over in pairs. The derivatives are taken at the equilibrium positions, hence the first
order term vanishes by definition and the constant term is an arbitrary shift of the
energy scale and is here chosen as the reference. Since force is the spatial deriva-
tive of the potential the first type of derivative can be rewritten as

Φ𝛼𝛽(𝒍𝒃, 𝒍′𝒃′) = 𝜕2𝑈
𝜕𝑢𝛼(𝒍𝒃)𝜕𝑢𝛽(𝒍′𝒃′) |0

= −
𝜕𝐹𝛽(𝒍′𝒃′)
𝜕𝑢𝛼(𝒍𝒃) |0

(2.87)

with the physical interpretation as the change in the force on the atom at 𝒍′𝒃′ as a
response when atom 𝒍𝒃 is displaced. Similarly for the third order term

Φ𝛼𝛽𝛾 (𝒍𝒃, 𝒍′𝒃′, 𝒍″𝒃″) = 𝜕3𝑈
𝜕𝑢𝛼(𝒍𝒃)𝜕𝑢𝛽(𝒍′𝒃′)𝜕𝑢𝛾 (𝒍″𝒃″) |0

= −
𝜕2𝐹𝛾 (𝒍′𝒃′)

𝜕𝑢𝛼(𝒍𝒃)𝜕𝑢𝛽(𝒍′𝒃′) |0
(2.88)

relating the displacements of atoms to the force on atom 𝒍″𝒃″ when displacing
atoms 𝒍𝒃 and 𝒍′𝒃′. These sets of constants are called the second and third order
interatomic force constants (IFC). Up to third order the potential is expressed as

𝑈 = 1
2 ∑

𝒍𝒃
Φ𝛼𝛽𝑢𝛼(𝒍𝒃)𝑢𝛽(𝒍′𝒃′) + 1

6 ∑
𝒍𝒃

∑
𝒍′𝒃′

Φ𝛼𝛽𝛾𝑢𝛼(𝒍𝒃)𝑢𝛽(𝒍′𝒃′)𝑢𝛾 (𝒍″𝒃″). (2.89)

Through quantization by introduction of creation and annihilation operators 𝑎𝒒,𝑠
and 𝑎†

−𝒒,𝑠 the displacements may be promoted to operators expressed through the
Fourier expansion

𝑢𝛼(𝒍𝒃) = 1
√𝑁 ∑

𝒍𝒃
𝜖𝑠,𝛼(𝒒)𝑒−𝑖𝒒⋅𝒓(𝒍𝒃)

√
ℏ

2𝑚𝒃𝜔𝑠(𝒒) ( ̂𝑎𝒒,𝑠 + ̂𝑎†
−𝒒𝑠) , (2.90)
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where 𝜖𝑠,𝛼(𝒒) is the polarization of themode and𝑚𝒃 themass of the atomat position
𝒃. Using this expansion the first sum in Eq. (2.89) together with the kinetic energy
can be shown to give a Hamiltonian

𝐻0 = ∑𝒒,𝑠
ℏ𝜔𝑠(𝒒) (

1
2 + ̂𝑎†

𝒒,𝑠 ̂𝑎−𝒒,𝑠) (2.91)

that is the same as the sum ofHamiltonians for quantum harmonic oscillators. This
Hamiltonian acts as an unperturbed state constituting a set of harmonic oscillators
and the second series acts as a perturbation on that set. TheHamiltonian extended
to the third order in the displacements may be written as

𝐻 (3) = 𝐻0 + 𝐻′ (2.92)

where

𝐻′ = 1
6 ∑

𝒍𝒃
∑
𝒍′𝒃′ ∑

𝒍″𝒃″
Φ𝛼𝛽𝛾𝑢𝛼(𝒍𝒃)𝑢𝛽(𝒍′𝒃′)𝑢𝛾 (𝒍″𝒃″). (2.93)

2.4.6.2 The physical picture

To understand the physical meaning of the perturbed Hamiltonian notice that
there are three displacements containing the sum of a creation and an annihila-
tion operator in the third order term in Eq. (2.89). Introducing a phonon field
represented by a state-vector with the occupation of individual phonon modes

𝜙 = |𝑛𝒒1,𝑠1 , 𝑛𝒒2,𝑠2 , …⟩, (2.94)

where the excitations are harmonic oscillators. The creation and annihilation oper-
ators then work such that the annihilation operator lowers the phonon occupation
𝑛𝒒,𝑠 by one phonon

̂𝑎𝒒,𝑠| … , 𝑛𝒒,𝑠, …⟩ ∝ | … , 𝑛𝒒,𝑠 − 1, …⟩, (2.95)

and the creation operator raises the occupation by one phonon

̂𝑎†
−𝒒,𝑠| … , 𝑛𝒒,𝑠, …⟩ ∝ | … , 𝑛𝒒,𝑠 + 1, …⟩. (2.96)

Expanding the factors containing sums of creation and annihilation operators gives
the following factors

( ̂𝑎𝒒,𝑠 + ̂𝑎†
−𝒒,𝑠) ( ̂𝑎𝒒′,𝑠′ + ̂𝑎†

−𝒒′,𝑠′) ( ̂𝑎𝒒″,𝑠″ + ̂𝑎†
−𝒒″,𝑠″) =

̂𝑎𝒒,𝑠 ̂𝑎𝒒′,𝑠′ ̂𝑎𝒒″,𝑠″ + ̂𝑎𝒒,𝑠 ̂𝑎𝒒′,𝑠′ ̂𝑎†
𝒒″,𝑠″ + ̂𝑎𝒒,𝑠 ̂𝑎†

𝒒′,𝑠′ ̂𝑎𝒒″,𝑠″ + ̂𝑎𝒒,𝑠 ̂𝑎†
𝒒′,𝑠′ ̂𝑎†

𝒒″,𝑠″

+ ̂𝑎†
𝒒,𝑠 ̂𝑎𝒒′,𝑠′ ̂𝑎𝒒″,𝑠″ + ̂𝑎†

𝒒,𝑠 ̂𝑎†
𝒒′,𝑠′ ̂𝑎𝒒″,𝑠″ + ̂𝑎†

𝒒,𝑠 ̂𝑎𝒒′,𝑠′ ̂𝑎†
𝒒″,𝑠″ + ̂𝑎†

𝒒,𝑠 ̂𝑎†
𝒒′,𝑠′ ̂𝑎†

𝒒″,𝑠″ .
(2.97)
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Figure 2.9: Schematic representation of class 1 and class 2 events. Class 1 events
corresponds to the collision of two phonons with angular frequency 𝜔 and 𝜔′ an-
nihilating into a phonon of angular frequency 𝜔″. Class 2 events corresponds to
the disintegration of a phonon mode of angular frequency 𝜔 annihilating into two
phonons with angular frequency 𝜔′ and 𝜔″.

Four different kinds of processes can be identified. Onewith three created phonons,
one with three annihilated phonons, two created phonons annihilated into one
phonon, and finally one created phonon annihilating into two phonons. The situa-
tion with only created or annihilated phonons are prohibited due to energy conser-
vation and do not represent physical processes. Situations in which two phonons
collide are called class 1 events and situations in which one phonon disintegrates
into two new phonons are called class 2 events (Fig. 2.9). Energy conservation
also applies to class 1 and 2 events. This can be expressed through factors of Dirac
delta functions expressing energy conservation, 𝛿(𝜔 + 𝜔′ − 𝜔″) for class 1 events
and 𝛿(𝜔 − 𝜔′ − 𝜔″) for class 2 events.

Besides energy conservation it is also necessary for the processes to respect the
conservation of crystalmomentum. A crystal in rest does not have any externalmo-
mentum but the internal degrees of freedom are associated with a related quantity
referred to as crystal momentum. But there is one difference, the crystal momen-
tum must only be conserved up to a reciprocal lattice vector. This can be written
as

𝒒 + 𝒒′ = 𝒒″ + 𝑮, (2.98)
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for class 1 events and

𝒒 + 𝑮 = 𝒒′ + 𝒒″ (2.99)

for class 2 events.

2.4.6.3 Lifetimes from first principles

It can be shown [21] that there is a relation between the imaginary part of the self
energy Γ and the lifetimes through

𝜏𝜆 = 1
2Γ𝜆(𝜔𝜆) (2.100)

where Γ is

Γ𝜆(𝜔) = 18𝜋
ℏ2 ∑

𝜆′𝜆″
|Φ−𝜆𝜆′𝜆″|2

{(𝑛𝜆′ + 𝑛𝜆″ + 1) 𝛿(𝜔 − 𝜔𝜆′ − 𝜔𝜆″)

+ (𝑛𝜆′ − 𝑛𝜆″)(𝛿(𝜔 + 𝜔𝜆′ − 𝜔𝜆″) − 𝛿(𝜔 − 𝜔𝜆′ + 𝜔𝜆″))}. (2.101)

The constants Φ−𝜆𝜆′𝜆″ are the Fourier transforms of the third order IFCs after a
transformation to normal modes. This expression can be obtained with a version
of Fermi’s golden rule. The golden rule states that the rate from an in-state |𝜙𝑖𝑛⟩
to an out-state |𝜙𝑜𝑢𝑡⟩ due to a perturbation 𝐻′ is obtained by evaluating

𝑃𝑖𝑛→𝑜𝑢𝑡 = 2𝜋
ℏ |⟨𝜙𝑜𝑢𝑡|𝐻′|𝜙𝑖𝑛⟩|2𝛿(𝐸𝑜𝑢𝑡 − 𝐸𝑖𝑛). (2.102)

The delta function assures that the energy is conserved in the process. Besides that,
the Fourier transform of the IFCs contains a factor that is non-zero only in the case
that the crystal momenta is conserved up to a reciprocal vector.
The problem then comes down to calculating the third order IFCs. In this thesis

a direct approach has been taken. The constants can be directly calculated by using
finite differences on force data obtained from an electron structure calculation (see
Sect. 3.2). All the IFCs can be obtained by calculating the forces in structures
obtained by displacing one atom for the second order IFCs, and two atoms for the
third order IFCs [22, 23]. For efficiency the symmetry of the system should be used
to single out an irreducible set of displacements needed for a complete description
of the forces in the material.
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2.5 Materials

2.5.1 van der Waals solids

The class of materials known as van derWaals solids consists of three-dimensional
(3D) structures composed of monolayers of two-dimensional (2D) sheets, where
the monolayers are bound together by interlayer van der Waals forces (Fig. 2.10).
The sheets, in themselves, constitute a class called 2D materials, also known as
single-layer materials. Here, 2D materials consist of a distinct monolayer, with
a thickness corresponding to the atomic scale, and with an intralayer bonding of
covalent, ionic, or possibly mixed covalent/ionic type.
Monolayers can be isolated from their 3D counterpart, by the use of a top-down

approachwhere theweaker van derWaals bonds are brokenwithout disrupting the
in-plane integrity. The separation can, for instance, be done throughmicromechan-
ical exfoliation using a scotch-tape technique, or exfoliation using liquid intercala-
tion techniques. Alternatively, the monolayers can be synthesized in a bottom-up
approach, using, for instance chemical vapor deposition (CVD) techniques [24].
The bottom-up approach allows for manufacturing of novel monolayers with a
nonexistent 3D counterpart, for instance, silicene and germanene, the hexagonal
monolayer allotropes of silicon and germanium.
With the improvement of manufacturing techniques for monolayers, either top-

down or bottom-up, the family of isolated 2D materials has grown considerably in
the last decade [25, 26, 24]. After the reported isolation of monolayers of graphite
in 2004 [27], since then known as graphene, many other 2Dmaterials have been iso-
lated. Early, well-studied examples consist of hexagonal boron nitride (h-BN) and
molybdenum disulfide (MoS2) from the group of transition metal dichalcogenides
(TMDs), a group associated with many different 2D materials. Today, there is
a plethora of 2D materials besides the ones introduced. Examples include phos-
phorene, the monolayer of black phosphorous [28], and to phosphorene the iso-
electronic group-IVmonochalcogenides such as tin- and germanium selenides and
sulfides (SnSe, SnS, GeSe, and GeS). Other interesting examples of monochalco-
genides are the gallium and indium monochalcogenides. Worth mentioning, there
are also groups of oxides with layered structures that are relevant for the research
fields interested in 2D materials.

The electronic character of different 2D materials ranges from metals and semi-
metals, through semiconductors to dielectric insulators. The forerunners exten-
sively examined within the 2D family, graphene, h-BN, and MoS2 are individual
examples of a 2D semimetal, insulator and semiconductor [29]. Besides graphene,
the related silicene and germanene also form hexagonal semimetallic monolay-
ers. The semimetallic character in these materials is related to a linear crossing in
the bandstructure, at the Fermi-level, forming the so-called Dirac cones centered
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Figure 2.10: The crystal structure of the molybdenum and tungsten based transi-
tion metal dichalcogenides. The transition metal corresponds to M and the chalco-
genide to X.

around the K and K’ points. In the context of 2D materials, h-BN was originally
used in its 3D form as an isolating substrate for graphene. Today, single layer h-
BN is interesting for electronic applications or as a building block in heterostruc-
tures [30, 31, 32]. Among the TMDs, MoS2 has a dominating position in research,
in part because of the availability of molybdenite crystals used for exfoliation of
mono- and few-layer MoS2. The closely related semiconducting molybdenum and
tungsten based dichalcogenides WS2, MoSe2 and WSe2 have not been as exten-
sively investigated although they have similar properties as MoS2.
The properties of a 2D material can differ significantly from its corresponding

3D structure. The exotic band structure of graphene is one illuminating example.
In the 3D allotrope graphite, the Dirac cones are not present. The significance of
the linear dispersion in the band structure, is the implication of massless electron
behavior and a constant universal electron velocity within the cones, in analogy
with the universal speed limit associated with massless particles in special relativ-
ity [33]. Another illuminating example is the change of electronic properties in
MoS2 and WS2 when comparing the electronic properties of the 3D bulk and cor-
responding 2D monolayers. The 3D bulk has an indirect bandgap of 1.2 eV and
1.3 eV respectively. In the corresponding monolayers, the band structure trans-
forms in that the band gap increases and the bandstructure shifts into a direct band-
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gapwith values of 1.9 eV respectively 2.1 eV [34]. The nature of the bandgap is very
fundamental in applications related to optoelectronic devices. When the bandgap
is direct, the semiconductor can easily interact with photons of energies greater
than the bandgap through emission and absorption processes. If the bandgap is
indirect, an additional phonon has to be involved for the purpose of momentum
conservation, rendering much less efficiency in the interaction with the photon
field.

The emergence of new types of 2D materials paves the way for novel forms of
van der Waals solids, known as van der Waals heterostructures [29]. In a van der
Waals heterostructure, different types of monolayers are combined in a regular
pattern, with the potential for dramatic changes in the material properties. The
family of 2D materials, in themselves, cover a wide range of interesting properties.
The concept of heterostructures introduces the promise of more control over these
properties [35, 29, 25]. When stacked, the interaction between layers might induce
changes in the charge distribution, as well as structural changes, in neighboring
monolayers, which opens the possibility for managing these properties. Although
the exciting prospect of heterostructures, there are still many obstacles to over-
come in that the assembly techniques currently available are limited [25].
One group of van der Waals solids of interest, not only as primitive systems but

also in the context of heterostructures, are the molybdenum and tungsten based
TMDs. These TMDs has the general stoichiometry MX2 where (M=Mo, W; X=S,
Se, Te). The equilibrium structures are layered with hexagonal symmetry and an
ABAB stacking of the planes (Fig. 2.10). The symmetry belongs to the space group
𝑃 63/𝑚𝑚𝑐 (International Tables of Crystallography No. 194), except for WTe2 that
has an orthorhombic symmetry in the space group 𝑃 𝑚𝑛21 (ITC No. 31).

Besides the interest in using molybdenum and tungsten based TMDs for elec-
tronic [36, 34] as well as optoelectronic applications [34, 37, 38], there is also po-
tential for the use of these TMDs in spintronics [39]. Further, it has also been
reported a significant increase in the thermoelectric figure of merit in MoS2, based
on first-principles calculations [40]. AlthoughMoS2, and related TMDs, have high
Seebeck coefficients, the electrical conductivities are low [41, 42]. Yet, improve-
ments might be made to the electron mobility through changes in the band struc-
ture by inducing stress in the systems[36]. In these applications is thermal trans-
port important. Either for thermal management in electronic applications [43], or
improvement of the thermoelectric efficiency. Thermal management is important
for functionality, reliability and stability in electronic devices. And the thermo-
electric efficiency can be improved by reduction of the thermal conductivity. It is
therefore important to develop a detailed understanding of the thermal conductiv-
ity in TMDs.

As a result of the difference in the stronger intralayer bonding compared to out-
of-plane van derWaals interaction, the thermal conductivity in the TMDs is highly
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anisotropic. The out-of-plane thermal conductivity 𝜅⟂ is of the order of 1W/mK
at room temperature [44, 45, 46]. Interestingly, Chiritescu et al. reported a 𝜅⟂
of 0.05W/mK in disordered thin films of WSe2 [44], a reduction by a factor of 30
compared to single crystals. This value is remarkably low, even lower than the
theoretical limit [47], and was attributed to randomization of the stacking order.
In Paper I is the origin of this reduction investigated in more detail.

In general, the experimental values reported for the thermal conductivity in
TMDs shows a considerable spread. In the case of the most investigated TMD,
MoS2, varies the reported value for the in-plane lattice thermal conductivity con-
siderably, from 20W/mK [48] to 100W/mK [49]. The reason for this spread is
probably related to the difficulties associated with experimental measurements in
these type of structures, as well as sample size effects and sensitivity to defects. The
different lattice thermal conductivities reported from calculations also show a sig-
nificant variation. Most calculations are done with monolayers, possibly because
the more common exchange-correlation functionals used in density functional the-
ory have difficulties capturing the van der Waals interaction between the layers
properly. Paper II investigates the thermal transport in bulk TMDs using Boltz-
mann transport theory. First-principles calculations with a van der Waals density
functional is here used to accurately capture the interlayer interaction.

2.5.2 Inorganic clathrates

Clathrates, in general, are chemical substances with a well-defined lattice struc-
ture of an inclusion type [50, 51]. The structure constitutes a caged framework,
also commonly referred to as the host structure, with the ability to trap atomic or
molecular species, called the guest species. The name clathrate originates from
the Latin word clatratus with the meaning “protected by a crossbar.” One specific
class of interest are the inorganic clathrates, e.g., Ba8Ga16Ge30 and Sr8Ba16Sn30,
in that they have very favorable properties for thermoelectric performance. They
have an intrinsic combination of low thermal conductivities, high Seebeck coeffi-
cients, and good dopability [52, 53]. Ba8Ga16Ge30 is a well-studied clathrate and
representative for other similar compounds. It has been well investigated both ex-
perimentally [54, 55, 56, 57, 58, 59], and theoretically [60, 61, 55, 62, 63], and is the
clathrate investigated in Papers III and IV of this thesis.

The inorganic clathrates, also known as intermetallic clathrates, or Zintl clath-
rates [53], can in general be ordered into six different structure types, built from
four different kinds of polyhedra. The most common type of inorganic clathrate,
known as the type I clathrate (Fig. 2.11), is built from two of these polyhedra
types, namely six larger tetrakaidekahedra, and two smaller pentagonal dodeca-
hedra. The larger tetrakaidekahedra are joined by their hexagonal faces, forming
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Figure 2.11: Crystal structure of type I clathrates. The guest species (Ba) occupies
Wyckoff sites of type 2𝑎 and 6𝑑, while the host species (Ga, Ge) occupy Wyckoff
sites of type 6𝑐, 16𝑖, and 24𝑘.
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Figure 2.12: The relations between neighboringWyckoff sites in the host structure
of a type I clathrate. As seen from Wyckoff position 6𝑐 (left panel), position 16𝑖
(middle panel), and position 24𝑘 (right panel).

tubes stacked in the three orthogonal directions. The smaller dodecahedra are
then fitted into the framework. Each polyhedron now contains a void in which a
guest species can be trapped. The ideal type I clathrate structure belongs to space
group P𝑚3̄𝑛 (international tables of crystallography number 223). The center of
the cages in the structure offers eight sites for the guest species, in Wyckoff nota-
tion called sites 2𝑎 in the smaller cages, and sites 6𝑑 in the larger type of cage. The
host system forms a framework of 46 tetrahedrally bonded atom positions, divided
over three separate types of crystallographic sites, with Wyckoff symbols 6𝑐, 16𝑖
and 24𝑘, respectively.

A common ternary composition of semiconducting type I clathrates isA8B16C30,
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where A is an alkali earth metal or possibly a divalent rare earth metal, B an el-
ement from group 13, and C a group 14 element. The composition can be un-
derstood with the Zintl concept, i.e., the host structure is fully charge balanced.
Assuming that the guest species donates two valence electrons to the host struc-
ture, the composition formula can be balanced for charge neutrality in the host,
resulting in a composition ratio 16:30 for the host species [64]. It is common for
real materials to deviate from this ratio. If there is a shift so that the amount of
B increases, while the amount of C decreases, there is an excess of holes in the
structure and the system becomes intrinsically p-doped. If the balance is shifted in
the opposite direction, with an excess amount of C, there is an excess of electrons
and the system becomes intrinsically n-doped.

The distribution of the elements in the host structure is not random but shows
chemical ordering. If the positioning in the cage structure is fully randomized,
one is expected to find species B occupying a specific site at approximately 35%,
based on the 16:30 ratio. Experimental measurements of the site occupancy fac-
tors (SOFs) show that this is not the case [64]. For example, in Ba8Ga16Ge30, the
SOF for Ba at the 6𝑐 site varies between 60 to 75% in different samples. The SOF
for the 16𝑖 site is shifted down to about 16-17%, while the 24𝑘 site SOF is between
30 and 40%. The reason for this deviation is the unfavorable energy cost for bonds
between trivalent elements in the structure, this was established through calcula-
tions done by Blake et al. [61], and has been more recently investigated using alloy
cluster expansions [65]. The unwillingness of sharing bonds with another trivalent
element leads to a set of rules for the maximal SOFs for trivalent elements. As an
example, the 6𝑐 site only connects to 24𝑘 sites (Fig. 2.12, left panel), and can in
principle allow SOFs up to 100% for a trivalent element [64]. Both the 16𝑖 and 24𝑘
sites, on the other hand, share a bond with another similar site (Fig. 2.12, middle
panel, and right panel), and should both be limited to SOFs of a maximum of 50%.
The sum of the SOFs for site 16𝑖 and 24𝑘 should be less than 50% since the 16𝑖 site
sees three 24𝑘 sites, and each 24𝑘 site sees two 16𝑖 site (Fig. 2.12, middle panel, and
right panel). Then, according to this rule, it is not possible to randomly distribute
trivalent elements on the 6𝑖 and 24𝑘 site.

The lattice thermal conductivities in type I inorganic clathrates are intrinsically
very low, about 1W/mK at room temperature. The low thermal conductivity can
be attributed to the complexity of the primitive cell, and the presence of “rat-
tling” guest species in the cages. An investigation of the phonon dispersion in,
e.g., Ba8Ga16Ge30 (Fig. 2.13, left panel) shows branches of a localized character,
already at lower energies. Starting at approximately 2-3meV there are numerous
localized branches up to about 12meV. Investigating the partial density of states
reveals that it is the Ba guests associated with the 6𝑑 Wyckoff site that dominantly
contributes to the localized branches at lower energies (Fig. 2.13, right panel). At
somewhat higher energies, from 6-7meV to 12meV, the localized branches are
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Figure 2.13: The left panel shows the phonon dispersion in Ba8Ga16Ge30, color
coded by the group velocity. The right panel shows the partial density of states
in Ba8Ga16Ge30, for Ba in the small cages at Wyckoff position 2𝑎 (blue line), Ba
in the larger cage at Wykoff position 6𝑑 (red line), and the combined Ga/Ge cage
(green line).

dominated by contributions from the Ga/Ge host structure.
In general, the trend for the lattice thermal conductivity 𝜅𝐿 in systems of increas-

ing complexity is a reduction in 𝜅𝐿 [66]. A simple system, with a single atom in the
primitive cell, can only have acoustic phonon modes. Each addition of an atom
to the primitive cell introduces three new optical phonon modes. With increasing
complexity, the additional number of optical phonon modes have a significant sup-
pressing effect on the heat carrying acoustic modes, reducing 𝜅𝐿. In the limit of
an amorphous system, the acoustic contribution approaches zero, and the lattice
mediated heat transfer is predominantly attributed to diffusion between atomic
oscillators. The heat transport is then said to be glass-like.

With the inclusion of guest species, the heat capacity will increase, and 𝜅𝐿 might
potentially become higher. On the other hand, if the guest atoms have highly an-
harmonic potentials, the increase in Umklapp scattering may instead introduce
a decrease in 𝜅𝐿. Further, if the guest species is under-constrained and weakly
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Figure 2.14: The left panel shows a schematic of an avoided band crossing at a
resonance frequency 𝜔0, associated with the one-dimensional mass-spring system,
shown in the right panel. The red dashed line correspond to the undisturbed acous-
tic mode in the absence of rattlers.

bound, the phenomena called rattling may occur. The effect of rattlers was at first
thought to affect the phonon relaxation times through resonant scattering, result-
ing in a reduced 𝜅𝐿 [67]. An alternative mechanism is related to the group veloci-
ties. This mechanism can be understood by investigating a one-dimensional model
(Fig. 2.14, right panel), analogous to the host/guest system of clathrates [68]. As-
suming an alternating chain of masses 𝑚1 coupled to masses 𝑚2, with a coupling
𝑘2. At the same time is the masses 𝑚1 coupled to each other with a coupling 𝑘1. A
local resonance can occur when 𝑘2 ≪ 𝑘1, with the possibility of the optical branch
getting shifted to lower frequencies, resulting in an avoided band crossing, where
the acoustic branch gets deflected (Fig. 2.14, left panel). The group velocity is
then diminished at the resonance frequency resulting in a reduction of 𝜅𝐿. The ex-
istence of rattler modes in clathrates has been theoretically predicted [63], showing
good agreement with inelastic neutron scattering experiments. Rattlingmodes and
avoided band crossings in clathrates have also been experimentally observed by
Christensen et al. using triple axis spectroscopy on single crystal Ba8Ga16Ge30 [68].

The overall effect on the lattice thermal conductivity, as the result of both com-
plexity, and the presence of rattlers, has been theoretically investigated in the case
of germanium-based type I clathrates byDong et al. [69], usingmolecular dynamics
with the Green-Kubo method. For pristine germanium in the diamond structure,
they computed a lattice thermal conductivity of 114W/mK at room temperature
(the experimental value is 62W/mK according to Ref. [70]). They further com-
puted an estimate for the lattice thermal conductivity in an empty germanium cage
Ge46, resulting in a value of 12.2W/mK, suggesting that the increased complexity
in the caged structure gives an order of magnitude reduction for the conductivity.
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Finally they introduced the effect of rattlers through the inclusion of Sr guests in
the Ge46 framework, calculating a lattice thermal conductivity of 1.64W/mK (the
experimental value of Sr8Ga16Ge30 is 0.89W/mK [71]). Suggesting yet another or-
der of magnitude reduction in the lattice thermal conductivity with the addition of
rattlers. Compared to the thermal conductivity of 0.5W/mK in amorphousGe [47],
this shows that the combined effect gives a structure with a thermal conductivity
comparable to the thermal conductivity in glasses.

Because of the very low thermal conductivity and good performance as ther-
moelectric materials inorganic clathrates are thought of as a realization of the
phonon glass-electron crystal concept [13], i.e., a system with the combination of
low thermal conductivity and good electronic properties. The thermal conductiv-
ity in glasses typically has a 𝑇 2 dependence at really low temperatures [67]. In
the following temperature range, the thermal conductivity levels out and plateaus.
In the continuing range up to room temperature, the thermal conductivity slowly
increases. In contrast, in materials with crystal-like thermal conductivity, the con-
ductivity instead increases to a peak at lower temperatures, eventually followed
by a 1/𝑇 decrease at higher temperatures. Both the crystal-like peak and the glass-
like plateau have been reported for the lattice thermal conductivity in different
inorganic clathrates [64].
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Methods

3.1 Molecular dynamics simulations

The Boltzmann equation has some problems handling effects that deviate from
bulk homogeneous effects, for instance interfaces. One alternative approach that
can handle these difficulties is molecular dynamics (MD) [72].

MD is in general an entirely classical method where, assuming the atomic force
fields are known, integration of Newtons equation for a collection of interacting
atoms is performed. One illuminating example of the MD method is the use of
Verlet integration [73] to Newtons equations. Given interatomic forces 𝑭 acting
on an atom, Newton’s equation of motion for that atom are

𝑭 = 𝑚𝒂, (3.1)

where 𝑚 is the mass of the atom and 𝒂 its acceleration. To integrate Eq. (3.1) one
approach is to Taylor expand the position 𝒓 around some time 𝑡 giving

𝒓(𝑡 + Δ𝑡) = 𝒓(𝑡) + 𝒗(𝑡)Δ𝑡 + 1
2𝒂(𝑡)Δ𝑡2 + 1

6𝒋(𝑡)Δ𝑡3 + 𝒪(Δ𝑡4),

𝒓(𝑡 − Δ𝑡) = 𝒓(𝑡) − 𝒗(𝑡)Δ𝑡 + 1
2𝒂(𝑡)Δ𝑡2 − 1

6𝒋(𝑡)Δ𝑡3 + 𝒪(Δ𝑡4), (3.2)

where 𝒋 is the jerk. Addition gives the Verlet integration as

𝒓(𝑡 + Δ𝑡) = 2𝒓(𝑡) − 𝒓(𝑡 − Δ𝑡) + 𝒂(𝑡)Δ𝑡2 + 𝒪(Δ𝑡4). (3.3)

This integration scheme is accurate to fourth order in time, velocity independent
and only requires knowledge of the positions in the current as well as the last time
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step. Starting from two initial steps it is then possible to evolve the system in ac-
cordance with Newton’s laws of motion.

Two limitations of MD can be mentioned. First, MD is a completely classical
method and as such the average energy per phonon mode is 𝑘𝐵𝑇 and can differ
quite a bit from the true energy [74] see Eq. (2.76). Secondly, the number of atoms
that need to be included can be quite high. To capture the behavior of a phonon
the simulation domain should be at least twice as large as the respective phonon
mean free path. Since the mean free path can be on the order of tens to hundreds
of nanometers the number of atoms in the simulation may become intractable [74].

For MD simulations aiming at calculating the thermal conductivity there are
two main approaches, the Green-Kubo method and the “direct method” [75] in
the form of non-equilibrium molecular dynamics (NEMD).

TheGreen-Kubomethod is an equilibrium approach where the equilibrium fluc-
tuations are used to determine the lattice thermal conductivity through the Green-
Kubo relations [76, 77, 78]. The Green-Kubo method exhibits slower convergence
than than NEMD and thus requires more time steps [79]. It has also been demon-
strated that there generally is an inconsistency between the results of the twometh-
ods in the case of conductance at the interface between two crystals [80].
The direct method, NEMD is much more straight forward. Typically, a simu-

lation domain is set up with one hot region and cold region some distance apart.
The outer regions are then connected through a periodic boundary. By fixing the
temperature in the hot region a temperature gradient can be established between
the hot and the cold region by the use of an appropriate thermostat or swapping
method. When a steady state has established and if the simulation has been prop-
erly done, the thermal conductivity can be determined with the use of Fourier’s
law.

3.2 Atomic forces from first principles

The IFCs introduced in Sect. 2.4.6 are calculated from knowledge of the forces
between interacting atoms. In the present thesis, these forces were computed using
quantum mechanical calculations.

The wave function of a quantum mechanical system |Ψ⟩ is governed by the
Schrödinger equation [81, 82]

𝑖ℏ𝜕 |Ψ(𝑡)⟩
𝜕𝑡 = 𝐻 |Ψ(𝑡)⟩ , (3.4)

where the Hamiltonian 𝐻 describes both internal and external interactions. The
eigenspace of 𝐻 is given as the solution to the eigenvalue problem

𝐻 |𝜓⟩ = 𝐸 |𝜓⟩ . (3.5)
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The eigenvalues 𝐸 are by definition the possible energies in a quantummechanical
system and thus solving Eq. (3.5) has merits of its own. The vectors |𝜓⟩ form
a suitable basis for expanding the system |Ψ⟩ and are the building blocks if one
wants to construct a solution to Eq. (3.4).

In general, solving the Schrödinger equation directly is an impossible task, just
as solving the Liouville equation, Eq. (2.54). The reason being that the quantum
mechanical state is multidimensional in nature. This is a result [83] of the indis-
tinguishable nature of quantum particles and the probabilistic interpretation of
quantum states in accordance with the Born rule [84].
In matter the Hamiltonian can generally be written [85]

𝐻 = − ℏ
2𝑚𝑒 ∑

𝑖
∇2

𝑖 − ℏ
2𝑀𝐼 ∑

𝐼
∇2

𝐼

+ 1
2

1
4𝜋𝜖0 ∑

𝑖≠𝑗

𝑒2

|𝒓𝑖 − 𝒓𝑗| − 1
4𝜋𝜖0 ∑

𝑖,𝐼

𝑍𝐼𝑒2

|𝒓𝑖 − 𝑹𝐼 | − 1
4𝜋𝜖0 ∑

𝐼,𝐽

𝑍𝐼𝑍𝐽 𝑒2

|𝑹𝐼 − 𝑹𝐽 | , (3.6)

where 𝑀𝐼 and 𝑍𝐼 are the mass and charge of a nuclei, 𝑚𝑒 the mass of an electron, 𝑒
the fundamental charge and 𝜖0 the permittivity of free space. The position vectors
𝒓𝑖 and 𝑹𝐼 are with respect to an electron respectively a nuclei. The first two sums
are operators for the kinetic energy of the electrons and the nuclei. The third sum
comprises operators for the Coulomb interaction between electrons. The fourth
sum contains interactions between electrons and the nuclei and the fifth, interac-
tions between the nuclei.

Themotion of the electrons and the nuclei are usually on such different timescale
that the electronic part of the wave function can be separated from the part con-
cerning the nuclei. Then the nuclei can be seen as frozen from the point of the
electrons. This allows for a treatment where the electrons are viewed separately
from the nuclei as an external potential, here noted 𝑉𝑒𝑥𝑡. The Hamiltonian can
now be written as1

ℎ = −1
2 ∑

𝑖
∇2

𝑖 + 1
2 ∑

𝑖≠𝑗

1
|𝒓𝑖 − 𝒓𝑗| + 𝑉𝑒𝑥𝑡. (3.7)

When the Schrödinger equation is solved for this system the force on the nuclei can
be calculated with the Hellmann-Feynman force theorem [86]. With a solution for
the ground-state energy 𝐸 the theorem states that the force on ion 𝐼 is given by

𝑭𝐼 = − 𝜕𝐸
𝜕𝑹𝐼

. (3.8)

1From here on Hartree units will be used. Then action is then measured in units of the reduced
Planck constant, charge in units of the fundamental charge and mass in units of electron masses.
Finally the vacuum permittivity is set to 1/4𝜋.
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Still there is a problem. The Hamiltonian in ℎ generates a problem with many
degrees of freedom albeit the great simplification from the Born-Oppenheimer
approximation. Also because of the term describing electron interaction the wave
function is not separable into one-electron wave functions. There is thus still a
need for further simplifications of the electronic structure problem defined by ℎ.

3.3 Density functional theory

Density functional theory (DFT) nowadays refers to a collection of first-principals
techniques using the electron density as a fundamental variable. The electron den-
sity in a system of electrons is defined as the number density of electrons in a spe-
cific state [87]. Suppressing spin the electron density is derived from the many-
body electron wave function |Ψ⟩ as

𝜌(𝒓1) = 𝑁 ∫ 𝑑𝒓2 … 𝒓𝑁 |Ψ|
2. (3.9)

If possible, the electron density is a much leaner object to work with, compared to
the multidimensional wave function.

Fortunately, Hohenberg and Kohn showed in 1964 [88] that the electron density
can be considered as a fundamental property of the ground state in that the ground
state wave function can be expressed as a functional of the electron density 𝜌0(𝒓).
Hence the ground state energy may be expressed as

𝐸0 = ⟨Ψ[𝜌0(𝒓)]|ℎ|Ψ[𝜌0(𝒓)]⟩. (3.10)

They also showed that there exist a general functional 𝐹 [𝜌] expressing the energy
contribution from the kinetic energy as well as the interaction among the electrons.
Together with a part giving the interaction energy from electronic interaction with
the external potential 𝑉𝑒𝑥𝑡, the energy can be expressed as

𝐸[𝜌(𝒓)] = 𝐹 [𝜌(𝒓)] + ∫ 𝑑𝒓 𝜌(𝒓)𝑉𝑒𝑥𝑡(𝒓). (3.11)

This energy is minimized by the ground state density. Unfortunately the functional
is not known in general. The theorem shows its existence but gives no prescription
on how to find 𝐹 . Since the functional contains many-body effects that are not
known it is not possible to use this formulation, that is 𝐹 directly [89].

3.3.1 The Kohn-Sham ansatz

In 1965 Kohn and Sham [90] proposed an ansatz where the system of interacting
electrons is recast into a system of non-interacting electrons, a much simpler prob-
lem than the original many-body problem. The main assumption is that if one can
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formulate an auxiliary problem, with the same ground state solution as in the full
many-body problem, then a solution to the auxiliary system also solves the original
problem. In theKohn-Sham ansatz the functional 𝐹 [𝜌(𝒓)] in Eq. (3.11) is separated
as

𝐹 [𝜌(𝒓)] = 𝑇𝑠[𝜌(𝒓)] + 𝐸𝐻 [𝜌(𝒓)] + 𝐸𝑥𝑐[𝜌(𝒓)]. (3.12)

Here 𝑇𝑠[𝜌(𝒓)] is the kinetic energy for non-interacting electrons and 𝐸𝐻 [𝜌(𝒓)] is the
Hartee energy expressed as

𝐸𝐻 [𝜌(𝒓)] = 1
2 ∫ 𝑑𝒓𝑑𝒓′ 𝜌(𝒓)𝜌(𝒓′)

|𝒓 − 𝒓′| . (3.13)

Both of these terms are known. The unknown part 𝐸𝑥𝑐[𝜌(𝒓)] collects the more
complicated many-body effects that are usually referred to as exchange and corre-
lation.

In practice an effective potential is formulated as

𝑉𝑒𝑓𝑓 = 𝑉𝑒𝑥𝑡 + 𝑉𝐻 + 𝑉𝑥𝑐 (3.14)

where 𝑉𝐻 is the Hartree potential

𝑉𝐻 (𝒓) = ∫ 𝑑𝒓′ 𝜌(𝒓′)
|𝒓 − 𝒓′| (3.15)

while the potential for exchange-correlation 𝑉𝑥𝑐 is the functional derivative of the
exchange-correlation energy

𝑉𝑥𝑐 = 𝛿𝐸𝑥𝑐[𝜌(𝒓)]
𝛿𝜌(𝒓) . (3.16)

The independence of the electrons allows for separation into single electron equa-
tions

(−1
2∇2 + 𝑉𝑒𝑓𝑓 (𝒓)) 𝜓𝑖(𝒓) = 𝜀𝑖𝜓𝑖(𝒓). (3.17)

The Kohn-Sham orbitals 𝜓𝑖(𝒓) are under the constraint that

𝜌(𝒓) = ∑
𝑖

𝑓𝑖|𝜓𝑖|
2, (3.18)

where 𝑓𝑖 is an occupation factor for electron state 𝜓𝑖. The formulation is exact
although the functional for the exchange-correlation energy, 𝐸𝑥𝑐[𝜌(𝒓)] is unknown.
Besides that there has been a great reduction in complexity from a quantummany-
body problem into separate problems for independent electrons.
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3.3.2 Exchange-correlation functionals

The unknown exchange-correlation functionals are in general complicated and ap-
proximations are necessary. The approximation presented in the original Kohn
and Sham paper [90] assumes that the electron density in a local region is the same
as the density in a uniform electron gas of density 𝜌(𝒓). The exchange-correlation
energy is then given by

𝐸𝐿𝐷𝐴
𝑥𝑐 [𝜌(𝒓)] = ∫ 𝑑𝒓 𝜌(𝒓)𝜀𝐿𝐷𝐴

𝑥𝑐 [𝜌(𝒓)] (3.19)

where the exchange-correlation energy for the uniformgas has a known solution [85].
The approximation is relatively simple considering the full problem, but has nonethe-
less proven itself in many applications over the years.
The LDA assumes a slowly varying electron density, so a natural step is to in-

clude effects of local variations in the exchange-correlation functional. This ap-
proach is the semi-local generalized gradient approximation (GGA).Here the exchange-
correlation energy is assumed to be dependent on the electron density as well as
the gradient of the density

𝐸𝐺𝐺𝐴
𝑥𝑐 [𝜌(𝒓] = ∫ 𝑑𝒓 𝜌(𝒓)𝜀𝐺𝐺𝐴

𝑥𝑐 [𝜌(𝒓), ∇𝜌(𝒓)]. (3.20)

There are many versions of GGAs. Most notable is the PBE functional [91], which
has been successfully used in many applications.

3.3.3 van der Waals density functionals

The van der Waals force is the result of non-local correlation between electrons.
Because of the non-local nature of the van der Waals force, it is not expected that
a local or semi-local approximation will give a correct exchange-correlation energy.

In Papers I and II, first-principles calculations were conducted on van derWaals
solids [35]. To describe van derWaals solids properly within DFT it is important to
use a proper a van derWaals density functional (vdW-DF) that captures the sparse
nature [92] of the materials. In 2003 a vdW-DF addressing layered structures [93]
was presented, followed one year later by a vdW-DF for general structures [94].

In the vdW-DF method the correlation energy assumes a non-local form, which
is expressed as a double integral over the spatial degrees of freedom [95]

𝐸nl
𝑐 [𝜌] = 1

2 ∫ ∫ 𝜌(𝒓)𝜙(𝒓, 𝒓′)𝜌(𝒓′)𝑑3𝒓𝑑3𝒓′, (3.21)

where the kernel 𝜙(𝒓, 𝒓′) represents the non-local coupling of the electron densi-
ties at 𝒓 and 𝒓′. The correlation energy is usually complemented by a semi-local
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exchange functional,

𝐸𝑣𝑑𝑊 −𝐷𝐹
𝑥𝑐 [𝜌(𝒓)] = 𝐸𝑠𝑙

𝑥 [𝜌(𝒓)] + 𝐸𝑛𝑙
𝑐 [𝜌(𝒓)], (3.22)

which historically was adapted from other semi-local exchange-correlation func-
tionals. In 2014 a consistent exchange (CX) part was developed leading to the
so-called vdW-DF-CX functional [96], which was used in Papers I and II of the
present thesis.

3.3.4 Fourier expansion and pseudopotentials

In a solid, periodic boundary conditions are suitable for calculating bulk properties
where surface effects are negligible. This is reasonable if the considered system is
large compared to the boundaries. Effectively, by introducing periodic boundaries
the computational system becomes infinite. In the case of a wave function, due
to the theorem by Bloch [97] it is possible to expand the wave function in a plane
wave basis set that is complete as long as the wave vectors in the first Brillouin
zone are included. This is done by Fourier expansion over the reciprocal lattice
vectors 𝑮 through the series

𝜓𝑛,𝒌(𝒓) = ∑
𝑮

𝑐𝑛,𝒌+𝑮 exp [𝑖(𝒌 + 𝑮) ⋅ 𝒓]. (3.23)

This sum is infinite and for practical purposes the series must be truncated by a
cutoff. The Fourier coefficients 𝑐𝑛,𝒌+𝑮 decrease for increasing |𝒌 + 𝑮| [89]. So
introduction of an energy cutoff 𝐸𝑐𝑢𝑡 allows for expansion including only the recip-
rocal vectors that fulfill the condition

ℏ2

2𝑚|𝒌 + 𝑮|
2 < 𝐸𝑐𝑢𝑡. (3.24)

With an increasing number of nodes, a wave function picks up an oscillating
behavior near the nuclei [98]. Oscillations are more complicated to handle com-
putationally and cause slow convergence2. Since core electrons are not strongly
involved in interaction with valence electrons, for the sake of chemical bonding,
it is not necessary to have a detailed description of the wave functions close to
the nuclei. To overcome this issue one frequently employs so-called pseudopoten-
tials, which replace the full Coulomb potential corresponding to the ionic core with
a smoother potential that incorporates the core electrons and has the same scat-
tering properties as the original potential [85]. Common schemes include norm-
conserving and ultra-soft pseudopotentials [99]. In the present work the project
augmented wave (PAW) [100] method was employed, which represents a bridge
between pseudopotential and all-electron type calculations.

2More coefficients are necessary in the Fourier expansion
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4
Summary of the papers

4.1 Paper I: Ultra-low thermal conductivity in
WSe2

Tungsten diselenide (WSe2) is a van der Waals (vdW) solid that consists of two-
dimensional sheets with strong intralayer bonding and interplanar vdW coupling.
Van der Waals solids have a highly anisotropic thermal conductivity with an out-
of-plane conductivity 𝜅⟂ for bulk material of 1.5W/mK at room temperature [44].
It was experimentally demonstrated that 𝜅⟂ in turbostratically deposited WSe2
films can be reduced down to 0.05W/mK. This is a factor of 30 lower than in bulk
crystals and thus considerably below the conservative estimate of the minimum
thermal conductivity thought achievable.

In this paper a microscopic model was developed to explain this observation
of an ultra-low thermal conductivity in disordered thin films of WSe2. This was
accomplished within the framework of Boltzmann transport theory and the relax-
ation time approximation (Sect. 2.4.5) based on second order force constants calcu-
lated within density functional theory. To accurately capture nonlocal correlation
effects a non-empirical consistent exchange vdW density functional (vdW-DF-cx)
was used [96].

First the sensitivity of the lattice thermal conductivity to different planar defects
was established. Stacking disorder and strain cause phonon localization and soft-
ening of the acoustic modes, which can account for a reduction of 𝜅⟂ by a factor
of 2 to 4 (green dashed line in Fig. 4.1). In addition the layer disorder introduces a
structural limit on the phonon mean free path, which can be reduced to the sepa-
ration between individual layers. Assuming that this limitation can be modeled by
a diffuse boundary scattering model reduces the conductivity as well (green band
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Figure 4.1: The experimentally measured reduced lattice thermal conductivity in
disordered thin WSe2 films corresponds to the red triangles and squares (Cahill
et. al. [44]). The measured values in a single bulk crystal corresponds to the blue
dots. Reduction of group velocities lowers the lattice thermal conductivity to the
green dashed line. Lifetime reductions due to strong boundary scattering associ-
ated with disorder reduces the conductivity to the green band. Adding the effect
of both group velocity reduction as well as lowered lifetime as a result of increased
scattering reduces the predicted lattice thermal conductivity to the yellow band.

in Fig. 4.1). If the effect of group velocity and lifetime reduction are combined
one obtains a lattice thermal conductivity that is comparable to the measured data
(yellow band in Fig. 4.1).

The results show that a reduction of 𝜅⟂ by 40–60% can be achieved merely
by variations in the layer stacking, which is associated with only a small energy
cost. This can be important for e.g., thermoelectric applications where a low ther-
mal conductivity in conjunction with a high electrical conductivity is necessary to
achieve a high thermodynamic efficiency. Since electrons typically have larger
mean free paths than phonons, they are less likely to be affected by changes in
the stacking order, thus creating the possibility to decouple electrical and thermal
transport properties. While the model was developed for WSe2 it is likely to be
also applicable to similar vdW solids.
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Figure 4.2: Calculated lattice thermal conductivity of WSe2 and WS2 in compari-
son with experiment. Solid and dashed lines and lines with squares shoe the calcu-
lated thermal conductivity obtained when including boundary scattering, isotopic
scattering and boundary scattering. The structural length scale is set to 4 𝜇m for
the in-plane and 0.15𝜇m for the out-of-plane conductivity. Experimental data for
WS2 and WSe2 were taken from Pisoni (2016) [45] and Chiritescu (2007) [44], re-
spectively.

4.2 Paper II: Thermal conductivity in van der
Waals solids

Novel synthesis techniques [29, 101] provide the opportunity to create highly en-
gineered van der Waals (vdW) solids, which emerge as promising candidates for a
manifold of applications including electronic components [36], optoelectronic [34,
37, 38], thermoelectrics [40], and spintronics [39]. Since thermal transport plays a
key role in many of these situations, it is important to develop a detailed under-
standing of the thermal conductivity 𝜅 in vdW solids.
Unfortunately, values for the thermal conductivities reported in the literature

exhibit a wide spread and can differ by more than one order of magnitude. This
can be partly attributed to the challenges associated with experimental measure-
ments of the thermal conductivity in nanostructures with pronounced anisotropy,
see e.g., [49]. Possibly even more crucial is the sensitivity of the results to defects
and sample size effects, as the growth of large high-quality TMD single crystals is
very time consuming [49].

Given this motivation the present paper investigates the finite temperature prop-
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erties as well as the lattice thermal conductivity 𝜅 in Mo and W-based transition
metal dichalcogenides (TMDs) employing a combination of density functional and
Boltzmann transport theory. Once again the calculations were carried out using
the vdW-DF-CX functional, which is shown to yield excellent agreement with ex-
perimental lattice constants at room temperature with an average relative error
below 0.2%.

With regard to the thermal conductivity it is demonstrated that care must be
taken with regard to some computational parameters, in particular the displace-
ment amplitude used for evaluating finite differences. A careful analysis shows
that larger values than commonly used for e.g., materials such as silicon, are re-
quired in order to balance numerical accuracy with the smallness of vdW forces.

The calculated in-plane conductivities at room temperature are in good agree-
ment with experimental data for high-purity material, when only phonon-phonon
and isotopic scattering are included (Fig. 4.2). Explaining the experimental data
over the entire temperature, however, requires inclusion of a temperature inde-
pendent scattering mechanism that limits the phonon mean free path (MFP). The
latter effect is even more pronounced in the case of the out-of-plane conductivity
(Fig. 4.2).

The sensitivity of the thermal conductivity to structural inhomogeneities can
be rationalized in terms of the long MFPs of the modes that contribute the most
strongly to 𝜅. The MFP of these modes (including phonon-phonon and isotopic
scattering) is at least 1 𝜇m, which is comparable to silicon but much larger than e.g.,
PbTe. This behavior is promising for thermoelectric applications, where lowering
the lattice part of the thermal conductivity is a widely employed approach for in-
creasing the thermodynamic efficiency. On the other hand, it can pose problems
for electronic and optoelectronic applications, which require a large 𝜅 for rapid
heat dissipation.

Overall the present study provides a comprehensive set of lattice thermal con-
ductivities for bulk TMDs that establishes bounds set by phonon-phonon scatter-
ing and intrinsic length scales. It thereby forms the basis for future studies on these
systems, which could focus e.g., on genuine vdW solids comprising different layers.

4.3 Paper III: Chemical order and transport
properties in an inorganic clathrate:
Optimal structures by computational design

Clathrates are chemical substances with a defined lattice structure that can trap
atomic or molecular species [50, 51]. Inorganic clathrates such as Ba8Ga16Ge30 or
Sr8Ga16Sn30 exhibit a combination of electrical and thermal transport properties
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Figure 4.3: Electrical transport properties of 𝑛-type Ba8Ga16Ge30 at a carrier den-
sity of 3 × 1020 cm−3. (a) Seebeck coefficient, (b) electrical conductivity, and (c)
power factor as a function of temperature from calculations in comparison with
experimental data.

that are very favorable for thermoelectric applications [52, 53]. Here, the earth
alkaline atoms act as guest species that occupy the cages provided by the host
structure, where the host structure most commonly is composed of elements from
groups 13 and 14. Clathrates, as well as some other thermoelectric materials, are
multicomponent systems exhibiting chemical ordering, with the potential to affect
transport properties.

This paper focuses on the electrical properties of Ba8Ga16Ge30 due to the chem-
ical order, investigated with the use of alloy cluster expansions. The cluster expan-
sions were trained by density functional theory calculations, in which the chemical
order in the form of the site occupancy factors was determined as a function of
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temperature. A ground-state structure was determined with the use of a simulated
annealing procedure. The ground-state was shown not to have any first neighbor
Ga–Ga bonds.

The electrical conductivity 𝜎 and Seebeck coefficient 𝑆 could then be computed
under 𝑛-type conditions for the ground-state structure, as well as for representative
configurations for the chemical order at different temperatures (Fig. 4.3). These
computations were conducted using a combination of density functional theory
and Boltzmann transport theory, showing good agreement with experimental data
for both the electrical conductivity and the power factor 𝑆2𝜎. The power factor
was shown to peak roughly at 800-900K consistent with previous experiments.

Finally, by combining density functional theory, Boltzmann transport theory,
andMonte Carlo simulations with cluster expansions, amaximization of the power
factor could be achieved by searching for optimized configurations. It was found
that minimizing theGa SOFs at the 6𝑐 Wyckoff site gives a calculated power factor
up to 27𝜇W/K2cm. The optimized power factors corresponds to an increase of ap-
proximately 60% compared to the power factor of non-optimized configurations.

4.4 Paper IV: Electronic and lattice thermal
conductivity in intermetallic clathrates:
A first principles perspective

Inorganic clathrates are among the most efficient thermoelectric materials [67,
102] with reported figure-of-merit (𝑧𝑇 ) exceeding values of one [56, 58]. They
generally exhibit very low thermal conductivities, comparable to the conductiv-
ities of glasses. Hence, inorganic clathrates are though of as realizations of the
“phonon glass-electron crystal” concept [13]. The low thermal conductivity origi-
nates partly from the heavier caged guest species, which undergo “rattling”motion
at low frequencies, due to weak binding. In this paper both the electronic and the
lattice thermal conductivity in the representative inorganic clathrate Ba8Ga16Ge30
were investigated in detail. The ground-state configuration, as well as some other
representative configurations obtained in Paper III, were used for this purpose.

The lattice thermal conductivity in Ba8Ga16Ge30 is challenging to compute, in
part due to the sensitivity to the vibrational spectra of the guest rattlers. The
phonon dispersion was calculated from the second order interatomic force con-
stants (IFCs) obtained with density functional theory. The IFCs were then used
to examine the thermal expansion within the quasi-harmonic approximation. Be-
cause of the impact of the structure on the rattler-modes, the choice of exchange-
correlation functional was first scrutinized. The non-empirical consistent-exchange
van derWaals functional (vdW-DF-cx) [96] was found to be well suited, compared
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Figure 4.4: Lattice thermal conductivity 𝜅𝑙 of Ba8Ga16Ge30 as a function of tem-
perature. (a) Comparison of 𝜅𝑙 due to different included scattering channels, calcu-
lated using IFCs achieved with the vdW-DF-cx functional, as well as a comparison
to the computations using temperature dependent effective IFCs. (b) Compari-
son between computations, using IFCs from the vdW-DF-cx functional (red solid
line), the PBE functional (solid blue line), temperature dependent effective mod-
els (squares) and experimental data sets (dashed lines marked by numbers). The
inset shows the same data on a linear scale. Different experimental data sets are
marked (1)-(7).

to the PBE functional, since it predicted a finite temperature lattice constant closer
to the experimental data and produced a better vibrational spectrum when com-
pared to the data in Ref. [68].

To address the lattice thermal conductivity the third order IFCs were computed.
The static (0K) IFCs produced lattice thermal conductivities that were systemat-
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Figure 4.5: Electronic contribution 𝜅𝑒 to the thermal conductivity calculated for
the ground state structure as well as for structures extracted from Monte Carlo
simulations representative of the chemical order at different temperatures. Data
obtained using the Wiedemann-Franz law 𝜅𝑒 = 𝐿𝜎𝑇 are shown by dashed lines,
whereas the thermal conductivity obtained within the framework of Boltzmann
transport theory is shown by solid lines.

ically underestimating the reported experimental conductivities (Fig. 4.4). Using
effective temperature dependent IFCs, obtained with first-principles molecular dy-
namics simulations, the prediction improved both inmagnitude and slope. The suc-
cess of the effective IFCs indicates that phonon-phonon coupling is important for
an accurate representation of the low-frequency region related to the rattler-modes.
In agreement with previous work the low-lying guest modes were associated with
an avoided band crossing in the phonon dispersion [63, 68]. The underestimation
of the rattler modes was linked with the onset of the avoided band crossing at a
lower 𝒒 vector. In addition to the previous studies, which focused on the low en-
ergy region, modes at higher energies were identified to contribute to the lattice
thermal conductivity significantly.

The electronic contribution to the thermal conductivity was investigated using
Boltzmann transport theory, by applying it to the ground-state and some higher
temperature configurations. According to Wiedemann-Franz law couples the elec-
tronic part of the thermal conductivity 𝜅𝑒 to the electrical conductivity 𝜎 through
the relation

𝜅𝑒 = 𝐿𝜎𝑇 , (4.1)
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where 𝐿 = 𝐿0(𝑘2
𝐵/𝑒2) is the Lorenz number. The Wiedemann-Franz law is used

to separate the electronic thermal conductivity and the lattice thermal conductiv-
ity from the measured total thermal conductivity. The value of 𝐿0 typical ranges
from 2 (for semiconductors) to 3.3 (for a degenerate electron gas). The computed
𝜅𝑒 lies between conductivities predicted by Wiedemann-Franz law using these 𝐿0
values (Fig. 4.5). It was seen that lower temperatures are more consistent with the
larger Lorenz-factor, and conductivities at higher temperatures are more consis-
tent with the Lorenz-factor typical for a semiconductor. This variation indicates
that special care should be taken when applying the Wiedemann-Franz law for in-
terpreting measured thermal conductivities of clathrate systems, especially since
the electronic thermal conductivity is of the same order as the lattice thermal con-
ductivity.
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5
Outlook

In the present thesis, two different types of materials were investigated with re-
gard to their ability to transport heat. Papers I and II addressed layered materials
with very anisotropic properties. Because of the weak interlayer binding, they are
prone to form planar defects, which as shown in this thesis can have dramatic ef-
fects on their ability to conduct heat. At the same time, the 2D character of the
individual sheets enables the fabrication of heterostructures composed of layers of
different 2D materials including but not limited to the transition metal dichalco-
genides (TMDs) investigated in the present thesis. Thus while in the present thesis
the focus has been on homogeneous materials, in the future this research ought to
be extended to heterostructures composed of different TMDs and not necessarily
limited to Mo and W-based compounds. It was discussed in Paper II how differ-
ences in mass and structure affect the phonon dispersion, which in turn determines
to a large extent the lattice thermal conductivity. By combining different layers, it
becomes possible to engineer these features and to manipulate both out-of-plane
and in-plane transport in a very controlled fashion.

The approach taken in Paper III is here potentially very powerful, i.e., by com-
bining transport calculations with effective models (such as the cluster expansions
in Paper III) and sampling techniques (e.g., Monte Carlo simulations or genetic al-
gorithms) one can computationally design structures with specified transport prop-
erties. This “inverse design” approach was adopted in Paper III to optimize elec-
trical transport properties in clathrates but is in principle equally applicable to
thermal transport. Conversely, it would be interesting to explore electrical trans-
port in van der Waals solids and specifically to explore strategies for controlling
electron-phonon coupling and decoupling electronic and thermal transport.

Besides planar defects are different point defects in the TMDs interesting to in-
vestigate. As a result of the manufacturing process for single or few-layers TMDs,
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in conjunction with low defect formation energies for point defects, can consider-
able defect concentrations be expected, andwith that the possibility for substantial
effects on the thermal conductivity [103]. For this investigation is a first-principles
Greens-function approach [104] suitable for quantifying the effect of scattering
due to point defects.

The use of effective interatomic force constants in Paper IV was crucial for a
functional description of the rattler-modes and with that the correct prediction of
the lattice thermal conductivity. This approach could be interesting to apply for
other systems, e.g., filled skutterudites, that also show signs of strongly damped
quasi-particles when described with static interatomic force constants [105]. A
more rigorous approach is also desirable. The effective model takes the phonon-
phonon couplingwith the vibrational spectra into account. Applying self-consistent
phonon theory, for renormalization of the spectra, would be an interesting step.

The insight and results gained in this thesis are not only important for our un-
derstanding of van der Waals solids and thermoelectric materials but for thermal
transport in general. In the future, the goal will be to implement the concepts
developed here in experimental settings and to push the limits of materials and
transport. In this fashion this thesis will ultimately contribute to the vast and im-
portant field of energy management.
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A
Balance equations in

thermodynamics

The fundamental questions within theories dealing with transport, are how much
of a quantity is within a specific region of space, and in which way is this amount
changing over time? In general there are only three different kinds of mechanisms
that can change the amount of quantity within the region. The quantity can be
transported over the boundary to the surroundings, or the quantity can be either
produced or annihilated within the boundary. The mathematical relations describ-
ing theses processes are called balance equations.

Under the assumption that the continuum hypothesis is valid, an extensive quan-
tity 𝐸 can be associated with a material point, such that

lim
Δ𝑀→0

Δ𝐸
Δ𝑉 = 𝜌𝑒, (A.1)

where 𝑀 is the mass occupying the volume 𝑉 , 𝜌 is the mass density and 𝑒 the
specific value of 𝐸. Given a description of the specific distribution of a quantity,
the total quantity within a region Ω is then given by summing up all contributions

𝐸Ω = ∫Ω
𝜌𝑒d𝑉 , (A.2)

where d𝑉 is the volume element to Ω. With the use of the Reynolds transport
theorem [106], the rate of change of 𝐸Ω is expressed as

d𝐸Ω
d𝑡 = d

d𝑡 ∫Ω
𝜌𝑒d𝑉 = ∫Ω

𝜌𝜕𝑒
𝜕𝑡 d𝑉 , (A.3)
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where the partial derivative is in the local sense. In principle, as stated in the intro-
duction to this section, the only possibility to change the ammount of the quantity
within Ω is to either have the quantity leave or enter the boundary 𝜕Ω, or that the
quantity is produced or annihilated within Ω. The flow of the quantity 𝑒 is readily
described as a flux 𝑱𝑒. Each component of the flux, by definition, is the amount of
𝐸 flowing through a unit area perpendicular to the corresponding unit vector, in
unit time. Defining 𝒏 as the outbound normal to 𝜕Ω, the total flow 𝐹 entering Ω
through the boundary in unit time is then

𝐹 = − ∫𝜕Ω
𝑱𝑒 ⋅ 𝒏 d𝑆 = − ∫Ω

∇ ⋅ 𝑱𝑒 d𝑉 . (A.4)

Here, d𝑆 is the surface element to 𝜕Ω and the divergence theorem is used to trans-
form the expression into a volume integral. The rate of production is expressed by
a function 𝜎𝑒, that describes the local production when positive, and local annihi-
lation when negative. The total production 𝑃 in unit time within Ω, due to 𝜎𝑒 is
then

𝑃 = ∫Ω
𝜎𝑒 d𝑉 . (A.5)

By invoking the principle of balance, the rate of change within Ω is the sum of
transport over the boundary and internal production

d𝐸Ω
d𝑡 = 𝐹 + 𝑃 , (A.6)

or in integral form expressed as

∫Ω
𝜌𝜕𝑒

𝜕𝑡 d𝑉 = − ∫Ω
∇ ⋅ 𝑱𝑒 d𝑉 + ∫Ω

𝜎𝑒 d𝑉 . (A.7)

The integrals are over the same volume, and since the volume element is arbitrary
the integrand must vanish identically. The general balance law, written in local
form, is then

𝜌𝜕𝑒
𝜕𝑡 = −∇ ⋅ 𝑱𝑒 + 𝜎𝑒. (A.8)

In the special case where the quantity is only exchanged through fluxes, i.e., when
there is no production term, the quantity is said to be conserved and the balance
equation may be expressed as

𝜌𝜕𝑒
𝜕𝑡 + ∇ ⋅ 𝑱𝑒 = 0, (A.9)

which takes on the simple form of a conserved continuity equation.
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A.1 Balance equations for the internal energy

From the broader perspective, the first law of thermodynamics implicitly invokes
a balance law, simply stating that the total energy is conserved. For practical pur-
poses, some context is needed. Within the context of continuum mechanics, the
law states that the material derivative of the total energy of a body equals the total
power input from both work 𝑊 and heat 𝑄

d𝐾
d𝑡 + d𝑈

d𝑡 = 𝑊 + 𝑄. (A.10)

Where 𝐾 is the macroscopic kinetic energy and 𝑈 the internal energy. The input
from work associates with two types of processes affecting the macroscopic state
of the system, either acceleration and deformation of the bulk due to coupling to
external fields or deformation and acceleration of the boundaries due to external
traction. Heat can be either in the form of a heat flux 𝑱𝑞 over the system bound-
ary, or from internal generation 𝜎𝑞. Internal generation can originate, e.g., from
radioactive decay, or in the case of fluids from frictional losses due to viscous in-
teraction with the surroundings as well as turbulent internal dissipation, or in the
case of an electric current transmitted through the system from irreversible energy
transfer due to Joule heating.

Following a standard treatment, such as the one in Reddy [107], the first law,
Eq. (A.10), gives the local form of energy balance for the internal energy density
𝑢, expressed as

𝜌d𝑢
d𝑡 = −∇ ⋅ 𝑱𝑞 + 𝜎 ∶ 𝑆 + 𝜎𝑞. (A.11)

Here 𝜎 ∶ 𝑆 is the double scalar product1 between the internal stress tensor and
the symmetric part of the strain rate tensor. The term has the interpretation of a
source due to internal work.

In the case of a transmitted electric current, the electrons is accelerated in a
collective manner due to a difference in the electric potential, introducing a drift
velocity to the electron population. At the same time the electrons scatter, which
introduces a random component in the velocity distribution. The result is an in-
crease in the part of the entropy pertaining to the electrons, introducing a dissipa-
tion of the kinetic energy carried in the field direction.

𝜌d𝑢
d𝑡 = −∇ ⋅ 𝑱𝑞 + 𝜎 ∶ 𝑆 + 𝑬 ⋅ 𝒊. (A.12)

1The double scalar product is here defined as the double sum 𝐴 ∶ 𝐵 = ∑ 𝑖𝑗𝐴𝑖𝑗𝐵𝑗𝑖.
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A.2 Balance equations for entropy

In classical thermodynamics, the entropy 𝑆0 is only defined for systems in equilib-
rium. In non-equilibrium thermodynamics, due to the local-equilibrium hypothe-
sis the entropy concept can be extended to systems out of equilibrium, resulting in
an extensive quantity 𝑆 that must obey a transport law of its own.

Since entropy is an extensive quantity, it is reasonable to separate changes in a
systems entropy into an entropy flow 𝑱𝑠, and an entropy production 𝜎𝑠. As stated
with the second law of thermodynamics, entropy is a non-conserved quantity that
can not be annihilated. Hence the production term must be either zero or greater
than zero

𝜎𝑠 ≥ 0. (A.13)

This is a stronger statement than the one given in classical thermodynamics, where
the increase of entropy is assumed to be increasing globally.
The balance equation for the change of a systems entropy is now expressed as

d𝑆
d𝑡 = d𝑒𝑆

d𝑡 + d𝑖𝑆
d𝑡 . (A.14)

Here the total entropy is given by integrating the specific entropy 𝑠

𝑆 = ∫Ω
𝜌𝑠d𝑉 . (A.15)

The exchange of entropy with the surroundings is expressed through the entropy
flux

d𝑒𝑆
d𝑡 ∫𝜕Ω

𝑱𝑠 d𝑆, (A.16)

and the internal production is

d𝑖𝑆
d𝑡 ∫Ω

𝜎𝑠 d𝑉 . (A.17)

By invoking the divergence and the Reynold’s transport theorems the equation for
local entropy balance is

𝜌d𝑠
d𝑡 = −∇ ⋅ 𝑱𝑠 + 𝜎𝑠. (A.18)
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B
Liouville’s theorem

The following short section gives a derivation of Liouville’s theorem. This theo-
rem is of importances in the theoretical framework of a statistical treatment of
transport phenomena [108] and the foundation on which the Boltzmann equation
is formally derived.

Start by introducing a compact notation for the 6𝑁 generalized coordinates and
momenta in phase space as 𝑞 = 𝑞1, … , 𝑞3𝑁 and 𝑝 = 𝑝1, … , 𝑝3𝑁 . Let the correspond-
ing volume element be 𝑑𝑞𝑑𝑝 = 𝑑𝑞1 ⋯ 𝑑𝑞3𝑁𝑑𝑝1 ⋯ 𝑑𝑝3𝑁 . Let 𝜌(𝑞, 𝑝, 𝑡) be the number
density of states in phases space so that

𝜌(𝑞, 𝑝, 𝑡) 𝑑𝑞𝑑𝑝 (B.1)

corresponds to the number of states in the volume element at time 𝑡. Let 𝑉 be
a constant volume in phase space and 𝑆 the surface that enclose 𝑉 . The rate of
change in the number of states in 𝑉 is then

𝜕
𝜕𝑡 ∫𝑉

𝜌 𝑑𝑞𝑑𝑝. (B.2)

As long as no states are produced or destroyedwithin𝑉 the rate atwich the number
of states changes must equal the net transport of states over 𝑆

𝜕
𝜕𝑡 ∫𝑉

𝜌 𝑑𝑞𝑑𝑝 = − ∫𝑆
𝜌 𝒗 ⋅ 𝒏 𝑑𝑆. (B.3)

Here 𝒗 is the velocity field 1 across the surface and 𝒏 the outbound normal. Using

1A velocity field in the generalized sense that

𝒗 = (
𝜕𝑞1
𝜕𝑡 , … , 𝜕𝑞3𝑁

𝜕𝑡 , 𝜕𝑞1
𝜕𝑡 , … , 𝜕𝑝3𝑁

𝜕𝑡 ).
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the divergence theorem the surface integral can be changed into a volume inte-
gral over the divergence of 𝜌𝒗. Since the control volume is not changing the time
derivative can be taken inside the volume integral over 𝜌 and a re-arrangement
gives

∫𝑉 (
𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌𝒗))𝑑𝑉 = 0. (B.4)

The volume is arbitrarily chosen so the integrand must vanish identically. Hence

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌𝒗) = 0. (B.5)

Applying the product rule on the terms in the expanded divergence in the conti-
nuity equation equals

𝜕𝜌
𝜕𝑡 +

3𝑁

∑
𝑖=1

(
𝜕𝜌
𝜕𝑞𝑖

𝜕𝑞𝑖
𝜕𝑡 + 𝜕𝜌

𝜕𝑝𝑖

𝜕𝑝𝑖
𝜕𝑡 ) + 𝜌

3𝑁

∑
𝑖

(
𝜕2𝑞𝑖
𝜕𝑞𝑖𝜕𝑡 + 𝜕2𝑝𝑖

𝜕𝑝𝑖𝜕𝑡) = 0. (B.6)

For each pair of conjugate variables the canonical equations read [109]

𝜕𝑞𝑖
𝜕𝑡 = 𝜕𝐻

𝜕𝑝𝑖
𝜕𝑝𝑖
𝜕𝑡 = −𝜕𝐻

𝜕𝑞𝑖
, (B.7)

where 𝐻(𝑞, 𝑝) is the Hamiltonian, and so each term in the last sum in Eq. (B.6) is
identically zero since partial derivatives commute. Due to the chain rule combined
with the Poisson bracket 2 the remaining part of the continuity equation can now
be written as the total derivative

𝑑𝜌
𝑑𝑡 = 𝜕𝜌

𝜕𝑡 +
3𝑁

∑
𝑖=1

(
𝜕𝜌
𝜕𝑞𝑖

𝜕𝑞𝑖
𝜕𝑡 + 𝜕𝜌

𝜕𝑝𝑖

𝜕𝑝𝑖
𝜕𝑡 )

= 𝜕𝜌
𝜕𝑡 +

3𝑁

∑
𝑖=1

(
𝜕𝜌
𝜕𝑞𝑖

𝜕𝐻
𝜕𝑝𝑖

− 𝜕𝜌
𝜕𝑝𝑖

𝜕𝐻
𝜕𝑞𝑖 )

= 𝜕𝜌
𝜕𝑡 + {𝜌, 𝐻} = 0. (B.8)

2The Poisson bracket for a quantity 𝐴 related to a dynamical system governed by the Hamilto-
nian 𝐻 is defined as

{𝐴, 𝐻} =
3𝑁

∑
𝑖=1

(
𝜕𝐴
𝜕𝑞𝑖

𝜕𝐻
𝜕𝑝𝑖

− 𝜕𝐴
𝜕𝑝𝑖

𝜕𝐻
𝜕𝑞𝑖

).
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This resembles the result for an incompressibel fluid and one can think of the num-
ber densities of states in phase space as constituting an incompressible fluid. In the
fixed frame of reference it is then shown that the total derivative of the number
density function is zero. In the opposite frame, the co-moving frame that follows
the fluid motion the number density doesn’t change with time. This has the im-
plication that a volume element in phase-space is invariant over time. This is the
result known as Liouville’s theorem and equation Eq. (B.8) is called Liouville’s
equation.
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ABSTRACT: Films of layered substances like WSe2 can
exhibit a reduction in the out-of-plane thermal conductivity of
more than 1 order of magnitude compared to that of the bulk,
effectively beating the glass limit (Science 2007, 315, 351).
Here, we investigate the microscopic contributions that govern
this behavior within the framework of Boltzmann transport
theory informed by first-principles calculations. To quantita-
tively reproduce both the magnitude and the temperature
dependence of the experimental data, one must account for
both phonon confinement effects (softening and localization)
and interlayer scattering. Both stacking order and layer spacing
are shown to have a pronounced effect on the thermal conductivity that could be exploited to tune the balance between electrical
and thermal conductivity.

1. INTRODUCTION

The ability to manipulate the thermal conductivity is crucial in
various contexts, including refrigeration, heat insulation,
thermoelectric energy recovery, and rapid heat dissipation.
Nanostructuring is a very powerful tool for tuning thermal
conductivity, in particular for ultralow thermal conductors1−4

and thermoelectrics.5−7

Here we focus on one of these systems, namely tungsten
diselenide (WSe2). It is a prototypical layered compound and a
bulk crystalline example for a class of materials for which the
phrase van der Waals (vdW) solid has been coined.8 These
materials are comprised of two-dimensional sheets with strong
mixed covalent−ionic bonding character, which are coupled to
each other by comparably weak vdW interactions9,10 and can be
engineered to form multilayers as well as heterostructures.11−13

As a result of the significant difference between intra- and
intersheet bonding characteristics, vdW materials exhibit strong
anisotropy in many properties, including thermal conductivity.
The out-of-plane conductivity κ⊥ of, e.g., WSe2 is already low
for perfectly crystalline material at a level of 1.5 W/mK at room
temperature.1 Chiritescu et al. demonstrated that in films
deposited at room temperature κ⊥ can be further reduced by a
factor of up to 30 compared to that of single-crystalline
material, yielding values considerably below the theoretical
limit.1,14,15 This dramatic reduction was attributed to the
localization of lattice vibrations due to a randomization of the
stacking order of WSe2 sheets. In the work presented here, we
explore this finding within the framework of Boltzmann
transport theory and first-principles calculations with the
objective of discriminating the essential microscopic factors
and quantifying their respective contribution. Eventually, the

goal is to identify pathways for generalizing the approach to
other materials.
The paper is organized as follows. The next section describes

our methodological approach and summarizes computational
details. In section 3, the effect of structure on the out-of-plane
thermal conductivity is investigated, specifically considering
stacking sequence and homogeneous out-of-plane expansion.
The changes in the phonon band structure that underlie the
structural sensitivity of the conductivity are analyzed in section
4. On the basis of the data presented in section 3, a model is
formulated in section 5 that captures the experimentally
observed increase in average and variance of the interlayer
spacing as well as interlayer scattering. The final model is found
to match the experimental data both in magnitude and in
temperature dependence and provides the basis for a discussion
of the importance of different microscopic mechanisms and
their implications in section 6.

2. METHODOLOGY
2.1. Calculation of Thermal Conductivity. We seek to resolve

the microscopic factors that give rise to the drastic reduction in the
out-of-plane thermal conductivity κ⊥ observed experimentally. As
WSe2 has a rather larger band gap and the temperature range of
interest is small, electronic contributions are negligible, so we focus
our attention entirely on the phononic (lattice) contribution. To
obtain the latter, we analyze κ⊥ within the framework of semiclassical
Boltzmann transport theory, which in the relaxation time approx-
imation (RTA) yields the following expression for the thermal
conductivity tensor16
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where Ω is the unit cell volume, Nq is the number of q points in the
summation, and vα,i(q) = ∂ωi/∂qα is the group velocity of mode i along
Cartesian direction α at point q of the Brillouin zone with ωi being the
mode frequency. Both phonon frequencies and group velocities can be
derived from the second-order force constant matrix.17 The mode
specific heat capacity ci(q,T) is given by
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The lifetime τi(q,T) is limited by a number of scattering processes,
including phonon−phonon, isotope mass variation, and disorder.
According to the simplest approximation, known as Matthiessen’s rule,
their respective contributions are inversely additive, i.e., τtot

−1 =
∑kτk

−1.
Calculation of phonon−phonon scattering rates requires knowledge

of not only the second-order but also the third-order force
constants.18,19 This contribution has been previously addressed using
first-principles calculations for (ideal) bulk WSe2.

20 The phonon−
phonon scattering channel dominates only for relatively large single-
crystalline samples with a comparably low defect density. It is therefore
of minor importance in this work, which is concerned with the effect of
structural defects and disorder on thermal conductivity. For the sake of
simplicity, we therefore assume a mode and q-independent phonon−
phonon scattering limited lifetime, which follows a simple temperature
dependence (τph−ph = αT−b), motivated by analytic theory.21

Specifically, we choose b = 0.8 and α = 27 ps Kb, which reproduces
the experimentally measured out-of-plane conductivity (see section 3
and Figure 1).22

In sections 3 and 4, we will focus on structural effects on group
velocities and frequencies. We will return to the discussion of
scattering channels, specifically in connection with structural defects,
in section 5.

2.2. Computational Details. Phonon dispersion relations were
analyzed using the PHONOPY package23 based on force constants
obtained from density functional theory (DFT) calculations. The latter
were conducted using the projector augmented wave method24 as
implemented in the Vienna ab initio simulation package (VASP).25 We
employed a plane wave energy cutoff of 290 eV and sampled the
Brillouin zone using Γ-centered 12 × 12 × 3 k-point grids with respect
to the primitive cell. The bulk of the force constant calculations were
conducted using supercells comprising 2 × 2 × 2 primitive unit cells.
Convergence tests with systems composed of up to 6 × 6 × 3 unit cells
showed no significant changes in phonon dispersion.

To assess the sensitivity of our results to the treatment of exchange
correlation effects, we used both the local density approximation
(LDA) and the van der Waals density functional (vdW-DF) method
that captures nonlocal correlations.9,26−28 Our nonempirical vdW-DF
studies are based on the new consistent exchange version (vdW-DF-
cx)29 as implemented in VASP.30,31

As shown in Table 1, both LDA and vdW-DF-cx yield good
agreement with experimental data for bulk WSe2 with respect to

crystallographic parameters and elastic constants. Here, finite temper-
ature effects were taken into account on the level of the quasi-
harmonic approximation. Note that the good agreement obtained with
the LDA functional for bulk WSe2 is fortuitous

9 as it is the result of
error cancellation.34 This problem becomes apparent under uniaxial
expansion perpendicular to the layers as the LDA is incapable of
reproducing the correct asymptotic behavior and thus cannot be
expected to properly describe the response of the materials under
these conditions. Unless noted otherwise, below we report results
obtained using the vdW-DF-cx functional.

3. OUT-OF-PLANE CONDUCTIVITY AND STRUCTURE
3.1. Defect-Free Material. Figure 1 shows the calculated

out-of-plane conductivity as a function of temperature for
different conditions in comparison with experiment. It
represents the key results of this work, and in the following
sections, we will successively discuss the different data.
The perfectly crystalline (ideal) system represents the

starting point for the study of structural effects. As indicated
above, in this study we do not explicitly compute phonon−
phonon scattering rates. Instead, we use a simple lifetime model
(τph−ph = αT−b) that is adjusted to reproduce the experimental
single-crystal data. The more important parameter is the
prefactor α, while the b parameter has only a minor effect;
values approximately in the range of 0.8−1.0 yield almost
identical results.

3.2. Stacking Disorder. To determine the impact of
stacking disorder and layer separation on the out-of-plane
conductivity κ⊥, a number of different stacking faults were
considered, which are illustrated in Figure 2a. They were
obtained by altering the number and specific sequence of WSe2

Figure 1. Out-of-plane lattice thermal conductivity κ⊥ for various
samples of WSe2 from experiment (ref 1) and calculation. Blue circles
and lines show the temperature dependence of κ⊥ for ideal bulk
material from experiment and calculation, respectively. Taking into
account the effect of out-of-plane expansion and stacking disorder on
the group velocities yields the κ⊥ data shown by the dashed green
curve (vg limited). If only the effect of interlayer scattering on the
lifetime is included, one obtains the green data range (τlayer limited),
where the upper and lower limits correspond to d = c = 13 Å and d =
c/2 = 6.5 Å, respectively. To reach the experimental range of κ⊥
obtained for disordered thin films (empty red symbols), one must
account for both group velocity reduction and interlayer scattering
(yellow range, τlayer + vg limited). The minimal thermal conductivity
that is predicted by the model introduced in ref 14 is shown by the
dotted gray line.

Table 1. Properties of Tungsten Diselenide from Experiment
(refs 32, 37, and 38) and Calculationa

method T a c zSe c33 c44
LDA 0 3.249 12.819 0.620 52.5 21.2

300 3.250 12.832 0.620
vdW-DF-cx 0 3.280 13.014 0.620 57.3 21.1

300 3.282 13.061 0.621
experiment 300 3.282 12.96 0.6211 52.1 18.6

aThe 0 K data do not include zero-point vibrations. The in-plane and
out-of-plane lattice constants a and c, respectively, are given in
angstroms. zSe denotes the internal coordinate associated with Se. The
elastic constants c33 and c44 are given in gigapascals, and the
temperature T is given in kelvin.
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layers. In the equilibrium structure, the W atoms occupy
Wyckoff sites 2c and thus form a hexagonal closed packed37

lattice with successive layers along [0001] labeled A and B,
respectively. The Se atoms occupy Wyckoff sites 4f and form a
sublattice, which follows the same stacking sequence as the W
sublattice except that each layer comprises two Se atoms that
have the same in-plane coordinate but are split along [0001]. In
stacking sequence ABAC1, the W atoms follow an ABAC
sequence while the Se atoms remain in ABAB sequence.
Conversely, in stacking sequence ABAC2, the Se atoms follow
an ABAC pattern whereas the W atoms maintain the ABAB
order. The ABC1 stacking fault configuration comprises Se and
W atoms in ABC and ABB sequences, respectively, while in the
ABC2 configuration, the Se and W patterns are swapped. Each
configuration was fully relaxed prior to the computation of the
lattice thermal conductivity. For ABAC-type stacking, the
calculations yield a very small energy increase relative to the
ground state of only 3 meV/layer; slightly larger values of 12
and 30 meV/layer are obtained for ABC1 and ABC2 stacking
sequences, respectively.
Figure 2b shows the out-of-plane thermal conductivity that

we have thus obtained for different stacking sequences. This
reveals a reduction in κ⊥ by 30−50%, which is still much less
than the factor of 30 observed experimentally.1 The effect of
simple disorder in the stacking disorder is of similar magnitude
for all configurations and thus does not exhibit a strong
dependence on the number of affected layers. This is expected
because the interaction between neighboring layers is already
weak; therefore, long-range coupling should be even weaker.
While our exploration of possible forms of stacking disorder is
(computationally) limited, it therefore appears unlikely that a
reduction by >1 order of magnitude can be solely attributed to
stacking disorder.
3.3. Interlayer Separation. To proceed with our analysis,

it is relevant to revisit the information that is available from
experiments concerning the structure and chemistry of
turbostratically deposited thin films with ultralow thermal
conductivity. The layer spacing obtained from X-ray diffraction
is on average approximately 1.9−2.6% larger than the value for
bulk WSe2 (compare Table 1 and refs 1 and 2). Cross-sectional
transmission electron micrographs38 furthermore suggest a
rather pronounced variation in layer separation.

As the first step in the analysis of these effects, Figure 2c
shows the variation of the out-of-plane conductivity κ⊥ with
layer separation, which reveals an exponential dependence with
a reduction by a factor of 10 at 8% expansion. In these
calculations, the in-plane lattice constant was kept fixed at its
zero-stress equilibrium value. The figure also contains
equivalent data obtained for the ABAC1 stacking fault model
as well as data for the other stacking sequences corresponding
to their respective equilibrium layer spacing. Ideal stacking and
ABAC1 stacking exhibit a very similar dependence on layer
spacing, suggesting that the stacking disorder and out-of-plane
lattice expansion are not strongly coupled and can be
considered additively. Furthermore, it is apparent that the
variation among the nonideal stacking sequences can at least
partially be rationalized in terms of variations in the layer
spacing that result from full ionic relaxation.

4. ANALYSIS OF PHONON DISPERSION RELATIONS
From our results, it is apparent that even a moderate interlayer
expansion produces a reduction in the thermal conductivity
considerably larger than that with stacking disorder alone. As
will be elaborated below, the exponential dependence of κ⊥ on
the layer spacing implies that one does not require a strong
increase in the average layer spacing to achieve a dramatic
reduction in κ⊥ but merely local variations in layer spacings. We
will return to this aspect in section 5. First, we will address the
microscopic mechanisms behind the reduction of κ⊥ and
compare the calculated vibrational properties with experiment,
where possible.

4.1. Accordion Effect. To resolve the microscopic origin of
the variation of κ⊥ with layer separation, we analyzed the
relative contributions of different phonon modes and q vectors
to the summation in eq 1. Figure 3a shows the phonon
dispersion for the fully relaxed structure. As we assume the
relaxation time to be mode- and q-independent, there are two
terms that determine the contribution of any given mode to
thermal conductivity. The heat capacity ci(T,q) depends only
on the frequency. As shown in Figure 3b, near room
temperature this contribution is already close to saturation,
i.e., one kB per mode, for all available frequencies.
The most important term is therefore the group velocity

vα,j(q) along [0001], which is indicated by the color scale in

Figure 2. (a) Overview of the different types of stacking disorder considered in this study. The black boxes represent the respective unit cells. Out-
of-plane thermal conductivity at 300 K (b) for the stacking disorder models shown in panels a and c as a function of layer spacing. The black solid
curve in panel b shows the energy of the respective stacking sequence relative to the ideal structure. The atomic simulation environment35 was used
for structure creation and manipulation and OVITO was used for structural analysis and visualization.36
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Figure 3a. It is obvious that only modes with q vector
components along [0001] have non-zero vα,j(q) values. The
color coding in Figure 3a suggests that the dominant
contributions to κ⊥ stem from modes in the immediate vicinity
of the Γ−A direction. A close-up of this branch is shown in
Figure 4a at the equilibrium layer spacing as well as for out-of-
plane expansions of 4% (Figure 4b) and 8% (Figure 4c).
From Figure 4a, it is apparent that the main contribution to

κ⊥ at the equilibrium layer separation stems from the
longitudinal acoustic (LA) branch and, to a lesser extent, the
lowest longitudinal optical (LO) mode. The atomic displace-
ment patterns associated with these modes are shown in Figure
4d. With increasing layer separation, the LA branch softens
while the LO branch localizes, leading to a considerable
decrease in group velocity. This is further illustrated in Figure
4e, which shows the variation of the lowest-energy zone center
and boundary modes with layer spacing. The A2 breathing
mode is a measure of the softness of the LA branch, whereas

the difference between the B2g
2 and A2 breathing modes is

associated with the localization of the lowest LO mode.
The stability limit of the material with respect to an

expansion of the layer spacing is determined by the breathing
modes, as they are the first modes to become unstable at ∼11%
expansion according to vdW-DF-cx (7% from LDA) (see
Figure 4e). This demonstrates that the material can tolerate a
rather substantial level of expansion.

4.2. Comparison with Experiment. The E2g
2 shear mode

is Raman active, and its frequency has been experimentally
measured as 0.72 THz (24 cm−1).33 We obtain values of 0.82
THz (27 cm−1) and 0.75 THz (25 cm−1) from vdW-DF-cx and
LDA calculations, respectively, where the latter value agrees
with previous calculations.33,40 Our calculations also agree well
with experimental data for higher-frequency Raman modes41 as
shown in Table 2.

The longitudinal sound velocity along [0001] is determined
by the group velocity in the long-wave limit, which gives
approximately cl,[0001] = 2.0 km/s at the equilibrium layer
spacing. This value is related to the elastic constant c33 via

ρ=c c /l ,[0001] 33 , where ρ is the mass density. The softening
of the LA branch should therefore also be evident in the c33
elastic constant. In fact, while an experimental c33 value of 52
GPa has been obtained for bulk WSe2,

33 a value of only 25 GPa
was reported for WSe2 with ultralow thermal conductivity.142

The observed (average) softening of the materials is thus
approximately consistent with our calculations, which predict a
reduction by one-half for an expansion of approximately 3−4%
for both vdW-DF-cx and LDA.

5. MICROSCOPIC MODEL FOR κ⊥ REDUCTION
5.1. Variations in Layer Spacing. We are now in the

position to provide a microscopic rationalization of the ultralow

Figure 3. (a) Phonon dispersion relation for the fully relaxed
equilibrium structure. The color scale indicates the group velocity
along the z-direction for the respective mode. (b) Frequency
dependence of the mode specific heat capacity. (c) Brillouin zone
for space group P63/mmc (International Tables of Crystallography No.
194, D6h

4 , ref 39).

Figure 4. (a−c) Phonon dispersion along Γ−A for three different values of the out-of-plane expansion ε. The color scale indicates the group velocity
along the z-direction. The colored circles in panel a indicate the zone center and boundary modes, whose atomic displacement patterns (representing
phonon polarization vectors) are shown in panel d. These modes correspond to rigid shifts of layers with respect to each other as illustrated by the
arrows. Panel e shows the dependence of the frequency of these modes on the out-of-plane expansion. The stability limit of the material with respect
to out-of-plane expansion is determined by the breathing modes, whose frequencies become imaginary at approximately 11% when using vdW-DF-cx
(7% for LDA).

Table 2. Raman Frequencies (cm−1) of Bulk WSe2 from
Experiment and Calculation

A1g E2g
1 E1g E2g

2

experiment (ref 33) 24
experiment (ref 41) 253 250 178 25
LDA 255 249 177 25
vdW-DF-cx 250 243 173 27
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thermal conductivity in WSe2 films on the basis of our data.
Recall that structural investigations of these films indicate that
lower thermal conductivity is correlated with a decreasing
coherence between crystallites in the films, a greater degree of
misorientation,2,38 an increase in the average layer spacing of
1.9−2.6%, and a rather substantial variation in layer spacing
along the out-of-plane direction.43

We first formulate a simple model to describe the average
out-of-plane thermal conductivity κ⊥ that results from a
distribution in layer spacings. To approximate the experimental
structure, let us consider a stack of layers as schematically
depicted in Figure 5a with a distribution of layer spacings l1 =

l0(1 + εi), where εi is the out-of-plane expansion relative to the
ideal single crystal layer spacing l0. The local thermal
conductivity κ(εi) reflects the expansion, and Gi = κ(εi)[l0(1
+ εi)]

−1 characterizes the thermal conductance across the
“interface” between the ith pair of layers.44 In perfect single-
crystalline WSe2, the conductivity and intersheet conductance
are κ0 = κ(0) and G(0) = κ0/l0, respectively.
As there is very limited information about the distribution of

intersheet spacings except for the average expansion1 ⟨ε⟩, we
simply assume an exponential distribution45 f(ε > 0) = μ−1

exp(−ε/μ), where the mean of the distribution, μ, represents
the average out-of-plane expansion ⟨ε⟩ = μ. Figure 2c indicates
an approximately exponential dependence of the out-of-plane
conductivity on ε for the case of homogeneous expansion. We
therefore set κ(ε)/κ0 = exp(−aε), where an a of 25.5 gives a
reasonable fit to our first-principles data.
For a stack of N sheets, the total thermal impedance is GN

−1

= ∑iGi
−1, where Nl0(1 + μ)GN must approach the average

effective thermal conductivity ⟨κ⟩μ in the large N limit.
Replacing the N-stack thermal impedance by the distribution
average46

∫ ∫ε ε ε ε ε⟨ ⟩ =− −G G f fd ( ) ( )/ d ( )1 1
(3)

we obtain ⟨κ⟩/κ0 = [⟨G−1⟩G(0)]−1(1 + μ). Discarding the last
small factor (1 + μ) but keeping the expansion effects in the

ensemble averaging then yields the relative out-of-plane thermal
conductivity as a function of average expansion

κ
κ

μ
μ μ

⟨ ⟩
= −

+ −
μ a

a
1

1 /(1 )0 (4)

which is shown in Figure 5b.
For an average out-of-plane expansion of 2.3%, representing

the experimentally observed range of 1.9−2.6%, which was
discussed above, the model predicts a reduction in κ⊥ by
approximately 60% compared to the ideal structure. Stacking
disorder causes a further reduction as indicated by the dashed
blue curve in Figure 5b. It is because of the variation of layer
spacings that the reduction predicted by the model is noticeably
stronger than for the case of a pure homogeneous expansion,
which is shown for comparison by the dotted gray line (also
compare Figure 2c).

5.2. Lifetime Limitation by Interface Scattering. Until
now, the discussion has focused on structural effects on group
velocities and frequencies. According to the analysis in the
previous section, an increase in the average layer spacing along
with local variations can explain a reduction in κ⊥ of ∼60%
(also see Figure 1), with stacking fault disorder having a slightly
smaller effect. The temperature dependence of the “vg limited”
out-of-plane conductivity is indicated by the dashed green curve
in Figure 1. The thus obtained reduction is still noticeably
greater than both the minimal conductivity model14 and the
values obtained for disordered WSe2 films. This suggests that
yet another mechanism is at work.
In fact, the perturbation of the periodicity perpendicular to

the layers due to stacking faults and variations in layer spacing
should not only affect the group velocities vg but also limit the
mean free path of phonon modes with out-of-plane
components. This is equivalent to the effect of boundary
scattering17,47,48 and can be formally expressed in the form of
another lifetime49

τ = +
−⊥

d
v

p
p

1
1layer

g, (5)

where vg,⊥ is the projection of the group velocity on the out-of-
plane direction, d represents the upper limit on the phonon
mean free path,50 and p is a specularity parameter, which ranges
from 0 for a completely rough edge to 1 for a perfectly smooth
edge. In the case of a sample with perturbed periodicity and
associated disorder, d should be comparable to the layer
spacing, i.e., approximately between 6.5 and 13 Å. In fact,
combining phonon−phonon scattering (τph−ph) and layer
scattering (τlayer with p = 0) with the group velocity limited
thermal conductivity yields excellent agreement with the
experimental data as shown by the yellow shaded region in
Figure 1 (τlayer + vg limited), where the lower (upper) limit
corresponds to d = 6.5 Å (13 Å). Note that this calculation not
only reproduces the experimental range for κ⊥ at room
temperature but, as a result of the temperature independence
of τlayer, also captures the experimental temperature dependence
of κ⊥, which is primarily derived from the heat capacity (see
Figure 4b).
It is important to point out that layer scattering alone cannot

account for the experimental observations as demonstrated by
the green shaded region (τlayer limited). The latter can actually
be considered the “glass limit” for the bulk material, in which
the phonon mean free path is bound by the interatomic
distance along the out-of-plane direction.

Figure 5. (a) One-dimensional model for a stack of WSe2 layers with a
distribution of layer spacings. The horizontal dashed lines indicate the
“interfaces” between adjacent layers. (b) Effective out-of-plane
conductivity across a stack with an exponential distribution of layer
spacings as a function of the average out-of-plane expansion ⟨ε⟩ = μ.
For reference, the exponential dependence of κ⊥ obtained upon a
homogeneous out-of-plane expansion (see Figure 2c) is represented
by the dotted gray line. The gray bar represents the range of
experimentally observed average expansions (1.9−2.6%).
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6. DISCUSSION
The results and analysis presented in the previous sections
allow us to provide a comprehensive description of the
experimentally observed reduction of κ⊥. The experimental
characterization of WSe2 films with ultralow thermal con-
ductivity has revealed a pronounced degree of stacking disorder
as well as an increase in not only the average layer spacing but
also its variance. On a microscopic level, the lattice thermal
conductivity is determined by the group velocities vg and
lifetimes τ of the phonons in the material (see eq 1). A
reduction in κ⊥ can thus result from mode localization and
softening (reducing vg) as well as scattering (limiting τ).
The effects of stacking disorder and layer expansion on vg

were separately quantified in section 3. Stacking disorder causes
a reduction in κ⊥ due to localization and softening by 40−60%.
While the homogeneous expansion of the out-of-plane
separation gives rise to an exponential decrease in κ⊥, it is
not a realistic model for the structure of the material. The
experimentally observed variation in layer spacing was therefore
described in section 5 using a simple analytic model for the
distribution of layer spacings. Overall, the analysis suggests that
pure phonon localization and softening (“phonon confine-
ment”51,52) can give rise to a reduction in κ⊥ of a factor of 2−4
(see Figure 1).
The disorder in the WSe2 films furthermore imposes a limit

on the phonon mean free path in the out-of-plane direction,
corresponding to an interface scattering limit on lifetime τ. The
minimum layer spacing in the out-of-plane direction (i.e., half
the out-of-plane lattice constant, d ≈ c/2, in eq 5) in
combination with a completely rough interface/boundary (p
= 0) provides a lower bound for this scattering channel and
effectively corresponds to the “glass limit”.
To describe both the magnitude and the temperature

dependence of the experimental κ⊥, one must account for
both the depression of group velocities and lifetimes assuming
an effective interface spacing of only one to two lattice spacings
(6.5−13.0 Å). Models that rely on phonon softening and
localization only are thus insufficient to describe the reduction
of κ⊥ in its entirety.53

The final value for κ⊥ is naturally dependent on τlayer as well
as the effective reduction of κ⊥, as indicated by the κ⊥ range
shown in Figure 1. This merely reflects the fact that κ⊥ is
sensitive to small structural variations among different samples
as is evident from the experimental data.
It is interesting to note that the calculations presented in

section 3 demonstrate that a very significant reduction of 40−
60% is possible by simply manipulating the stacking sequence.
This effect can in principle be accomplished without
introducing significant layer scattering (which is primarily the
result of layer disorder). Given the small energy cost of ABAC-
type stacking sequences and the recent advances in controlled
deposition of vdW materials, this possibility might be in fact
realizable. Such an approach would be very interesting with
respect to, e.g., thermoelectric properties, for which one seeks
to combine a relatively high electrical conductivity with
minimal lattice thermal conductivities.5 Electronic carriers
typically have mean free paths longer than those of phonons
and therefore should be less sensitive to stacking order.
Nanostructuring is of course well-established in thermoelectric
materials, primarily in the form of dopant, precipitate, and grain
boundary engineering (see, e.g., ref 7). Anisotropic structures

offer additional and complementary possibilities as recently
demonstrated for tilted multilayer structures.54

An even more significant reduction in κ⊥ can be achieved by
controlling the layer spacing. The latter could in principle be
affected by strain, intercalation, or more generally defect
engineering. Further studies are in order to obtain a achieve an
understanding of these mechanisms.

7. CONCLUSIONS
In summary, in this paper, we have shown that the
experimentally observed dramatic reduction of the out-of-
plane thermal conductivity in disordered WSe2 films can be
quantitatively explained by a combination of Boltzmann
transport theory and first-principles calculations. To explain
the experimental result, one must account for the effect of
disorder on both group velocities (phonon softening and
localization) and lifetimes (scattering channels), as these
mechanisms are individually insufficient to explain the
experimental result. The results obtained here are of general
relevance with respect to layered materials as the mechanisms
described here are a result of variations in structure rather than
chemistry. Finally, we note that controlling stacking disorder
and layer spacing without scattering can be a powerful tool for
manipulating phonon transport in a manner at least partly
independent of charge carrier transport. The latter ability is of
interest in the context of, e.g., thermoelectric materials and heat
management.
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The lattice thermal expansion and conductivity in bulk Mo and W-based transition metal dichalcogenides are
investigated by means of density functional and Boltzmann transport theory calculations. To this end, a recent
van der Waals density functional (vdW-DF-CX) is employed, which is shown to yield excellent agreement with
reference data for the structural parameters. The calculated in-plane thermal conductivity compares well with
experimental room-temperature values, when phonon-phonon and isotopic scattering are included. To explain
the behavior over the entire available temperature range one must, however, include additional (temperature
independent) scattering mechanisms that limit the mean free path. Generally, the primary heat carrying modes
have mean free paths of 1 μm or more, which makes these materials very susceptible to structural defects. The
conductivity of Mo- and W-based transition metal dichalcogenides is primarily determined by the chalcogenide
species and increases in the order Te-Se-S. While for the tellurides and selenides the transition metal element has
a negligible effect, the conductivity of WS2 is notably higher than for MoS2, which may be traced to the much
larger phonon band gap of the former. Overall, the present study provides a consistent set of thermal conductivities
that reveal chemical trends and constitute the basis for future investigations of van der Waals solids.

DOI: 10.1103/PhysRevB.94.115205

I. INTRODUCTION

In the advent of increasingly elaborate synthesis techniques
[1,2], highly engineered van der Waals (vdW) solids are
emerging as promising candidates for a manifold of appli-
cations including electronic components [3], optoelectronics
[4–6], thermoelectrics [7], and spintronics [8]. Since thermal
transport plays a key role in many of these situations, it is
important to develop a detailed understanding of the thermal
conductivity in vdW solids.

Unfortunately, the values for the thermal conductivities
reported in the literature exhibit a wide spread. For example,
in the case of nominally single-crystalline MoS2, experimental
values for the in-plane (basal plane) thermal lattice conduc-
tivity vary over one order of magnitude ranging from around
20 W/K m [9] up to 110 W/K m [10] at room temperature
(Fig. 1). This can be partly attributed to the challenges
associated with experimental measurements of the thermal
conductivity in nanostructures with pronounced anisotropy,
see, e.g., Refs. [10,11]. Possibly even more crucial are defects
and sample size effects, as the growth of large high-quality
transition metal dichalcogenide (TMD) single crystals is very
time consuming [10]. The extreme sensitivity to structure has
been possibly most impressively demonstrated in the case
of WSe2 [12,13], for which the out-of-plane (through plane)
thermal conductivity κ⊥ has been shown to vary by almost two
orders of magnitude at room temperature. This variation can in
fact be rationalized in terms of the microstructure, in particular
planar defects such as stacking faults and subtle variations in
layer spacing [14].

Similar to the experimental data, calculated values for
the thermal conductivity cover a wide range as well. Ab
initio calculations based on Boltzmann transport theory in
combination with density functional theory have only become

*daniel.lindroth@chalmers.se
†erhart@chalmers.se

available relatively recently [15–19]. Still, as illustrated by
the case of MoS2 (Fig. 1), calculations have usually been
restricted to monolayers [20–26]. This is at least in part
due to the fact that computational studies of bulk systems
[27,28] require taking into account the vdW forces that
mediate interlayer binding. These interactions are, however,
not captured by common semilocal exchange-correlation (XC)
functionals [29], including widely popular functionals such as
PBE [30] and PBEsol [31]. In some cases, this shortcoming has
been addressed by using semiempirical methods [32]. As will
be shown below, in general, the structural parameters of TMDs
as well as other quantities that affect the thermal conductivity
are, however, very sensitive to the treatment of exchange and
correlation. Furthermore, since vdW forces are rather weak
and computational noise can blur anharmonic effects, both
the choice of the XC functional and the convergence of the
computational parameters require special care.

This perspective motivates the present study, in which
we have carefully evaluated both the in-plane and out-of-
plane thermal conductivities of Mo and W-based TMDs. To
this end, we employ a combination of density functional
and Boltzmann transport theory calculations based on the
vdW density functional method [37] in combination with a
recently formulated consistent-exchange part [29,38], which
has already been found to work very well, e.g., WSe2 [14]. In
the following, we first demonstrate that this approach yields
an excellent description of the structural parameters of Mo and
W-based TMDs at finite temperatures. We then carefully assess
the relevant computational parameters before conducting a
comprehensive investigation of the thermal conductivities.
Since the largest contribution to the thermal conductivities
stems from modes with mean free paths (phonon-phonon
scattering limited) of more than 1μm, both in-plane and
out-of-plane conductivities are in practice often limited by
structural incoherence. The thermal conductivities κ are found
to increase from the tellurides to the sulphides but, in
opposition to the trend expected based on the group velocities,
κ tends to be higher for WS2 than for the respective Mo

2469-9950/2016/94(11)/115205(11) 115205-1 ©2016 American Physical Society
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FIG. 1. Experimental and theoretical results for the in-plane
(basal plane) thermal conductivity of MoS2. Calculations and experi-
ments are from (a) Ref. [9], (b) Ref. [20], (c) Ref. [21], (d) Ref. [22],
(e) Ref. [28], (f) Ref. [23], (g) Ref. [24], (h) Ref. [10], (i) Ref. [33],
(j) Ref. [34], (k) Ref. [35], (l) Ref. [25], (m) Ref. [36], (n) Ref. [26],
and (o) Ref. [27]. Data from Refs. [20–26,33,36] were obtained for
monolayers; the data from Ref. [34] are for few-layer systems.

compound. This behavior is shown to be due to higher lifetimes
in the former case, which can be rationalized in terms of the
scattering condition and the different phononic band gaps.

II. METHODOLOGY

A. Thermal conductivity

In general, the thermal conductivity comprises both an
electronic κe and a phononic (lattice) part κl . According to the
Wiedemann-Franz law the electronic contribution κe is closely
related to the electrical conductivity. Since the TMDs of
interest in the present work have comparably large (electronic)
band gaps κe is usually much smaller than κl . For example,
in the case of the in-plane conductivity in MoS2, κe reaches
only about 5% of the value of κl at room temperature [9] and
the ratio is even smaller below 300 K. In the present work, we
therefore focus entirely on the lattice contribution κl and from
here on drop the subscript l.

To calculate the lattice thermal conductivity, we utilize
Boltzmann transport theory within the relaxation time approx-
imation. In this approximation, each mode λ = (q,p), where q
is the phonon wave-vector and p is the band index, is associated
with a relaxation time τλ. The total relaxation time is the result
of several scattering processes, and in the present work, we
consider phonon-phonon scattering as well as isotopic and
boundary scattering. If one assumes that each scattering rate
individually contributes in parallel, the total relaxation time
for a phonon mode is given by Matthiessen’s rule,

τ−1
λ = τ−1

ph-ph,λ + τ−1
iso,λ + τ−1

boundary,λ. (1)

Isotopic scattering is the result of variations in the atomic
masses due to the natural isotope distribution. The correspond-
ing relaxation time contribution τiso,λ has been calculated
according to second-order perturbation theory [39] using
isotope distributions and masses from Ref. [40].

Boundary scattering is accounted for by assuming that the
mean free path (MFP) of any phonon mode is capped by
a structural length scale L, which in the most simple case
corresponds to the sample size [41],

τ−1
boundary,λ = vλ/L. (2)

This expression represents the limit, in which the scattering
event is fully diffusive, equivalent to a vanishing specularity
parameter [42,43]. Below we will treat this model as a means to
establish the characteristic length scale L that is representative
of the (temperature independent) structural homogeneity of
the material. We note that the model was used in a similar
fashion in Ref. [44] to describe the effect of nanostructuring
in Zn chalcogenides.

Phonon-phonon scattering is computationally the most
intricate contribution. The corresponding lifetime τph-ph,λ can
be obtained using perturbation theory on top of a harmonic
description of lattice vibrations. The phonon-phonon limited
lifetime is then obtained as the inverse of the self energy
τph-ph,λ = 1/2�λ(ωλ), where the self-energy is given by [19]

�λ(ω) = 18π

�2

∑
λ′λ′′

|�−λλ′λ′′ |2{(nλ′+nλ′′+1) δ(ω − ωλ′ − ωλ′′ )

+ (nλ′ − nλ′′ )[δ(ω + ωλ′−ωλ′′) − δ(ω−ωλ′+ωλ′′ )]}.
(3)

Here, �−λλ′λ′′ is obtained from the third-order interatomic
force constant (IFC) matrix and nλ is the Bose-Einstein
distribution. The mode frequencies ωλ can be obtained in the
usual fashion from the second order IFCs [41].

Phonon scattering processes must obey (i) momentum con-
servation, qλ + qλ′ + qλ′′ + G = 0, where G is a reciprocal
lattice vector, and (ii) energy conservation, δ(ωλ ± ωλ′ ± ωλ′′ ),
where the signs are determined by the type of scattering
event. Condition (i) is included in the constructing of the
third-order IFCs, while condition (ii) is apparent in Eq. (3).
The structure of the self-energy and accordingly the lifetimes
is thus determined to a large extent by the geometry of
the Brillouin zone and the phonon dispersion [41]. This
observation allows one to identify general trends in the lifetime
spectrum already on the basis of the phonon dispersion and
thus the second-order IFCs. In this context, the joint density of
states (JDOS) is a very useful quantity. The JDOS is defined
as

D2(q,ω) = 1

N

∑
λ′,λ′′


(−q + q ′ + q ′′)

×
{[

δ(ω + ωλ′ − ωλ′′) − δ(ω − ωλ′ + ωλ′′ )︸ ︷︷ ︸
Class 1 processes

]

+ δ(ω − ωλ′ − ωλ′′)︸ ︷︷ ︸
Class 2 processes

}
, (4)
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where N is the number of unit cells in the crystal and

(−q + q ′ + q ′′) embodies the momentum conservation con-
dition expressed above. D2(q,ω) thus effectively counts the
number of collision and decay processes that contribute to
the phonon-phonon scattering time of a given mode. By
comparison with the full expression one recognizes as the
main difference the occurrence of third-order derivatives of
the total energy in Eq. (3),1 which represent the efficiency
of the scattering processes that are energy and momentum
allowed. By contrast, Eq. (4) requires only knowledge of the
second-order force constants.

Finally, the full lattice thermal conductivity tensor is
obtained by summing over all modes [45]

κ(T ) = 1

Nq�

∑
λ

τλ(T )vλ︸ ︷︷ ︸
�λ(T )

⊗vλcλ(T ). (5)

Here, � is the unit cell volume, Nq denotes the number of q

points, vλ = ∇ωλ is the group velocity, �λ is the phonon MFP,
and cλ(T ) is the mode specific heat capacity. For analyzing,
e.g., the sensitivity of the thermal conductivity to structural
inhomogeneities it is convenient to consider the cumulative
thermal conductivity, which is given by

κ̄(�) = 1

Nq�

�λ<�∑
λ

�λ(T ) ⊗ vλcλ(T ). (6)

If the MFP is uniformly limited to a constant value �̄, one
obtains the so-called small-grain conductivity [18], which is
given by

κsg = 1

Nq�

∑
λ

vλcλ(T ). (7)

The small-grain conductivity represents the limit, in which
scattering is dominated by a structural length scale as for
example in the case of nanostructuring.

B. Computational details

Density functional theory calculations were carried out
using the projector augmented wave method [46,47] as
implemented in the Vienna ab initio simulation package
(VASP) [48,49]. To assess the sensitivity of our results
to the treatment of exchange-correlation effects, we used both
the local density approximation (LDA) and the van der Waals
density functional (vdW-DF) method [50–53]. In the vdW-DF
method, the correlation energy Enl

c assumes a nonlocal form,
which is expressed as a double integral over the spatial degrees
of freedom [38]:

Enl
c [ρ] = 1

2

∫ ∫
ρ(r)φ(r,r ′)ρ(r ′)d3rd3r ′, (8)

where ρ is the electron density and the kernel φ(r,r ′)
represents the nonlocal coupling of the electron density. The
correlation energy is then complemented with a semilocal
exchange functional giving the exchange-correlation energy

1Also compare Eqs. (3.2.11-12) in Ref. [41] and Eq. (1) in Ref. [19].

for the vdW-DF method:

EvdW−DF
xc [ρ] = Esl

x [ρ(r)] + Enl
c [ρ(r)]. (9)

We considered both the empirically adjusted PBE exchange
part from Ref. [54] (vdW-DF-optPBE) and the recently
developed nonempirical consistent exchange version (vdW-
DF-CX) [29,38] as implemented in VASP [54,55].

The plane-wave energy cutoff energy was set to 290 eV in
the calculations of WSe2, MoSe2, WTe2, and MoTe2 and to
336 eV in the calculations of WS2 och MoS2. In calculations
based on the primitive cell, the Brillouin zone was sampled
using a �-centered 12 × 12 × 3 k-point mesh.

Thermal conductivities and other phonon related quantities
where obtained with the PHONOPY [56,57] and PHONO3PY [19]
packages. The convergence of the lattice thermal conductivity
with respect to q-point sampling mesh, displacement ampli-
tude, supercell size as well as the cutoff for the maximal range
of force interactions was analyzed as described in Sec. III B
below. The final calculations for both second- and third-order
force constants were conducted using supercells comprising
3 × 3 × 1 primitive unit cells while a �-centered 4 × 4 × 3
grid was utilized for k-point sampling. The displacement
amplitude employed in the calculation of finite differences
was set to 0.09 Å. This value was obtained by balancing
the need to reduce the numerical noise in the computation
of soft interlayer force components while remaining in
the harmonic (linear response) regime. For computational
efficiency, forces were only computed for pairs and triplets
within a cutoff range of 3.8 Å; this includes interactions
up to the third-nearest-neighbor shell for in-plane terms and
between neighboring layers in the out-of-plane direction for
all considered materials. For the lattice thermal conductivity
calculations, a tetrahedron method was used for Brillouin zone
integrations while employing a 21 × 21 × 13 q-point mesh.

The structural properties at finite temperature were obtained
at the level of the quasiharmonic approximation as imple-
mented in PHONOPY [56,57]. To this end, the second-order
IFCs were computed at seven different volumes between 95%
and 105% of the respective equilibrium volume.

III. RESULTS AND DISCUSSION

A. Description of van der Waals solids

1. Tungsten diselenide

Molybdenum and tungsten based TMDs are among the
most widely investigated vdW solids. They adopt layered
structures with stoichiometry MX2 (M = Mo and W; X = S,
Se, and Te) that are composed of two-dimensional sheets with
strong intralayer bonding coupled to each other via comparably
weak vdW interactions. With the exception of WTe2 the
equilibrium structures belong to space group P 63/mmc

(International Tables of Crystallography No. 194, see Fig. 2).
In equilibrium WTe2 adopts an orthorhombic crystal structure
that belongs to space group Pmn21 (ITC No. 31) [66]. It is
included here in space group P 63/mmc to exhibit chemical
trends and since it be incorporated in multilayer vdW solids
with hexagonal symmetry.

For WSe2, the structural parameters at 300 K were
computed using the local density approximation (LDA) as
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FIG. 2. Crystal structure of molybdenum and tungsten based
transition metal dichalcogenides (space group P 63/mmc, ITC No.
194). The transition metal and chalcogenide species correspond to
M and X, respectively. Structures were created using the atomic
simulation environment [58] and visualized with OVITO [59] as well
as Blender [60].

well as the vdW-DF-optPBE and vdW-DF-CX functionals
[Table I and Fig. 3(a)]. We also considered the PBE functional
but the lack of vdW binding gives rise to extremely weak
interlayer binding and a very poor description of the structure,
in particular the out-of-plane lattice parameter.

The closest agreement with the structural reference data is
obtained for the vdW-DF-CX functional, which yields values
for the in-plane and out-of-plane lattice parameters that are
within respectively 0.1% and 0.3% of the experimental data.
We are not aware of higher-level (experiment or calculation)
reference data for the interlayer binding energy [Fig. 3(a)] but
note that the vdW-DF-CX functional has been shown to yield
excellent binding energies for other vdW bonded systems [53].

The vdW-DF-optPBE functional was obtained in semi-
empirical fashion by combining the non-local vdW-DF

TABLE I. Comparison of structural parameters for WSe2 from
experiment [61,62] and calculation. a and c are the in-plane and
out-of-plane lattice constants (Å), respectively; zSe is the internal
parameter, which specifies the position of the Se atoms.

Calculations Experiment

LDA vdW-optPBE vdW-CX
zero K excluding zero-point vibrations

a 3.250 3.341 3.277
c 12.819 13.550 12.942

zSe 0.620 0.626 0.620
zero K with zero-point vibrations

a 3.250 3.339 3.279
c 12.824 13.500 12.991

zSe 0.620 0.625 0.620
300 K

a 3.250 3.339 3.279 3.282 3.286
c 12.832 13.508 12.998 12.960 12.960

zSe 0.620 0.625 0.621 0.621 0.621
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FIG. 3. Binding energy as a function of interlayer spacing (a)
for WSe2 as obtained using different XC functionals and (b) for Mo
and W-based sulfides, selenides, and tellurides calculated using the
vdW-DF-CX functional. The in-plane lattice constant was held fixed
at the equilibrium value.

correlation with the rescaled exchange part of the PBE
functional [30,54]. Here, it is found to overestimate both
in-plane (1.7%) and out-of-plane (4.2%) lattice constants of
WSe2 notably; it also yields a slightly smaller value for the
interlayer cohesion than the vdW-DF-CX functional.

The LDA results for both lattice constants are within 1% of
the experimental values. This result is partially surprising in so
far as the LDA actually does not account for dispersive vdW
interactions, and the good agreement is rather the result of the
characteristic LDA overbinding, which has been pointed out
previously [50,68]. The LDA thus yields the correct result
for the wrong reasons [69], which becomes more evident
when considering the binding energy curve [Fig. 3(a)]. The
asymptotic behavior of the LDA data clearly differs from
the two vdW functionals and yields only about half of the
interlayer binding energy. The energy landscape around the
equilibrium spacing is, however, similar to the one obtained
with the vdW-DF-CX functional.

2. Extension to other TMDs

Based on the results for WSe2, we only considered the
vdW-DF-CX functional for the analysis of the other Mo and
W-based TMDs. This functional generally achieves very good
agreement with experimental measurements (Table II) as the
deviations from the reference data generally do not exceed
0.4% and are on average below 0.2%.

The results show the structural parameters are barely
affected by the transition metal, while the chalcogenide species
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TABLE II. Comparison of structural parameters for di-sulfides,
selenides, and tellurides of Mo and W in spacegroup P 63/mmc

(ITC No. 194) as obtained from calculations using the vdW-DF-CX
functional and experiment. Results from calculations that exclude
of zero-point vibrations are shown in brackets. The in-plane and
out-of-plane lattice constants a and c are given in units of angstroms.

Material Calculation Experiment

0 K 300 K 300 K

MoS2, Refs. [62,63]
a 3.152 (3.149) 3.152 3.160 3.160
c 12.291 (12.225) 12.295 12.294 12.290
zS 0.622 (0.621) 0.622 0.621 0.620

MoSe2, Refs. [62,63]
a 3.280 (3.278) 3.280 3.289 3.288
c 12.920 (12.875) 12.928 12.927 12.930

zSe 0.620 (0.621) 0.621 0.621 0.620
MoTe2, Refs. [64,65]

a 3.504 (3.501) 3.504 3.519 3.518
c 13.904 (13.865) 13.913 13.964 13.974

zTe 0.619 (0.619) 0.619 0.625 0.621
WS2, Refs. [61,62]

a 3.152 (3.150) 3.152 3.153 3.154
c 12.358 (12.288) 12.365 12.323 12.360
zS 0.623 (0.622) 0.623 0.623 0.614

WSe2, Refs. [61,62]
a 3.279 (3.277) 3.279 3.282 3.286
c 12.991 (12.942) 12.998 12.960 12.980

zSe 0.620 (0.620) 0.621 0.621 0.620
WTe2

a 3.506 (3.503) 3.506
c 13.954 (13.916) 13.961

zTe 0.620 (0.619) 0.620

has a very strong effect as the lattice parameters increase in
the order S–Se–Te. As will be discussed in more detail below,
this has a direct impact on the vibrational properties as the size
of the Brillouin zone is inversely proportional to the lattice
parameters (see Fig. 4).

B. Convergence of the thermal conductivity

Since the vdW forces acting between layers are much
weaker than the covalent and ionic interactions in denser
materials, they are more prone to numerical errors. This is
partially compensated by using tight convergence parameters,
e.g., for the plane wave cutoff energy and the termination of
the electronic self-consistency loop. When calculating second
and especially third-order derivatives using finite differences
errors in the forces are, however, enhanced. We therefore
carefully tested the effect of the displacement amplitude 
r

used for computing the IFCs on the calculated lattice thermal
conductivity.

The thermal conductivity is in fact very sensitive to the
displacement amplitude 
r [Fig. 5(a)]. While in the case
of silicon [inset in Fig. 5(a)] κ is only weakly dependent
on 
r , for WSe2 the thermal conductivity is dramatically
underestimated for smaller values of 
r . Since one usually
strives to use small values for 
r in order to remain in the linear

response regime, common (default) values for 
r typically fall
in the range between 0.01 and 0.03 Å [18,19]. In the case of
WSe2 these values cause a pronounced error in κ , as 
r values
�0.05 Å are required to obtain convergence. We therefore
adopted a value of 0.09 Å for the bulk of our calculations.

The calculation of the thermal conductivity is also affected
by supercell size and the cutoff imposed on the interac-
tion range. Based on the results of our convergence study
[Fig. 5(b)], production runs were conducted using supercells
comprising 3 × 3 × 1 unit cells and interactions were included
up to the third-neighbor shell in-plane and the first neighbor
shell out-of-plane (equivalent to a cutoff of 3.63 Å in the case
of WSe2).

Finally, the thermal conductivity is affected by the density
of the q-point grid used for Brillouin zone integrations.
In this regard, we find that a 19 × 19 × 12 q-point mesh
corresponding to approximately 4300 q points in the full
Brillouin zone achieves a convergence level that is comparable
to the other parameters considered here [Fig. 5(c)].

C. Thermal conductivity in WS2 and WSe2

Having established the quality of the underlying XC func-
tional with regard to structural parameters (Sec. III A) as well
as the numerical convergence of our calculations (Sec. III B),
we can now compare the calculated thermal conductivities
with experiment. To this end, we first consider WS2 and WSe2,
for which experimental data over a wide temperature range is
available for both the in-plane and out-of-plane conductivities
of nominally single-crystalline material [12,70].

If only phonon-phonon scattering is included as a lifetime
limiting mechanism in Eq. (1), the calculated thermal con-
ductivity invariably exhibits a 1/T dependence as expected in
this limit [71] (Fig. 6). Isotopic scattering lowers κ as well
as the temperature exponent in particular for temperatures
below 100 K. At room temperature the in-plane (out-of-plane)
conductivity is reduced from 157 to 126 W/K m (5.4 to
4.7 W/K m) in the case of WS2 and from 45 to 42 W/K m
(3.1 to 3.0 W/K m) for WSe2.

In the case of WS2, the calculated in-plane conductivity at
room temperature of 126 W/mk (including phonon-phonon as
well as isotopic scattering) agrees very well with the measured
value of 124 W/K m [70]. At lower temperatures, there is,
however, a noticeable disparity suggesting that at least one
other scattering mechanism is important for κ . In fact, if
boundary scattering is taken into account via Eq. (2), it is
possible to reproduce the experimental in-plane conductivity
over the entire temperature range using L = 4 μm. Rather
than thinking of this value as corresponding to the sample
size, it should be understood as a characteristic structural
length scale. It should also be recalled that Eq. (2) represents
the extreme limit in which the scattering process is entirely
diffusive whereas in reality some level of directional scattering
can be expected [42,43].

The notion that not only the out-of-plane [12,14] but also
the in-plane thermal conductivity is sensitive to structural
inhomogeneities is further supported by observing that the
major contributions to the thermal conductivity stem from
modes with MFPs of at least 1 μm [Figs. 7(a) and 7(b)],
which is substantially longer than, e.g., in the case of PbTe
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[Fig. 7(c)], a system, in which nanostructuring has been
used with great success to lower the thermal conductivity
[17,72]. The representative MFP for WS2 and WSe2 as
well as other TMDs is rather comparable to Si [Fig. 7(c)],
the synthesis of which—at least currently in contrast to

TMDs—can be extremely well controlled yielding very low
defect densities.

The calculated out-of-plane conductivities exhibit a con-
siderable deviation from experiment already at room temper-
ature (WS2: κ

expt
⊥ = 1.7 W/K m versus κcalc

⊥ = 5.4 W/K m;
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in-plane and 0.15 μm for the out-of-plane conductivity. Experimental
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WSe2: κ
expt
⊥ = 1.5 W/K m versus κcalc

⊥ = 3.1 W/K m). Ap-
plying the same approach as in the case of the in-plane
conductivity, we obtain a structural length scale of L =
0.15 μm for both materials [Figs. 7(a) and 7(b)], which yields
an excellent match between calculation and experiment over
the entire temperature range. Of course both experiment and
calculation are subject to certain errors that are difficult to
control either in the form of uncertainties concerning the
interpretation of the experimental raw data [11] or intrinsic
limitations of the theoretical description. In either case, the
lower value compared to the in-plane case is consistent with
the weaker binding along the c axis, which implies that it is
relatively easy for the material to introduce (planar) defects
that reduce the effective coherence length [13,14].

D. Extension to other chalcogenides

The analysis in the previous section has demonstrated
both the level of accuracy of our calculations and the strong
impact of impurities and other defects on many experimental
measurements. These effects hinder a systematic investigation
and understanding of the trends in thermal conductivity.
In the following, we therefore analyze κ for Mo and
W-based TMDs considering only phonon-phonon and isotopic
scattering channels.

The calculations show a systematic variation of the lattice
thermal conductivity that is primarily determined by the
chalcogenide species and except for the sulfides is only
weakly affected by the transition metal element (Fig. 8). The
calculated in-plane conductivities at room temperature vary
from 19 W/K m (MoTe2, WTe2) to 126 W/K m (WS2),
while the out-of-plane data range from 2.8 W/K m (WTe2)
to 5.1 W/K m (MoS2). (Recall that these values represent the
limit, in which only phonon-phonon and isotopic scattering
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FIG. 7. Cumulative in-plane and out-of-plane lattice thermal
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MFP �λ in (a) WS2 and (b) WSe2 at 50 and 300 K, and in (c) PbTe
and Si at 300 K, calculated in the present work. The length scale �̄

corresponds to the length scale related to the small grain conductivity
[see Eq. (7)].

channels are available.) The thermal conductivity is thus highly
anisotropic as the ratio between the in-plane and out-of-plane
values ranges from 7 (MoTe2) to 27 (WS2) again following the
sequence Te-Se-S.

The large anisotropy between in-plane and out-of-plane
conductivity is largely due to the much smaller group velocities
in the c direction [Fig. 4(b)]. They are the result of the interlayer
(vdW) interactions being much weaker than the intralayer
(mixed covalent/ionic) bonding. This anisotropy has also been
shown to give rise to a phonon focusing effect and a much lower
minimum thermal conductivity than in the case of isotropic
materials [73].

The chemical trend for κ is analogous to the situation for
the structural parameters, which was described in Sec. III A.
The lattice parameters are the largest for the tellurides, which
accordingly exhibit the smallest Brillouin zone (Fig. 4) and
generally yield smaller group velocities resulting in lower
thermal conductivities, see Eq. (5). One might thus be led to
use the group velocities and thus the small-grain conductivity
κsg as a (computationally much cheaper) predictor for the
thermal conductivity. A closer inspection, however, reveals
no correlation between κsg and the full thermal conductivity
κ (Fig. 9), emphasizing the need to include phonon-phonon
scattering at least at an approximate level, see, e.g., Ref. [74].

Compared to the other TMDs in the case of the sulfides
the transition metal species has a much more pronounced
effect on the in-plane lattice thermal conductivity (Fig. 8)
with values of [83] and 126 W/K m for MoS2 and WS2,
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respectively. This observation is supported by experimental
data as measurements for bulk MoS2 fall in the range between
85 and 110 W/K m [10] (also see Fig. 1), while a value of
124 W/K m was recently measured for WS2 [70]. Since both
the lattice parameters and the second-order IFCs of MoS2 and
WS2 are similar, the differences in phonon dispersion and
thus group velocities arise primarily from the mass difference
between Mo and W (Fig. 4). The lighter mass of Mo leads to
larger group velocities, which would suggest κ to be larger for
MoS2, yet the opposite is the case. The difference thus must
be traceable to the lifetimes.

The largest contributions to the thermal conductivity in both
materials come from modes with frequencies below 4.5 THz
[Fig. 10(a)]. In the case of WS2 the relative contributions in
the interval between 2 and 5 THz are, however, notably larger
than in MoS2. In fact, the lifetimes, in particular between 3.5
and 4.5 THz are much larger in WS2 [Fig. 10(c)] than in MoS2

[Fig. 10(b)]. These longer lifetimes can be largely attributed to
a much smaller number of allowed collision processes in this
frequency range in the case of WS2 [Fig. 10(d)], which can
be traced to differences in the phonon band structures of WS2

and MoS2 (Fig. 4) as follows.
The phonon band structure of WS2 exhibits a band gap

of 3.1 THz that separates the lower branches, which are
dominated by W, from the higher branches, which have
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primarily S character (Fig. 4). The equivalent gap in MoS2

amounts to only 1.5 THz. Any scattering process must obey
energy and momentum conservation as evident from Eq. (4).
The larger gap in the case WS2 implies that fewer combinations
of modes are allowed in the range between 3.5 and 4.5 THz,
which leads to less scattering. To demonstrate this aspect
quantitatively, we artifically modified the phonon band gap
in WS2 by rigidly shifting the upper branches by an amount

 (scissors shift), while keeping all other contributions to
Eq. (3) constant. Reducing the band gap from its original value
of 3.1 THz causes a systematic reduction of the lifetimes in
the energy range of interest and a monotonic decrease in the
thermal conductivity (Fig. 11). Finally, if one reaches a value of
1.5 THz corresponding to MoS2 one in fact observes a thermal
conductivity, which is slightly smaller than in the case of MoS2.
This clearly demonstrates the causal relationship between the
larger band gap and thermal conductivity in WS2 compared to
MoS2. Note that if boundary scattering is included the relative
importance of phonon-phonon scattering is reduced, which
diminishes the difference between WS2 and MoS2 (Fig. 12).

Differences in lifetimes between Mo and W-based TMDs,
albeit smaller than for the sulfides, are also present for the
selenides and tellurides. In these materials the lifetime effect
is, however, outweighed by the group velocity contribution
(compare the insets in Fig. 8). The present analysis nonetheless
demonstrates the importance of lifetime effects for understand-
ing the thermal conductivity in these materials.
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IV. CONCLUSIONS

In the present work, we investigated finite temperature
properties as well as the lattice thermal conductivity in Mo
and W-based TMDs employing a combination of density
functional and Boltzmann transport theory. The calculations
were carried out using the vdW-DF-CX functional, which was
shown to yield excellent agreement with experimental lattice
constants at room temperature with an average relative error
below 0.2% (Table II).

The calculated in-plane conductivities at room temperature
are in good agreement with experimental data for high-purity
material, when only phonon-phonon and isotopic scattering
are included (Figs. 1 and 6). Explaining the experimental data
over the entire temperature, however, requires inclusion of
at least one additional scattering mechanism (here boundary
scattering) that limits the phonon MFP (Fig. 6). The latter
effect is even more pronounced in the case of the out-of-plane
conductivity, for which we obtain a structural length scale of
L = 0.15 μm to be compared with L = 4 μm in the in-plane
situation.

The sensitivity of the thermal conductivity to structural
inhomogeneities can be explained in terms of the long MFP of
the modes that contribute the most strongly to κ (Fig. 7). The
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FIG. 11. The effect of the phonon band gap in WS2 on
(a) lifetimes and (b) thermal conductivity at 300 K.

MFP of these modes (including phonon-phonon and isotopic
scattering) is at least 1 μm, which is comparable to silicon but
much larger than, e.g., PbTe. This behavior is promising for
thermoelectric applications, where lowering the lattice part
of the thermal conductivity is a widely employed approach
for increasing the thermodynamic efficiency. On the other
hand, it can pose problems for electronic and optoelectronic
applications, which require a large κ for rapid heat dissipation.

A comprehensive analysis shows that the thermal con-
ductivity is primarily affected by the chalcogenide species
and increases in the order Te–Se–S (Fig. 8). As expected
from the elemental masses, MoTe2 and MoSe2 exhibit a
higher conductivity than the respective W-based TMDs. For
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FIG. 12. Variation of in-plane and out-of-plane thermal conduc-
tivity of MoS2 and WS2 with boundary scattering dimension L [see
Eq. (2)].
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the sulfides the situation is inverted, which may be traced
to the larger phononic band gap in the case of WS2 (see
Figs. 4 and 10). This observation suggests that in principle
phonon-engineering can be achieved not only via the group
velocity term in Eq. (5) and microstructuring but also via the
phonon-phonon scattering.

The present work was in part motivated by considerable
variations in experimental and computational data, based on
which it was very difficult if not impossible to establish
upper boundaries and chemical trends. Here, the present
study contributes a systematic analysis that enables one to
separate the contributions from scattering channels, which
can be considered intrinsic (phonon-phonon, isotopic), and
extrinsic ones (e.g., defects, boundaries, and interfaces), which
are sensitive to synthesis conditions.

The structural length scale that was employed in the present
work can originate from a variety of effects including, e.g.,
defects, interfaces, or sample boundaries (note that single
crystalline TMD samples are usually very small). It is beyond
the scope of the present work to provide detailed insight into

the specific scattering mechanisms, as such an investigation is
much more extensic in nature [14]. It is, however, noteworthy
that for the TMDs, for which experimental data allowed a more
careful comparison (WSe2, WS2), the structural length scale
thus obtained amounted to 4 and 0.15 μm, respectively, for
both materials.

In this sense, the present study provides a comprehensive set
of lattice thermal conductivities for bulk TMDs that establishes
bounds set by phonon-phonon scattering and structural length
scales. It thereby forms the basis for future studies on these
systems, which could focus, e.g., on vdW solids comprising
different layers.
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E. Schröder, and T. Thonhauser, J. Phys. Condens. Matter 21,
084203 (2009).

[38] K. Berland, C. Arter, V. R. Cooper, K. Lee, B. I. Lundqvist, E.
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S. I. Simak, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett.
91, 126402 (2003).

[51] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I.
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ABSTRACT: Many thermoelectric materials are multicomponent systems
that exhibit chemical ordering, which can affect both thermodynamic and
transport properties. Here, we address the coupling between order and
thermoelectric performance in the case of a prototypical inorganic clathrate
(Ba8Ga16Ge30) using a combination of density functional and Boltzmann
transport theory as well as alloy cluster expansions and Monte Carlo
simulations. The calculations describe the experimentally observed site
occupancy factors and reproduce experimental data for the transport
coefficients. By inverting the cluster expansion, we demonstrate that the
power factor can be increased by more than 60% for certain chemical ordering
patterns that involve reducing the number of the trivalent species on the 6c
Wyckoff site. This enhancement is traced to specific features of the electronic
band structure. The approach taken in the present work can be readily adapted
to other materials and enables a very general form of band structure
engineering. In this fashion, it can guide the computational design of compounds with optimal transport properties.

1. INTRODUCTION

Thermoelectric materials allow one to extract electrical currents
from thermal gradients and vice versa.1,2 They have found
applications in various areas including, for example, power
generation in remote locations, waste heat recuperation, and
active cooling. The thermodynamic efficiency of the conversion
process is quantified by the thermoelectric figure of merit zT.
The latter depends on the Seebeck coefficient S, which
measures the coupling strength between a thermal gradient
and the generated potential difference, the electrical con-
ductivity σ as well as the thermal conductivity κ according to

σ κ=zT TS /2 (1)

The S2σ term in the enumerator is known as the thermoelectric
power factor.3 While in efforts to increase zT it has received
relatively less attention than the thermal conductivity κ,4−7

several strategies for its enhancement have been proposed. The
key challenge is that S and σ are anticorrelated insofar as the
Seebeck coefficient usually decreases with carrier concentration,
whereas the electrical conductivity increases.3 To mitigate this
situation, Hicks and Dresselhaus suggested to reduce
dimensionality by means of quantum well structures,8,9 while
Mahan and Sofo showed conceptually that optimal conditions
are obtained for a very narrow distribution of states with high
group velocities.10 These ideas were in fact later realized, for
example., in the form of nanostructuring,11−13 which also is
useful for reducing the thermal conductivity, resonant levels,3

and band structure engineering.14−16 It is also worthwhile
noting the extremely high power factors that were achieved at
low temperatures in FeSb2.

17,18 They have been attributed to

strong electronic correlation resulting from the interplay
between localization and partially occupied states.
While most of the aforementioned approaches have been

devised in the context of “simple” lattice structures, many
thermoelectric materials including skutterudites, inorganic
clathrates as well as other Zintl compounds, and half-Heusler
alloys2 are multicomponent systems that exhibit some form of
chemical order. Here, using the prototypical inorganic
clathrate19,20 Ba8Ga16Ge30 (Figure 1) as an example, we
demonstrate that the power factor can be enhanced by more
than 60% by optimizing the chemical order. To this end, we
first resolve the coupling between the chemical order and
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Figure 1. Crystal structure of type I clathrates. The guest species (Ba)
occupies Wyckoff sites of type 2a and 6d, while the host species (Ga,
Ge) occupy Wyckoff sites of type 6c, 16i, and 24k.
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transport properties, in particular the power factor, and we then
employ an inverse design approach to identify the structure that
maximizes the power factor. This approach yields a clear
guideline for maximizing the power factor by structural
optimization that we anticipate to be in principle transferable
to other inorganic clathrates.
In this work, we employ a combination of density functional

theory (DFT) and Boltzmann transport theory (BTT)
calculations with alloy cluster expansions (CE) and Monte
Carlo (MC) simulations (Figure 2). This approach is directly

applicable to other materials that exhibit a variable chemical
order. It thereby opens up the avenue for a more controlled and
systematic design of structures with optimal transport proper-
ties that is not limited to thermoelectric materials.
The remainder of the paper is organized as follows. In the

following section, we construct a model for the chemical order
based on electronic structure calculations and describe the
variation of the site occupancy factors with temperature. Using
configurations that are representative for the chemical order at
different temperatures, we then analyze the transport properties
and construct a model that maps ordering patterns to the
power factor at 900 K. This model is subsequently employed to
determine the chemical ordering that maximizes the power
factor.

2. CALCULATION METHODS
2.1. Chemical Ordering. Density functional theory (DFT)

calculations were carried out using the projector augmented
wave method21,22 as implemented in the Vienna ab initio
simulation package.23,24 Exchange−correlation effects were
treated within the generalized gradient approximation as
parametrized by Perdew, Burke, and Ernzerhof (PBE).25 A
set of 200 structures based on the 54-atom primitive unit cell
was created by randomly assigning Ga and Ge atoms to
different Wyckoff sites that comprise the host structure. A
further set of 100 structures was created in the same fashion but
subject to the condition that Ga−Ga first-nearest neighbors
were disallowed. For each structure, both the ionic positions
and the cell metric were fully relaxed until all atomic forces
were less than 10 meV/Å and absolute stresses below 0.1 kbar.
In these calculations, the Brillouin zone was sampled using a Γ-
centered 3 × 3 × 3 k-point mesh, the plane wave basis set was

expanded up to a cutoff energy of 243 eV, and the electronic
self-consistency loop was terminated if the change in the total
energy dropped below 10−5 eV between consecutive iterations.
Subsequently, the DFT energy landscape as well as quantities

such as the band gap and the power factor were represented by
cluster expansions (CE) of the form26,27

∑ Σ= + Π̅
α

α α αA A m J ( )0
(2)

where A denotes the respective quantity of interest and the
summation runs over all symmetry distinct clusters (singlets,
pairs, triplets....). Each cluster has a multiplicity mα and is
associated with an effective cluster interaction (ECI) Jα. The
cluster correlations Π¯α are computed as symmetrized averages
of products over the pseudospin vector Σ. The latter represents
the lattice sites associated with the host matrix where Σ = ± 1
for Ge and Ga, respectively.
The ECIs were obtained using the compressive sampling

technique28 adapted for CE construction.29 The split Bregman
algorithm30,31 was employed to solve the optimization problem
using parameters of μ = 0.001 (which controls the sparseness of
the solution) and λ = 100 (see refs 29, 31 for details concerning
the role of these parameters). A range of different values for μ
and λ were tested. Within reasonable bounds (see e.g., ref 29),
these parameters were found to have inconsequential effects on
the results presented here.
Each CE was carefully tested with respect to its predictive

power using both cross-validation and ground-state searches.
Due to the large number of different crystallographic sites, there
is a large number of distinct clusters, 3 singlets, 13 pairs, and 26
triplets relative to a 5 Å cutoff radius, respectively. These
numbers are noticeably larger than for simpler structures such
as face-centered cubic (see Figure S7), whence the compressive
sampling approach is particularly useful.29

The CEs were sampled using Monte Carlo (MC) simulations
in the canonical ensemble. Supercells typically comprising 2 × 2
× 2 unit cells were initialized at a temperature of 1200 K and
then cooled to 0 K at a rate of 50 K per MC cycle (1 MC cycle
is equivalent to N trial moves, where N is the number of sites in
the simulation). At each new temperature, the system was first
equilibrated for 50 000 MC cycles and then sampled for
100 000 MC cycles. The effect of supercell size on the SOFs is
illustrated in Figure S8.

2.2. Electrical Transport Properties. For several config-
urations, the wave function of the fully relaxed structure was
converged using a Γ-centered 4 × 4 × 4 k-point mesh, followed
by a non self-consistent computation of the eigenenergy spectra
on a Γ-centered 20 × 20 × 20 mesh. Using the interpolated
eigenenergy spectra and electronic group velocities, the
electrical conductivity and the Seebeck coefficient were
computed using both an in-house and the BOLTZTRAP code32

by evaluating the following expressions that are obtained within
the relaxation time approximation to the Boltzmann transport
equation32−34

∑σ τ=
Ω

⊗
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Here, Ω is the unit cell volume, gk is the k-point weight, i refers
to the band index, τik is the mode and momentum dependent

Figure 2. Schematic illustration of the relation between the methods
employed in the present work. DFT: density functional theory; MC:
Monte Carlo simulations; CE: alloy cluster expansion; BTT:
Boltzmann transport theory.
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lifetime, vik = ℏ−1
∂ϵik/∂k is the group velocity, f is the

occupation function, and μe is the electron chemical potential.
In the present work, the scattering time was assumed to be
momentum- and state-independent as commonly done in
calculations of this type.32,34,35

We note that semilocal exchange−correlation functionals
such as the PBE functional used in the present work are known
to systematically underestimate the band gap. This error can
have a strong impact on the transport properties in weakly
doped materials. In the present work we are, however,
concerned with very high charge carrier concentrations as
thermoelectrics are typically heavily (degenerately) doped
semiconductors. As shown in Figure S3, under these
conditions, the magnitude of the band gap (while assuming
rigid bands) has a very small effect on the transport properties,
whence the band gap underestimation is of minor concern for
the present work.
As a further validation, we also carried out calculations for

selected structures using the modified Becke−Johnson (mBJ)
functional,36,37 which yields much improved band gaps and
band structures compared to PBE-DFT. The results (Figure
S4) demonstrate that, apart from an increase in the band gap,
the conduction and valence band structure near the band edges
are, however, very similar between PBE and mBJ-DFT,
especially in the region that determines the transport properties
under degenerate doping conditions. For all calculations
reported below, we therefore employ the PBE-DFT band
structure.

3. CHEMICAL ORDERING
Inorganic clathrates of type I, such as Ba8Ga16Ge30, belong to
space group38 Pm3 ̅n (international tables of crystallography
number 223) and feature two smaller and six larger cages per
unit cell.19,20,39 Ba8Ga16Ge30 has been investigated extensively
both experimentally40−45 and theoretically,35,41,46−48 especially
because of its promising thermoelectric properties. Here, the
host structure is composed of Ga and Ge atoms, which occupy
6c, 16i, and 24k Wyckoff sites (Figure 1)49 as revealed by
experimental measurements of the site occupancy factors
(SOFs).39 Analysis of diffraction data yields for example Ga
occupancies between 60 and 76% for the 6c site, which deviates
considerably from the value of Ga/(Ga+Ge) = 16/(16 + 30) =
35% corresponding to the nominal stoichiometry of the
compound.43 The experimental observations have been
condensed into a set of rules for the SOFs,39 partially based
on calculations,46 which have shown that bonds between
trivalent species, in the present case Ga atoms, are energetically
unfavorable.
Here, in order to model the chemical order, we constructed

an alloy CE based on a set of total energies for two hundred
structures that were obtained from DFT calculations. The
structures were generated by randomly assigning Ga and Ge
atoms to lattice sites, while maintaining a ratio of 16:30. The
number of structures can be compared to the total number of
possible configurations, which, excluding symmetry, is close to
1012 for the 54-atom primitive unit cell. The CE nonetheless
yields a very low cross-validation score of 0.9 meV/atom and
excellent overall agreement with the reference data as illustrated
by a juxtaposition of total energies from DFT and CE (Figure
3a). The final CE includes 3 singlet, 13 pair, and 24 triplet
terms and is rather short ranged (Figure 3b).
It must be noted that the stoichiometry of experimentally

synthesized clathrates often deviates from the ideal ratio of

8:16:30 for Ba:Ga:Ge.39,50 These effects can in fact be
represented using the total energy CE used in the present
work.51 In the case of Ba8Ga16Ge30, the variation of the SOFs
with composition is, however, relatively weak and, as apparent
from the comparison below, its description is not essential for
achieving good agreement with experimental transport
coefficients. The effect of composition on ordering will
therefore be the topic of a separate publication.51

The temperature dependence of the Ga SOFs was extracted
by sampling the total energy CE with Monte Carlo (MC)
simulations (Figure 4a). From the data, it is apparent that
already close to the melting temperature the SOFs deviate
strongly from the stoichiometric ratio, which would imply a
value of 16/(16 + 30) = 35%, indicating that the configurational
entropy does not entirely override the energy associated with
ordering even at these temperatures. As the temperature is
reduced, the SOFs deviate more strongly from 35%, as the
chemical distribution is increasingly dictated by energy. The
variation in the SOFs is primarily the result of the energy
penalty on trivalent (Ga) first-nearest-neighbor pairs that has
been pointed out earlier46 and is also apparent in the ECIs
(Figure 3b). It is therefore logical that the number of Ga−Ga
bonds monotonically decreases with decreasing temperature, as
shown in Figure 4b.

Figure 3. (a) Total energies obtained from cluster expansion
(predicted) and electronic structure calculations (target). The data
points shown by triangles were employed for constructing a cluster
expansion for the total energy. Squares indicate data from structures
without first-nearest-neighbor Ga−Ga bonds, whereas diamonds
represent the structure obtained via a simulated annealing procedure
from MC simulations. (b) Effective cluster interactions (ECI) of the
total energy cluster expansion as a function of cluster size.
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The experimentally observed SOF ranges are indicated by
rectangles in Figure 4a. In experimental settings, chemical
ordering will at some temperature become kinetically hindered
as it requires atomic rearrangement, which is a temperature
activated process. The precise conditions, at which freezing of
the chemical order occurs, are unknown whence a temperature
window between 550 and 720 K has been indicated in Figure
4a. Within the indicated temperature range, the agreement
between experiment and model is actually excellent, supporting
the present approach. The experimentally observed structure
can thus be considered as a state of intermediate chemical
order, which has been established during cooling as the result of
slowing kinetics.
At low temperatures, the system eventually reaches a fully

ordered state with rhombohedral symmetry (space group R3,
ITC no. 146, see Table S1 for a compilation of the
crystallographic parameters). As a further validation of the
CE, the total energy of this ordered-state structure was
calculated with DFT, which gave a value that deviates by less
than 2 meV/atom from the CE value, demonstrating not only
the accuracy but the predictive quality of the latter. This fact is
even more remarkable given that the structures used for CE
construction, which were obtained by random sampling,
generally contain a much larger number of Ga−Ga bonds
than the configurations observed during the MC simulations,
even at temperatures close to the melting point.
The ordered configuration, from here on referred to as the

ground-state structure, is characterized by the absence of Ga−
Ga bonds in the first neighbor shell and a minimal number of
Ga−Ga bonds in the second and third shell. In addition, it also
minimizes the Ga SOF for Wyckoff site 16i.

4. ELECTRICAL TRANSPORT PROPERTIES
4.1. Comparison to Experiment. The electrical transport

properties of Ba8Ga16Ge30 have been previously investigated
using first-principles calculations employing either structures
that were constructed using intuition and energy minimiza-
tion34,35,46 or the virtual crystal approximation.47 Here, we
therefore systematically discriminate the effect of thermally

induced disorder on these properties. Specifically, we target n-
type material, which is commonly associated with Ge-excess. In
this section, we benchmark our structural model and establish
two crucial parameters, namely, the charge carrier density
and the effective electronic lifetime, by comparing our
calculations with experimental transport data for n-type
Ba8Ga16Ge30.

42,44,52−55

Five representative configurations per temperature were
extracted from MC simulations at 600, 900, and 1200 K,
respectively. The average and standard deviation of the total
energy of these configurations correspond to the energy
distribution at the respective temperatures sampled by MC
simulations. In addition, we considered ten random structures
and the ground-state structure. The electrical conductivity σ
and the Seebeck coefficient S were computed within the
framework of the Boltzmann transport equation,32 as described
in the above.
We first consider the Seebeck coefficient S (see eq 4), which

varies with the charge carrier concentration ne (Figure S1). For
ne = 3 × 1020 cm−3, the calculations for the MC generated
structures agree well with the experimental data (Figure
5a).42,44,52,53 This charge carrier density in turn is in good
agreement with previous estimates based on experimental
data.35,47 While the variation among the MC generated
structuresregardless of the temperature they representis
rather small, the results for the random structuresand to a
lesser extent the ground-state structurediffer more notably
both in magnitude and the temperature at which S is extremal.
We note that with regard to the Seebeck coefficient, the

temperature dependence in the experiments appears slightly
more linear than in the calculations, which leads to some
deviation at low temperatures. This behavior could be related to
the assumption of a mode- and momentum-independent
relaxation time (compare section on Calculation Methods)
and also affects the power factor (see below).
After having established the carrier density, which is kept

constant at ne = 3 × 1020 cm−3 from this point onward, it is
possible to assess the electrical conductivity σ (see eq 3). The
electronic lifetimes were assumed to be mode- and momentum-
independent τeff ≈ τi(k) (see e.g., refs 32, 34, 35, 46, 47.).56

Since an explicit calculation of τi(k) for Ba8Ga16Ge30 is
computationally currently impractical, we use an effective
lifetime model with a simple temperature dependence τeff =
τ300(300 K/T)1/2 to represent acoustic phonon (piezoelectric)
scattering,57 which using τ300 = 15 fs yields very good
agreement with experimental data (Figure 5b). The thus
obtained effective lifetime at 300 K is in fact very similar to
values from previous studies (see e.g., refs 35, 47), which,
however, neglected the variation of τ with temperature. It is
apparent that the electrical conductivity σ again shows only a
modest variation among the MC structures.
Given the Seebeck coefficient S and the electrical

conductivity σ, we can now evaluate the power factor S2σ,
which most clearly highlights the effect of order on the
electrical transport properties (Figure 5c). The MC-generated
structures yield power factors of 15 to 18 μW/K2cm at 900 K,
which agrees well with experimental data.42,44,52,53 The
maximum power factor occurs at approximately 800−900 K,
which matches the range observed in most experiments. By
comparison, the ground-state (14 μW/K2cm at 900 K) and
random structures (9.6 ± 3.7 μW/K2cm at 900 K) yield
somewhat lower maxima. This suggests that the chemical
ordering that is naturally established during synthesis

Figure 4. (a) Gallium site occupancy factors as a function of
temperature from MC simulations using a 2 × 2 × 2 supercell. The
shaded regions indicate one standard deviation. The boxes represent
the range of the experimental SOF data and roughly indicate the
temperature range, over which the chemical order appears to be frozen
during sample preparation. (b) Fraction of first-nearest Ga−Ga bonds
as a function of temperature. For comparison, the average fraction of
Ga−Ga bonds for a completely random structure is cGa

2 = 12.1%.
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corresponds to relatively optimal conditions with regard to the
power factor, an observation that will be explored in detail
below. Furthermore, we find that maximizing the power factor
by variation of the charge carrier density ne (Figure S2) yields
only a slight improvement of about 5%. This suggests that the
experimental samples are already close to optimality with
regard to ne.

4.2. Order and Electronic Structure. The data presented
above demonstrates that the power factor changes non-
monotonically as a function of chemical order: The MC
generated structures (intermediate level of order) exhibit on
average higher power factors than both the ground state
(highest degree of order) and the random structures (lowest
degree of order). To resolve this behavior, it is instructive to
explore the effect of chemical order on the electronic structure
as both Seebeck coefficient S and electrical conductivity σ are
primarily determined by the electronic eigenenergies and group
velocities, see eqs 3 and 4.
The electronic band structures of configurations representing

different degrees of chemical order (Figure 6) reveal that
decreasing chemical order causes a systematic lowering of the
band gap and a reduction in the dispersion of the lowermost
conduction band level, which implies decreasing group
velocities. With regard to the electrical conductivity σ, these
two effects oppose each other as the (∂f/∂ϵ)ϵ = ϵik term in eq 3
increases with decreasing band gap, whereas smaller group
velocities vi(k) cause a reduction of the other term in the
integrand. (In the widely adopted effective mass approximation,
this is equivalent to asserting an increase in the charge carrier
concentration and a reduction of the mobility due to a higher
effective mass (smaller curvature), see e.g., ref 2.) In the current
case, the two terms appear to largely cancel each other as the
net effect of order on σ is comparably small (Figure 5b).
To further resolve the coupling between order and the

electrical transport properties, a closer inspection of the
underlying band structures is instructive. To this end, we
analyzed the mode-resolved contributions to the power factor,
which are most sensitive to the group velocity. It is found that
for the ground-state configuration, the largest contribution to S
stems from states in the vicinity of the M point, which is the
location of the CBM [fully ordered, Figure 6a, S2σ = 14.2 μW/

Figure 5. Electrical transport properties of n-type material at a carrier
density of 3 × 1020 cm−3. (a) Seebeck coefficient, (b) electrical
conductivity, and (c) power factor as a function of temperature from
calculations in comparison with experimental data from refs 42, 44, 52,
53. The degree of chemical order has a clear effect on the electrical
transport properties as is evident by comparing the results from
samples with a random distribution (dotted lines), the ground-state
structure (dashed lines), and configurations representative of the
chemical order at 600 K (solid red), 900 K (solid orange), and 1200 K
(solid blue). In the case of the MC-generated structures, the
corresponding shaded areas represent one standard deviation.

Figure 6. Effect of chemical order on the electronic structure. Band structures representing (a) the fully ordered ground state, (b) a configuration
with intermediate order extracted from a MC simulation, (c) a random distribution, and (d) the structure optimized for maximum power factor at
900 K. The color scale and the size of the circles indicate the group velocity. The position of the Fermi level is shown by horizontal dashed lines. The
energy scales of the different configurations were aligned using the Ba-1s states as described in ref 58, and the VBM of the ground state was arbitrarily
set to zero.
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K2 cm at 900 K and ne = 3 × 1020/cm3]. While in the case of
intermediate chemical order the relative contribution of these
states is reduced, higher lying states for example along the Γ-X
direction are shifted downward and thus closer to the Fermi
level, providing a significantly larger contribution than in the
case of the ground-state structure (Figure 6b, S2σ = 18.7 μW/
K2 cm). The gain in the density of states in the vicinity of μe +
kBT outweighs the reduced dispersion (smaller group
velocities) around the M-point and gives rise to a slight
increase of the power factor relative to the ground-state
configuration. If the degree of chemical order is further
reduced, the effect of an increase in the density of states near
the Fermi energy levels off (Figure 6c, S2σ = 12.2 μW/K2 cm),
whereas level localization (and thus reduction of the group
velocities) proceeds, causing the power factor to drop again.
The origin of the reduction of band gap and level of

dispersion with decreasing chemical order can be understood
by recalling some general principles from defect physics. The
ground-state structure represents a fully ordered structure,
whereas disordering can be thought of as the insertion of
antisite defects.59 As these are intrinsic defects with small lattice
distortions, the associated defect states are hybridized with
band states (see e.g., refs 3, 60, 61); yet, the associated levels
are to some extent localized. In Ba8Ga16Ge30 (and similar
systems), the formation energies for such antisites are obviously
very small, whence defect concentrations are easily in the
percent range and the collective effect on the band structure
becomes significant.
4.3. Power Factor Optimized Structures. To substan-

tiate the above argumentation, additional CEs were constructed
for the band gap EG as well as the power factor at 900 K (ne = 3
× 1020/ cm3), for which we obtained cross-validation scores of
0.05 eV and 1.5 μW/cmK2, respectively. The CEs were
subsequently sampled using MC simulations based on the CE
for the total energy constructed earlier. Using the total energy
as order parameter,62 these simulations confirm for a large data
sample that the band gap decreases monotonically with
chemical disordering (Figure 7b), whereas the power factor
exhibits a maximum at a finite amount of disorder, which quite
closely coincides with the average level of order between 600
and 1200 K.
Based on the CE for the power factor, we are now in a

position to search for chemical ordering patterns that maximize
the power factor. To this end, simulated annealing runs were
carried out on the landscape corresponding to −S2σ with an
appropriate effective temperature scale. In this fashion, several
structures were obtained with predicted power factors of
approximately S2σ = 24 μW/K2 cm, which were confirmed by a
subsequent DFT-BTT calculation yielding about 27 μW/K2

cm(Table S1).
The optimized structures are only about 8 meV/atom higher

than the ground-state structure, and thus, they are energetically
comparable to the structures obtained during the MC
simulations described above. The most striking difference to
both the ground state and MC-generated representative
structures described above is the redistribution of Ga
occupation from the 6c to the 16i site (ground-state structure:
SOF(6c) = 50%; power factor optimized structure: SOF(6c) =
0%; see Table S1), whereas the average occupation of 24k sites
is unaffected. In terms of the electronic structure, this
redistribution gives rise to a significantly higher density of
states in the vicinity of the conduction band edge along with a
notably larger contribution from Ga atoms on 24k sites than in

either the ground state or the MC-generated structures (Figure
S6). Here, the vanishing Ga occupancy of 6c Wyckoff sites is a
key feature as we generally find that larger power factors are
correlated with a low 6c SOF.
It is now very instructive to analyze the features of the

electronic structure that underlie the outstanding power factor
of this configuration. A closer inspection of the band structure
(Figure 6d) reveals that unlike the other structures (Figure 6a−
c), all of which feature a CBM at the M-point, for the optimized
structure the CBM is located along the Γ-X direction. This is
the result of the lower energy of the corresponding states
compared to the other structures. At the same time, the high
degree of order ensures that the configuration has a large band
gap (EG = 0.55 eV) comparable in magnitude to the ground-
state structure (EG = 0.54 eV).
The integrand in the expression for the Seebeck coefficient

eq 4 is maximal if the group velocity at approximately
μe+1.5kBT is large, which requires dispersed (delocalized)
states. At the same time, it is desirable to have many states in
this energy window, which would be achieved by localization
(nondispersed states). Since similar considerations apply to σ,
optimizing S2σ thus tries to strike a balance between two
diametrically opposed features. A three-dimensional visual-
ization of the CBM (Figure S5) shows that the optimized
configuration achieves a large power factor by featuring
multiple CBM pockets with large group velocities in the
relevant energy range.
Similar features in the band structure involving “complex

carrier pocket shapes”63 were found to enhance thermoelectric
performance also in other materials (see e.g., refs 14, 16,
63−65) The electronic structures that were observed in these
cases can be thought of as realizations of the conditions
formulated by Mahan and Sofo10 according to which one seeks
a narrow distribution of states near the Fermi level with high
group velocities. While enhanced thermoelectric performance
due the existence of multiple band extrema has been shown to
be intrinsic to some materials,64,65 it has been demonstrated
that the relevant features can also be engineered by, for
example, nanoinclusions,14 careful selection of the compo-
nents,16 or volumetric band alignment via alloying.63 The

Figure 7. (a) Power factor and (b) band gap as a function of order
(measured by the total energy) from MC-CE simulations. The
maximum attainable power factor according to CE and DFT-BTT is
indicated by red symbols. The shaded regions represent one standard
deviation.
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present results show that this level of band structure
engineering can even be accomplished by controlling the
chemical order in a material. Furthermore, the present
approach demonstrates that the identification of materials and
compositions can be achieved using models that do not
explicitly describe the electronic structure as long as they are
properly trained with respect to higher-level calculations.

5. CONCLUSIONS

In the present work, we used density functional theory
calculations in conjunction with Monte Carlo simulations,
alloy cluster expansions, and Boltzmann transport theory to
investigate the coupling between chemical order and the
electrical transport properties in the prototypical inorganic
clathrate Ba8Ga16Ge30.
The temperature dependence of the SOFs obtained from

MC−CE simulations shows a strong asymmetry between
different Wyckoff sites. The predicted SOFs in the temperature
range between 550 and 720 K are in good agreement with
experimental data. This observation provides a very sensible
estimate for the temperature range, in which the chemical order
is kinetically frozen in as the material cools down after
synthesis. A simulated annealing procedure furthermore lead to
a ground-state structure that is primarily characterized by the
absence of first-nearest neighbor Ga−Ga bonds.
Subsequently, the electrical conductivity σ and Seebeck

coefficient S were computed for n-type conditions using a
DFT−BTT approach for the ground-state structure, a set of
configurations representing the chemical order at different
temperatures, as well as several random structures. The
magnitude and temperature dependence of the Seebeck
coefficient calculated for the representative structures at an
electron concentration of ne = 3 × 1020/cm3 was shown to
match experimental data. Using a minimal model for the
electronic lifetime based on scattering by acoustic phonons, we
then achieved close agreement between experiment and
calculations for both the electrical conductivity σ and power
factor S2σ. Thus-equipped, the relation between chemical order
and the power factor was scrutinized. It was shown that the
power factor exhibits a nonmonotonic dependence on order
(and temperature) with its average value exhibiting a maximum
roughly in the range found in previous experiments.
Using a direct combination of DFT−BTT and MC−CE, we

then identified structural motifs that maximize the power factor.
Specifically, it was demonstrated that this can be achieved by
minimizing the Ga SOF for 6c Wyckoff sites, which gives yields
calculated power factors up to 27 μW/K2cm, corresponding to
an improvement of about 60% compared to the “normal” order.
The enhancement can be traced to an increase in the density of
states near the conduction band edge with only a small
reduction in the group velocities.
It is beyond the scope of this work to provide a recipe for

synthesizing the exact structure in question, but the relatively
small energy cost associated with the depopulation of the 6c site
suggests that it is thermodynamically within reach. It is possible,
for example, that alloyed clathrates66−69 provide means to
control order more consciously, albeit at the cost of a much
more complex parameter range. Other materials that exhibit
partial ordering/disordering such as the cobaltates and
skutterudites, Zintl compounds, as well as complex al-
loys2,16,70−75 can be anticipated to exhibit similar features and
thus also warrant further study.

Here, modeling and simulation could provide useful guidance
for navigating the complex and multidimensional composition
space. In this context, the approach utilized in the present work,
which combines electronic structure calculations of transport
properties with machine learning protocols, could prove to be
highly useful for band structure engineering. In this fashion, it
can guide the computational design of compounds with optimal
transport properties.
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Clathrates exhibit a very low thermal conductivity, which has been attribute to phonon-glass
like transport properties. Yet a quantitative computational description of this important property
has proven difficult, in part due to the large unit cell, the role of disorder, and the fact that both
electronic carriers and phonons contribute to transport. Here, we conduct a systematic investigation
of thermal transport in the prototypical inorganic clathrate material Ba8Ga16Ge30. We find chemical
composition and order to be of minor importance. By contrast, it is crucial to account for the
effect of phonon-phonon interactions on the lowest frequency modes in order to obtain an accurate
description of the lattice part of the thermal conductivity, which is achieved here by means of
temperature dependent effective interatomic force constants. At room temperature and above most
phonon modes are heavily damped or overdamped consistent with a glass-like transport mechanism.
Furthermore, it is shown that the Wiedemann-Franz law is only approximately fulfilled and that it
is crucial to employ the correct pre-factor when doing so.

I. INTRODUCTION

Thermoelectric materials enable the extraction of elec-
trical power from a thermal gradient, as well as the re-
verse process, cooling through electrical power.1,2 As a
result these materials are interesting for applications such
as power generation in remote locations, waste heat re-
cuperation, and active cooling. Specifically, in the high-
temperature region, which is of interest for example with
regard to waste heat recuperation from combustion pro-
cesses, inorganic clathrates are among the most efficient
thermoelectric materials3,4 with studies reporting figure-
of-merit (zT ) values above one.5,6

Clathrates are chemical substances with a defined
lattice structure that can trap atomic or molecular
species.7,8 For thermoelectric applications one usually
considers inorganic clathrates, examples of which include
compounds such as Ba8Ga16Ge30 or Sr8Ga16Sn30.9,10

Here, the earth alkaline atoms act as guest species
that occupy the cages provided by the host structure,
where the latter is most commonly composed of ele-
ments from groups 13 and 14. In the present paper,
we focus on Ba8Ga16Ge30, which belongs to space group
Pm3̄n (international tables of crystallography number
223) and features two smaller and six larger cages
per unit cell [Fig. 1].9–11 Ba8Ga16Ge30 has been in-
vestigated extensively both experimentally5,6,12–15 and
theoretically,13,16–22 especially because of its promising
thermoelectric properties.

Generally these materials exhibit a very low thermal
conductivity comparable to that of glasses,3,23 which is
crucial for their good thermoelectric performance, and
accordingly clathrates are commonly regarded as realiza-
tions of the “phonon glass-electron crystal” concept.24

This behavior can be attributed to the “rattler”-like
atomic motion of the guest species, which results from
their relatively small size compared to the host cage.19,25

While experimental measurements agree with respect
to the general magnitude of the thermal conductivity in
clathrates they exhibit some noticeable differences (il-

lustrated for the case of Ba8Ga16Ge30 in Fig. 5 below).
These variations can originate from several factors in-
cluding for example sample preparation, thermal emis-
sion, and the general difficulties associated with measur-
ing small thermal conductivities. Furthermore, as one is
often interested in separating out the contribution to the
thermal conductivity from lattice vibrations, one must
make assumptions with respect to the electronic contri-
bution, which adds another source of uncertainty.

In this situation, predictive modeling on the ba-
sis of first-principles calculations cannot only provide
very valuable insight but guide the development of
new materials. As a result of the large unit cell and
the additional complexity of chemical ordering in these
materials11,20,21,26 there are, however, hardly any such
studies.22

Here, we present a comprehensive study of the thermal
conductivity in Ba8Ga16Ge30 as a prototypical clathrate,
which combines Boltzmann transport theory with first-

FIG. 1. Crystal structure of type I clathrates. The guest
species (Ba) occupies Wyckoff sites of type 2a and 6d, while
the host species (Ga, Ge) occupy Wyckoff sites of type 6c,
16i, and 24k.
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principles calculations within the framework of den-
sity functional theory. We address separately the elec-
tronic and vibrational contributions, account for finite-
temperature effects on vibrational frequencies and life-
times, consider the impact of the exchange-correlation
functional, and conduct a careful comparison with ex-
perimental data. It is demonstrated that while the
Wiedemann-Franz law provides a reasonable approxima-
tion to the electronic thermal conductivity, it is crucial
to use the appropriate pre-factor, an aspect that is often
overlooked in the analysis of experimental data.

Furthermore it is shown that the rattler-mode frequen-
cies calculated in the static (zero temperature) limit sys-
tematically underestimate the experimental data, which
leads to a striking underestimation of the lattice ther-
mal conductivity. To overcome this limitation one must
take into account phonon renormalization, which is ac-
complished effectively by using temperature dependent
force constants. The resulting model reproduces the ex-
perimentally measured temperature dependence of the
rattler-mode frequencies and leads to an increase of the
thermal conductivity by more than a factor of two, which
brings the predicted data in good agreement with exper-
imental data. Finally, we provide a careful examination
of the contributions to the thermal conductivity, which
shines light on the “phonon glass” picture and reveals
that more modes contribute to the thermal conductivity
than previously assumed.

The remainder of this paper is organized as follows:
The next section provides an overview of the method-
ological aspects of this work including computational de-
tails as well as a review of the most important relations
from Boltzmann transport theory. The first part of the
Results and Discussion section then focuses on the suit-
ability of different exchange-correlation functionals to de-
scribe the clathrate structures. This is followed by an
examination of the phonon dispersion, especially the rat-
tler modes, emphasizing their temperature dependence
as well as the effect of order and composition. This sets
up a comprehensive analysis of the vibrational and elec-
tronic contributions to the thermal conductivity. Finally,
we summarize the key results and conclusions in Sect. IV.

II. METHODOLOGY

A. Thermal conductivity

The thermal conductivity κ in a solid chiefly comprises
contributions from electronic carriers κe and lattice vi-
brations (phonons) κl,

κ = κe + κl. (1)

In the following we outline the approach taken to com-
pute the two terms in the above equation.

1. Lattice thermal conductivity

The lattice (phononic) contribution κl to the thermal
conductivity can be computed by solving the phonon
Boltzmann transport equation (BTE).27 In the present
treatment, we limit our analysis to the framework of
the relaxation time approximation (RTA) of the phonon
BTE, in which the lattice thermal conductivity is

κl =
1

Ω

∑
iq

gqviq ⊗ viqτiqciq. (2)

Here, Ω is the unit cell volume, gq is the q-point weight,
and viq = ∇qωiq is the group velocity of mode i at
point q of the Brillouin zone with ωiq being the mode
frequency. Both phonon frequencies and group velocities
can be derived from the second-order force constant ma-
trix, which is given by the second derivative of the energy
E with respect to the atomic displacements uα(il)27

Φαβ(il, i′l′) =
∂2E

∂uα(il)∂uβ(i′l′)
, (3)

where α and β are Cartesian directions, i is the site index
relative to the unit cell basis, and l an index enumerating
the unit cells. From the force constant matrix one can
readily compute the dynamical matrix at any momentum
vector q,

Dαβ(jj′, q) =
1

√
mjmj′

∑
l′

Φαβ(j0, j′l′)eiq·(rj′l′−rj0),

(4)

where mj is the atomic mass of the species occupying
site j. Diagonalization of Dαβ(jj′, q) then yields nor-
mal modes and phonon frequencies ωiq, from which the
mode-specific heat capacity ciq at temperature T can be
obtained via

ciq = kB
x2 expx

(1− expx)
2 with x =

~ωiq
kBT

. (5)

The relaxation time τiq, or phonon lifetime, which ap-
pears in Eq. (2), comprises contributions from different
scattering processes including, e.g., phonon-phonon in-
teraction, isotope mass variation, boundary scattering,
alloying, and disorder. Here, we consider phonon-phonon
interaction and isotope mass variation. According to the
most simple approximation, known as Matthiessen’s rule,
the different scattering processes are assumed to be inde-
pendent, i.e. their scattering rates (or inverse lifetimes)
are additive

τ−1
iq = τ−1

ph−ph,iq + τ−1
iso,iq. (6)

In the present work scattering due to isotope mass varia-
tion (τiso,iq) has been treated according to second order
perturbation theory28 whereas the contribution due to
phonon-phonon scattering (τ−1

ph−ph,iq) was treated at the
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level of first-order perturbation theory,27 which requires
knowledge of not only the second but also third-order
interatomic force constants (IFCs).29,30 As detailed in
Sect. II B, we computed IFCs both in the static (0 K)
limit using the finite displacement method and from
molecular dynamics (MD) simulations.

2. Electronic thermal conductivity

In the relaxation time approximation (RTA) to the lin-
earized Boltzmann transport equation (BTE) the elec-
tronic contribution to the thermal conductivity κe is
given by

κe = κ0 − S2σT (7)

with27,31,32

σ =
2e2

Ω

∑
ik

gkvik ⊗ vikτik
(
∂f

∂ε

)
ε=εik

(8)

S =
σ−1

eT

∑
ik

gkvik ⊗ vikτik [εik − µe]
(
∂f

∂ε

)
ε=εik

(9)

κ0 =
e

TΩ

∑
ik

gkvik ⊗ vikτik[εik − µe]2
(
∂f

∂ε

)
ε=εik

.

(10)

Here, Ω is the unit cell volume, gk is the k-point weight, i
refers to the band index, τik is the mode and momentum
dependent lifetime, vik = ~−1∂εik/∂k is the group veloc-
ity, f is the occupation function, and µe is the electron
chemical potential.

We have previously studied the electronic conductiv-
ity σ and the Seebeck coefficient S for Ba8Ga16Ge30 and
conducted a systematic comparison with experiment.20

Using a charge carrier concentration of ne = 3×1020 cm3

and a mode and momentum-independent effective life-
time model with τeff = τ300(300 K/T )1/2 we were able to
achieve very good agreement with experimental data, and
accordingly this approach is also adopted in the present
work.

B. Computational details

1. General

DFT calculations were performed using the projector
augmented wave method33 as implemented in the Vienna
ab initio simulation package.34 To assess the sensitivity
of our results to the treatment of exchange-correlation
effects, we used both the PBE functional35 and the van
der Waals density functional method36 with consistent
exchange (vdW-DF)37 as implemented in VASP.38

The plane-wave energy cutoff energy were set to 243 eV
(Ba8Ga16Ge30) and 319 eV (Ba8Al16Si30), respectively,
and Gaussian smearing with a width of 0.1 eV was used

throughout. Structural relaxations were performed using
a Γ-centered 3 × 3 × 3 k-point mesh until the residual
forces were below 10 meV/Å and absolute stresses were
below 0.1 kbar.

2. Vibrational spectra and lattice thermal conductivity

The static second and third-order IFCS as well as the
thermal conductivity were computed using the sheng-
BTE29,39,40 and phonopy41 codes. Calculations were
carried out using 2×2×2 supercells (432 atoms) and in-
cluded displacements up to the fifth neighbor shell. The
Brillouin zone was sampled using a 9×9×9 q-point mesh
and a smearing parameter of σ = 0.01. There was no in-
dication of any significant difference between the results
within the framework of RTA-BTE, and the fully con-
verged solution to the BTE, hence the full set of compu-
tations were limited to the RTA. The second-order IFCs
obtained in this process were also used to model the ther-
mal expansion within the quasi-harmonic approximation.

As will be shown below, using the IFCs obtained in
the static (0 K) limit to predict the thermal conductivity
leads to a substantial underestimation. We therefore also
determined effective temperature dependent IFCs simi-
lar to the approach described in Ref. 42. To this end,
we carried out first-principles molecular dynamics (MD)
simulations in the canonical ensemble at temperatures of
100, 200, 300, and 600 K. We employed primitive 54-atom
cells, which were sampled using a Γ-centered 3 × 3 × 3
k-point mesh. The equations of motion were integrated
for a total of about 5,500 time step using a time step of
5 fs. After discarding the first 1,000 steps for equilibra-
tion, snap shots at a spacing of 180 MD steps (0.9 ps)
were used to train via least-squares fitting temperature
dependent models (TDEM) using our in-house hiphive
code. Finally, the resulting IFCs were used with sheng-
BTE to obtain the thermal conductivity.

3. Vibrational spectra of non-stoichiometric compounds

Additional calculations of the vibrational spectra were
carried out for Ba8GaxGe46−x and Ba8AlxSi46−x for
14 ≤ x ≤ 18. To this end, we employed 54-atom cells
and structures obtained previously by Monte Carlo sim-
ulations that are representative of the actual chemical
order in the material. In total data was obtained for 20
structures per composition, equivalent to 200 configura-
tions in total.

4. Electronic contribution to the thermal conductivity

To calculate the electronic contribution to the ther-
mal conductivity we considered both the chemically or-
dered ground state structure and the chemically disor-
dered structures obtained by Monte Carlo simulations.20
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The latter configurations are representative of the ac-
tual chemical (dis)order in the material at 600, 900,
and 1200 K as described in detail in Ref. 20. Results
were averaged over five structures per temperature. The
wave function of the fully relaxed structures were con-
verged using a Γ-centered 4× 4× 4 k-point mesh, which
was followed by a non-self-consistent computation of the
eigenenergy spectra on a Γ-centered 20 × 20 × 20 mesh.
The terms in Eq. (7) were subsequently computed using
the BoltzTrap code.32

III. RESULTS AND DISCUSSION

A. Structure and thermal expansion

An accurate description of the vibrational properties is
important for modeling the thermal conductivity. While
the PBE functional has been used extensively in the past
in electronic structure calculations of inorganic clathrates
(see e.g., Refs. 19 and 22), it is known to underestimate
the bond stiffness (see e.g., Ref. 43). In the present work,
we therefore also considered the vdW-DF-cx method (see
Sect. II B), which has been found to yield an excel-
lent description of finite temperature properties for other
materials.43,44

As a first step in assessing the performance of these
functionals we determined the temperature dependence
of the lattice structure of the four stoichiometric com-
pounds Ba8Ga16Ge30, Ba8Ga16Si30, Ba8Al16Ge30, and
Ba8Al16Si30 based on the ordered ground state (0 K)
structure determined in Ref. 21. In this context it must
be noted that it is not always possible to find experi-
mental data for the lattice parameters for the stoichio-
metric compounds. This applies in particular for the Si-
based clathrates,11,45–47 which is presumably because of
the solubility limit being about x = 15,45,46 for both Ga
in Ba8GaxSi46−x and Al in Ba8AlxSi46−x. The lattice
parameters for the composition corresponding to x = 16

FIG. 2. Temperature dependence of the lattice parameter
for Ba8Ga16Ge30 obtained within the quasi-harmonic approx-
imation. Experimental data are from Ref. 11.

have been estimated by performing a linear least-squares
fit for each data set. It shall also be noted that the ex-
perimentally determined lattice parameters and compo-
sitions can vary markedly depending on the measurement
technique.11,26,45

Both functionals overestimate the lattice parameter
compared to experiment, with PBE always giving the
higher estimate (Table I and Fig. 2). Overall the agree-
ment achieved by the vdW-DF-cx calculations is very
good with an average deviation of 0.6% (1.5% for PBE).

It should be noted that chemical disordering, which is
generally present in these compounds,11 has an effect on
the lattice parameter. Based on our earlier analysis,21

one can assume that as the material is cooled down af-
ter synthesis the chemical order is frozen in at a tem-
perature of about 600 K. At this temperature the lattice
parameter in Ba8Ga16Ge30 has been predicted to be in-
creased by 0.028 Å relative to the ground state structure,
decreased by about 0.028 Å in the case of Ba8Ga16Si30

and relatively unchanged in the case of Ba8Al16Ge30 and
Ba8Al16Si30. These contributions, however, barely affect
the agreement with experiment and leave the average er-
rors unchanged.

B. Phonon dispersion in the static (0 K)imit

Due to the large mass of the Ba atoms as well as their
weak coupling to the host structure, the associated rat-
tler modes show up as low-frequency optical modes in the
phonon spectrum (Fig. 3). They appear at higher fre-
quencies in the vdW-DF-cx calculations [Fig. 3(a)] than
in the case of the PBE functional [Fig. 3(b)] as expected
based on the known “softness” of the latter. For both

TABLE I. Finite temperature lattice parameters from calcula-
tion and experiment. The values in brackets denote the lattice
parameters obtained without taking into account zero-point
vibrations. In the calculations the temperature dependence
was described at the level of the quasi-harmonic approxima-
tion.

Material Calculation Experiment

0 K 300 K 300 K

Ba8Ga16Ge30 Ref. 48 Ref. 14
PBE 10.98 (10.96) 11.02 10.761 10.801

vdW-DF-cx 10.86 (10.85) 10.90
Ba8Ga16Si30 Ref. 11 Ref. 45
PBE 10.68 (10.66) 10.71 10.542 10.572

vdW-DF-cx 10.60 (10.58) 10.62
Ba8Al16Si30 Ref. 47 Ref. 46
PBE 10.74 (10.72) 10.76 10.642 10.652

vdW-DF-cx 10.67 (10.65) 10.69
Ba8Al16Ge30 Ref. 26 Ref. 49
PBE 11.01 (10.99) 11.04 10.851 10.882

vdW-DF-cx 10.91 (10.90) 10.94

1 Interpolated
2 Extrapolated
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FIG. 3. (a-c) Phonon dispersion of Ba8Ga16Ge30 showing the low frequency region along the Γ-R direction derived (a,b)
from IFCs obtained in the static (0 K) limit by the finite-displacement (FD) method and (c) from a temperature dependent
effective model (TDEM) corresponding to a temperature of 300 K. Black dashed lines indicate the phonon dispersion branches
determined experimentally by inelastic neutron scattering.25 (d) Total phonon densities of states. (e) Partial densities of states
showing the contributions from Ba on 2a Wyckoff sites (blue line), Ba on 6d sites (red line) and contributions from the Ga/Ge
cage structure (green).

functionals one observes the phonon modes in the zero
temperature limit to be lower than the experimentally
measured frequencies [black dashed lines in Fig. 3(a-c)].25

C. Phonon dispersion at finite temperatures

As will be shown below the thermal conductivity cal-
culated on the basis of the static IFCs systematically and
substantially underestimates experimental data (also see
Ref. 22). As will become apparent in the analysis of
the thermal conductivity (Sect. III E) lower frequencies
of the rattler modes reduce the Brillouin zone volume cor-
responding to propagating modes, which translates into
a lower thermal conductivity. It is therefore a very rel-
evant question to which extent phonon-phonon interac-
tions affect the rattler mode frequencies. In fact the low
frequencies of the rattler modes imply that they are fully
activated already at low temperatures and thus phonon-
phonon interaction driven frequency shifts can already
occur below room temperature. This notion is supported
by experimental data from both inelastic neutron and
Raman scattering25 that reveals a notable temperature
dependence of the rattler modes.

Using a series of temperature dependent effective mod-
els (TDEMs, see Sect. II B), we therefore calculated the
vibrational spectrum as a function of temperature. The
full phonon dispersion at 300 K [Fig. 3(c)] does indeed re-
veal an upward shift of the lowermost optical branches.
A comprehensive comparison with experimental data
[Fig. 4(c)] demonstrates that the TDEMs can also rather
accurately reproduced both the absolute values and the
temperature dependence of the rattler modes.57 As will
be discussed below these effects are actually crucial for
being able to predict correctly the thermal conductivity.

D. Chemical composition and ordering

According to experimental,26,46,47,53,58–63 theoreti-
cal21,64 as well as combined49,65 studies, the structural
and physical properties of, ternary, inorganic clathrates
vary markedly with chemical composition. Specifically,
it has been shown that the displacement of the guest
atom from the 6d site21,26 and the associated vibra-
tional frequencies53,58 depend on the number of Al or
Ga atoms per unit cell, in ternary compounds of the
type Ba8{Al,Ga}x{Si,Ge}46−x. There is, moreover, ex-
perimental evidence51,52 that the degree of off-centering,
the frequencies of the lowest Raman active modes and
the lattice thermal conductivity are correlated for com-
pounds in the structurally similar, quaternary system
Sr8Ga16SixGe30−x.

Given these results, it is reasonable to assume that the
lattice thermal conductivity also varies to some degree
with chemical composition. We therefore computed the
variation of the 18 lowest-frequency phonon modes, asso-
ciated with the Ba atom at the 6d site66, with the number
of group-13 atoms not only in Ba8GaxGe46−x but also
Ba8AlxSi46−x, where the latter was included as it repre-
sents the limit of a host matrix made up of light elements.
Specifically, we extracted and averaged the Γ-point fre-
quencies for 20 representative configurations (Sect. II B 3)
for each composition in the range 14 ≤ x ≤ 18. The
modes naturally fall into three groups, with six modes
in each [Fig. 4 (a,b)]. The splitting of the modes can be
viewed as a consequence of the facts that (i) the guest
atom are not located at the immediate center of the cage,
(ii) the latter is shaped like a tetrakaidekahedron, and
(iii) the Al and Ga atoms are not necessarily symmetri-
cally distributed between the framework sites.21

For Ba8AlxSi46−x the phonon modes slightly soften
with increasing x; a similar trend albeit even weaker can
also be observed for the lower two groups in the case of
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with the variation of the lattice constant (in gray). Specifically, the red, yellow and blue lines correspond to the average
frequencies for modes 1–7, 8–13 and 13–18, respectively. The standard deviations obtained by averaging over 20 representative
configurations at each composition are indicated by shaded filled curves. Experimental data obtained at 2–7 K from Raman
scattering50–53 as well as THz spectroscopy54–56 is shown by symbols in (b). (c) Temperature dependence of the partial density
of states associated with Ba atoms on 6d Wyckoff sites (shaded filled curves, compare Fig. 3(e)) in comparison with experimental
data from inelastic neutron scattering on powder (PINS) and single crystalline (SINS) samples,25 Raman Scattering25,50–53 and
THz spectroscopy.54–56

Ba8Ga16Ge30. This behavior correlates with the increase
in the lattice constant, which is larger for Ba8AlxSi46−x
than for Ba8GaxGe46−x [gray lines in Fig. 4 (a,b)]. A
larger lattice parameter implies that the size of the cages
occupied by Ba atoms increases, which leads to weaker
restoring forces and, hence, lower vibrational frequencies.
Overall one must conclude, however, that the phonon fre-
quencies, associated with the vibrations of the Ba atom
at the 6d Wyckoff, are relatively insensitive to the chemi-
cal composition, since the difference between x = 14 and
x = 18 is of the same magnitude as the spread of the
frequencies. This applies in particular to Ba8GaxGe46−x
and thus the lattice thermal conductivity can be expected
to be almost independent of x for 14 ≤ x ≤ 18.

E. Thermal conductivity: lattice contribution

1. Comparison of scattering channels

Based on the analysis of the vibrational properties de-
scribed in the previous sections we computed the lattice
contribution to the thermal conductivity. These calcula-
tions were carried out for the chemically ordered ground
state structure of Ba8Ga16Ge30

20,21 using both the PBE
functional and the vdW-DF-cx method.

When limiting the analysis to phonon-phonon scatter-
ing, one obtains a strong variation with temperature that
follows a T−2 and behavior at low temperatures and a
T−1 trend at temperatures & 100 K [Fig. 5 (a)]. Isotope
scattering affects only the very low temperature region
leading to a peak in the conductivity below 10 K.

The chemical disordering at finite temperatures that
was already alluded to above is inevitably associated

with mass mixing, which affects both the frequencies via
Eq. (4) and the lifetimes in a way analogous to isotope
scattering. The effect on the frequencies is modest as ev-
ident from the analysis in Sect. III D and also the impact
on the lifetimes is only discernible at very low tempera-
tures [dashed gray line in Fig. 5(a)].

2. Overview of experimental data

The total thermal conductivity κ has been measured
using a variety of techniques for both single and polycrys-
talline samples, see e.g., Refs. 5, 6, 59, and 68. To extract
the lattice contribution to the thermal conductivity, it is
customary to remove the electronic part by the use of
Wiedemann-Franz law. Yet, as discussed in Sect. III F,
the Wiedemann-Franz law is in fact only approximately
valid under the relevant conditions. For the sake of con-
sistency, here we nonetheless use the data reported in the
original papers and focus on single crystalline samples.

The compilation of the experimental results [Fig. 5 (b)]
illustrates a noticeable spread in the data, especially at
low temperatures. The strong temperature dependence
along with the pronounced low-temperature peak in the
data by Christensen et al.68 indicates a phonon-limited
thermal conductivity down to very low temperatures. By
contrast, the much weaker temperature dependence and
low-temperature plateau in the results from Avila et al.59

is rather suggestive of a temperature independent (likely
structural) limit on the mean free path λ = vτ . Such a
plateau corresponds more closely to the so-called small
grain thermal conductivity [compare the dotted line in
Fig. 5 (a)].

One plausible explanation for the variation in the
experimental data could phonon scattering by defects.
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FIG. 5. Lattice thermal conductivity κl of Ba8Ga16Ge30
as a function of temperature. (a) Comparison of κl due to
different included scattering channels, calculated using IFCs
achieved with the vdW-DF-cx functional, as well as a com-
parison to the computations using temperature dependent
effective IFCs. (b) Comparison between computations, us-
ing IFCs from the vdW-DF-cx functional (red solid line), the
PBE functional (solid blue line), temperature dependent ef-
fective models (squares) and experimental data sets (dashed
lines marked by numbers). The inset shows the same data on
a linear scale. The experimental data are from Refs. 67 (1),
60 (2, 3), 12 (4), 68 (5), 69 (6, 7). The authors of Ref. 68 (5)
point out that due to the large surface to volume ratio, their
measurements become unreliable above approximately 100 K
due to thermal emission. The data sets from Ref. 60 (2 and
3) correspond to p respectively n-doped samples.

In the relevant temperature range below approximately
600 K21 it is reasonable to assume the defect concentra-
tion to be frozen in, which would be consistent with a
weak temperature dependence. Moreover while sizable
vacancy concentrations have been reported for some sam-
ples they are also likely to be sensitive to the synthesis
conditions, which would provide a rationale for the large
variation between studies.14 A comprehensive treatment
of the contribution of defect scattering would in princi-
ple be possible using the approach described in Ref. 70.
The computations needed, however, exceed the scope of
the present work and in the following we rather focus on

the importance of addressing the role of temperature on
phonon-phonon interactions.

3. Comparison between calculations and experiment

The lattice thermal conductivities derived from IFCs
obtained in the static limit by either PBE or vdW-DF-
cx substantially underestimate the experimental data
[Fig. 5, also see Ref. 22]. This is a rather unusual ob-
servation as one more commonly finds calculations to
overestimate the experimental data (see e.g., Ref. 44) as
computational analysis commonly account only for some
of the scattering mechanisms that are active in reality.

The behavior observed here can, however, be under-
stood by considering the expression for the lattice ther-
mal conductivity Eq. (2) and the phonon dispersions
(Fig. 3). Since in the case of the static IFC calcula-
tions the rattler modes are located at lower frequencies
than in the experimental data the avoided crossings with
the acoustic modes25 occur at smaller q vectors and as
a result the relative fraction of propagating modes that
contributes to the thermal conductivity is reduced. This
mechanism can also explain the lower thermal conduc-
tivity obtained from PBE relative to vdW-DF-cx calcu-
lations.

As shown above one must account for the effect
of phonon-phonon coupling on the frequency spectrum
in order to obtain closer agreement with experiment
(Fig. 3). Accordingly using temperature dependent IFCs
(TDEM) in Eq. (2) leads to a substantial increase in the
thermal conductivity by a factor of two at 100 K up to a
factor of three at 600 K As a result the TDEM calcula-
tions are in very good agreement with the experimental
data in this temperature range. One also observes that
the temperature dependence of κl shifts from κl ∝ T−1

to κl ∝ T−0.69, which rather closely follows the experi-
mental trend.

4. Microscopic contributions

Inorganic clathrates have repeatedly been shown to ex-
hibit very low thermal conductivities3,5,6,59,68 and have
been discussed as realizations of the so-called phonon
glass-electron crystal (PGEC) concept.1 Accordingly, the
mechanisms that give rise to the very low thermal con-
ductivity in clathrates have been scrutinized experimen-
tally as well as by theory and simulation, see, e.g.,
Refs. 19, 23, 25, and 71. The primary object of atten-
tion has been the phonon dispersion,19,25 which provides
information about vibrational frequencies and group ve-
locities and is more readily accessible both in experiments
and calculations. The phonon lifetimes in these materi-
als have only been very recently addressed using an ap-
proximate lifetime model for Ba8Ga16Si30

71 as well as
perturbation theory in the case Ba8Ga16Ge30.22
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FIG. 6. (a) Phonon dispersion in Ba8Ga16Ge30 from static
vdW-DF-cx IFCs. (b) Normalized accumulated lattice ther-
mal conductivity with respect to energy as computed with
static vdW-DF-cx IFCs at 3, 30 and 300 K (solid lines), com-
pared to calculations based on the TDEM IFCs at 300 K.
(c) Phonon-phonon limited lifetimes at 300 K computed with
PBE (black markers), vdW-DF-cx (red markers) and TDEM
(blue markers) IFCs. The filled yellow curves indicate the
overdamped region for a classical harmonic oscillator. (d)
Comparison of lifetimes computed from static vdW-DF-cx
IFCs at 3, 30 and 300 K.

The present calculations allow us to scrutinize the in-
dividual contributions to the lattice thermal conductivity
according to Eq. (2), including group velocities and life-
times, and thereby to gain further insight into the glass-
like thermal conduction in inorganic clathrates. From
the phonon dispersion [Fig. 6(a)] two energy regions ω <

3 meV and 12 meV < ~ω < 16 meV can be identified
with large group velocities. At low temperatures, the
contribution to κL stems mainly from the region ω <
2 meV [Fig. 6 (b)]. Yet already at about 300 K almost
half of the heat transport is accomplished by modes with
frequencies above 3 meV. This behavior is the result of
two concurrent processes: (i) from about 300 K on all
modes are occupied and the mode specific heat capacity
Eq. (5) saturates; (ii) the lifetimes of the acoustic modes
in the lower energy window drop substantially whereas
the lifetimes of the higher lying modes are relatively less
affected [Fig. 6(d)]. Compared to previous studies, which
focused primarily on the low energy region, the present
results thus demonstrate that important contributions
stem from higher energy modes and must be included to
obtain a sound description of the thermal conductivity.

When considering the static IFCs it appears that a
large number of modes is actual either strongly damped
or even overdamped [Fig. 6(c)]. The oscillation period of
these modes is thus comparable to their lifetime. While
at this point a phononic description of these modes in-
evitably reaches its limit, it can be interpreted as the
onset of a hopping (glass-like) transport mode. In the
case of the TDEM IFCs the lifetimes are notably longer,
which reflects the effective (albeit not formal) renormal-
ization of the modes.

Overall, in agreement with previous work the present
calculations demonstrate that weak coupling between
host and low-lying guest (Ba) modes gives rise to avoided
band crossings in the phonon dispersion,19,25 which in
turn cause a dramatic reduction in the group velocities of
almost all modes with frequencies above the lowest guest
mode.19,25 The few dispersed modes above this threshold
are strongly damped and accordingly do not contribute
notably to κl. The very small thermal conductivity is
thus the result of the extremely small Brillouin zone vol-
ume available to propagating phonon modes. It should
also be noted that since the effective mean free path drops
to about 1 nm already at 300 K, further reduction of κl
by e.g., microstructural engineering72 does not appear to
be very promising. It should also be recalled out that in
the temperature range relevant for thermoelectric appli-
cations, the electronic contribution κe is already compa-
rable to if not larger than κl (see Sect. III F).

F. Thermal conductivity: electronic contribution

When conducting experiments only the total ther-
mal conductivity κ is directly accessible. To resolve
each contribution one therefore commonly resorts to the
Wiedemann-Franz law. The Wiedemann-Franz law cou-
ples the electrical conductivity σ to the electronic thermal
conductivity

κe = LσT, (11)

by which the lattice thermal conductivity κl is esti-
mated. Here, L = L0(k2

B/e
2) is the Lorenz number.
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FIG. 7. Electronic contribution κe to the thermal con-
ductivity calculated for the ground state structure as well as
for structures extracted from Monte Carlo simulations20 rep-
resentative of the chemical order at different temperatures.
Data obtained using the Wiedemann-Franz law κe = LσT
are shown by dashed lines, whereas the thermal conductiv-
ity obtained within the framework of Boltzmann transport
theory32,73 is shown by solid lines. Note that below 900 K the
two sets of data deviate by as much as 25%, whereas above ap-
proximately 900 K the BTT data indicates a sharp rise which
is not predicted by the Wiedemann-Franz law.

When resolving experimental data it is common to use
L0 = π2/3 ≈ 3.3, which is obtained for a degenerate elec-
tron gas, or not to specify the value of L0 used. As noted
e.g., in Ref. 74 for a degenerate semiconductor (such as a
typical thermoelectric clathrate) a value of L0 = 2 should
be used. Even then the Wiedemann-Franz law ought to
be considered a low level approximation to the actual
behavior as L0 is not a universal constant.

As the final point in our the analysis of the ther-
mal conductivity in the prototypical inorganic clathrate
Ba8Ga16Ge30 we therefore now consider the electronic
contribution κe (Fig. 7). At low temperatures .
200 K the thus obtained κe agrees rather well with the
Wiedemann-Franz law assuming a degenerate electron
gas (L0 ≈ 3.3), whereas at higher temperatures & 400K
the semiconductor value L0 = 2 yields better agreement.

Above approximately 900 K the κe from Boltzmann
transport theory reveals a sharp rise for some struc-
tural models. In this context one should note that the
integrand in the expression for the electronic thermal
conductivity32,73 Eq. (10) includes a term (εik − µe)2

.
As a result, κe is most sensitive to contributions from
states about kBT above and below the Fermi level µe,
rather than to states in the immediate vicinity of µe,
which dominate in the case of σ. The deviation at higher
temperatures could, therefore, be an indication for short-
comings of the effective lifetime model, which does not
distinguish these states. In any case, the present analy-

sis suggests that the Wiedemann-Franz law should be
applied with caution when trying to discriminate the
electronic and lattice thermal conductivities, and that
a value of L0 corresponding to a degenerate semiconduc-
tor is more appropriate for describing the situation in
inorganic clathrates.

IV. CONCLUSIONS

The very low thermal conductivities observed in in-
organic clathrates are challenging to address both ex-
perimentally and computationally. In the present study,
focusing on Ba8Ga16Ge30, we have undertaken a system-
atic computational analysis of the various mechanisms
and features that contribute to this property.

Firstly, we have addressed the role of the exchange-
correlation functional in describing both structure and
vibrational spectra, from which we concluded that the
vdW-DF-cx method provides a well balanced descrip-
tion of inorganic clathrates. Next by using tempera-
ture dependent interatomic force constants we demon-
strated that phonon-phonon coupling (and thus temper-
ature) must be taken into account in order to accurately
capture the frequencies of the rattler modes, which also
allowed us to predict correctly the experimentally ob-
served temperature dependence of these modes. On the
other hand, the composition dependence of the rattler
mode frequencies was shown to be small.

Based on this level of understanding we then predicted
both the lattice and the electronic thermal conductivity.
For the former we obtained very good agreement with
experiment using temperature dependent IFCs whereas
we observed a pronounced underestimation when using
IFCs representing the static limit. The κl values ob-
tained using different IFCs could be rationalized by con-
sidering the relative Brillouin zone volume of propagat-
ing (heat carrying) modes. Specifically, the underesti-
mation of the rattler modes is associated with the on-
set of avoided crossings at a lower q vector. The analy-
sis furthermore reveals that IFCs obtained in the static
limit yield heavily damped as well as overdamped quasi-
particles, which is suggestive of glass-like transport. Tak-
ing into account phonon-phonon coupling via temper-
ature dependent IFCs (and thus introducing effectively
renormalization) leads to larger lifetimes and more well
defined quasi-particles.

Finally, a comparison of predictions for the electronic
contribution to the thermal conductivity demonstrates
the Wiedemann-Franz law must be applied with more
care when separating experimental thermal conductivity
data as the L0 pre-factor can vary between 2 (degenerate
semi-conductor) and 3.3 (free electron gas) across the
temperature range of interest.

The present results provide a very detailed perspec-
tive on the thermal conductivity in inorganic clathrates.
They also shed light on the application of Boltzmann
transport theory for predicting systems with strongly



10

damped quasi-particles. Here, we emphasize in partic-
ular the importance of taking into account the effect of
phonon-phonon coupling on the vibrational spectrum. In
the present work we restricted ourselves to an effective
description using temperature dependent IFCs. A future
extension of this work could consider a rigorous appli-
cation of self-consistent phonon theory, which requires
taking into account IFCs beyond the third-order.
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