
Structural and thermodynamical
properties of tungsten oxides from
first-principles calculations
Master’s thesis in Applied Physics

CHRISTOPHER LINDERÄLV

Department of Physics
Chalmers University of Technology
Gothenburg, Sweden 2016





Structural and thermodynamical properties of
tungsten oxides from first-principles calculations

CHRISTOPHER LINDERÄLV

Department of Physics
Division of Materials and Surface Theory

Chalmers University of Technology
Gothenburg, Sweden 2016



Structural and thermodynamical properties of tungsten oxides from first-principles
calculations
CHRISTOPHER LINDERÄLV

© CHRISTOPHER LINDERÄLV, 2016.

Supervisor: Paul Erhart, Department of Physics
Examiner: Paul Erhart, Department of Physics

Department of Physics
Division of Materials and Surface Theory
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Crystal structure for ground state WO3.

Typeset in LATEX
Printed by Chalmers reproservice
Gothenburg, Sweden 2016

iii



Structural and thermodynamical properties of tungsten oxides from first-principles
calculations
CHRISTOPHER LINDERÄLV
Department of Physics
Chalmers University of Technology

Abstract

Tungsten as a material has obtained attention because of its prominent role in
fusion reactor design, where it is employed in the divertor region of the first wall.
In case of an accident, the tungsten tiles may be exposed to atmospheric conditions
and high temperatures which would oxidize the material.

Over the years there has been a lot of studies on tungsten oxides, specially WO3,
but not from the perspective of tungsten oxidation. The mechanism of oxidation
is unclear and a sound understanding of which oxides are formed is still lacking.

In this work, first principles calculations have been employed to study the rela-
tive phase stabilities from a mechanical and thermodynamical perspective. Oxida-
tion has been studied using a point defect approach to the formation and migration
energies of oxygen in tungsten and tungsten oxides. Using the same approach, the
role of Y substitutional defects has been studied.

Tungsten trioxide is thermodynamically stable with respect to tungsten dioxide
but is not as dynamically stable as tungsten dioxide. Oxygen interstitials have a
low formation and migration energy in tungsten and several interstitials tend to
pair up to form stable clusters, while interstitials in the oxide phases have higher
formation energies. In the oxide phases the oxygen vacancy is associated with high
formation energies. The difference in phonon frequencies between a pure system
and the Y substitutional system is found to be small.

The main oxide, tungsten trioxide, is predicted to be dynamically unstable
with imaginary phonon frequencies. Therefore, the active components should be
chosen such that the mechanical properties of the formed oxide are enhanced. In
this study the Y substitutional is found to have no stabilizing effect on tungsten
trioxide, however, the full phonon dispersion for the defect system has not been
obtained yet.

Keywords: tungsten, DFT, phonons, point defects, oxidation, fusion
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1 Background
This section begins with a description of the applications of tungsten oxides. After
that, the oxides that this work focuses on are presented. This section then ends
with a brief explanation of concepts that are central in this work such as phonons
and crystal defects.

1.1 Introduction

Constructing modern fusion reactors, engineers are faced with the problem of
constructing a reactor holding a confined plasma of about one hundred million
degrees celsius and extracting energy from it. In the Tokamak design, which is
one of the most common fusion reactor designs, the plasma is confined in an
electromagnetic field in a torus-shaped vacuum vessel. During operation there will
inevitably be some contact with materials because the fusion ash and heat has
to be extracted from the reactor. Heat is mostly extracted as radiation but high
energy particles can also be used to generate electricity.

The estimated operating temperature at the wall in the Tokamak design, which
is the design chosen for the International Thermonuclear Experimental Reactor
(ITER), can reach values of around 2400 K [1]. The high operating temperature
requires a material that can lead away heat sufficiently fast to avoid melting. The
fusion ash and heat in the form of high energy plasma particles is extracted from
the bottom of the reactor via the so called divertor. The torus-shaped vacuum
vessel and the cross-section is shown in Figure 1.1.

Be

W

�1

Figure 1.1: The cross-section of the torus-shaped vacuum vessel with the divertor
illustrated in red in the bottom of the vacuum vessel.
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The plasma facing material (PFM) of the divertor will have to withstand and
lead away a substantial amount of heat and not having a mechanical failure when
exposed to particle radiation from the plasma. In short, the desired material
should have properties including

1. High melting point
2. High thermal conductivity
3. High resistance to particle radiation.

Tungsten is a material that has properties suitable as PFM in the divertor; it has
the highest melting temperature among the metals, high thermal conductivity, low
thermal expansion and also high resistance to particle radiation. Tungsten was
selected as plasma facing material in the divertor in ITER [2] competing against
carbon based materials. The divertor consists of three major parts: the inner and
outer vertical target and the dome, which is the horizontal target. The tungsten
thickness in the dome will be around 6 mm [1] while the tungsten thickness in the
other areas will be considerably smaller [3]. The major part of the first wall in
the vacuum chamber will be covered with Beryllium but some extremely exposed
areas may be coated with tungsten.

ITER is currently under construction, with estimation of completion in 2019.
ITER is not the end of the road and discussions about a demonstration power
plant (DEMO) is underway. In DEMO, the operating conditions would be more
extreme than in ITER and tungsten alone would not be suitable as PFM in the
divertor. Because of this, compound materials based on tungsten are considered as
candidates. Alloying tungsten with chromium could prevent oxidation by the same
mechanism as in stainless steel, when chromium and oxygen form a passive layer
which effectively slows down diffusion of oxygen. Besides chromium, yttrium is
considered as alloying element, which has a stabilizing effect on the oxide formed.
Both for ITER, and DEMO knowledge about thermodynamics and mechanisms of
oxidation of tungsten is of prime importance for structural considerations in case
the reactor is being exposed to oxidizing conditions.

Connected to its role in fusion power plants, tungsten and tungsten based alloys
have applications as radiation shielding material in health care and the nuclear
industry. It has a higher density than lead and many other common radiation
shielding materials making it an efficient shielding material [4]. Due to the high
cost of tungsten as opposed to lead, it is employed where there is limited space for
shielding or in biological systems where lead cannot be used due to its negative
effect on environment and health [5].

Tungsten readily forms oxides when exposed to conditions allowing oxidation,
even at low temperatures and these oxides are interesting for a number of reasons.
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The passive layers that are formed in stainless steel contain Cr2O3 which slows
down oxygen transport through that layer and effectively hinders the formation
of a iron oxygen phase. In stainless steels the chromium concentration is around
10% to obtain a fully passive layer. The effect of adding so much chromium to
tungsten would have the adverse effect that the material would not be as resis-
tant to sputtering by neutrons because of the relatively low mass of chromium.
Therefore, it is desirable to design the tungsten material such that it becomes self
passivating in that the tungsten oxide formed is a passive layer. Because of the
operating conditions in a fusion reactor there will be transmutation of tungsten
atoms to other elements. For safety reasons, the oxide that is formed should be
dynamically stable so that radioactive elements are not spread in the atmosphere
if the reactor were to be exposed to such conditions. That the oxide is dynam-
ically unstable at a macroscopic scale is relatively common since the formation
of an metal oxygen phase is usually accompanied by an increase in volume. The
stability on a macroscopic level is a problem that is not addressed in this work.
Tungsten oxides is naturally getting attention because the prominent role of W in
fusion reactor design.

Tungsten oxides find use in other fields as well. WO3 is an electrochromic
material, which essentially means that the optical properties of the material can
be reversibly altered by applying an electric field. This is utilized for example in
smart windows that can control the amount of light that passes through.

Furthermore, in the last couple of decades gas sensors based on thin films of
WO3 has been developed [6, 7, 8] and is still an active field of research. Clearly,
tungsten trioxide is an technologically important material, especially in energy
related areas.

1.1.1 Aim and purpose

This work aims to clarify the structural properties of tungsten oxides and especially
tungsten trioxide, since it is anticipated to be the most important oxide. From
experimental and computational studies there are conflicting reports to as what
crystal structures of tungsten trioxide that actually exists. In order to be able to
assess the relative phase stability between the different phases of tungsten trioxide,
the thermodynamical properties of tungsten trioxides is studied. This work also
aims to provide an understanding about the oxidation process in tungsten and
tungsten oxides from a point defect perspective. In order to study oxygen trans-
port in tungsten oxides, it is necessary to first understand the thermodynamics of
defects since defects are intimately connected to diffusion of atoms in a solid. The
defect structure of material is generally very complex, specially when the defect
concentration is high. The defect-defect interaction is beyond the scope of this
work so the thermodynamics properties will strictly apply in the dilute limit of
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concentration of defects. In this region formation and migration energies of defects
can be obtained from thermodynamics of point defects.

Furthermore, this work aims to elucidate the role of extrinsic substitutional
defects, such as yttrium on the dynamical stability of tungsten trioxide.

1.2 Background

1.2.1 Tungsten oxides

The crystal structure of W is body centered cubic (bcc) with lattice parameter
3.16 Å [9]. The electronic configuration of tungsten is [Xe]5d46s2, such that the
most common oxidation state is +6. During oxidation, several different oxides
forms, and the interesting concentration region, where most oxides of the form
WOx have been reported is in the interval 2 ≤ x ≤ 3. The low oxygen concentra-
tion oxide tungsten(IV) oxide (WO2) has a monoclinic structure with space group
P21/c but also an orthorhombic structure that is stable at high temperatures and
high pressure. Between WO2 and WO3, the stoichiometric oxides W18O49, W24O68,
WnO3n−2 and finally WnO3n−1 have been reported.

Tungsten(VI) oxide (WO3), which is the more common oxide, is a polymorphic
material with at least 9 different phases depending on temperature and synthesis
path. In Figure 1.2 the crystal structure for monoclinic WO3 with space group Pc
is shown. The crystal structure consists of a network of WO6-octahedra, in fact
all phases of WO3 has this general octahedra arrangement. In WO3, the phases
differ with respect to tilting pattern and deformation of the octahedron as well as
the location of the center tungsten atoms in the octahedra. The crystal structure
of monoclinic WO2 with space group P21/c also consists of WO6-octahedra (Fig-
ure 1.3) but with the difference that the octahedra in WO2 are edge-shared while
they are corner-shared in WO3. The symmetry and temperature range for each of
the phases of WO3 is found in Table 1.1.

When dealing with crystals, symmetry is an invaluable tool for characterizing
structures and each crystal can be assigned to a space group which takes into
account the translational symmetry of the Bravais lattice as well as the point sym-
metry group of the atoms in the crystal. There exist 230 space groups. Connected
to symmetry is the notion of Wyckoff sites, which is a way of specifying where in
a crystal the atoms sit.

While different phases have different symmetry, they share some key features
too which allows one to study the low-temperature phases as proxies for the high-
temperature phases. The reason for studying low-temperature phases instead of
high-temperature phases is that the high-temperature phases are stabilized by
temperature effects, which are not present in the theoretical framework that has
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been used.

Figure 1.2: Octahedron arrangement
in monoclinic WO3 with space group
Pc. The unit cell consists of 16 atoms
and in the figure a 128 atom supercell
is shown.

Figure 1.3: Octahedron arrangement
for 96 atom monoclinic WO2 super-
cell with space group P21/c. The
unit cell consists of 12 atoms.

The general WO3 structure can be seen as derivatives of a perovskite structure
ABO3 with a missing A atom, this can be seen in Figure 1.2. For perovskites there
is a criterion based on the ionic radius of the involved atoms called the Goldsmith
tolerance factor, which gives an indication of how the perovskite structure will
look like. The Goldsmith tolerance factor is calculated as

t =
rO√

2(rW + rO)
. (1.1)

A value of the tolerance factor between 0.8 and 1.0 indicates that the involved
atoms will form a cubic perovskite structure. The value of the tolerance factor for
WO3 is 0.3, which indicates that the cubic structure is not likely to be formed and
experimentally the ideal cubic structure has never been observed.
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Table 1.1: WO3 structures. The acronym ITC refer to the International Table of
Crystallography [10].

Space group ITC no. Structure T [K] Ref.

Pc 7 Monoclinic < 220 [11]
P 1̄ 2 Triclinic < 290 [12]
P21/n 14 Monoclinic < 740 [13]
P21/c 14 Monoclinic 300 [14]
Pcnb 60 Orthorhombic < 950 [15]
Pmnb 62 Orthorhombic < 950 [16]
P 4̄21m 113 Tetragonal > 950 [17]
P4/nmm 129 Tetragonal > 950 [18]
P4/ncc 130 Tetragonal > 950 [15]
P6/mmm 191 Hexagonal 300 [19]
P63/mcm 193 Hexagonal 300 [20]

1.2.2 Lattice vibrations

Phonons are quantizations of lattice vibrations in solids and represented by normal
modes. The structure of lattice vibrations in a general solid can be extremely
complex because of the nature of the interaction between ions in a solid. Many
concepts in solid state physics are readily described using the phonon concept,
some of these include: thermal conduction and heat capacity, dynamical stability
and elastic properties.

Phonons are also important for semiconductors in the process of recombination
of electrons and holes. Furthermore, acoustic phonons close to Brillouin zone
center are related to the elastic response of the material. Phonons provide a
simple stability criterion for a crystal structure, namely that all frequencies in the
Brillouin zone must be positive.

1.2.3 Defects

Introducing lattice imperfections such as point defects in an otherwise perfect
lattice will increase the configurational entropy of the system which is given by
Boltzmann formula: S = k lnW , where W is a measure of the number of possible
microstates resulting from the introduction of a defect. Because of this, crystals
contain imperfections to some extent except at 0 K. The perfect lattice is in most
cases the departing point for many models in solid state theory, but lattice defects
are important since in many cases the thermal, electronic and elastic properties
changes with the defect concentration. For example, in modern semiconductor
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science, defects are introduced to change the charge carrier concentration, thus,
alter the conducting properties of the material. Defects come in many types, zero-
dimensional point defects to complicated multidimensional defects, such as cracks.
Point defects, which are the type of defect that is considered in this work include
self-interstitials, interstitials, substitutional atoms and vacancies. These types of
defects are schematically illustrated in Figure 1.4. The interstitial, self-interstitial
and vacancy defects in tungsten, and tungsten oxides influences the transport of
oxygen in these materials. Therefore, it is very important to be able to characterize
equilibrium concentrations of these defects, as well as the ability for the defect to
move in the material.

Figure 1.4: Different defects: a) interstitial, b) substitutional c) vacancy and d)
split interstitial.

The most central property for describing the thermodynamics of a defect is the
Gibbs free energy of formation

∆Gf = ∆Ef + p∆Vf − T∆Sf , (1.2)

however, in solids the pressure-volume term is usually small compared to the in-
ternal energy of the system and therefore neglected.

The formation energy ∆Ef describes the energy that has to be supplied in order
to create a defect in a perfect lattice. The formation free energy is related to the
concentration in the dilute limit for a system in thermal equilibrium. This relation
is usually expressed as

c = c0 exp

(
− ∆Gf

kbT

)
, (1.3)

where c0 is the concentration of available defect sites for this particular type of
defect.

In tungsten trioxide, and in semiconductors in general, the presence of a band
gap permits the formation of charged defects. This can be explained with tungsten
trioxide as an example. Tungsten trioxide is an ionic material where tungsten has
a formal charge state of +6 and oxygen −2. The oxygen atom has a formal charge
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state of −2 since two electrons from the tungsten 5d orbitals are located in the
2p states of oxygen. To form a neutral vacancy, the two electrons from the 2p
states of oxygen need to be transferred back to the tungsten 5d orbital before
the oxygen atom is removed. Because of the band gap, it requires a substantial
amount of energy to make this electron transaction and it could be energetically
more favorable to remove the oxygen from the material together with the two
surplus electrons.

1.2.3.1 Atomic transport in solids

Point defects can migrate in the material, which is connected to the oxidation
of the material. Diffusion of atoms in solids are governed by microscopic jump
processes.

The formation of oxides is governed by diffusion since the formation of tungsten
oxide phases is dependent on oxygen concentration. In tungsten, oxygen atoms
can be transported via interstitial diffusion or substitutional diffusion mediated by
vacancies. In tungsten oxide, oxygen transport may occur by either interstitial or
vacancy migration. Diffusion is governed by Ficks law:

∂tc = ∇(D∇c) (1.4)

where D is the diffusion coefficient, which can often be described by the Arrhenius
form:

D = D0 exp

(
− Ea
kbT

)
. (1.5)

D0 is related to the attempt frequency and lattice geometry, and the exponential
term governs the probability of success. The pre factor D0 in equation (1.5) can
be obtained by calculating the vibrational frequencies of the system [21]. The
activation energy Ea is a measure of the energy barrier that needs to be climbed
and for atomistic motion in solids it is usually referred to migration energy and is
on the order of 0.1-1 eV. The diffusion coefficient D is related to the mean squared
displacement (MSD)

MSD = 6Dt (1.6)

where t is the time. The mean squared displacement is a measure of how much
the particle deviates from the average position and the square root of the MSD
gives the average displacement distance at a specific time. The relation between
the diffusion coefficient and the MSD is based on a single atom random walk.
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2 Method
The calculations in this work have been performed within density functional theory
and in this section a brief description of the method and some of the relevant
limitations and problems are presented.

2.1 Density functional theory

Density functional theory (DFT) is essentially a method for solving the time in-
dependent Schrödinger equation. Is is based on the ground state electron density
instead of the wave functions, which many other methods use such as Hartree-Fock
and Green’s function methods. DFT effectively reduces the number of indepen-
dent variables of the system under consideration, which reduces the computational
cost significantly. DFT, like most methods, departs from the many electron sta-
tionary Schrödinger equation ĤΨ = EΨ written in atomic units within the Born-
Oppenheimer approximation, where Ĥ is

Ĥ = −1

2

∑
i

∇2
i +

∑
i,l

Z

|ri − rl|
+

1

2

∑
i 6=j

1

|ri − rj|
, (2.1)

where the index i and j runs over the electrons and l runs over the ions. The first
term is the kinetic energy operator T̂ and the second is the electrostatic potential
due to ions and is called the external potential operator: V̂ext. The last term in
equation (2.1) couples electrons to each other, effectively making this a many body
problem, which is very difficult to solve exactly.

2.1.1 Hohenberg-Kohn theorems

In 1964 Hohenberg and Kohn published a seminal paper [22] which concludes
that there exists a one to one correspondence between ground state wave function
and ground state electron density. To be more specific the first Hohenberg-Kohn
theorem states that the ground state energy (or external potential) is determined
uniquely by the electron density.

The first Hohenberg-Kohn theorem is not constructive in the sense that it does
not offer a method to find the electron density. The second Hohenberg-Kohn
theorem asserts that E[n0] ≤ E[n1] whenever n1 is not the ground state electron
density, and since

E[n] = T [n] + UH [n] + Vext[n] (2.2)
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the ground state electron density can be found by minimizing the energy functional
in equation (2.2).

2.1.2 Kohn-Sham equations

Kohn and Sham proposed [23] to replace the many body problem as described by
equation (2.2) with an artificial independent electron problem effectively changing
the potential. The Kohn-Sham energy is written as

E[n] = Ts[n] + V [n] + UH [n] + VXC[n]. (2.3)

This is still a many body problem, exact and equivalent to equation (2.1) but
the exchange and correlation energy has been collected in VXC. The exchange en-
ergy comes from the antisymmetry principle for fermions and the correlation from
that the electrons are not independent of each other. By applying the variational
principle the Kohn-Sham equations are obtained [24](

− 1

2
∇2 + Vext(r) + VHartree(r) + VXC(r)− εi

)
ψi(r) = 0. (2.4)

2.1.3 Exchange-correlation functionals

Equation (2.4) is still containing the potential associated with exchange and cor-
relation. The exchange-correlation energy can be approximated with the local
electron density approximation (LDA), where the exchange-correlation potential
is approximated by the potential of a homogenous electron gas of the same density
[25].

This is the simplest approximation and rarely used in modern calculations, it
can, however, be extended to the so called generalized gradient approximation
(GGA), which are the class of functionals mainly used in this work. In GGA
functionals the spatial variation of the electron density is also taken into account,
in a way reminiscent of a Taylor expansion. This makes functionals from the GGA
class more accurate, specially in cases where the electron density vary rapidly [25].
LDA is a local functional and GGA-type functionals are semi-local, in the sense
that the exchange-correlation potential can be written as

VXC =

∫
f(n(r),∇n(r))dr. (2.5)

Functionals from the GGA class comes in different parameterizations and some
of the more well-known are PBE [26], PBEsol[27], which has been utilized in this
work. The PBE functional is probably the most common and PBEsol and is a
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variation of it, optimized for solids. There exists extensions to GGA-type func-
tionals such as meta-GGA functionals such as AM05 [28]. Functionals that are
constructed solely via local quantities cannot describe dispersive interactions, such
as van der Waals (vdW) interaction, and recent developments have resulted in a
vdW class of functionals, which essentially extends semi-local GGA with nonlocal
interactions. van der Waals type functionals have received a lot of attention be-
cause of the new possibilities a fully working description of vdW interaction opens
up. This interaction is important in biochemical and soft materials systems. An
example of a vdW class functional is the vdW-DF-CX functional developed at
Chalmers [29].

It is well known that many exchange-correlation functionals have problems in
describing the band gap in semiconductors and insulators. There is a tendency to
underestimate the band gap. Hartree-Fock, which is a wave function based method
tends to overestimate the band gap and by modifying the exchange-correlation
functional as to include some of the exact exchange energy that is present in
Hartree-Fock so called hybrid functionals are obtained. In this work the hybrid
functional HSE06 [30] has been used.
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3 Computational details
The projector augmented wave (PAW) method as implemented in Vienna ab initio
simulation package [31, 32, 33, 34] (VASP) has been used for all DFT calculations.
Throughout the whole work PAW-potentials with s2p4 electrons in oxygen and
6s5d electrons in tungsten were used. For yttrium the 4s4p5s4d electrons were
treated as valence electrons.

3.1 Relaxation

The experimental crystal structures as found in Table 1.1 in the background section
has been used as the departing point for ionic relaxation. For metallic materials
a Methfessel-Paxton scheme with smearing parameter 0.2 eV was used and for
the band gap materials a Gaussian smearing with the same smearing parameter
was used. For the band gap materials no energy difference was observed while
varying the smearing parameter while for metals a slight energy difference could
be observed. For computational and convergence reasons the parameter was set
to 0.2 eV.

The cohesive energy of oxygen was obtained by making a Γ-point spin polarized
calculation of an oxygen dimer molecule. The vdW-DF-CX functional does not
have a rigorous theoretical implementation of spin polarization in VASP, however,
there is a less rigorous implementation that gives very similar results as PBE for
spin polarization compared with non spin polarized calculations.

For most relaxation computations, all internal parameters (ionic position, shape
and volume of cell) were allowed to relax. For the oxygen dimer calculation the
volume of the cell was held constant to simulate an oxygen dimer and not a bulk
structure. Carrying out volume relaxation, the basis set changes with size of the
unit cell since specifying the plane wave cutoff energy effectively singles out the
plane waves with wave vector k satisfying

|k −G|2

2me

< Ecutoff. (3.1)

Therefore, convergence was confirmed by restarting the calculations until no ion
position changed. For the structural calculations, three different GGA-type exchange-
correlation functionals was used: PBE [26], PBEsol [27], vdW-DF-CX [29] and one
meta-GGA: AM05 [28]. For some structures the HSE06 functional [30] was also
used. The reason for using several exchange-correlation functionals was to study
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which functionals that described the system in the most accurate way. The struc-
tures were allowed to relax until the maximal force on any ion in the system was
lower than 5 meV/Å.
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3.2 Phonons

There are various ways to calculate the vibrational properties of a solid, such
as molecular dynamics and correlation function approaches, linear response and
purely force based calculations based on supercells, which is the method used in
this work.

The method is implemented in the phonopy software [35] and is described as
follows with the notation used in phonopy. The method departs from the series ex-
pansion of the potential energy of the atoms to the second order which corresponds
to the harmonic approximation. The first order term is zero by the assumption
that the system is at equilibrium. Potential energy and force are related as

Φαβ(jl, j′l′) =
∂2E

∂rα(jl)∂rβ(j′l′)
= −∂Fβ(j′l′)

∂rα(jl)
, (3.2)

where Φαβ is the second order force constant, α and β are Cartesian directions and
j, j′, l, l′ are particle and unit cell indeces. The force constant matrix is calculated
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by a finite difference of the derivative as

Φαβ ≈
∆Fβ(j′l′)

∆rα(jl)
, (3.3)

where the ∆Fβ are calculated by DFT after displacing the atoms by a small dis-
tance. The standard way of obtaining the lattice dynamics from the force constants
is to form the so called dynamical matrix with elements

Dαβ(jj′, q) =
1

√
mjmj′

∑
l′

Φαβ(j0, j′l′) exp(iq · [r(j′l′)− r(j0)]). (3.4)

This matrix can be used to formulate an eigenvalue problem

D(q)eq = ω2
qeq, (3.5)

where ωq is the vibrational frequency and eq is the eigenvector of displacements of
the normal mode. For each q there is a set of eigenvalues ω2

q that makes up the
phonon dispersion relation ω(q). To calculate the phonon frequencies at the zone
center, only the unit cell is needed, while in order to resolve zone boundary modes
a supercell consisting of at least two unit cells in that direction is needed. The
fact that WO3 generally possesses large unit cells and low symmetry sets limits to
what calculations can be performed with a reasonable cost, so the full dispersion
was not studied for all structures. The phonon dispersion has to be accurately
calculated in order to avoid imaginary frequencies.

In Appendix B, the result of a convergence study for different parameter set-
tings can be found. From this, the main conclusion is to avoid using real space
projectors. Furthermore, the basis set should be kept as big as possible. The
energy convergence criterion in the self consistent loop on the other hand is having
little effect below 10−4 eV, except for requiring substantially more computation
time.

3.3 Defects

When calculating defect formation energies, the ideal system is modified to host
one or more defects of the types described in Section 1.2.3. In order to maintain a
low defect concentration and small image interaction, supercells are used. In the
supercell formalism the formation energy of a point defect in a material is given
by

∆Hf = Edef − Eideal −
∑
i

niµi + qεV BM + q∆µe + qValign + Ecorr, (3.6)
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where Edef is the defect host system, Eref is the ideal host. Ecorr represents the
correction for periodic image interaction. The µi is the chemical potential of species
i and is used to model the conditions for defect formation. The sign of ni is positive
if species i is added, and vice versa. In a band gap material the term εV BM + µe
is the chemical potential of electrons.

3.3.1 Energy corrections

Calculating formation energy for charge neutral defects, the main consideration to
get accurate result is to use large enough supercell so that the defect interaction by
local perturbations in the electron density vanish. When the defects are charged,
long range Coulomb interactions which generally do not decay rapidly, become
important. The following main difficulties arise when considering charged defects:

1. Image charge interactions.
2. Different reference energies between ideal and defect system.
3. Electron chemical potential depends on band gap which is poorly described

within DFT.

Below the approaches to solve the problems are described.

3.3.1.1 Image charge correction

Because of the relatively large values of entries in the dielectric tensor (seen in
Appendix C) for tungsten trioxide the image charge interaction is anticipated to
be strongly screened. The Coulomb interaction scale quadratically with the charge
state, which means that even relatively small values for the image charge correction
may provide a significant contribution to the formation energy of a defect.

The interaction energy between two charges therefore rapidly decreases with
distance, but since small values for the image charge interaction may still play a
significant role for formation energies for defects with large charge states correc-
tions are necessary. Makov and Payne proposed [36] an image charge correction
based on a multipole expansion of the defect charge density

EMP =
q2α

2εL
− 2πqQ

3εΩ
, (3.7)

where α is the Mandelung constant, ε is the dielectric tensor, Q is the quadrupole
moment of the charge and Ω is the supercell volume. Lany and Zunger later
proposed [37] a simplified expression for the total correction, expressed in terms
of the first term on the RHS in equation (3.7)

Ecorr = (1 + f(1− ε−1)) q
2α

2εL
, (3.8)
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where f is a form factor which has been calculated for cubic systems and has a
value close to −1/3. The smallest value in the diagonal elements of the dielectric
tensor is on the order of ∼ 10 which makes the form factor multiplied by the
inverse of the dielectric constant small and as an approximation the simplified
form of equation (3.7) is used to correct for image charge interactions.

The dielectric function is calculated with density functional perturbation theory,
which is implemented in VASP. The correction term is then calculated with the
General Utility Lattice Program (GULP) [38].

The unit cells in ground state WO2 and WO3 are non-cubic but since defects
require large defect separations in terms of periodic images, supercells that are as
cubic as possible are constructed and the shape factor for the cubic system can
then be used.

To obtain as cubic supercell as possible a combinatorial method to minimize the
non-cubic effects has been developed [39]. The method involves the construction
of an integer matrix P that multiplies the cell metric h of the non-cubic system.
From Ph the volume of the cell: Ω is easily obtained, and the corresponding cubic
cell metric is found as Ω−1/3I, where I is the identity matrix. By sweeping over
all such matrices P and minimizing the difference between non-cubic cell metric
and cubic cell metric, the most cubic choice of P for each volume is found, which
can be put in correspondence with the number of atoms in the supercell. The
result is presented for tungsten oxides in Figure 3.3. Care has been taken to make
calculations on as cubic supercells as possible.
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3.3.1.2 Potential alignment

The charge distribution within a supercell generates a electrostatic potential of the
form

U(r) =

∫
n(r̃)

|r − r̃|
dr̃. (3.9)

U is called the Hartree potential and conventions of DFT codes is to set the average
of U to zero. When a defect is introduced in the system, it will perturb the local
electron density but the bulk properties should, sufficiently far from the defect
center, not be affected. The consequence of setting the average of U to zero is that
bulk-like regions in defect and ideal supercell, which should have similar properties,
differ in the average electrostatic potential.

Because of this, the Hartree potential has to be aligned between ideal and defect
systems in order to be able to compare energies, this is the qValign term in equation
3.6. Valign is calculated by considering the average electrostatic potential at each
ion in the supercell for both ideal and neutral defect systems and calculate the
difference at the ion furthest away from the defect center.

The difference in average electrostatic energy varies, as can be seen for a typical
case in Figure 3.4, therefore, the potential alignment has been calculated by aver-
aging over the 10 values of atoms furthest from the defect center to better capture
the asymptotic behavior. In Figure 3.4 there is a deviation from the expected
behavior between 5 Å and 6 Å for some oxygen atoms, this behavior is not present
in a PBE calculation of the average electrostatic potential.
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Figure 3.4: The difference in average electrostatic potential between ideal and
defect supercell for substitutional Y in 96 atom supercell of WO3 with space group
P21/c calculated with the vdW-DF-CX functional.
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3.3.2 Chemical potential

In equation (3.6) the expression niµi has to be evaluated, where µi = ∂G
∂ni

is the
chemical potential of atom species i. The chemical potential can be broken into
two terms

µi = µ◦i + ∆µi, (3.10)

where µi is the chemical potential of atom species i in its most stable form, ∆µi is
related to the reference state of the atom species i. In the case of compounds which
we will be interested in, the formation energy and change in chemical potential
are related according to

Hf (AmBn) = m∆µA + n∆µB (3.11)

and by specifying the conditions, at which the formation of the compound takes
place, the limiting conditions are either A-rich or B-rich. In the A-rich limit the
formation energy of the compound is not coupled to the change in energy with
respect to the number of A atoms, and hence Hf (AmBn) = n∆µB. In the same
way, in the B-rich limit the heat of formation and chemical potentials is related
as Hf (AmBn) = m∆µA. Accordingly, the change in chemical potential can be
determined with respect to different states. The standard chemical potential of
the compound in the elemental form is µ◦i , and is taken as the opposite of the
cohesive energy of the element. Specifically in the case of oxygen, there is a wide
variety in the literature on how to treat µi for oxygen. Some studies refer to the
solid form, while others refer to it in dimer form and some use experimental values.
In this work, the energy has been calculated as half the oxygen dimer energy.

Furthermore, there are thermodynamical boundary conditions that needs to be
taken into consideration, which are formulated in equation (3.12) and illustrated
in Figure 3.5.

∆µW + 3∆µO ≤ ∆Hf (WO3)

∆µW + 2∆µO ≤ ∆Hf (WO2)
(3.12)
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3.3.3 Defect clustering

The strength of defect-defect interactions can be expressed in terms of the binding
energy, which for example for oxygen vacancies is defined as

∆EO-O = ∆Ef (2VO)− 2∆Ef (VO) = Edef(2VO) + Eid − 2Edef(VO). (3.13)

3.3.4 Yttrium defects

Yttria (Y2O3) is used to form so called yttria stabilized zirconia (YSZ) by sub-
stituting a Zr+4 ion with a Y+3 ion to form a charged substitutional defect. This
charge has to be compensated for in some way which is usually accompanied by
the formation of defects.

Yttria has a stabilizing effect on ZrO2 in terms of mechanical strength and
crystal structure. Because of this, the substitutional formation of Y from yttria
is studied in order to determine wether the dynamical stability of WO3 can be
enhanced by a similar mechanism. The formation energy for the yttrium substi-
tutional defect is

Ef =Edef − Eideal + q(εVBM + ∆µe + Valign)− EHCP
Y

− 1

2
∆Hf (Y2O3) + EBCC

W + ∆Hf (WO3) +
2

3
EMP,

(3.14)

where the chemical potential for Y in the oxygen rich limit is

µY = EHCP
Y +

1

2
∆Hf (Y2O3). (3.15)

In this expression, the cohesive energy for Y is calculated in the most stable hexag-
onal close packed structure.
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4 Tungsten
In this section properties for tungsten are reported. These properties are also
important for calculation of the formation energies of tungsten oxides. Formation
and migration energies are calculated, which are of interest to understanding the
oxidation process in tungsten.

4.1 Structure

In Table 4.1 cohesive energies and lattice parameters are compiled for differ-
ent exchange-correlation functionals. Clearly, vdW-DF-CX performs better when
comparing lattice parameter with experimental values but the cohesive energy is
better described with PBE and PBEsol. The lattice parameter described by PBE
is more accurate than the one described with PBEsol while the cohesive energy
calculated with PBEsol is slightly more in agreement with the experimental value
than the cohesive energy for calculated with PBE.

Table 4.1: Total energy for W in bcc structure, atomic energy for W, cohesive
energy for bcc W and lattice parameter for different exchange-correlation func-
tionals. Experimental cohesive energy is extrapolated to 0 K and atmospheric
pressure while the experimental lattice parameter is measured at room tempera-
ture.

Ebcc
tot [eV] Eatom [eV] Ecoh [eV] a [Å]

vdW-DF-CX −11.25 −1.85 −9.40 3.154
PBE −13.02 −4.54 −8.48 3.172
PBEsol −13.88 −4.61 −9.27 3.145
AM05 −13.66 −2.55 −11.11 3.138

Exp. [9] −8.9 3.16
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4.2 Defects

4.2.1 Individual defects

Table 4.2: Defect formation energies in tungsten from a 128 atom supercell. The
chemical potential of oxygen is 1/2E[O2] and the chemical potential of W is total
energy of one W atom in bcc.

This work Other calculation
vdW-DF-CX PBE

VW 4.26 3.24 3.27 [40]
Oi 0.20 0.24 −1.73 [41]

The formation energy of the tungsten vacancy calculated with vdW-DF-CX is
higher than the PBE value of 3.27 eV, which agrees well with values found in
[40]. The vdW-DF-CX value, however, is a bit higher than the experimental value
of 3.60±0.2 eV [42]. Oxygen impurities in tungsten are likely to be in the form
of interstitials because of the relative big difference in size between tungsten and
oxygen atoms. Therefore, calculations of oxygen substitutional defects were omit-
ted. Tungsten vacancies might create environments suitable for oxygen trapping
by opening up space in the structure.

The formation energy for an oxygen interstitial in the tetrahedal interstitial site
(TIS) is 0.20 eV, which means that oxygen interstitials are rare at low tempera-
tures. Regarding the interstitial formation energy there is a significant discrep-
ancy, both in magnitude and sign compared to other calculations with PW91 [41],
a functional that has not been considered in this work. The vdW-DF-CX and PBE
values for the oxygen interstitial formation energy calculated in this work are quite
similar. It should be noted that the Oi formation energies in Table 4.2 has been
calculated in the O-rich limit, with µO = 1

2
Etot(O2). Oxygen gas serves as an ideal

reservoir for oxygen but it is probably not the most correct reference state since it
is possible that the oxygen reservoir is WO2. This situation is illustrated in Fig-
ure 3.5. The formation energy of an oxygen interstitial rises to 3.49 eV with WO2

in space group P21/c as the oxygen reservoir. Tungsten does not form suboxides
(oxides with very low oxygen concentration) and the large formation energy of an
oxygen interstitial may be a manifest of this property. With the formation energy,
the solubility in the dilute limit can be estimated by equation (1.3) at a specific
temperature. The concentration of oxygen interstitials at room temperature and
WO2 as the oxygen reservoir is 8.88 × 10−36 interstitials/cm3, which means that
it is an extremely low probability to find oxygen interstitials in tungsten. If the
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oxygen reservoir is oxygen gas, then the concentration of oxygen interstitials at
room temperature is 7.25 × 1016 interstitials/cm3. The tungsten vacancies were
calculated with µW = EBCC

W .
The TIS is located on a[1

2
1
4
0] equivalent positions, and some of the positions

can be seen in Figure 4.1. The TIS is energetically favorable over the octahedral
interstitial site (OIS), which is located halfway between site 1 and 3 in Figure 4.1.
The difference in energy between TIS and OIS is approximately 0.30 eV, which can
be seen in Figure 4.2, and the barrier heights are consistent with results in [41].
Compared with kBT at room temperature, which is around 0.025 eV, migration of
oxygen interstitial requires relatively high temperatures to be frequent.

Figure 4.1: Tetrahedal interstitial
positions for oxygen in tungsten.

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0

E
n

e
rg

y
 [
e
V

]

Reaction coordinate

1 to 2
1 to 3

Figure 4.2: Migration energy for oxy-
gen interstitial in tungsten.

The prefactor D0 in equation (1.5) can be estimated as ν0α2, where νo is an
effective frequency of the system which is assumed to be 1 THz and α is the length
between interstitial sites. The estimated diffusion coefficient for interstitial oxygen
diffusion in tungsten at room temperature is then 1.39× 10−6 cm2/s. The square
root of the MSD is shown in Figure 4.3 for a range of temperatures. The range
of temperatures is expected to cover the operating temperature at the wall, which
is estimated to fall in the range of 800 K to 1500 K depending on location [1]. In
some parts of the fusion reactor, a tungsten coating with a thickness of 10-20 µm
will be used [3]. The high MSD at elevated temperatures suggests that oxygen will
migrate though the tungsten coating very rapidly. The bulk W divertor is almost
6 mm thick [1], which means that most of the divertor would be unaffected by the
oxygen atmosphere.
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4.2.2 Defect clustering

The interaction of was investigated as a function of the oxygen distance has been
conducted, with the result presented in Figure 4.4. It is apparent that oxygen are
attached to each other. The resulting defect cluster are likely to play a role in the
formation of oxide nuclei.
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Figure 4.4: Oxygen-oxygen interaction in tungsten.

The shortest O-O distance in W is 2.20 Å corresponding to an interaction
energy of close to −1.00 eV. The bond length in the oxygen dimer calculated with
vdW-DF-CX is 1.22 Å, which means that it is unlikely that the large interaction
energy is a result of pure oxygen-oxygen bond formation. The negative binding
energy, at least partly, is a result of elastic effects. It is possible to construct larger
oxygen clusters by adding more oxygen atoms close to each other. This is shown
in Figures 4.5-4.7 with the corresponding charge density in Figure 4.8-4.10. After
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relaxation, the oxygen configuration is planar, all oxygen sits in the same plane
instead of adopting a 3-dimensional configuration.

Figure 4.5: 2 inter-
stitials in tungsten.

Figure 4.6: 3 inter-
stitials in tungsten.

Figure 4.7: 4 inter-
stitials in tungsten.

Figure 4.8: 2 inter-
stitials in tungsten.

Figure 4.9: 3 inter-
stitials in tungsten.

Figure 4.10: 4 inter-
stitials in tungsten.

The effect of placing two oxygen interstitials at a short distance from each other
is that the charge density of the adjacent tungsten atom is rearranged. There is
a charge density increase consistent with a covalent bond formation between the
adjacent tungsten atom and the two tungsten atoms located closest to it. The
charge density rearrangement that is present for the two oxygen atoms located
close to each other is not present when the distance between the oxygen atoms is
getting longer.
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5 Tungsten dioxide
This section begins with results concerning structural and vibrational properties.
After which the electronic band structures are presented. Initial investigations of
the defect properties are presented for the monoclinic structure. The last part
of this section contains the result obtained from calculations on yttrium doped
tungsten dioxide.

5.1 Structure

The monoclinic WO2 is the more common structure and the structure is described
in Figure 5.1. The unit cell for the monoclinic structure consists of 12 atoms, but
only two of the eight oxygen are unique and all tungsten sites are equivalent. The
blue plane is a mirror symmetry plane. The yellow plane contains oxygen atoms
located in one unique position, another set of sites of the same unique oxygen
positions is located parallel to the yellow plane, but displaced along the intersection
of the blue and yellow plane. The general arrangement of the oxygen sites in
monoclinic WO2 can be interpreted as two atom thick-layers placed after each other
in a repetitive manner. Tungsten-oxygen distances for both the monoclinic and
orthorhombic structure can be found in Table 5.4. The tungsten dioxide crystal
structures are well described within DFT. The lattice parameters are compiled
in Table 5.1 for monoclinic WO2 in space group P21/c and in Table 5.2 for the
orthorhombic structure in space group Pnma. vdW-DF-CX describes the lattice
parameters and angles in both structures well compared with experimental data.
The difference between the different functionals is generally small. PBEsol and
AM05 describes very similar parameters and angles for both systems while PBE
overestimates the lattice parameters and angles. PBE predicts the angle in the
monoclinic WO2 to be around 5◦ off from experimental data, which in contrast with
the other functionals is a large error. The cohesive energies calculated with the
different exchange-correlation functionals are compiled in Table 5.3. All functionals
predicts a more negative cohesive energy for the orthorhombic structure than for
the monoclinic structure.

25



Figure 5.1: Crystal structure for monoclinic WO2 with space group P21/c. The
yellow plane contains oxygen sites located on Wyckoff 4e sites.

Table 5.1: Structural properties for monoclinic WO2 with space group P21/c cal-
culated with different exchange-correlation functionals. The unit cell consists of 12
atoms where the oxygen atoms occupy two different Wyckoff 4e sites and the tung-
sten atoms occupy Wyckoff 4e sites. The experiment for P21/c has been carried
out in room temperature.

a [Å] b [Å] c [Å] α [◦] β [◦] γ [◦]

vdW-DF-CX 5.550 4.918 5.675 90 120.472 90
PBE 5.583 4.943 5.711 90 125.801 90
PBEsol 5.527 4.905 5.662 90 120.370 90
AM05 5.520 4.904 5.660 90 120.407 90

Exp. [43] 5.577 4.899 5.664 90 120.678 90
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Table 5.2: Structural properties and bond lengths for orthorhombic WO2 with
space group Pnma calculated with different exchange-correlation functionals. The
unit cell has 36 atoms and there are 4 unique oxygen sites, two of which are Wyckoff
8d sites and two Wyckoff 4c sites. The tungsten atoms occupy the Wyckoff 8d and
4d sites. The experiment for Pnma was carried out at 1120 K and 80 kbar.

a [Å] b [Å] c [Å] α [◦] β [◦] γ [◦]

vdW-DF-CX 9.702 8.447 4.769 90 90 90
PBE 9.748 8.488 4.841 90 90 90
PBEsol 9.666 8.419 4.776 90 90 90
AM05 9.651 8.407 4.792 90 90 90

Exp. [44] 9.716 8.438 4.756 90 90 90
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Table 5.3: Cohesive energies in eV/f.u for both phases of WO2 calculated with
different exchange-correlation functionals.

Space group vdW-DF-CX PBE PBEsol
P21/c −24.802 −21.012 −22.459
Pnma −24.831 −21.018 −22.476
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Table 5.4: W-O bond lengths in WO2-structures in Å.

P21/c Pnma

Direction W 4e Direction W 8d W 4c

〈1̄11̄〉 2.00 〈11̄1〉 2.04 2.01
〈111̄〉 2.08 〈101̄〉 2.11 2.06
〈011〉 2.00 〈1̄11̄〉 2.01 2.04
〈01̄1̄〉 1.97 〈1̄01〉 2.06 2.11
〈1̄1̄0〉 2.01 〈111〉 2.04 2.01
〈11̄1〉 2.08 〈1̄1̄1̄〉 2.01 2.04

The smallest W-W distance is 3.08 Å in monoclinic WO2 in space group P21/c
while the smallest distance in the orthorhombic structure is 2.57 Å. The formation
energy calculated with vdW-DF-CX of WO2 in space group P21/c is −6.19 eV per
formula unit to be compared with the experimental value of −6.11 eV per formula
unit [45]. The formation energy for WO2 in space group Pnma is −6.22 eV per
formula unit, also calculated with vdW-DF-CX. The zero point vibrational energy
has not been taken into account when calculating the formation energies.

5.2 Electronic structure

From the electronic band structure (Figure 5.4) it is apparent that WO2 in space
group P21/c is metallic. The orthorhombic structure on the other hand is semi-
conducting with a band gap of 0.57 eV. The band structure of the orthorhombic
structure is shown in Figure 5.5. The nature of the band gap in orthorhombic
WO2 is different than the band gap of WO3 (Section 6.2). In WO3 the band gap
splits oxygen-2p and tungsten-5d states similar to the situation seen in monoclinic
WO2 in the energy gap between −3 eV and −2 eV in Figure 5.6 which is well
below the Fermi energy. In orthorhombic WO2 the valence band and conduction
band consists of similar states (Figure 5.7) which is a characteristic for a so called
Mott insulator. The band gap is usually underestimated within standard DFT
calculations, and therefore, HSE06 has been used to calculate the band gap for
orthorhombic WO2. The HSE06 calculation is performed on the structure that is
obtained from relaxation with vdW-DF-CX. The band gap with HSE06 is 1.46 eV
but the structure is not close to the equilibrium structure for HSE06 since forces
of around 1 eV is present.
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Figure 5.4: The electronic band
structure for monoclinic WO2 in
space group P21/c. The Fermi en-
ergy is indicated with the line at
5.67 eV.
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Figure 5.5: The electronic band
structure for orthorhombic WO2 in
space group Pnma. The blue color
indicate that a band is occupied
while the green color indicate that
the band is unoccupied at 0 K.
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Figure 5.6: The electronic density of
states for monoclinic WO2 in space
group P21/c. The Fermi energy is
located at 0 eV.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

−5 −4 −3 −2 −1  0  1  2  3  4

D
O

S
 [
a
.u

]

Energy [eV]

Total
W−5d
O−2p

Figure 5.7: The electronic density
of states for orthorhombic WO2 in
space group Pnma. The energy is
shifted so that the Fermi energy is
located at 0 eV.

5.3 Phonons

The phonon dispersion relation for monoclinic WO2 is shown in Figure 5.8. The
crystal structure is dynamically stable and the high frequency phonons are mainly
due to rapid oscillations involving the oxygen atoms. Close to the zone center
the acoustic phonons frequencies exhibit a linear dispersion from which the elastic
response can be extracted. The phonon dispersion for orthorhombic WO2 is shown
in Figure 5.9.
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Figure 5.8: The phonon dispersion relation for monoclinic WO2 in space group
P21/c (ITC no. 14).
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Figure 5.9: The phonon dispersion for orthorhombic WO2 in space group Pnma
(ITC no. 62).

5.4 Defects

Only defects in monoclinic WO2 in space group P21/c were considered since it is
the relevant structure from literature.

5.4.1 Vacancies

The vacancy formation energies have been calculated with a relaxation criterion
of 20 meV/Å for forces acting on the ions. A plane wave cutoff energy of 600 eV
has been used, slightly less than what was used for structural relaxation, the
reason being that the defect energies are not as sensitive to numerical precision
as the phonon calculations which was the main reason for using these very tight
convergence criteria. The formation energies of the oxygen vacancies in monoclinic
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WO2 have values of 2.48 eV and 3.04 eV in the W-rich limit and 2.98 eV and 3.54
eV in the O-rich limit. The formation energy of the tungsten vacancy is low with a
formation energy of 1.48 eV in the O-rich limit and 2.46 eV in the W-rich limit. The
results are compiled in Table 5.5. The formation energy for the oxygen vacancies
does not change much between the 12 atom unit cell and the 192 atom supercell,
which indicate that the finite size effect is small in this material.

Table 5.5: Formation energy of vacancy defects in WO2 in space group P21/c in
units of eV. The values are given for different supercell sizes and for limiting cases
of the chemical potential.

W-rich limit O-rich limit
12 96 192 12 96 192

VO(1) 2.49 2.53 2.48 2.99 3.03 2.98
VO(2) 3.00 3.07 3.04 3.50 3.57 3.54

VW 2.38 2.46 1.40 1.48

The values in Table 5.6 were calculated with respect to W and WO3. The
thermodynamical boundary conditions are illustrated in Figure 3.5.

5.4.2 Interstitials

Oxygen interstitial formation energies were calculated for different positions in
WO2. The structure is relatively open, which makes it probable for the lattice to
host interstitial atoms. The interstitial configurations are visualized in Figures 5.10
and 5.11.

The interstitial formation energy can be found in Table 5.6. The self-interstitial
where two oxygen positions sharing a lattice point in a dumbbell configuration
centered at a lattice point is the energetically favorable oxygen addition to the
system. Tungsten, because of the large size of the atom, has not been considered
as an interstitial defect.

Table 5.6: Formation energy of oxygen interstitials in WO2 in space group P21/c
in units of eV. The values have been computed with a supercell consisting of 96
atoms. The position refers to configurations shown in Figures 5.10-5.11

Position W-rich limit O-rich limit
1 4.18 3.68
2 5.74 5.24
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Figure 5.10: Oxygen interstitial
configuration 1. The oxygen in-
terstitial shares a lattice point
with a native oxygen in a dumb-
bell interstitial configuration in
the 〈110〉-direction

Figure 5.11: Oxygen interstitial
configuration 1. The oxygen in-
terstitial is placed in a void in the
[001]-plane.

5.4.3 Oxygen migration

In WO2 as opposed to W there are many more migration paths by which oxygen
can move. To calculate the migration barrier for all of them would be very time
consuming. Therefore, one path (Figure 5.12) in the 〈100〉-direction has been
selected to obtain some knowledge of oxygen transport in WO2. The path was
selected based on static calculations with 3 images. The initial configuration is a
vacancy in site 2 (VO(2)) and the final state is a vacancy in site 1 (VO(1)). The
climbing nudge elastic band has been utilized and the calculation has been limited
to 5 images, due to the high computational cost. The migration barrier amounts
to 2.41 eV, which is shown in Figure 5.13, which makes oxygen diffusion mediated
by vacancies not a common event, even at very high temperatures such as those
found at the wall in fusion reactors.
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Figure 5.12: Initial and final configu-
ration in [001]-plane as indicated by
yellow respective green colors.
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Figure 5.13: Migration barrier for
oxygen vacancy migration in 〈100〉
from VO(2) to VO(1).
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6 Tungsten trioxide
In this section the structural properties and electronic band structure are reported
for all polymorphs of WO3. Results of the lattice dynamics calculations are then
reported, and an explanation of the origin of the imaginary phonon found in the
monoclinic ground state structure is offered.

Following the phonon part, the defect calculations are reported where formation
energies for oxygen and tungsten defects have been calculated. Finally, the result
for the Y substitutional defect is reported.

6.1 Structure

The departing point for the structural calculations was experimentally determined
crystal structures, where references to experiments can be found in Table 1.1. Be-
cause of the large atomic difference between oxygen and tungsten, it is difficult
to resolve the oxygen positions with x-ray experiments, therefore, neutron exper-
iments have been used to as far extent as possible. The number of atoms in the
unit cell for the different phases of WO3 varies between 8 for the tetragonal phase
and 32 for the orthorhombic and triclinic phases. Also, the unit cell of the mono-
clinic structure in space group P21/n contains 32 atoms. The large unit cells are
largely due to the tilting of the oxygen octahedra, since tilting one octahedron au-
tomatically makes the neighboring octahedron tilt in the opposite direction, thus
requiring a doubling of the unit cell.

Furthermore, the calculations on the ideal cubic cell has been included because
it allows for comparison with other theoretical studies, but also because it carries
some relevance as some studies indicate that it can be stabilized by doping.

The ability to describe the structure theoretically is largely dependent on the
type of exchange correlation functional used, but locating the minimum is in almost
all cases a lengthy process which usually required around 300 ionic displacements to
come to a fully relaxed geometry with interatomic forces less than 5 meV/Å. This
is probably due to the very flat potential energy landscape close to the equilibrium
structure and to this end, several functionals cannot properly describe the triclinic
and orthorhombic phases, as can be seen in Table 6.1.

For all structural calculations a plane wave cutoff energy of 700 eV and a
Monkhorst-Pack k−point grid with a spacing of 0.2 Å−1 was used, corresponding
in most cases to a 5× 5× 5 grid, furthermore, Gaussian smearing with a smearing
parameter of 0.2 eV was used. The convergence with respect to the smearing was
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checked and the result does not change for a smearing parameter of 0.1 eV. The
reason that such a large basis set and dense integration mesh has been used in the
structural calculations is related to the phonon calculations, which require very
high precision in the force calculations.

The error in describing the lattice parameters for all phases and functionals
is shown in Figures A.1 to A.6 in Appendix A and in Table 6.4 the structural
parameters for have been compiled for calculations with vdW-DF-CX.

From a comparison of the different functionals it is clear that PBE in all cases
overestimates the lattice constants by the largest amount, with AM05 in second
place. The difference between AM05 and PBEsol, however, in terms of lattice
constants is small in all cases, peaking in the monoclinic phase where AM05 has
a maximum error of 0.16 Å and PBEsol 0.11 Å for the lattice parameter b. In
some phases, such as one tetragonal phase vdW-DF-CX and PBE estimates the
lattice parameter in qualitatively different ways: while vdW-DF-CX (and PBEsol)
underestimates the two equivalent lattice constants PBE overestimates it. The
description of the low temperature phases, specially the monoclinic in space group
Pc is the most important in this work. In this regard vdW-DF-CX outperforms
the other in terms of matching experimental and computed lattice parameters.

The monoclinic phases (Pc and P21/c) have almost identical energies and are
only differentiated by symmetry. There is a relatively large energy difference be-
tween the orthorhombic structures. This is true in the tetragonal structure as
well.

The functionals that accurately predicts that the monoclinic phase in space
group Pc is the ground state are vdW-DF-CX and PBEsol. PBE predicts the
orthorhombic phases to be the most stable, while PBEsol has the monoclinic as
the lowest energy phase with the orthorhombic phases just 0.001 eV above. AM05
has the tetragonal phase as the ground state, which is quite surprising, since it is
the high temperature phase. AM05 also has problems converging the calculations
for oxygen and oxygen dimer which makes it not as useful as the other functionals
for future calculations when considering formation energies.

The hexagonal phase of WO3 has a higher formation energy than the monoclinic
room temperature phases (P21/n and P21/c), which makes this a metastable
phase unless entropic effects for the hexagonal phase are much higher than for the
monoclinic phase.

The computational formation energy is −8.775 eV for monoclinic WO3 in space
group Pc with vdW-DF-CX, which is in very good agreement with the experi-
mental value of −8.736 eV (deviates 0.5%). The formation energy calculated with
PBE is around 3% off and the PBEsol value is off by around 6%. The experimental
formation energy is also at standard state at room temperature which means that
in theory the computed and experimental values should deviate.
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Table 6.1: Cohesive energies in units of meV/f.u. for all WO3 structures calculated
with different exchange correlation functionals. The value of the cohesive energy
is given for the experimental ground state structure Pc (ITC no. 7). For the
other structures only the difference relative to the Pc structure is given. For the
calculations with AM05, only relative cohesive energies exists.

Space group ITC no. vdW-DF-CX PBE PBEsol AM05
Triclinic

P 1̄ 2 2.7

Monoclinic

Pc 7 −30722.1 −27125.8 −28598.7
P21/c 14 0.2 0.3 0.6 1.4
P21/n 14 3.1

Orthorhombic

Pcnb 60 9.2 −4.4
Pnma 62 38.8 −5.6 0.8 30.0

Tetragonal

P 4̄21m 113 39.6 −4.0 1.2 −4.0
P4/nmm 129 58.4 14.8 17.2 −13.0
P4/ncc 130 26.0 12.8 8.4

Hexagonal

P6/mmm 191 175.2 126.8 88.3
P63/mcm 193 4517.2 4508.4 4605.3
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In monoclinic WO3 in space group P21/c (ITC no. 14), there is one unique
tungsten position and the tungsten oxygen bond lengths are compiled in Table 6.2.
The bond length are not the same in any direction and the largest difference is seen
in the 〈001〉 direction where there are alternating W-O bonds with length 2.15 Å
and 1.78 Å. In monoclinic WO3 in space group Pc there are 6 unique oxygen
positions and 2 unique tungsten positions, however, because of the similarity of
the phases Pc and P21/c, the unique oxygen and tungsten positions in Pc should
be paired in a similar way as in P21/c.

Table 6.2: Bond lengths in units of Å for the monoclinic WO3 in space group
P21/c (ITC no. 14) and tetragonal WO3 in space group P4/ncc (ITC no. 130).

Direction P21/c P4/ncc

〈11̄0〉 1.84 1.91
〈1̄1̄0〉 1.85 1.91
〈110〉 2.00 1.91
〈1̄10〉 1.99 1.91
〈001〉 2.15 2.17
〈001̄〉 1.78 1.77

An investigation of how the hybrid functional HSE06 describes the structure
of WO3 in space group Pc was undertaken. A force calculation on the ions with
HSE06 on the vdW-DF-CX structure reveals very large forces, on the order of
1 eV/Å, making it difficult to use HSE06 to align the band gap. A relaxation
in which only 30 ionic steps were allowed during relaxation from the equilibrium
vdW-DF-CX structure was performed. The k-point mesh was also reduced to a
2×2×2 Monkhorst-Pack grid. The result of this relaxation is shown in Table 6.3.
The structure obtained by HSE06 is not an equilibrium structure, but the tilting
angle defined in Figure 6.1 is close to experimental values. It is noted that neither
PBE, AM05 nor PBSEsol accurately describes the tilting angle.

Figure 6.1: The tilting angle in b-direction defined for the experimental crystal
structure of WO3 in space group Pc (ITC no. 7).
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Table 6.3: Tilting angle in b-direction in WO3 in space group Pc (ITC no. 7) as
defined in Figure 6.1.

Tilting angle [◦]
Exp. 11.86

vdW-DF-CX 12.77
PBE 5.14

AM05 4.74
PBEsol 7.29
HSE06 11.78



Table 6.4: Structural parameters for different phases of WO3 as calculated with
vdW-DF-CX and comparison with experimental data.

Space group a[Å] b[Å] c[Å] V[Å3] α [◦] β [◦] γ [◦]

Pm3̄m 3.806 3.806 3.806 55.14 90 90 90

Pc 5.290 5.140 7.639 207.51 90 92.39 90
Exp. [11] 5.277 5.155 7.663 208.4 90 91.76 90

P 1̄ 7.353 7.412 7.627 415.51 88.49 88.22 88.45
Exp. [12] 7.313 7.525 7.689 422.9 88.85 90.91 90.94

P21/c 5.288 5.132 7.635 207.01 90 92.39 90
Exp. [14] 5.261 5.128 7.650 206.3 90 92.05 90

P21/n 7.416 7.401 7.577 415.75 90 91.61 90
Exp. [13] 7.297 7.539 7.688 422.9 90 90.91 90

Pcnb 7.361 7.492 7.688 423.96 90 90 90
Exp. [15] 7.333 7.573 7.740 429.9 90 90 90

Pnma 7.514 7.685 7.792 449.96 90 90 90
Exp. [16] 7.341 7.770 7.754 430.9 90 90 90

P 4̄21m 7.606 7.606 3.887 224.88 90 90 90
Exp. [17] 7.39 7.39 3.88 211.9 90 90 90

P4/nmm 5.342 5.342 3.937 112.33 90 90 90
Exp. [18] 5.272 5.272 3.920 109.0 90 90 90

P4/ncc 5.225 5.225 7.878 215.05 90 90 90
Exp. [15] 5.276 5.276 7.846 218.4 90 90 90

P6/mmm 7.419 7.419 3.816 181.91 90 90 120
Exp. [19] 7.298 7.298 3.899 179.8 90 90 120

P63/mcm 7.578 7.578 9.123 453.70 90 90 120
Exp. [20] 7.324 7.324 7.553 356.0 90 90 120

From here on the monoclinic and triclinic phases will be referred to as low-
temperature phases while the other are referred to as high-temperature phases.

6.2 Electronic structure

WO3 falls in the category of wide gap semiconductors when considering the exper-
imental band gap of 2.75 eV [46] for the monoclinic structure. The computed band
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structures for the monoclinic phases are shown in Figures 6.2-6.4. The Brillouin
zone path for both monoclinic phases is found in Figure 6.6.
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Figure 6.2: Band structure for mon-
oclinic WO3 in space group Pc (ITC
no. 7)

−3

−2

−1

 0

 1

 2

 3

 4

 5

Γ B D Z Γ Y C

E
n

e
rg

y
 [

e
V

]

k

Figure 6.3: Band structure for mon-
oclinic WO3 in space group P21/c
(ITC no. 14).
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Figure 6.4: Band structure for monoclinic WO3 in space group P21/n (ITC no.
14)

The band structures of the two monoclinic phases in space group Pc respectively
P21/c are very similar, further suggesting that there is no practical difference
between the two phases. The valence band is very flat in both phases making a
distinction of the type of band gap not feasible. The band gap, but also the location
of the valence band maximum is important for defect concentrations since those
quantities are related to the electron chemical potential. The differences in the
band structure between Pc and P21/n are much more distinct than between Pc
and P21/c. The P21/n structure exhibits more dispersion in the valence band,
but the qualitative features of the conduction band around Γ are similar.

The results for the band gap is shown in Table 6.5. The vdW-DF-CX functional
clearly underestimates the band gap. This is a common problem with local and
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semi-local DFT exchange-correlation functionals. Hartree-Fock methods on the
other hand often overestimates the band gap and the hybrid functional which has
some of the Hartree-Fock exchange overestimates the band gap by around 8%. It
should be noted that for HSE06, the vdW-DF-CX equilibrium structure has been
used for band structure calculations, however, the vdW-DF-CX structure is not
close to the HSE06 equilibrium since forces of slightly less than 1 eV/Å appear.
In Figure 6.5 the partial density of states is shown. It is clear that the valence
band consists mainly of oxygen 2p states while the conduction band consists of
tungsten 5d states. This is in line with mostly ionic bonds and a charge transfer
type semiconductor.

Table 6.5: Band gap for different functionals for monoclinic WO3 in space group
Pc (ITC no. 7). The HSE06 calculation was performed on the vdW-DF-CX
equilibrium structure.

EVBM [eV] ECBM [eV] Eg [eV] Error
HSE06 −0.43 2.52 2.95 +8%
vdW-DF-CX 0.57 2.40 1.83 −33 %
PBE 0.28 1.96 1.68 −39 %

Exp [46] 2.75
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Figure 6.5: Partial density of states
for monoclinic WO3 in space group
Pc (ITC no. 7).
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for the monoclinic phases.
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Figure 6.7: Band structure for tri-
clinic WO3 in space group P 1̄ (ITC
no. 2).
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Figure 6.8: Schematic Brillouin zone
for triclinic and orthorhombic struc-
tures.

The band structure of the triclinic phase is shown in Figure 6.7 for the Brillouin
zone path in Figure 6.8. The valence band is flat but has more curvature than in the
monoclinic structures. The conduction band has similarities with the monoclinic
structures, in particular along the direction from Γ to X and the corresponding
Γ-B line, which exhibits strong dispersion. In the Γ-Z direction in both triclinic
and monoclinic structures there is a very flat conduction band and a very flat
valence band.
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Figure 6.9: Band structure for or-
thorhombic WO3 in space group
Pcnb (ITC no. 60).
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Figure 6.10: Band structure for
orthorhombic WO3 in space group
Pnma (ITC no. 62).

Figures 6.9 and 6.10 show the band structure for the orthorhombic phases. The
conduction band for both orthorhombic structures is very similar and shares all
distinct features. There is also not a big difference between the orthorhombic
and triclinic conduction bands. This not surprising since the conduction band
is mainly composed of tungsten 5d states and the tungsten atoms are located
in similar environments in both structures. The main difference is the tilting of
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octahedra, which has the effect that the 2p states of oxygen, which makes up the
valence band is different. This is evident from the very flat behavior between Γ
and Z in the space group Pnma while this feature is not there for space group
Pcnb structure. The most pronounced difference between the two orthorhombic
phases is the tilting of octahedra which is not present in space group Pnma to the
same extent as in Pcnb, which has a similar degree of tilting as the triclinic phase.

There are some similarities between the orthorhombic and tetragonal structures
(Figure 6.11-6.13). For the orthorhombic and tetragonal structures there are two
proposed configurations of the oxygen octahedral network, where in one configura-
tion the octahedra are not tilted. This difference is resulting in relatively different
results of the electronic structure where the non-tilted structure has a significantly
more narrow band gap than the tilted configuration. Furthermore, this non tilted
configuration adds more curvature to the valence band than the tilted. It is noted
that it is mainly the valence band that is affected by the octahedral tilting. In
Table 6.6 the band gap energies and type of band gap is summarized for all phases
of WO3. The largest band gaps belongs to the low temperature structures. The
hexagonal phases Figure 6.15-6.16 have the smallest band gaps.
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Figure 6.11: Band structure for
tetragonal WO3 in space group
P 4̄21m (ITC no. 113).
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Figure 6.12: Band structure for
tetragonal WO3 in space group
P4/nmm (ITC no. 129).
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Figure 6.13: Band structure for
tetragonal WO3 in space group
P4/ncc (ITC no. 130).
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Figure 6.14: Brillouin zone for
tetragonal structures.
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Figure 6.15: Band structure for
hexagonal WO3 in space group
P6/mmm (ITC no. 191).
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Figure 6.16: Band structure for
hexagonal WO3 in space group
P63/mcm (ITC no. 193).
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Table 6.6: Band gap energies for different phases of WO3 as calculated with vdW-
DF-CX. The column labelled ∆E contains the relative cohesive energies with re-
spect to monoclinic WO3 in space group Pc (ITC no. 7).

Space group ITC no. Band gap [eV] Type ∆E [meV/f.u.]
Pc 7 1.83 d 0
P21/c 14 1.83 i 0.2
P 1̄ 2 1.76 d 2.7
P21/n 14 1.70 i 3.1
Pcnb 60 1.37 i 9.2
P4/ncc 130 1.05 i 26.0
Pnma 62 0.91 d 38.8
P 4̄21m 113 0.84 d 39.6
P4/nmm 129 0.48 i 58.4
P6/mmm 191 0.34 i 175.2
P63/mcm 193 0.30 d 4517.2

6.3 Phonon structure

The lattice dynamics of WO3 have not been thoroughly studied with a computa-
tional approach earlier, and only limited experimental data for the phonons exists.
In this section, the phonon calculations are presented for all phases of WO3 and
related to other studies and experiments if possible.

6.3.1 Low temperature phases

The lattice dynamics of WO3 are complex. It is a polar insulator and as such it
is expected to experience long range Coulomb interactions, which makes studies
based on finite displacements and supercells difficult. The monoclinic and triclinic
phases have real Γ-point frequencies, which means that the unit cell is stable.
The full BZ phonon dispersion was calculated for two phases (Pc and P21/c) of
monoclinic WO3, revealing very similar vibrational structures. In Figure 6.17 and
6.18, the phonon dispersion and partial density of states is shown for Pc and P21/c.
The most striking feature of the monoclinic phases is the imaginary mode between
Γ and Z. The imaginary mode may be a consequence of bond length variation and
the small restoring forces associated with octahedral tilting. This mode is studied
in detail in the next section.

The triclinic phase has a large unit cell and low symmetry. Experimental studies
[47] suggests that this phase is often found coexisting with monoclinic phases at low
temperatures making it necessary to establish wether this material is stable or not.
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The full Brillouin zone dispersion relation shows optical instabilities (Figure 6.19)
at the Γ-point and a similar acoustic instability as the one that is present in
the monoclinic structures. Because of the combination of large system and low
symmetry in triclinic phase, the high precision in the phonon calculations could not
be maintained. The plane wave cutoff energy used was 530 eV and the k-spacing
was set to of 0.3 Å−1. The optical instability may be due to low precision in
the calculations. The monoclinic P21/n has real Γ-point frequencies but exhibits
similar acoustic instabilities as the other monoclinic phases. The full phonon
dispersion for the monoclinic P21/n structure was not calculated.
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Figure 6.17: The phonon dispersion relation and density of states for monoclinic
WO3 in space group Pc as calculated with vdW-DF-CX. The Brillouin zone path
is shown in Figure 6.18.
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WO3 in space group P21/c as calculated with vdW-DF-CX. The high symmetry
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The orthorhombic phases has imaginary zone center modes. It is therefore not
sensible to calculate the full Brillouin zone dispersion for the orthorhombic phases
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Figure 6.19: The phonon dispersion relation for the triclinic phase in space group
P 1̄ (ITC no. 2). The structure has imaginary Γ-point frequencies.

also because of the large unit cell and very low symmetry. It is possible to follow the
imaginary zone center mode by displacing the structure along the phonon normal
coordinates. The resulting crystal structure exhibits monoclinic symmetry and
belongs to space group P21/n. This transition, by a zone center mode is described
in experiments [48]. This kind of structural relationship between different crystal
structures is found only in this case in the phonon calculations. This fact does
not rule out other structural relations described by linear combinations of different
displacements patterns.

All low temperature phases (monoclinic, triclinic and orthorhombic) have very
similar density of states, as shown in Figure 6.20.

In the low temperature phases there is a distinct peak at around 30 THz, which
corresponds to rapid oxygen oscillations just as in tungsten dioxide in Figure 5.8.

In Figure 6.21 the high temperature and hexagonal structure vibrational DOS
are shown. The hexagonal phases has large imaginary peaks that are not found
in other phases, which underpins the structural difference compared to the other
phases.

6.3.1.1 The imaginary acoustic mode in monoclinic WO3

In spite of WO3 in space group Pc being the ground state the phonon dispersion
described above (Figure 6.17) exhibits imaginary acoustic modes near the zone
center. Because of the structural similarity between the two monoclinic phases,
the imaginary mode in WO3 in space group P21/c is studied since symmetry
reduces the computational cost by almost half for space group P21/c compared to
Pc. In order to investigate wether the mode results from numerical noise, or is an
actual instability, the computational parameters related to electronic and phonon
structure calculations were varied in order to exclude that the instability is of due
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numerical inaccuracies. The result of the parameter study is found in Appendix B
for the ideal cubic phase. The numerical noise associated with these parameters is
generally small. Some effect could be seen when increasing the displacement but
the overall effect was too low to lift the imaginary mode. The supercell method
to calculate phonons is an approximation in itself, therefore, the size effect in the
unstable direction was investigated.

In fact Figure 6.22 shows that the dynamical matrix has not converged with
respect to system size with respect to the transverse acoustic modes near Γ. From
Figure 6.22 it can be inferred systems that are larger in the 〈001〉−direction have a
larger range of stability. The 1×1×2 supercell can sustain acoustic phonons with
half the wavelength of the Brillouin zone, while the 1× 1× 9 supercell is stable for
acoustic phonons of still longer wavelengths. This reduction of amplitude of the
imaginary mode seems to have levelled off at 1×1×9, however, periodic boundary
conditions in the other spatial dimensions may still have an influence.

Imaginary phonons are associated with lower energy structures. Therefore,
supercells that supposedly can support the imaginary modes were constructed and
displaced along the normal mode. The mode under investigation is the imaginary
mode in the 1×1× 2 supercell in Figure 6.22, and the structure is displaced along
the normal mode corresponding to a q−point of (0, 0, 0.125) with a supercell of
dimension 1×1×8, the result is seen in Figure 6.23. The imaginary phonon mode
is not captured, but rather it seems like the imaginary mode is ’running’ in front
of the displacement. Interpolating the results in Figure 6.22, the 1×1×8 supercell
does not exhibit imaginary phonons at the exact q-points.

This makes it difficult to resolve the question whether this mode is associ-
ated with a structural or numerical instability by means of mode following. The
q−points, where the dynamical matrix is exact with respect to system size are
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all real for all system sizes, which indicate that the instability is related to the
finite size of the crystal structure that the phonon calculations are performed on.
Analyzing the force constants, defined in equation (3.3), the magnitude of the force

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Γ Z

F
re

q
u
e
n
c
y
 [
T

H
z
]

q

1×1×2
1×1×3
1×1×4
1×1×5
1×1×6
1×1×9

Figure 6.22: Imaginary mode in mon-
oclinic WO3. The solid markers indi-
cate the smallest exact q−points that
can be supported by the supercell.
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constants are not decaying rapidly in WO3 as there are large values at a atomic
separation distance of 4 Å, which are shown in Figure 6.24, which may influence the
result. Comparing with the results for WO2 (space group P21/c) in Figure 6.25,
the force constants decay quickly and the dispersion has real frequencies at all
q−points.

The long range behavior of the force constants may be related to high effective
charges of the atoms and the lack of screening, this behavior may also be enhanced
by the mechanical properties of the octahedra. Figure 6.24 indicate rather high
force constants at long distances such as at around 7.7 Å, which corresponds to
the interaction between a tungsten atom and an oxygen atom on the opposite
side of the neighboring octahedron. The force constants in metallic materials with
efficient screening decay as r−5, while force constants in polar insulators decay as
r−3, similar to the situation in Figure 6.25 and 6.24.
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Figure 6.24: Force constants of monoclinic WO3 in space group P21/c (ITC no.
14) as a function of atomic separation for 2 × 2 × 2 super cell calculated with
vdW-DF-CX.
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Figure 6.25: Force constants for WO2 in space group P21/c as a comparison. The
force constants has been calculated with vdW-DF-CX and a 2× 2× 2 supercell.

The hard potential setup for W, where 14 valence electrons for tungsten are
used in calculations, was also used for phonon calculations, the imaginary mode
was still there, and the frequencies for the 1 × 1 × 2 supercell was similar
to the 6 valence electron potential calculations. Attempts to stabilize WO3 with
smaller lattice parameters were undertaken as well, and the acoustic phonon can
in fact be stabilized at long wavelengths at the cost of additional imaginary optical
frequencies and an acoustic instability at shorter wavelengths.

The explanation offered at this moment is that the structure is so soft and
that long range interaction affect the force constants so that at points where the
dynamical matrix is not exact, the image interaction is too large which causes a
numerical instability.

Doping in WO3

In connection with the imaginary mode, long range interactions should be screened
by adding electrons to the system. n-doping the monoclinic structure results in a
more stable structure and the imaginary phonon along the Γ-Z direction is imme-
diately stabilized with a charge doping of 0.5 electrons per unit cell. This can be
understood to be an effect of electronic screening together with the long ranged

50



force constants. In the pure material, without doping, the tungsten atoms move
with a very high positive charge (the Born effective charge has maximum value of
10) which permits very long ranged Coulomb interaction in the material.

The screening of electrons may make the force constants decay more rapidly
and the situation is more like a metallic system where the force constants decay as
r−5 because of the efficient screening. If the only stabilizing mechanism is due to
screening, the material could be dynamically stable, and calculations on a larger
system would show that. Unfortunately, going to a 3×3×3 supercell increases the
number of atoms from 128 to 432. While it is possible, at this moment accurate
phonon calculations on a system of that size is too expensive.

As will be presented in the section on defects, a neutral oxygen vacancy may
cause unintentional n-type conductivity and a neutral oxygen vacancy can there-
fore be thought of as dopant. This dopant, however, causes no direct change in the
phonon dispersion except the introduction of another imaginary mode, which in
some way contradicts the result from the n-type doping if it is merely a numerical
instability due to long ranged force constants that is seen. The most convincing
argument is that the instability in the 〈010〉 is not stabilized with n-type doping,
however, that mode is stabilized with p-type doping.

Studying the effect of defects, limitations on system size has to be enforced
because of the symmetry reduction a defect introduces, and hence, the computa-
tional cost increases significantly. To this end, studies on the 1 × 1 × 2 supercell
consisting of 31 atoms has been conducted for the neutral vacancy defect. This
defect is placed in the WO2-plane.

The phonon dispersion in 〈001〉 is very flat and an imaginary optical mode
appears as well as a qualitative different behavior of the acoustic mode which does
not turn up again, instead monotonically decreasing until it reaches the Brillouin
zone boundary. In this case the optical phonon mode may represent a structure
with lower symmetry so the crystal was displaced along this normal mode and
fully relaxed to the same criterion as the usual unit cell and the imaginary mode
appeared in a similar manner.

6.3.2 High temperature phases

All high temperature phases, including the ideal cubic phase, has imaginary Γ-
point optical phonons which means the unit cell is unstable against optical long
wavelength displacements. In Figure 6.21 the DOS for the tetragonal structure is
seen where it is clear that the contribution from imaginary modes is larger than in
the low temperature structures. This is to be expected since these modes should be
stabilized by temperature effects. Following an instability results in lower energy
structures as can be seen in Figure 6.26 where the tetragonal structure has been
displaced along the imaginary mode. By following this mode it seems like the
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imaginary mode at the zone center is related to a phase transition to monoclinic
Pc structure. There is no mentioning of a tetragonal to monoclinic transition
without passing through the orthorhombic and triclinic phases.

The acoustic phonons for the high temperature phases are real close to the zone
center as opposed to the low temperature phases which were unstable against some
long wavelength displacements. The phonons of the high temperature phases is
stabilized by temperature effects and is outside the realm of DFT, which serves as
motivation for model potential fitting.
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Figure 6.26: The displacement along lowest imaginary modes in tetragonal WO3

in space group P4/nmm (ITC no. 129) at Γ gives lower energy structures.

6.4 Defects

In this section, the formation energies of charged tungsten and oxygen vacancies
as well as oxygen interstitials are presented. The defect formation energies has
been calculated for WO3 in space group P21/c but because of the similarities
in structure, phonons and electronic band structure between Pc and P21/c, the
defect formation energies are not anticipated to change dramatically between the
structures. For the defect calculations a planewave cutoff energy of 500 eV and
k-spacing of 0.3 Å−1.

6.4.1 Oxygen vacancy

In WO3 in space group P21/c there are three distinct oxygen sites. The oxygen
atoms are located on Wyckoff 4e sites, which are shown in Figure 6.27. Two of
the unique oxygen sites (4e(1) and 4e(3)) are located in the WO2-plane and one is
located in the O-plane (4e(2)).
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Figure 6.27: The oxygen atoms are located on Wyckoff sites 4e(1), 4e(2) and 4e(3)
as indicated in the figure.

The formation energy has been calculated for different sizes of the supercell. The
formation energy for an oxygen vacancy in Wyckoff site 4e(1) and 4e(3) are similar,
therefore, only the supercell scaling results for oxygen vacancies in Wyckoff 4e(1)
and 4e(2) are presented. The result of the finite size scaling is shown in Figure 6.28
for 4e(1) and in Figure 6.29 for 4e(2). The formation energy for an oxygen vacancy
in the 4e(1) Wyckoff site has leveled off at a supercell size of 192 atoms while
the formation energy of an oxygen vacancy in Wyckoff site 4e(2) has leveled of
already at a 96 atom supercell since the formation energy difference between the
96 and the 192 atom supercell is small, especially for the +1 charge state and
the neutral vacancy. The formation energy values are compiled in Table 6.7. It
is anticipated that the P21/c gives similar formation energies as Pc. The defect
formation of a neutral defect in Wyckoff site 4e(2) was calculated to 0.67 eV for
a 192 atom supercell for WO3 in space group Pc, which does not differ from the
defect formation energy calculated in space group P21/c.

Table 6.7: Formation energy of an oxygen vacancy in WO3 in space group P21/c
in units of eV for a supercell consisting of 320 atoms for 4e(1) and 4e(3) and 192
atoms for 4e(2).

O-rich limit W-rich limit
q = 0 q = +1 q = +2 q = 0 q = +1 q = +2

4e(1) 3.44 1.68 −0.02 0.77 −0.99 −2.65
4e(2) 3.34 1.48 −0.22 0.67 −1.19 −2.85
4e(3) 3.44 1.68 −0.02 0.77 −0.99 −2.65

The formation energies for the charged defects depend on the chemical potential
of the electrons (equation 3.6) and in Figure 6.30 the formation energy between
the valence band maximum and the conduction band minimum as a function of the
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chemical potential of electrons is shown. There is one charge transition level for
the oxygen vacancy located on Wyckoff site 4e(2). The +2/+1 transition occurs
at around 0.15 eV below the CBM and the oxygen vacancy is stable between the
transition level and the CBM. For defects located on Wyckoff site 4e(1) and 4e(3)
there are two charge transition levels, the +2/+1 charge transition takes place at
0.17 eV below the CBM and the +1/0 is located 0.09 eV below the CBM. This
suggests that an oxygen vacancy acts as a shallow donor in WO3, which would
contribute to n-type conductivity.
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chemical potential of electrons (∆µe)
is 0 eV.
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There has been some other studies on neutral oxygen vacancy formation energy
in monoclinic WO3 where the reported formation energies are: 4.53, 4.41, 3.46 eV
[49] for the different oxygen sites. This has been calculated with a supercell con-
sisting of 32 atoms which would explain why the large values from that study is
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lower in this work. The difference may also arise because different functionals has
been used, in this work vdW-DF-CX is used and in the other work by [49] the
revised PBE is used. Another study [50] conducted with PBE finds the formation
energies for monoclinic WO3 to be 3.52, 3.06, 2.87 eV for the different sites in a
72 atom supercell.
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Figure 6.30: Formation energy of oxygen vacancy in WO3 in space group P21/c
for O-rich environment and W-rich environment (see Figure 3.5). The relative
electron chemical potential is allowed to vary between the valence band maximum
and the conduction band minimum.

6.4.2 W vacancy

The tungsten vacancy in WO3 is associated with a very high formation energy
with respect to tungsten. The result for the most stable charge states (−6,−5 and
−4) is compiled in Table 6.8 and the finite scaling is shown in Figure 6.31. The
tungsten vacancies can have high charge states, which requires large supercells to
obtain converged values for the formation energies. In contrast to oxygen vacancies
for which most of the finite size effect had vanished at a 96 atom supercell, the
finite size effect for the tungsten vacancies is starting to level off at the 320 atom
supercell.
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Table 6.8: Formation energy of tungsten vacancy in WO3 in space group P21/c in
units of eV. The relative chemical potential of electrons (∆µe) is 0 eV.

q O-rich W-rich
0 9.93 17.73
−1 9.44 17.23
−2 10.08 17.87
−3 10.20 18.99
−4 10.64 18.43
−5 11.07 18.87
−6 11.48 19.29
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Figure 6.31: Finite size scaling of a tungsten vacancy in WO3 in space group P21/c
for the vacancies with the highest charge states.

The neutral tungsten vacancy is not stable for any value of the relative chemical
potential within the band gap, but from the VBM to 0.4 eV above the tungsten
vacancy in charge state −1 is stable, there is a charge transition state between the
−1/−6 at 0.4 eV above the VBM and from the charge transition level to the CBM
the tungsten vacancy in charge state −6 is stable.
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O-rich limit as a function of relative
chemical potential.
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Figure 6.33: The formation energy
of charged tungsten vacancies in the
W-rich limit as a function of relative
chemical potential.

6.4.3 Oxygen interstitials

Oxygen interstitials in WO3 can exist in different charge states as the oxygen
vacancy defect. In this work only the neutral interstitial has been considered and
the formation energies are compiled in Table 6.9.

Table 6.9: Oxygen interstitial formation energy in units of eV. The supercell used
in the calculations consisted of 96 atoms. The position refers to the configurations
shown in Figure D.1-D.9 in Appendix D.

Position O-rich W-rich Position O-rich W-rich
1 1.18 3.85 6 2.80 5.47
2 1.22 3.89 7 2.68 5.35
3 4.08 6.75 8 2.32 4.99
4 2.97 5.64 9 2.49 5.16
5 2.67 5.34

The oxygen interstitials configurations in cases 1 and 2 resemble an oxygen
molecule, suggesting that it is not split interstitials but rather oxygen molecule
that occupies a lattice point. This defect is the most thermodynamically favorable
oxygen addition. Its formation energy is quite high in the O-rich limit meaning that
at low temperatures there should be a strong tendency not to form oxygen excess
WO3 phases. Configuration 1 and 4 are shown in Figure 6.34 and 6.35, respectively,
where in the latter case an oxygen interstitial is placed in the unoccupied perovskite
A-position. In Figure 6.34 the oxygen interstitial is paired with an oxygen in the
octahedral network.
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Figure 6.34: Oxygen interstitial con-
figuration no.1. The dark blue atoms
is oxygen atoms paired up with with
an oxygen-oxygen distance of 1.45 Å.

Figure 6.35: Oxygen interstitial con-
figuration no. 4 where the oxygen in-
terstitial is located in a void in the
WO3 structure.

6.4.4 Yttrium substitutional defects

Introducing a substitutional Y atom inWO3 gives for a 96-atom supercell a yttrium
concentration of 4.3 mole %. The yttrium atom has its nearest image 9.46 Å away,
a distance for which the Y-Y interaction is small as seen in Figure 6.36. The
expected charge states are VI+ for W and III+ for Y. The Y+3 is anticipated
to be the most stable vacancy in the reference material Y2O3. Therefore, the
substitutional reaction W+6 →Y+3 to create a −3 charged substitutional defect
was the main case considered for Y substitutional defects.

Table 6.10: Y-O dis-
tances in units of Å.

Y-O
O1 2.14
O2 2.20
O3 2.19
O4 2.14
O5 2.28
O6 2.13

In order to compute the formation energy of an yttrium
substitutional defect the chemical potential of yttrium has
been determined. The computed value of the formation
energy (with vdW-DF-CX) of yttria is −19.18 eV to be
compared to the experimental value of −20.03 eV [51].
The cohesive energy of Y in HCP is 4.166 eV, in good
agreement with the experimental value of 4.37 eV [9].

The nature of the reactants makes the substitutional
defect exhibit the same complexity as the charged va-
cancy calculations, so image charge corrections and po-
tential alignment has been taken into account.

The formation energy of an substitutional Y defect in
charge state −3 is 5.31 eV at the VBM and −0.17 eV at
the CBM. The neutral substitutional Y defect has a formation energy of 4.85 eV.
The chemical potential in this case corresponds to a situation in which the Y reser-
voir is Y2O3 and the oxygen reservoir is oxygen gas. The total energy difference
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between the defect free and the Y-substituted system is shown in Figure 6.36. The
Y substitutional defect contribute in the octahedral arrangement of WO3 but the
bond lengths differ from the ideal case, these bond lengths can be seen in Ta-
ble 6.10. In comparison with pure WO3 in Table 6.2, the bond lengths are longer
on average.
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Figure 6.36: Total energy difference between ideal and defect system for Y substi-
tutional in WO3 in space group P21/c for different supercell sizes.

The projected density of states resulting from insertion of an yttrium atom is
shown in Figure 6.37. There is not much difference from the ideal structure in Fig-
ure 6.5 but some differences are apparent: the small bump in the Y-substitutional
PDOS just below the CBM is not seen in the ideal case and the peak around 4 eV
is not as pronounced in the Y-case as in the ideal.

6.4.4.1 Lattice dynamics of Y-doped WO3.

The full phonon dispersion relation for WO3 with substitutional Y is not eas-
ily accessible because of the associated computational cost. The derivative in
equation (3.3) is evaluated by displacing the individual atoms and computing the
resulting forces. Crystals with relative high symmetry such as monoclinic WO3 in
space group P21/c require for example the evaluation of 24 distinct configurations
in order to obtain the force constant matrix. Addition of a defect reduces the
symmetry of the crystal. In order to compute the full force constant matrix for a
configuration which exhibits P1-symmetry, each atom has to be displaced in each
cartesian direction both forward and backward. This implies that for example
already in the case of a single Y substitutional defect in a 96-atom supercell one
has to compute the forces of 576 distinct configurations.
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Even with modern computers this is a formidable computation to perform.
Therefore, in the present work another approach based on eigenmode following
was taken. For a number of low-frequency modes the ideal structure was displaced
along the normal mode and the potential energy was recorded as a function of am-
plitude. Utilizing the displacement pattern of the ideal system an Y substitutional
defect was introduced in the displaced configurations and the the potential energy
as a function of amplitude was obtained. In Figure 6.38 a representative case for
the lowest frequency phonon at q = (0, 0, 1/8) is shown. The introduction of Y
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actually causes a further softening of the mode. This further suggests that the
stability of WO3 is not directly enhanced by yttrium since the potential landscape
is related to the stiffness of the spring constant associated with vibrational motion.

The particular displacement pattern that is used to map out the potential land-
scape might change if Y is added to the system, therefore, the phonon dispersion
has been calculated for simpler systems with higher symmetry.

The Γ-point frequencies were calculated for the ideal cubic phase with charge
neutral substitutional Y to study the effects of differences in mass and electronic
structure on the vibrations. A 32 atom cell with one Y atom has been used,
corresponding to 12.5 mole %. This gives rise to the emergence of additional
imaginary modes at Γ, the structure becomes more unstable with dopant than
without further suggesting that the Y alone rather causes the structure to become
more unstable. This can be seen in Figure 6.39 where the lowest frequency modes
for pure and doped material are shown.
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7 Discussion

7.1 Structure

There is a significant difference in how the different exchange correlation func-
tionals describe the different oxide structures. In WO2 the lattice parameters
(Figure 5.2 and 5.3) are described in a similar manner with all functionals yield-
ing at least decent agreement with experimental data. In WO3, all functionals
considered (PBE, PBEsol, AM05 and vdW-DF-CX, HSE06) gives a satisfactory
description of the lattice geometry for the monoclinic structures (Pc and P21/c),
however, the vdW-DF-CX gives the best description with respect to experimental
structural parameters. The different phases of WO3 are all associated with similar
formation energies where the total energy differences between the structures are on
the order of meV, but vdW-DF-CX and PBEsol accurately predicts the monoclinic
structures as the structures with the lowest energy. Also, the vdW-DF-CX pro-
vides the most accurate description of the octahedral tilting, which is not captured
by the other functionals except for HSE06.

In layered materials vdW interactions are known to be important and the most
famous case is perhaps graphite, where the layers are bonded by vdW interactions
at a distance of 3.3 Å and has successfully been described with vdW type func-
tionals [52]. WO3 can be seen as a layered material with alternating WO2 and
O planes separated by a distance of around 2 Å, the oxygen bond length in the
z-direction.

The small energy differences between the different crystal structures of WO3

are not unique for this type of material. BaTiO3 which also is a ferroelectric mate-
rial with different crystal structures such as cubic, tetragonal, and rhombohedral.
There has been theoretical studies on the different structures of this material and
the energy difference is in many cases on the same order, around 5 meV [53]. In
WO3, this small energy difference between the different structures is manifested in
the coexistence of triclinic and monoclinic structures that is seen experimentally.

In the orthorhombic and tetragonal structures there are two experimentally pro-
posed oxygen configurations. In the orthorhombic structure Pcnb [15], the oxygen
octahedral is tilted and in Pnma [16]it is not. Similarly in the tetragonal case:
P4/ncc[15] is tilted while P4/nmm [18] is not. P 4̄21m[17] has a lower degree of
tilting than P4/ncc. The energy difference calculated with vdW-DF-CX for the
orthorhombic case is 30 meV per formula unit and 13 meV in the tetragonal case
(between P4/ncc and P4/nmm) suggesting that the tilted structures generally are
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more stable than the non-tilted structures. The difference between these configu-
rations is most prominent in the band structure. In the band structure it is mainly
the valence band that is affected since it consists of oxygen states. This can be
seen in Figures 6.9 and 6.10 for the orthorhombic phases and in Figures 6.11,6.12
and 6.13 for the tetragonal phases.

7.2 Phonons

WO3 is a a very soft material and from the first principle phonon calculations
all phases are unstable as no phase possesses a completely real phonon dispersion
relation. While many of the phases has multiple imaginary zone center phonons,
which signals an unstable unit cell the monoclinic phases (Pc and P21/c) have
only one imaginary acoustic mode close to the zone center. WO2 on the other
hand does not experience the same type of instabilities since both phases of WO2

have real phonon dispersion relations.
Studies on phonon dispersion of polar insulators has been performed earlier, for

example SbS3 [54] which also experiences long ranged interaction between atoms
in the material. To properly describe the phonon dispersion, the supercell had
to be relatively large (around 300+ atoms) which is significantly larger than the
supercells used for phonon calculations in the present work. The reason that such
large unit cells had to be used was to reduce the effect of periodic images on the
elements of dynamical matrix that is not exact.

WO3 is obviously a different material, but there are some similarities with
SbS3 such as relatively large maximum values of the Born effective charges, the
maximum value is 7 in SbS3 [54] and 10 in WO3. The large value of the Born
effective charge is also a characteristic for ferroelectric perovskites [55], in BaTiO3

the maximum Born effective charge is around 7 and a similar situation is seen in
SrTiO3.

Since the imaginary mode was not resolved, the possibility that it is a real
instability was considered and attempts to obtain a lower energy structure by
mode following did not succeed. The fact that the the imaginary mode in WO3

in space group P21/c is not captured by larger supercells and mode following
(Figure 6.22) suggests that the instability is rooted in the effect of periodic images
on the dynamical matrix.

The imaginary phonon in WO3 in space group P21/c involves the in-plane
motion of oxygen atoms in the O-plane. The undistorted crystal of WO3 has a
high degree of charge localization around the oxygen atoms in the O-plane. This
means that there is little interaction between the layers, and a small displacement
of the oxygen in the O-plane is associated with energy shifts of 0.4 meV/atom
(Figure 6.23). For the first fully real acoustic mode the energy shift is around
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50 meV/atom for the same amplitude of the mode. This also provides a hint as
to why Y alone has no stabilizing effect since the bond lengths are similar and
localization of charge on the oxygens may still be there.

In the present context it is of interest to consider the phonon dispersion in
NaxWO3 [56], that is,n-doped WO3 stabilized in the cubic structure at tempera-
tures above 150 K. This cubic material is metallic and experiences so called Kohn
anomalies in the dispersion which essentially means that there is a sharp change
in the phonon dispersion such that the group velocity is discontinuous. WO3 is
a semiconducting material so should not experience Kohn anomalies but the be-
havior of the acoustic mode is reminiscent of a Kohn anomaly. There are studies
suggesting that Kohn anomaly may be possible in Peierls semiconductors [57],
however, these are usually associated with finite q and not limiting wave vectors
as q → 0.

7.3 Defects

7.3.1 Oxygen vacancy

There are three distinct oxygen sites in WO3 in space group P21/c, which all have
very similar vacancy formation energies as is shown in Figure 6.30. The neutral
vacancy formation energy is around 3.45 eV in the O-rich limit. The distinct oxygen
sites are relatively alike, especially the Wyckoff sites 4e(1) and 4e(3) which are both
located in the WO2-plane with similar bond lengths to the central tungsten atom.
The oxygen atom onWyckoff site 4e(2) resides in the O-plane with slightly different
bond lengths to the center tungsten atom, however, this small difference in bond
length does not have a major effect on the vacancy formation energy. The neutral
oxygen vacancy formation for a vacancy located on the Wyckoff site 4e(2) is 0.1 eV
lower than for the other two sites. Furthermore, the oxygen vacancy located on
Wyckoff site 4e(2) is associated with only one charge transition level (+2/+1) at
0.15 eV below the CBM while there are two charge transition levels in the other
two cases. In comparison with WO2, which does not exhibit charged vacancies,
the smallest value of the neutral oxygen vacancy formation energy has a value of
0.77 eV in WO3 and a value of 2.48 eV in WO2. In WO2 as opposed to WO3

the energy difference between the two distinct oxygen positions is quite high, at a
value of 0.5 eV.

The neutral oxygen vacancy in WO3 introduces a relaxation of the tungsten
atoms away from the defect center by as much as 0.3 Å, which is slightly above
10% of the tungsten oxygen bond length. The relaxation between different charge
states are significantly smaller, only 0.04 Å between the neutral and +1 charged
state. Large structural differences between different charge states indicate the
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presence of deep traps. In metallic systems the notion of traps is not important
since there is no band gap, however, for comparison, the WO2 relaxation around
a neutral defect is 0.15 Å. This relaxation distance is considerably shorter than
the equivalent in WO3 and could be a manifestation of the more rigid structure in
WO2.

The number of oxygen sites per volume is approximately the same in both WO3

and WO2, which means that differences in vacancy concentration are mainly due
to the formation energies. The transport of oxygen in the oxides by vacancy mi-
gration is largely dependent on the vacancy concentration. In the O-rich limit
the formation energy of the oxygen vacancy in Wyckoff site 4e(1) in WO2 has a
formation energy which is about 0.5 eV lower than the smallest oxygen vacancy
formation energy in WO3. In a W-rich environment, the formation energies de-
crease because of the driving force for creating oxygen deficient phases will be
larger.

The formation energies of charged vacancies depend on the band gap, which is
poorly described within local + semilocal density functional theory. The result
in Figure 6.30 indicates that the oxygen vacancy defect creates a shallow donor
in the band gap but the fact that the band gap is not properly described within
DFT, may relocate the defect level if a better description was available. Studies of
the ideal system with HSE06 reveal that the vdW-DF-CX equilibrium structure is
not close to equilibrium with HSE06, this makes it difficult to align the band gap
calculated with HSE06 to the energy calculations performed with vdW-DF-CX.

There have been some studies on monoclinic WO3 with hybrid functionals such
as [58], which predicts a band gap of 3.45 eV, and a deep defect level.

The neutral vacancy formation energy for oxygen in the high temperature
tetragonal phase is not anticipated to differ much from the neutral vacancy for-
mation energy in WO3 in space group P21/c because of the structural similarities
between the phases. This is further suggested by a naive formation energy cal-
culation in the tetragonal phase, which gives a difference of around 5% in the
formation energy compared with the monoclinic phase. The charged defects on
the other hand, may deviate substantially because of the smaller band gap.

7.3.2 Oxygen interstitial

In W the oxygen interstitial formation energy is relatively high with a value of
3.49 eV with respect to WO2, which makes the oxygen interstitial concentration
low at moderate temperatures. Two oxygen interstitials tend to pair up and bond
to a tungsten atom, which is likely to be important in the formation of tungsten
oxides. In both WO2 and WO3, the pairing of oxygen connected to a lattice point
leads to the oxygen interstitial with the lowest formation energy with around 1 eV
for O-rich environments. The appearance of the oxygen pair is different. In WO2
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it is a distinct split interstitial with the lattice point centered between the oxygen
atoms such that the oxygens are at a distance of 2.15 Å from each other. In WO3,
on the other hand, the oxygen associated with the lattice point is not significantly
moved as it is in the WO2 configuration, and the interstitial oxygen bonds to the
lattice point oxygen. Split interstitials migration may be a low energy migration
path, specially in WO2 because of the edge sharing configuration which makes the
migration distance relatively short. The formation energies of split interstitials
along the edge that is shared in WO2 are however not energetically favorable as
compared to other split interstitial configurations. Studies of charged interstitials
in WO3 have not been performed but are also likely to be important because of
the relatively low formation energy of neutral interstitials in the O-rich limit.

7.3.3 Tungsten vacancies

The W vacancy is associated with low vacancy formation energies in W and WO2

in the W-rich limit with formation energies of 3.70 eV in W and 2.46 eV in WO2 in
the W-rich limit. The formation energy for neutral W vacancy in WO3 is 17.73 eV.
In the case of WO3 different charge states are stable and this behavior over the
band gap makes some W vacancies in WO3 likely to be important, specifically the
vacancies with charge states −1 and −6. The large states involved imply huge
corrections since the Makov-Payne correction scales as q2. Therefore, the charge
transition levels depend sensitively on the formation energy, but also the formation
energy is prone to errors because of the large charge states.

For the −6 charge state an error in the correction term of 10 meV means that
the vacancy formation energy has an error of 0.36 eV, which makes the dilute limit
concentration differ by a factor of 65 at 1000 K.

7.3.4 Yttrium substitutional defect

The Y substitutional defect is associated with a formation energy of 5.31 eV at
the VBM to −0.18 eV at the CBM, the negative formation energy plainly means
that WO3 is unstable with respect to formation of substitutional Y defect for
such large electro-chemical potentials. The impact of substitutional Y defects on
the lattice of dynamics was studied by mapping the potential energy landscape
associated with the normal modes of the defect free system. By displacing the
crystal structure along the imaginary normal mode of the defect free system, the
potential energy is in all cases more negative with Y-doping than without. This
means that Y is actually making the system more soft. In the present work only
the effect of a single substitutional Y has been considered, but this is a simplified
picture. The normal modes of the Y-doped material could change, making the
studied normal mode invalid in the presence of Y-doping. There is yet another
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simplification present, namely that the substitutional Y-defect would cause the
formation of other defects in the system by charge neutrality conditions, which
has not been considered in this study. In that case, oxygen vacancy defects could
be formed which could in turn influence the lattice dynamics.

Studies has been performed on YSZ [59], where the charge neutrality condi-
tion is imposed by creation of +2 charged oxygen vacancies at 4.11 Å from the Y
atoms. Zirconia is different material than WO2 and WO3 but the mechanism of
stabilization might be similar. If the mechanism is to form composite defects then
the dilute limit approximation is not feasible model to assess the thermodynamical
stability between oxides and further studies are needed to understand the concen-
tration of defects. At this point, no results support the idea that Y would stabilize
WO3, however, the Y substitutional defect may change the thermodynamic phase
stability between WO2 and WO3 and hence stabilize the oxide in an indirect way
while at the same time creating a passivating layer.

7.3.5 Accuracy of defect calculations

There are some errors associated with calculation the formation energy of point
defects. Volume relaxation has been omitted because it is anticipated that the
vacancy will induce a relaxation of nearby atoms only. The energy difference for
a neutral oxygen vacancy in WO3 between a system that was allowed to change
volume and one that had a constant volume was found to be below 0.1 eV.

The long range force constants in WO3 (Figure 6.24) might also influence the
defect formation energies at small supercells. However, at sufficiently large super-
cells both these errors should be very small.

The errors that are more difficult to handle are the ones associated with ionic
movement in WO3, such as the ionic part of the dielectric tensor, which is the
main contribution to the static dielectric tensor. The ionic part of the dielectric
tensor is prone to the same errors as the phonon dispersion relation, since both
involve phonon properties. Literature values for the static dielectric constant for
WO3 are not readily available, however measurements of the dielectric constant at
1 kHz at room temperature on thin films gives extrapolated bulk values of around
30 [60] which is similar to the static values obtained in this work, which varies
between 70 and 10 approximately for the diagonal elements, however, the calcu-
lated dielectric tensors and experimental with elements of 30 give approximately
the same monopole monopole correction.
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8 Conclusions
Tungsten trioxide is structurally a very complex material, which makes it difficult
to describe theoretically. This is manifested in the failure of several exchange
correlation functionals to properly describe the atomic structure as well as the
shortcomings of the hybrid functional for WO3 in space groups Pc and P21/c and
WO2 in space group Pnma. The vdW-DF-CX functional, however, accurately
predicts the ground state structure and formation energies.

The phonon dispersion relation for WO3 in space group P21/c, which is struc-
turally very similar to the ground state structure in space group Pc, shows imag-
inary frequencies. The imaginary frequencies might be a result of very long range
interactions in the material together with the necessarily finite system used in
the simulations. In order to fully converge the phonon dispersion relation a much
larger supercell should be employed, where the interactions between atoms from
different supercells have vanished.

The neutral oxygen vacancy formation energy in O-rich environments is larger
in WO3 than in WO2 when employing the proper thermodynamic boundary con-
ditions. In WO3, the +2 oxygen vacancy is stable from the valence band until
around 0.15 eV below the conduction band, suggesting that it acts as a relatively
shallow donor.

The band gap is still poorly described with vdW-DF-CX, which means that
for proper defect calculations another approach has to be considered to be able
to align the band gap. As the hybrid functional predict large forces for the vdW-
DF-CX equilibrium structure, more complex many body theories are needed to
correct for the band gap problem.

The introduction of Y as a substitutional defect influences the oxygen atoms
closest to it, but no stabilizing effect was found. In fact, the present studies
suggests that substitutional Y has the opposite effect. Although, the approach is
approximate, the data obtained in this study can be used as a starting point for
further studies involving charge neutrality conditions to further elucidate the role
of substitutional Y on the stability of WO3.
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A Structural parameters
In this section the different exchange correlation functionals and error compared
with experiment is reported. The number above the figures refer to the Interna-
tional Table of Crystallography [10].
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Figure A.1: Error between computed and experimental lattice parameters for P 1̄
(ITC no. 2) and Pc (ITC no. 7).
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Figure A.2: Error between computed and experimental lattice parameters for
P21/c (ITC no. 14) and orthorhombic WO3 in space group Pcnb (ITC no. 60).
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Figure A.3: Error between computed and experimental lattice parameters for or-
torhombic WO3 in space group Pnma (ITC no. 62) and tetragonal WO3 in space
group P 4̄21m (ITC no. 113).
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Figure A.4: Error between computed and experimental lattice parameters for
tetragonal WO3 in space group P4/nmm (ITC no. 129) and tetragonal WO3

in space group P4/ncc (ITC no. 130).
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Figure A.5: Error between computed and experimental lattice parameters for
hexagonal WO3 in space group P6/mmm (ITC no. 191) and hexagonal WO3

in space group P63/mcm (ITC no. 193).
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Figure A.6: Error between computed and experimental lattice parameters for mon-
oclinic WO3 in space group P21/n (ITC no. 14).
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B Force convergence
The phonons are sensitive to the accuracy of the force calculations, therefore, the
influence of some of the critical parameters on the phonon dispersion relation has
been investigated. The parameters in VASP and phonopy that has been investigated
are: electronic convergence critereon: EDIFF, the fast fourier mesh: ADDGRID,
the real space and reciprocal space projection: LREAL, the displacement length
in phonopy and the minimum number of self consistent cycles: NELMIN. The
system under consideration is the unstable ideal cubic structure because of its
high symmetry and small unit cell and therefore low computational cost.
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Figure B.1: The displacement length in phonopy effect on phonon dispersion re-
lation.
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Figure B.2: The electronic density convergence critereon.
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Figure B.3: The real space vs reciprocal space projector operators to the left and
the minimum number of self consistent loops to the right.
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Figure B.4: Plane wave cut off energy effect on phonon dispersion.

V



C Dielectric function and Born effective charges

C.1 WO3 in space group P21/c

The dielectric function for WO3 calculated with CX and 16 atom unit cell is:

ε =

72.00 0.00 −1.93
0.00 38.73 0.00
−1.93 0.00 8.32

 (C.1)

In WO3, there are three unique oxygen positions and one unique tungsten position.
For these unique positions the Born effective charges are:

Z∗O1
=

−4.54 −3.076 −0.70
−2.82 −4.01 −0.52
−4.54 −3.08 −0.70

 (C.2)

Z∗O2
=

−4.62 2.88 0.69
2.80 −3.87 −0.61
−4.62 2.88 0.69

 (C.3)

Z∗O3
=

−1.11 −0.01 0.22
0.04 −1.23 −0.26
−1.11 −0.01 0.22

 (C.4)

Z∗W =

10.28 −1.29 −0.21
1.14 9.11 1.40
10.28 −1.29 −0.21

 (C.5)
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D Oxygen interstitials in tungsten trioxide

Figure D.1: Config-
uration 1.

Figure D.2: Config-
uration 2.

Figure D.3: Config-
uration 3.

Figure D.4: Config-
uration 4.

Figure D.5: Config-
uration 5.

Figure D.6: Config-
uration 6.

Figure D.7: Config-
uration 7.

Figure D.8: Config-
uration 8.

Figure D.9: Config-
uration 9.
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