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Abstract

Energy management is arguably one of the most defining challenges for modern
societies. An ever increasing demand for energy has to be balanced with the re-
quirement for a sustainable energy economy that minimizes the human impact
on the environment. Materials and their ability to transport both electrical and
thermal currents play a key role in this area as they are essential components in
energy extraction, transport, storage, and consumption technologies. On a micro-
scopic level electrical and thermal transport in materials is governed by its chemi-
cal composition as well as the specific arrangement of the constituent atoms. Since
relatively small differences in this regard can have a dramatic impact on the macro-
scopic behavior of amaterial, a detailed understanding of the underlying processes
and couplings is essential for materials development and optimization.

In this thesis the thermal conductivity in two classes of materials of current and
future technological importance has been investigated using electronic structure
calculations (density functional theory) in combination with methods from statis-
tical physics (Boltzmann transport theory). The first two papers included in this
thesis deal with so-called van der Waals solids, layered materials that are currently
attracting tremendous attention in the scientific community due their exciting com-
bination of electrical, optical, and thermal properties. The present thesis specifi-
cally provides predictions and a detailed analysis of the lattice thermal conductiv-
ity in Mo and W-based transition metal dichalcogenides. A model is developed to
explain the extreme structure sensitivity of the conductivity and calculations are
presented that elucidate chemical trends and establish bounds.

The third paper deals with clathrates, inclusion compounds that have been found
to exhibit a combination of transport properties that is very well suited for thermo-
electric applications. These materials exhibit extremely small thermal conductivi-
ties, which in the present thesis are shown to be caused by a combination of mass
effects and very efficient phonon-phonon scattering processes that limit the heat
carrying phonon modes to a very small fraction of the total Brillouin zone.

The present thesis provides a stepping stone for future investigations of transport
processes in van der Waals solids and clathrates, which eventually should lead to



the development of devices with higher energy efficiency and better materials for
energy extraction technologies.

Keywords: thermal conductivity, electronic structure calculations, Boltzmann trans-
port theory, phonons, van der Waals solids, layered compounds, clathrates
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1
Introduction

Hier spricht die Stimme der Energie,
...
Ich bin Ihr Diener und Ihr Herr zugleich,
Deshalb hütet mich gut.

The Voice of Energy by Kraftwerk

It is easy to take energy for granted. At dining tables around the world it is safe
to say that the common theme of discussion probably is not the amount of joules
needed for enabling themeal at hand. Yet, many joules were spent along the chain
from production, to transportation and final preparation.

Energy is such an integral part of our lives that its importance can be hardly
overstated, as modern society are entirely dependent on it. On a personal level for
water and food, sanitation, transportation, Internet and communication as well as
lighting and heating of our homes. The questions concerning the availability of
resources for energy production , and their stability over time must be considered
among the most important questions for our society today and in the future.

So, are there any reasons to worry about the available amount of energy in the
future? If one compares the total primary energy supply  (TPES) of the world
in  to  the supply has roughly doubled from .Gtoe  to Gtoe []
(Fig. .). At the same time the population has increased from . to . billion

Energy production and consumption are here used in the more colloquial sense, not in the
sense as a violation of the first law of thermodynamics which states that energy can not be created
or destroyed, only transformed from one form to another [].

An estimate of the available primary energy sources in a region.
Giga ton of oil equivalent.
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Figure .: Total primary energy supply in the world for different primary energy
sources in  and . The data is from the IEA report Key World Energy
Statistics  []. The categoryOther includes smaller sources such as geothermal,
solar and wind.

people, roughly a doubling as well. There is a strong positive correlation between
the world population and the global energy consumption. This can be seen when
comparing available data for theworld populationwith the global energy consump-
tion in the span from  to  (Fig. . (a)). Assuming that the world popu-
lation is a good estimator for the global energy consumption, up to linear order ,
a linear least squares fit provides a model for estimating the energy consumption
based on population size. Using projections of the future world population [] it
is possible to estimate the future energy needs. In a high population scenario the
global energy consumption is estimated to steadily increase. Also in a low popula-
tion scenario the global energy consumption is estimated to increase up until 
when it will reach Gtoe after which the demand will start to decline (Fig. .
(b)).

To enable this increase in energy consumption, energy supply must increase as
well. In  the global TPES was .% of the available energy in the form of
fossil fuels (coal, oil and natural gas), a small reduction from the .% in .
The oil and gas repositories formed over the last  million years []. Also coal
formed over geological time scales and the fossil fuels are limited resources in that
there are finite reserves to extract. Since the reserves are finite the extraction must
at some point reach its maximal rate and this sets a physical limit to the possible

There are some deviations from a linear relation connected to economic cycles and stock mar-
ket crashes. Following the Black Monday stock market crash of October  [] there is a pause
in the growth of global energy consumption during the following years. Similar, in  there is a
violation of the linear trend following the stock market crash of .
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Figure .: (a) Correlation of the world population and yearly total primary en-
ergy consumption between the year  and . The data is normalized to the
unit interval and received from [, ]. (b) Estimations of the future global energy
consumption based on three different projections of low, medium and high pop-
ulation growth []. The estimates are calculated with a linear model from a least
squares fit to the data in the left pane. This gives a connection between yearly
energy consumption and the population used in the projections.

supply. The point in time where this happens has been coined the oil peak [, ].
The term peak may be used in the context of any type of finite resource and it
is reasonable to talk about peak coal and peak gas besides peak oil. Since the
contribution of fossil fuel to the TPES is so dominant there is a real concern if the
fossil fuels peak without a realistic alternative at hand. According to the estimate
the supply necessarily needs to steadily increase. Although debated, claims that
the peak of oil is close have been made [, ].

There is another concern in the use of fossil fuels as well. The energy source
mainly consists of carbon and combustion results in production of carbon dioxide,
CO2, that is deposited into the atmosphere. Carbon dioxide is a so called green-
house gas in that it is infrared active. The greenhouse gases allow high frequency
sunlight to enter the Earth system, heating the ground without any interference.
But since the frequencies of the thermal radiation leaving the Earths surface is
shifted to the infrared range, some of the radiation will interact with the green-
house gases and be trapped in the atmosphere. In effect this results in a reduction
of the energy flux out of the Earth system resulting in Global Warming. The pre-
dicted climate change associated with Global Warming is assumed to present a
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future threat if the emission of CO2 is not reduced in time to halt the increasing
mean temperature of the Earth [].

The dominating position of fossil fuels in the energy economy makes an ex-
change of the used resources to alternatives based on the current technologies
unrealistic in the near future. And although the power of serendipity can be huge,
it is an unreliable force. Either way, better administration of fossil fuels is a reason-
able strategy to handle either fossil peaks or overconsumption resulting in global
warming. Increasing the efficiency of energy consumption e.g., by recuperation of
waste heat can make a substantial contribution to the solution of this problem.

1.1 Energy transport as a challenge

The energy stored in fossil fuels can not be used directly, it has to be processed
and converted to a form suitable for use. This is a general theme  for any kind of
utilization of an energy source (Fig. .). There are three fundamental sources of
energy []. Dominating is energy originating from the sun, followed by nuclear
energy and lastly geothermal energy originating from inside the Earth. Fossil fuels
originated as energy from the sun accumulating in the biomass from where parts
eventually ended up in sedimentary rocks that under the right conditions trans-
formed into coal, oil and gas. To access the stored energy the fuel needs to be
combusted and further transformed into a useful form e.g., electricity or mechani-
cal work.

In any type of process involving energy transport or conversion there will be en-
ergy dissipation to internal degrees of freedom due to irreversibility [, ]. This
dissipation will eventually transfer into the surrounding environment resulting in
energy losses (Fig. .). The result is a degradation of the energy used as input. For
thermal processes these losses are substantial. The disadvantage with dissipated
energy is its disordered nature with no clear direction. This makes utilization diffi-
cult.

1.2 Scavenging (waste) heat

Because of the dominating position of thermal processes in the economy, technolo-
gies that scavenge dissipated energy and thereby raise the overall energy efficiency
are of great interest.

Heat engines convert heat into useful, most commonly mechanical or electrical,
energy. A specific type of heat engine is the thermoelectric generator (TEG)[],
which converts heat into electrical current by exploiting the thermoelectric effect.

With some exceptions. heating by direct sunlight is one.





1.2. Scavenging (waste) heat

Figure .: Schematic illustration of type of paths from energy source to consump-
tion. After extraction from the energy source it is necessary to store the energy
if not directly used. Regardless of the path taken transport processes are present
and also one to several types of energy conversion steps.

Figure .: Schematics of energy interacting with a system. The energy input is
converted and transported through a redirection resulting in useful energy output
of transported/converted energy. At the same time, inevitably energy is dissipated
to the surrounding environment due to irreversible processes within the system.
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The efficiency is here dependent on several factors, one of which is the thermal
conductivity with lower values providing better efficiency. To make TEGs eco-
nomically feasible the efficiency needs to be high enough, higher than it is today.
Because of this an understanding how to engineer the thermal conductivity is im-
portant.

At the same time, knowledge about how to lower the conductivity can be used
to achieve the opposite, namely increasing the conductivity. This has important
for heat management in devices. In particular, a high thermal conductivity is par-
ticularly important for applications in electronics and opto-electronics to prevent
overheating and potential loss of components.





2
Background

2.1 Energy

Most of the energy we utilize originates from the sun, where fusion of hydrogen re-
leases large amounts of energy that reach the Earth in the form of electromagnetic
radiation. On Earth the biosphere assimilates the energy mainly through photo-
synthesis. Historically a lot of this energy has been stored in the form of fossil fuels
(oil, coal and natural gas), which formed as the result of geological processes. Be-
sides the sun, we also utilize energy stored in nuclear fuels and to a lesser extent
geothermal energy originating from the Earth’s core. Solar, nuclear, and geother-
mal are examples of primary energy sources, that is energy captured directly from
the environment. Secondary forms of energy have been derived from a primary
source; this includes for example electricity but also fossil as well as synthetic fuels
such as gasoline, ethanol and hydrogen [].

Electricity is often the most useful form of energy in terms of applications. Sev-
eral processes can be used for transforming different types of energy into electric-
ity, including e.g., electromagnetic induction, the piezoelectric effect, the photo-
electric effect, and the thermoelectric effect. Among these, electromagnetic in-
duction dominates as it is the process used in almost all commercial generation of
electricity. With respect to this thesis the thermoelectric effect is very interesting
because of its importance of low lattice conductivity for the efficiency in thermo-
electric materials [, ].
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2.2 Transport theory

Materials and their ability to transfer charge (electrical currents) and heat (ther-
mal currents) play a key role in energy management as they are essential compo-
nents in energy extraction, transport, storage, and consumption technologies. On
a macroscopic level electrical and thermal conduction in a material can be conve-
niently described using phenomenological theories e.g., in the form of Ohm’s law
in the case of electrical conduction and Fourier’s law in the case of thermal conduc-
tion (see below). The corresponding equations contain transport coefficients such
as the electrical conductivity, the Seebeck coefficient, or the thermal conductivity.
These are tensorial quantities that are material specific and quantify the response
to an external force such as an electric field or a thermal gradient [].

For example, the thermal conductivity can be phenomenologically defined through
Fourier’s law

J = −𝜅 ⋅ ∇T, (.)

where J is the heat current, which quantifies the rate at which thermal energy is
transported as the result of a thermal gradient ∇T, and 𝜅 denotes the thermal con-
ductivity tensor.

It is illuminating to examine thermal conductivity from a kinetic point of view
as a transport problem in a monatomic gas. To this end, let us assume a station-
ary thermal gradient in the x-direction. When a particle moves from a region at
temperature T + ΔT to a colder region at temperature T where it thermalizes it
needs to give up an energy of CΔT from the hotter region to equilibrate, where C
is the specific heat. The particle will now be in thermal contact with the new region.
Assuming that the length scale for thermalization is ℓ (Fig. .), the expression for
the temperature difference is

ΔT = ℓ𝜕T
𝜕x . (.)

The thermal energy is proportional to the temperature E ∼ T and the mean veloc-
ity squared E ∼ v2. Hence, the mean velocity is proportional to the square root of
the temperature and the mean velocity at temperature T + ΔT is

v ∼ √T + ΔT = √T√1 + ΔT
T

≈ √T(1 + 1
2

ΔT
T ) = √T + 1

2
ΔT

√T
. (.)

For relatively small ΔT the mean velocities are therefore the same.
The particle flux per unit area is given by the mean velocity multiplied with the

particle density. The energy flux is then the particle flux multiplied by the average
energy 𝜀 the particles in the stream are transporting. Over a mean free path ℓ
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Figure .: The physical picture of the mean free path ℓ in kinetic theory as the
length scale between thermalization of a particle propagating in a thermal gradient
field.

Figure .: The heat flux at x0 is the net energy flux resulting from ballistic trans-
port over the mean free path ℓ in both directions.
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there will be a ballistic transport in both directions. The net flux over the middle
of ℓ (Fig. .) is then

J = 1
2nv𝜀|x0−ℓ/2 − 1

2nv𝜀|x0+ℓ/2 = 1
2v𝜀(n(x0 − ℓ/2) − n(x0 + ℓ/2))

≈ −1
2v𝜀dn

dx
ℓ = −1

2vℓd(𝜀n)
dT

dT
dx

= −1
2vℓcdT

dx
, (.)

where c denotes the specific heat per unit volume. An estimate for the thermal
conductivity can then be identified from Fourier’s law as

𝜅 ∼ vℓc. (.)

This illustrates that the thermal conductivity ought to depend on themean velocity
with which the energy is transported, the length scale for that transport without
inelastic scattering as well as the average energy that a carrier transfers.

In this derivation we implicitly assumed local equilibration such that a thermal
gradient can be established. This shows that heat is transported downhill with
respect to the thermal gradient in accordance with the second law of thermody-
namics as stated by Clausius[]:

No process is possible whose sole result is the transfer of heat from a colder to a
hotter body.

For two regions that are thermally connected therewill thus always be heat transfer
from the hotter to the colder side, unless there is an additional process reversing
the heat current.

Equation Eq. (.) was derived for a gas of classical particles but can be used to
understand the thermal conductivity in solids as well. The heat carriers in solids
are electrons and phonons, and the picture above can be adapted by observing
that both of these quasi-particles behave as quantum gases for which the correct
statistics have to be used. 

2.3 van der Waals solids

The term van der Waals solids refers to a class of materials that are composed of
layer of different so-called Dmaterials such as e.g., graphene, boron nitride (BN),
and various transition metal dichalcogenides (TMDs). While intralayer bonding
in these materials has usually covalent and/or ionic character, they are coupled

For electrons, which are fermions, Fermi-Dirac statistics apply, whereas phonon as bosons
obey Bose-Einstein statistics.
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vertically via much weaker van der Waals forces, hence the name. While graphene
and boron nitride have been studied in great detail over the years and are increas-
ingly being integrated into devices and applications, TMDs are still primarily in
the domain of fundamental research.

MoandW-basedTMDswith the general compositionMX2 (M=Mo,W;X=S,Se,Te)
have received the bulk of the attention. With the exception of WTe2, which has an
orthorhombic equilibrium structure, they form structures with hexagonal symme-
try (Fig. .).

TMDs in general and Mo and W-based compounds in particular are emerging
as promising candidates for a manifold of applications including electronic compo-
nents [], optoelectronics [, , ], thermoelectrics [], and spintronics [].
Since thermal transport is relevant for many of these applications, it is important
to develop a detailed understanding of thermal transport in these systems.

2.4 Clathrates

Generally, clathrates are chemical substances with a defined lattice structure that
can trap atomic ormolecular species [, ]. Inorganic clathrates e.g., Ba8Ga16Ge30
and Sr8Ga16Sn30, have been found to exhibit very favorable thermoelectric prop-
erties due their intrinsic combination of a low thermal conductivity, high Seebeck
coefficients, and good dopability [, ]. Here, the earth alkaline atoms act as
guest species that occupy the cages provided by the host structure, which is most
commonly composed of elements from groups  and . Since the guest atoms
in these structures can exhibit “rattler”-like atomic motion due to their relatively
small size compared to the available cage [, , ], they have been linked to the
very small lattice thermal conductivity 𝜅l [, ].

Inorganic clathrates of type I belong to space group Pm3̄n (international tables
of crystallography number ) and feature two smaller and six larger cages per
unit cell [, , ]. Ba8Ga16Ge30, which is in the focus of the present work, falls
into this category and is representative of many other compounds. It has been in-
vestigated extensively both experimentally [, , , , , ] and theoretically
[, , , , ], especially because of its promising thermoelectric properties.
Here, the host structure is composed of Ga and Ge atoms, which occupy 6c, 16i,
and 24kWyckoff sites [Fig. .] [] as revealed by experimental measurements of
the site occupancy factors [].
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Figure .: The crystal structure of the molybdenum and tungsten based transi-
tion metal dichalcogenides. The transition metal corresponds to M and the chalco-
genide to X.

Figure .: Crystal structure of type I clathrates. The guest species (Ba) occupies
Wyckoff sites of type 2a and 6d, while the host species (Ga, Ge) occupy Wyckoff
sites of type 6c, 16i, and 24k.





3
Methodology

The Boltzmann equation is so exceedingly
complex that it seems hopeless to expect to
generate a solution from it directly.

J. M. Ziman ()

3.1 Boltzmann transport theory

The book keeping associated with tracking the dynamical variables in one mole of
substance is an infeasible task. One attempt at a remedy is to severely reduce the
system size, impose suitable boundary conditions and see if this reduction still man-
ages to capture the relevant physics. If this does not work or becomes to difficult
an alternative strategy is to abandon exact knowledge of the system and instead
give a statistical description. For mechanical systems the concept of distribution
functions that tracks the number density over phase space is useful.

The phase space for a system of N particles is 6N dimensional where 3N of the
coordinates corresponds to the different particles generalized positions labeled
q𝛼. The remaining 3N degrees of freedom correspond to the different canonical
momenta labeled p𝛼. One can introduce Γ as the set {q1, … , q3N,p1, … , p3N} as a
specific point in phase space with corresponding volume element dΓ. A complete
description of the dynamical state of a system constitutes then a point Γ. If the sys-
tem behaves classically and a governing Hamiltonian is known, in principal the

Classical in the sense that the system is well described by Newtonian mechanics.
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Figure .: Schematic representation of two different views on distribution den-
sities over phase space. (a) Tracking the amount of time a system spends in the
neighborhood of a specific phase space point (the red paths) gives a measure for a
distribution function. (b) A large enough collection of independent system repli-
cas gives an alternative measure for a distribution function as the ratio between
states within a neighborhood to (q,p) and all states.
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dynamical evolution can be calculated by integrating the canonical equations []

q𝛼(t) = 𝜕H
𝜕p𝛼

p𝛼(t) = − 𝜕H
𝜕q𝛼

(.)

given initial conditions at time t0. This constitutes 6N equations and is an impos-
sible task since N is large, typically at the order of 1023 or more for macroscopic
systems. In principle though, if the equations were solved the solution would map
out a path through the phase space. This can be used to define the notion of a
distribution function over the phase space in two different ways.

If a system is observed for a long time 𝜏 and the time spent in the neighborhood
of a certain point in phase space is denoted as Δt (see Fig. . (a)), then the limit

𝜌N(Γ, t)dΓ = lim
𝜏→∞

Δt(Γ, t)
𝜏 (.)

defines a N particle probability density 𝜌N(Γ) corresponding to the uniform proba-
bility of finding the system of N particles in a specific state Γ at some time t. Alter-
natively, one can introduce a large collection constituting independent copies of
the system randomly distributed over the phase space. Such a collection is called
an ensemble (Fig. . (b)). One can define the probability density as the ratio be-
tween the number of points within the neighborhood of a point Γ and the total
number of points.

In appendix A the Liouville equation that governs the evolution of 𝜌 is derived.
With the use of the Poisson bracket  it is written as

d𝜌N

dt
= 𝜕𝜌N

𝜕t + {𝜌N,H} = 0. (.)

Solving the Liouville equation exactly is an impossible task, but there is some im-
portant knowledge gained by its introduction. Due to the conformity to the canon-
ical equations the behavior of the distribution function is that of an incompressible
fluid. This has the important implication that a volume element in phase space is
invariant in time, a result known as Liouville’s theorem. The main issue with 𝜌N is
that it contains to much information. Integrating over all but one of the subspaces,

The Poisson bracket on quantity A is defined as

{A,H} =
3N

∑
i=1 (

𝜕A
𝜕qi

𝜕H
𝜕pi

− 𝜕A
𝜕pi

𝜕H
𝜕qi )

(.)
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using dΓ1 = dq1dp1, produces a new density

𝜌1(q,p, t) = V∫
dΓ
dΓ1

𝜌N(Γ) (.)

called the one particle density representing a single particle in the averaged envi-
ronment of all other particles in the system. The volumeV of the system is needed
so that the probability of finding the particle in a neighborhood of the six dimen-
sional point (q, p) is

𝜌1(q,p)
V

dΓ1. (.)

Integrating Liouville’s equation over dΓ/dΓ1 results in

𝜕𝜌1
𝜕t + {𝜌1,H} − (

𝜕𝜌1
𝜕t )|

scattering

= 0, (.)

where the remaining parts of higher order densities have been collected in the last
term, subscripted by scattering since this term contains the interaction between the
isolated particle and all other particles. Using the canonical equations this may be
reformulated in vector form

𝜕𝜌1
𝜕t = − v⏟

= 𝜕q
𝜕t

⋅∇𝜌1 − Fext.⏟
= 𝜕p

𝜕t

⋅∇p𝜌1 + (
𝜕𝜌1
𝜕t )|

scattering

. (.)

The first term on the right hand side can be identified with a diffusive process and
the second one as influenced by external forces so the equation can be written as

𝜕𝜌
𝜕t = (

𝜕𝜌
𝜕t )|

diffusion

+ (
𝜕𝜌
𝜕t )|

external fields

+ (
𝜕𝜌
𝜕t )|

scatt.
. (.)

This is theBoltzmann equation in its general form for a classical distribution of dis-
tinguishable particles. It states that the change in the one particle distribution is
due to a balance between diffusion, external influence from e.g., electromagnetic
or gravitational fields and internal scattering. It is an elegant compact descrip-
tion of the complex situation where external fields accelerate the particles feeding
energy into the system shifting the occupation function while scattering events re-
distribute the energy dissipating it into the structure and relax the perturbed occu-
pation function.

There is an alternative way to derive the Boltzmann equation via Liouville’s the-
orem, that includes some physical intuition. To this end, one starts with neglecting
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Figure .: Due to scattering processes different paths in phase space may ex-
change states. Here it is schematically shown how states of certain momenta are
scattered into the neighborhood of the path from the top path while states of cer-
tain momenta are scattered out of the neighborhood to the bottom path.

scattering, which is reasonable for a sufficiently diluted system. Then one intro-
duces a distribution f(r,p, t) in the form of an occupation function that counts the
number of states at r that have momenta p at time t. Because of Liouville’s theo-
rem the number of states in a neighborhood of the point at (r, p) at time tmust all
have been transported from another point in accordance with Newton’s equations

dr = vdt
dp = Fdt. (.)

Within the neighborhood, using a Taylor expansion the following holds true to first





Chapter 3. Methodology

order in dt

f(r,p, t) = f(r − vdt,p − Fdt, t − dt)

= f(r,p, t) + 𝜕f
𝜕r𝛼 |(r,p,t)

v𝛼dt + 𝜕f
𝜕p𝛼 |(r,p,t)

F𝛼dt + 𝜕f
𝜕t |(r,p,t)

dt (.)

where theEinstein sum convention applies. Canceling f(r,p, t), identifying the total
derivative and writing the equation in vector notation gives

df
dt

= 𝜕f
𝜕t + v ⋅ ∇f + F ⋅ ∇pf = 0 (.)

which must hold in each point of phase-space. Increasing the concentration the
particles start to scatter. This means that particles with a certain momentum may
be scattered in to a neighboring point in phase space. Alternatively, particles with
a certain momentum can scatter out from a neighborhood (Fig. .). This may be
expressed symbolically by introducing a transition probability operator Pp′→p(r,p)
giving the rate for states into the phase space point (r,p). Similarly Pp→p′ is the
operator that expresses the rate of the states going out from (r,p) as a result of
scattering. Under normal circumstances it is reasonable to assume the principle of
detailed balance, which means that in equilibrium the number of states scattered
into a phase space point is balanced by an equal amount of states scattered out of
the point. The effect of scattering vanishes and so the scattering term disappears.
This suggests that the scattering term should appear as the difference of the two
transition rates as

S = Pp′→p − Pp→p′ . (.)

The rate of states transitioning into and out from the phase space point due to
scattering must balance the total change of the occupation function. Including
this effect of scattering in Eq. (.) the Boltzmann equation becomes

df
dt

= 𝜕f
𝜕t + v ⋅ ∇f + F ⋅ ∇pf = Sf. (.)

3.1.1 The semiclassical assumption

The Boltzmann equation Eq. (.) may be rewritten using the quantum mechan-
ical expression for the crystal momentum p = ℏk

df
dt

= 𝜕f
𝜕t + v ⋅ ∇f + F

ℏ ⋅ ∇kf = (
𝜕f
𝜕t)|

scattering

. (.)





3.1. Boltzmann transport theory

The appearance of ℏ indicates that the equation may be applied in a quantum
mechanical setting under certain conditions.

The distribution function needs to take into account that particles are indistin-
guishable. This is accomplished by letting the equilibrium distribution function
describe either bosonic or fermionic statistics. In practice this means that the equi-
librium distribution is either the Bose-Einstein or the Fermi-Dirac distribution.

In the quantummechanical description the particles are described by wavefunc-
tions. This has the implication that the velocity appearing in Eq. (.) is identi-
fied with the group velocity of the waves associated with the states in f. Particle
position andmomentum then cannot be determined simultaneously with arbitrary
precision. Being conjugate operators with a non-vanishing commutator the uncer-
tainty principle limits the precision to

ΔxΔp ≥ ℏ. (.)

This is fine as long as Δx can be taken large enough to ensure low uncertainty in
p. Since ℏ is of the order 10−34 Js a granular view of x may be sufficient and still
produce enough precision for theBoltzmann equation. The granularity is sufficient
as long as the spatial extent of the wave packet is on a scale less than the mean free
path between particle collisions.

According to theEhrenfest Theorem the center of a wavepacket follows the path
of a classical particle in a potential []. If the wavepacket is sufficiently localized
on the scale of the potential the particle may, to a good approximation, be viewed
as a classical particle in that potential. This has the implication that the potential
must be slowly varying on the length scale of the wave packet. For time varying
fields this also sets a temporal constraint so that the frequency associated with the
time variation of the field may not become to large.

This is the basis for the semiclassical assumption and restricts the application
of the Boltzmann equation to situations, in which quantum interference is not ex-
pected.

3.1.2 The relaxation time approximation

The scattering term in Eq. (.) is in general a complicated operator. Assuming
that there are no external fields and that the system is spatially homogeneous the
Boltzmann equation reads

𝜕f
𝜕t = Sf. (.)

If we assume that the system is close to equilibrium the distribution function should
be the equilibrium distribution f0 with an added small perturbation formally writ-
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ten as

𝛿f = f − f0. (.)

If the internal scattering is assumed to relax the system, the simplest way to model
this is to assume that the rate of change in the distribution function is reduced by
the magnitude of the perturbation to the state, over a time scale 𝜏. Equation .
then becomes

𝜕f
𝜕t = 𝜕(𝛿f)

𝜕t = −𝛿f
𝜏 . (.)

with the solution

𝛿f = 𝛿f(0)e−t/𝜏 (.)

indicating exponential decay of the perturbations over a characteristic time 𝜏. It
is natural to call this the relaxation time and the inclusion of the scattering term as
in Eq. (.) for the relaxation time approximation (RTA).

3.1.3 Boltzmann transport for electrons in an electric field

As an example of a solution to the Boltzmann equation within the RTA the case
of electrons in a static electric field is presented in this section. The next section
considers the Boltzmann equation for phonons in a thermal gradient.

Electrons are fermions and as such obey Fermi-Dirac statistics. This is a result
of the Pauli exclusion principle, which states that two fermions can not simulta-
neously be in the same quantum state. The occupation in thermal equilibrium at
temperature T is then described by the Fermi-Dirac distribution

f0 = 1
exp (

𝜀−𝜇
kBT) + 1

, (.)

where 𝜀 is the energy of an electron with wave vector k and 𝜇 is the chemical po-
tential of the electrons.

If a static electric fieldE is applied to thematerial the electrons will experience a
Coulomb force accelerating them in the direction opposite to the the electric field.
If the fundamental charge is q then the force on the electrons will beF = −qE. The
electron energy and the chemical potential will then become spatially dependent.
Assuming that theRTAholds in the steady state theBoltzmann transport equation
is stated as

df
dt

= 𝜕f
𝜕t⏟
=0

+v ⋅ ∇f − qE
ℏ ⋅ ∇kf = −𝛿f

𝜏 . (.)
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If the perturbations are small compared to f0 the variation in 𝛿f will be negligible
compared to variations in f. The gradients of 𝛿f may then be dropped and the
equation becomes

v ⋅ ∇f0 − qE
ℏ ⋅ ∇kf0 = −𝛿f

𝜏 . (.)

The perturbations may then be solved for algebraically as

𝛿f = −𝜏 (v ⋅ ∇f0 − qE
ℏ ⋅ ∇kf0) . (.)

Since the equilibrium distribution is known, this presents a full solution within
the RTA up to the free parameters in the form of the relaxation times 𝜏. These
parameters must be measured, estimated or calculated from first principles.

Figure .: A particle experiencing several scattering events here shown in posi-
tion space.
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3.1.4 Boltzmann transport for phonons

In a crystal in thermal equilibrium at temperature T the phonon modes are dis-
tributed according to the Bose-Einstein distribution []

n0,𝜆 = 1
exp (ℏ𝜔𝜆/kBT) − 1

. (.)

The distribution function counts the number of phonon modes in state 𝜆. Here
𝜆 = (q,p) is a collective index for a phonon mode with wave-vector q and band
index p. The energy carried by a single phonon mode 𝜆 is

E𝜆 = ℏ𝜔𝜆

exp (ℏ𝜔𝜆/kBT) − 1
. (.)

The specific heat c𝜆 associated with phonon mode 𝜆 is then

c𝜆 = 𝜕E𝜆
𝜕T = kB(

ℏ𝜔𝜆
kBT)

2
n0,𝜆(n0,𝜆 + 1). (.)

When there is a thermal gradient present the temperature becomes position de-
pendent. The phonons in question are assumed not to interact with the electro-
magnetic field and so the force related term drops out. Then in the steady state
only the diffusive term from the total derivative survives

dn𝜆
dt

= 𝜕n𝜆
𝜕t⏟
= 0

+v𝜆 ⋅ ∇n𝜆 + F
𝜕n𝜆
𝜕p⏟

= 0

= (v𝜆 ⋅ ∇T(r))
𝜕n0,𝜆
𝜕T . (.)

where in the second step the diffusive term has been linearized. Introducing the
scattering operator S acting on the distribution the linearized phonon Boltzmann
equation in its canonical form reads

−(v𝜆 ⋅ ∇T(r))
𝜕n0,𝜆
𝜕T + Sn𝜆 = 0 (.)

emphasizing the balance between diffusion and scattering in a specific mode. So
there is thus a balance between a diffusive process and scattering. Introducing the
RTA the scattering term is

Sn𝜆 = −
n𝜆 − n0,𝜆

𝜏𝜆
= −𝛿n𝜆

𝜏𝜆
. (.)

and solving for the perturbation gives the solution

𝛿n𝜆 = −𝜏𝜆(v𝜆 ⋅ ∇T(r))
𝜕n0,𝜆
𝜕T = −𝜏𝜆(v𝜆 ⋅ ∇T(r))

ℏ𝜔𝜆
kBT2

n0,𝜆(n0,𝜆 + 1). (.)

for a specific phonon mode 𝜆.
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3.1.5 Lattice thermal conductivity within the RTA

The microscopic thermal energy current JQ resulting from phonon transport is the
sum of the occupation weighted energy flux of individual phonon modes. The heat
flux in the Cartesian direction 𝛼 is

JQ,𝛼 = 1
V ∑

𝜆
ℏ𝜔𝜆n𝜆v𝜆,𝛼 = 1

V ∑
𝜆

ℏ𝜔𝜆𝛿n𝜆v𝜆,𝛼. (.)

Here V is the volume of the system under consideration, 𝜔𝜆 is the frequency, n𝜆
is the occupation and v𝜆 = ∇q𝜔𝜆 the group velocity. In the second step the distri-
bution has been replaced with the perturbation. This is because of time reversal
symmetry. In equilibrium there will be no energy current since each phonon mode
will have an associated mode with an equally energetic phonon in the opposite di-
rection. The terms in Eq. (.) cancels in pairs.

Inserting the solution (.) in Eq. (.) gives an expression for the heat current

JQ,𝛼 = − 1
V ∑

𝜆
𝜏𝜆(v𝜆,𝛽𝜕𝛽T) kB(

ℏ𝜔𝜆
kBT)

2
n0,𝜆(n0,𝜆 + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

= c𝜆

= −(
1
V ∑

𝜆
𝜏𝜆v𝜆,𝛼v𝜆,𝛽c𝜆)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
= 𝜅𝛼,𝛽(T)

)𝜕𝛽T

= −𝜅𝛼,𝛽(T)𝜕𝛽T (.)

where repeated Cartesian index 𝛽 is implicitly summed. The introduced quantity
𝜅𝛼,𝛽 can be identified through Fourier’s law

JQ = −𝜅 ⋅ ∇T (.)

as the thermal conductivity tensor. The expression for the lattice thermal conduc-
tivty has one flaw. It contains free parameters in the 𝜏𝜆.

3.1.6 Determination of lifetimes

3.1.6.1 The perturbed lattice Hamiltonian

If a unit cell has the position vector l and an atom in that cell has the relative
position b the position of the atom may be denoted r(lb), where l and b label the
atom, and a displacement of this atom will then be

u(lb) = r(lb) − l − b. (.)
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For small displacements in a classical crystal the change in the potential energy can
be expressed as a Taylor series in the displacements. Formally this is expressed as

U = U0+ ∑
lb

𝜕U
𝜕u𝛼(lb) |0

u𝛼(lb)

+1
2 ∑

lb
∑
l′b′

𝜕2U
𝜕u𝛼(lb)𝜕u𝛽(l′b′) |0

u𝛼(lb)u𝛽(l′b′)

+1
6 ∑

lb
∑
l′b′

∑
l′′b′′

𝜕3U
𝜕u𝛼(lb)𝜕u𝛽(l′b′)𝜕u𝛾(l′′b′′) |0

u𝛼(lb)u𝛽(l′b′)u𝛾(l′′b′′) + … .

(.)

The repeatedGreek indices, representingCartesian directions, are implicitly summed
over in pairs. The derivatives are taken at the equilibrium positions, hence the first
order term vanishes by definition and the constant term is an arbitrary shift of the
energy scale and is here chosen as the reference. Since force is the spatial deriva-
tive of the potential the first type of derivative can be rewritten as

Φ𝛼𝛽(lb, l′b′) = 𝜕2U
𝜕u𝛼(lb)𝜕u𝛽(l′b′) |0

= −
𝜕F𝛽(l′b′)
𝜕u𝛼(lb) |0

(.)

with the physical interpretation as the change in the force on the atom at l′b′ as a
response when atom lb is displaced. Similarly for the third order term

Φ𝛼𝛽𝛾(lb, l′b′, l′′b′′) = 𝜕3U
𝜕u𝛼(lb)𝜕u𝛽(l′b′)𝜕u𝛾(l′′b′′) |0

= −
𝜕2F𝛾(l′b′)

𝜕u𝛼(lb)𝜕u𝛽(l′b′) |
0

(.)

relating the displacements of atoms to the force on atom l′′b′′ when displacing
atoms lb and l′b′. These sets of constants are called the second and third order
interatomic force constants (IFC). Up to third order the potential is expressed as

U = 1
2 ∑

lb

Φ𝛼𝛽u𝛼(lb)u𝛽(l′b′) + 1
6 ∑

lb
∑
l′b′

Φ𝛼𝛽𝛾u𝛼(lb)u𝛽(l′b′)u𝛾(l′′b′′). (.)

Through quantization by introduction of creation and annihilation operators aq,s
and a†

−q,s the displacements may be promoted to operators expressed through the
Fourier expansion

u𝛼(lb) = 1
√N

∑
lb

𝜖s,𝛼(q)e−iq⋅r(lb)
√

ℏ
2mb𝜔s(q) (âq,s + â†

−qs) , (.)
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where 𝜖s,𝛼(q) is the polarization of themode andmb themass of the atom at position
b. Using this expansion the first sum in Eq. (.) together with the kinetic energy
can be shown to give a Hamiltonian

H0 = ∑
q,s

ℏ𝜔s(q) (
1
2 + â†

q,sâ−q,s) (.)

that is the same as the sum ofHamiltonians for quantum harmonic oscillators. This
Hamiltonian acts as an unperturbed state constituting a set of harmonic oscillators
and the second series acts as a perturbation on that set. TheHamiltonian extended
to the third order in the displacements may be written as

H(3) = H0 + H′ (.)

where

H′ = 1
6 ∑

lb
∑
l′b′

∑
l′′b′′

Φ𝛼𝛽𝛾u𝛼(lb)u𝛽(l′b′)u𝛾(l′′b′′). (.)

3.1.6.2 The physical picture

To understand the physical meaning of the perturbed Hamiltonian notice that
there are three displacements containing the sum of a creation and an annihila-
tion operator in the third order term in Eq. (.). Introducing a phonon field
represented by a state-vector with the occupation of individual phonon modes

𝜙 = |nq1,s1
,nq2,s2

, …⟩, (.)

where the excitations are harmonic oscillators. The creation and annihilation oper-
ators then work such that the annihilation operator lowers the phonon occupation
nq,s by one phonon

âq,s| … , nq,s, …⟩ ∝ | … , nq,s − 1, …⟩, (.)

and the creation operator raises the occupation by one phonon

â†
−q,s| … , nq,s, …⟩ ∝ | … , nq,s + 1, …⟩. (.)

Expanding the factors containing sums of creation and annihilation operators gives
the following factors

(âq,s + â†
−q,s) (âq′,s′ + â†

−q′,s′) (âq′′,s′′ + â†
−q′′,s′′) =

âq,sâq′,s′ âq′′,s′′ + âq,sâq′,s′ â†
q′′,s′′ + âq,sâ

†
q′,s′ âq′′,s′′ + âq,sâ

†
q′,s′ â

†
q′′,s′′

+ â†
q,sâq′,s′ âq′′,s′′ + â†

q,sâ
†
q′,s′ âq′′,s′′ + â†

q,sâq′,s′ â†
q′′,s′′ + â†

q,sâ
†
q′,s′ â

†
q′′,s′′ .
(.)
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Figure .: Schematic representation of class  and class  events. Class  events
corresponds to the collision of two phonons with angular frequency 𝜔 and 𝜔′ an-
nihilating into a phonon of angular frequency 𝜔′′. Class  events corresponds to
the disintegration of a phonon mode of angular frequency 𝜔 annihilating into two
phonons with angular frequency 𝜔′ and 𝜔′′.

Four different kinds of processes can be identified. Onewith three created phonons,
one with three annihilated phonons, two created phonons annihilated into one
phonon, and finally one created phonon annihilating into two phonons. The situa-
tion with only created or annihilated phonons are prohibited due to energy conser-
vation and do not represent physical processes. Situations in which two phonons
collide are called class  events and situations in which one phonon disintegrates
into two new phonons are called class  events (Fig. .). Energy conservation
also applies to class  and  events. This can be expressed through factors of Dirac
delta functions expressing energy conservation, 𝛿(𝜔 + 𝜔′ − 𝜔′′) for class  events
and 𝛿(𝜔 − 𝜔′ − 𝜔′′) for class  events.

Besides energy conservation it is also necessary for the processes to respect the
conservation of crystalmomentum. A crystal in rest does not have any externalmo-
mentum but the internal degrees of freedom are associated with a related quantity
referred to as crystal momentum. But there is one difference, the crystal momen-
tum must only be conserved up to a reciprocal lattice vector. This can be written
as

q + q′ = q′′ + G, (.)
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for class  events and

q + G = q′ + q′′ (.)

for class  events.

3.1.6.3 Lifetimes from first principles

It can be shown [] that there is a relation between the imaginary part of the self
energy Γ and the lifetimes through

𝜏𝜆 = 1
2Γ𝜆(𝜔𝜆) (.)

where Γ is

Γ𝜆(𝜔) = 18𝜋
ℏ2 ∑

𝜆′𝜆′′
|Φ−𝜆𝜆′𝜆′′|2

{(n𝜆′ + n𝜆′′ + 1) 𝛿(𝜔 − 𝜔𝜆′ − 𝜔𝜆′′)

+ (n𝜆′ − n𝜆′′)(𝛿(𝜔 + 𝜔𝜆′ − 𝜔𝜆′′) − 𝛿(𝜔 − 𝜔𝜆′ + 𝜔𝜆′′))}. (.)

The constants Φ−𝜆𝜆′𝜆′′ are the Fourier transforms of the third order IFCs after a
transformation to normal modes. This expression can be obtained with a version
of Fermi’s golden rule. The golden rule states that the rate from an in-state |𝜙in⟩
to an out-state |𝜙out⟩ due to a perturbation H′ is obtained by evaluating

Pin→out = 2𝜋
ℏ |⟨𝜙out|H′|𝜙in⟩|2𝛿(Eout − Ein). (.)

The delta function assures that the energy is conserved in the process. Besides that,
the Fourier transform of the IFCs contains a factor that is non-zero only in the case
that the crystal momenta is conserved up to a reciprocal vector.

The problem then comes down to calculating the third order IFCs. In this thesis
a direct approach has been taken. The constants can be directly calculated by using
finite differences on force data obtained from an electron structure calculation (see
Sect. .). All the IFCs can be obtained by calculating the forces in structures
obtained by displacing one atom for the second order IFCs, and two atoms for the
third order IFCs [, ]. For efficiency the symmetry of the system should be used
to single out an irreducible set of displacements needed for a complete description
of the forces in the material.

3.2 Molecular dynamics simulations

The Boltzmann equation has some problems handling effects that deviate from
bulk homogeneous effects, for instance interfaces. One alternative approach that
can handle these difficulties is molecular dynamics (MD) [].
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MD is in general an entirely classical method where, assuming the atomic force
fields are known, integration of Newtons equation for a collection of interacting
atoms is performed. One illuminating example of the MD method is the use of
Verlet integration [] to Newtons equations. Given interatomic forces F acting
on an atom, Newton’s equation of motion for that atom are

F = ma, (.)

wherem is the mass of the atom and a its acceleration. To integrate Eq. (.) one
approach is to Taylor expand the position r around some time t giving

r(t + Δt) = r(t) + v(t)Δt + 1
2a(t)Δt2 + 1

6j(t)Δt3 + 𝒪(Δt4),

r(t − Δt) = r(t) − v(t)Δt + 1
2a(t)Δt2 − 1

6j(t)Δt3 + 𝒪(Δt4), (.)

where j is the jerk. Addition gives the Verlet integration as

r(t + Δt) = 2r(t) − r(t − Δt) + a(t)Δt2 + 𝒪(Δt4). (.)

This integration scheme is accurate to fourth order in time, velocity independent
and only requires knowledge of the positions in the current as well as the last time
step. Starting from two initial steps it is then possible to evolve the system in ac-
cordance with Newton’s laws of motion.

Two limitations of MD can be mentioned. First, MD is a completely classical
method and as such the average energy per phonon mode is kBT and can differ
quite a bit from the true energy [] see Eq. (.). Secondly, the number of atoms
that need to be included can be quite high. To capture the behavior of a phonon
the simulation domain should be at least twice as large as the respective phonon
mean free path. Since the mean free path can be on the order of tens to hundreds
of nanometers the number of atoms in the simulation may become intractable [].

For MD simulations aiming at calculating the thermal conductivity there are
two main approaches, the Green-Kubo method and the “direct method” [] in
the form of non-equilibrium molecular dynamics (NEMD).

TheGreen-Kubomethod is an equilibrium approach where the equilibrium fluc-
tuations are used to determine the lattice thermal conductivity through the Green-
Kubo relations [, , ]. The Green-Kubo method exhibits slower convergence
than than NEMD and thus requires more time steps []. It has also been demon-
strated that there generally is an inconsistency between the results of the twometh-
ods in the case of conductance at the interface between two crystals [].

The direct method, NEMD is much more straight forward. Typically, a simu-
lation domain is set up with one hot region and cold region some distance apart.
The outer regions are then connected through a periodic boundary. By fixing the
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temperature in the hot region a temperature gradient can be established between
the hot and the cold region by the use of an appropriate thermostat or swapping
method. When a steady state has established and if the simulation has been prop-
erly done, the thermal conductivity can be determined with the use of Fourier’s
law.

3.3 Atomic forces from first principles

That part there’s just a joke. It’s a spoof of the
Born-Oppenheimer approximation.

Sheldon Cooper

The IFCs introduced in Sect. .. are calculated from knowledge of the forces
between interacting atoms. In the present thesis, these forces were computed using
quantum mechanical calculations.

The wave function of a quantum mechanical system |Ψ⟩ is governed by the
Schrödinger equation [, ]

iℏ𝜕 |Ψ(t)⟩
𝜕t = H |Ψ(t)⟩ , (.)

where the Hamiltonian H describes both internal and external interactions. The
eigenspace of H is given as the solution to the eigenvalue problem

H |𝜓⟩ = E |𝜓⟩ . (.)

The eigenvaluesE are by definition the possible energies in a quantummechanical
system and thus solving Eq. (.) has merits of its own. The vectors |𝜓⟩ form
a suitable basis for expanding the system |Ψ⟩ and are the building blocks if one
wants to construct a solution to Eq. (.).

In general, solving the Schrödinger equation directly is an impossible task, just
as solving the Liouville equation, Eq. (.). The reason being that the quantum
mechanical state is multidimensional in nature. This is a result [] of the indis-
tinguishable nature of quantum particles and the probabilistic interpretation of
quantum states in accordance with the Born rule [].

In matter the Hamiltonian can generally be written []

H = − ℏ
2me ∑

i

∇2
i − ℏ

2MI
∑
I

∇2
I

+ 1
2

1
4𝜋𝜖0 ∑

i≠j

e2

|ri − rj|
− 1

4𝜋𝜖0 ∑
i,I

ZIe2

|ri − RI|
− 1

4𝜋𝜖0 ∑
I,J

ZIZJe2

|RI − RJ|
, (.)
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whereMI and ZI are the mass and charge of a nuclei,me the mass of an electron, e
the fundamental charge and 𝜖0 the permittivity of free space. The position vectors
ri and RI are with respect to an electron respectively a nuclei. The first two sums
are operators for the kinetic energy of the electrons and the nuclei. The third sum
comprises operators for the Coulomb interaction between electrons. The fourth
sum contains interactions between electrons and the nuclei and the fifth, interac-
tions between the nuclei.

Themotion of the electrons and the nuclei are usually on such different timescale
that the electronic part of the wave function can be separated from the part con-
cerning the nuclei. Then the nuclei can be seen as frozen from the point of the
electrons. This allows for a treatment where the electrons are viewed separately
from the nuclei as an external potential, here notedVext. TheHamiltonian can now
be written as 

h = −1
2 ∑

i

∇2
i + 1

2 ∑
i≠j

1
|ri − rj|

+ Vext. (.)

When the Schrödinger equation is solved for this system the force on the nuclei can
be calculated with the Hellmann-Feynman force theorem []. With a solution for
the ground-state energy E the theorem states that the force on ion I is given by

FI = − 𝜕E
𝜕RI

. (.)

Still there is a problem. The Hamiltonian in h generates a problem with many
degrees of freedom albeit the great simplification from the Born-Oppenheimer
approximation. Also because of the term describing electron interaction the wave
function is not separable into one-electron wave functions. There is thus still a
need for further simplifications of the electronic structure problem defined by h.

3.4 Density functional theory

Density functional theory (DFT) nowadays refers to a collection of first-principals
techniques using the electron density as a fundamental variable. The electron den-
sity in a system of electrons is defined as the number density of electrons in a spe-
cific state []. Suppressing spin the electron density is derived from the many-
body electron wave function |Ψ⟩ as

𝜌(r1) = N∫dr2 … rN |Ψ|2. (.)

From here on Hartree units will be used. Then action is then measured in units of the reduced
Planck constant, charge in units of the fundamental charge and mass in units of electron masses.
Finally the vacuum permittivity is set to 1/4𝜋.
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If possible, the electron density is a much leaner object to work with, compared to
the multidimensional wave function.

Fortunately, Hohenberg and Kohn showed in  [] that the electron density
can be considered as a fundamental property of the ground state in that the ground
state wave function can be expressed as a functional of the electron density 𝜌0(r).
Hence the ground state energy may be expressed as

E0 = ⟨Ψ[𝜌0(r)]|h|Ψ[𝜌0(r)]⟩. (.)

They also showed that there exist a general functional F[𝜌] expressing the energy
contribution from the kinetic energy as well as the interaction among the electrons.
Together with a part giving the interaction energy from electronic interaction with
the external potential Vext, the energy can be expressed as

E[𝜌(r)] = F[𝜌(r)] + ∫dr 𝜌(r)Vext(r). (.)

This energy is minimized by the ground state density. Unfortunately the functional
is not known in general. The theorem shows its existence but gives no prescription
on how to find F. Since the functional contains many-body effects that are not
known it is not possible to use this formulation, that is F directly [].

3.4.1 The Kohn-Sham ansatz

In  Kohn and Sham [] proposed an ansatz where the system of interacting
electrons is recast into a system of non-interacting electrons, a much simpler prob-
lem than the original many-body problem. The main assumption is that if one can
formulate an auxiliary problem, with the same ground state solution as in the full
many-body problem, then a solution to the auxiliary system also solves the original
problem. In the Kohn-Sham ansatz the functional F[𝜌(r)] in Eq. (.) is separated
as

F[𝜌(r)] = Ts[𝜌(r)] + EH[𝜌(r)] + Exc[𝜌(r)]. (.)

Here Ts[𝜌(r)] is the kinetic energy for non-interacting electrons and EH[𝜌(r)] is the
Hartee energy expressed as

EH[𝜌(r)] = 1
2 ∫drdr′ 𝜌(r)𝜌(r′)

|r − r′| . (.)

Both of these terms are known. The unknown part Exc[𝜌(r)] collects the more
complicated many-body effects that are usually referred to as exchange and corre-
lation.
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In practice an effective potential is formulated as

Veff = Vext + VH + Vxc (.)

where VH is the Hartree potential

VH(r) = ∫dr′ 𝜌(r′)
|r − r′| (.)

while the potential for exchange-correlation Vxc is the functional derivative of the
exchange-correlation energy

Vxc = 𝛿Exc[𝜌(r)]
𝛿𝜌(r) . (.)

The independence of the electrons allows for separation into single electron equa-
tions

(−1
2∇2 + Veff(r)) 𝜓i(r) = 𝜀i𝜓i(r). (.)

The Kohn-Sham orbitals 𝜓i(r) are under the constraint that

𝜌(r) = ∑
i

fi|𝜓i|2, (.)

where fi is an occupation factor for electron state 𝜓i. The formulation is exact
although the functional for the exchange-correlation energy, Exc[𝜌(r)] is unknown.
Besides that there has been a great reduction in complexity from a quantummany-
body problem into separate problems for independent electrons.

3.4.2 Exchange-correlation functionals

The unknown exchange-correlation functionals are in general complicated and ap-
proximations are necessary. The approximation presented in the original Kohn
and Sham paper [] assumes that the electron density in a local region is the same
as the density in a uniform electron gas of density 𝜌(r). The exchange-correlation
energy is then given by

ELDA
xc [𝜌(r)] = ∫dr 𝜌(r)𝜀LDA

xc [𝜌(r)] (.)

where the exchange-correlation energy for the uniform gas has a known solution
[]. The approximation is relatively simple considering the full problem, but has
nonetheless proven itself in many applications over the years.
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The LDA assumes a slowly varying electron density, so a natural step is to in-
clude effects of local variations in the exchange-correlation functional. This ap-
proach is the semi-local generalized gradient approximation (GGA).Here the exchange-
correlation energy is assumed to be dependent on the electron density as well as
the gradient of the density

EGGA
xc [𝜌(r] = ∫dr 𝜌(r)𝜀GGA

xc [𝜌(r), ∇𝜌(r)]. (.)

There are many versions of GGAs. Most notable is the PBE functional [], which
has been successfully used in many applications.

3.4.3 van der Waals density functionals

The van der Waals force is the result of non-local correlation between electrons.
Because of the non-local nature of the van der Waals force, it is not expected that
a local or semi-local approximation will give a correct exchange-correlation energy.

In Papers I and II, first-principles calculations were conducted on van derWaals
solids []. To describe van derWaals solids properly within DFT it is important to
use a proper a van derWaals density functional (vdW-DF) that captures the sparse
nature [] of the materials. In  a vdW-DF addressing layered structures []
was presented, followed one year later by a vdW-DF for general structures [].

In the vdW-DF method the correlation energy assumes a non-local form, which
is expressed as a double integral over the spatial degrees of freedom []

Enl
c [𝜌] = 1

2 ∫ ∫ 𝜌(r)𝜙(r, r′)𝜌(r′)d3rd3r′, (.)

where the kernel 𝜙(r, r′) represents the non-local coupling of the electron densi-
ties at r and r′. The correlation energy is usually complemented by a semi-local
exchange functional,

EvdW−DF
xc [𝜌(r)] = Esl

x [𝜌(r)] + Enl
c [𝜌(r)], (.)

which historically was adapted from other semi-local exchange-correlation func-
tionals. In  a consistent exchange (CX) part was developed leading to the
so-called vdW-DF-CX functional [], which was used in Papers I and II of the
present thesis.

3.4.4 Fourier expansion and pseudopotentials

In a solid, periodic boundary conditions are suitable for calculating bulk properties
where surface effects are negligible. This is reasonable if the considered system is
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large compared to the boundaries. Effectively, by introducing periodic boundaries
the computational system becomes infinite. In the case of a wave function, due
to the theorem by Bloch [] it is possible to expand the wave function in a plane
wave basis set that is complete as long as the wave vectors in the first Brillouin
zone are included. This is done by Fourier expansion over the reciprocal lattice
vectors G through the series

𝜓n,k(r) = ∑
G

cn,k+G exp [i(k + G) ⋅ r]. (.)

This sum is infinite and for practical purposes the series must be truncated by a
cutoff. The Fourier coefficients cn,k+G decrease for increasing |k+G| []. So intro-
duction of an energy cutoff Ecut allows for expansion including only the reciprocal
vectors that fulfill the condition

ℏ2

2m |k + G|
2 < Ecut. (.)

With an increasing number of nodes, a wave function picks up an oscillating
behavior near the nuclei []. Oscillations are more complicated to handle com-
putationally and cause slow convergence. Since core electrons are not strongly
involved in interaction with valence electrons, for the sake of chemical bonding,
it is not necessary to have a detailed description of the wave functions close to
the nuclei. To overcome this issue one frequently employs so-called pseudopoten-
tials, which replace the full Coulomb potential corresponding to the ionic core with
a smoother potential that incorporates the core electrons and has the same scat-
tering properties as the original potential []. Common schemes include norm-
conserving and ultra-soft pseudopotentials []. In the present work the project
augmented wave (PAW)[] method was employed, which represents a bridge be-
tween pseudopotential and all-electron type calculations.

More coefficients are necessary in the Fourier expansion





4
Summary of the papers

4.1 Paper I: Ultra-low thermal conductivity in
WSe2

Tungsten diselenide (WSe2) is a van der Waals (vdW) solid that consists of two-
dimensional sheets with strong intralayer bonding and interplanar vdW coupling.
Van derWaals solids have a highly anisotropic thermal conductivity with an out-of-
plane conductivity 𝜅⟂ for bulk material of .W/mK at room temperature []. It
was experimentally demonstrated that 𝜅⟂ in turbostratically deposited WSe2 films
can be reduced down to .W/mK. This is a factor of  lower than in bulk crystals
and thus considerably below the conservative estimate of the minimum thermal
conductivity thought achievable.

In this paper a microscopic model was developed to explain this observation
of an ultra-low thermal conductivity in disordered thin films of WSe2. This was
accomplished within the framework of Boltzmann transport theory and the relax-
ation time approximation (Sect. ..) based on second order force constants calcu-
lated within density functional theory. To accurately capture nonlocal correlation
effects a non-empirical consistent exchange vdWdensity functional (vdW-DF-CX)
was used [].

First the sensitivity of the lattice thermal conductivity to different planar defects
was established. Stacking disorder and strain cause phonon localization and soft-
ening of the acoustic modes, which can account for a reduction of 𝜅⟂ by a factor
of  to  (green dashed line in Fig. .). In addition the layer disorder introduces a
structural limit on the phonon mean free path, which can be reduced to the sepa-
ration between individual layers. Assuming that this limitation can be modeled by
a diffuse boundary scattering model reduces the conductivity as well (green band
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Figure .: The experimentally measured reduced lattice thermal conductivity in
disordered thin WSe2 films corresponds to the red triangles and squares (Cahill
et. al. []). The measured values in a single bulk crystal corresponds to the blue
dots. Reduction of group velocities lowers the lattice thermal conductivity to the
green dashed line. Lifetime reductions due to strong boundary scattering associ-
ated with disorder reduces the conductivity to the green band. Adding the effect
of both group velocity reduction as well as lowered lifetime as a result of increased
scattering reduces the predicted lattice thermal conductivity to the yellow band.

in Fig. .). If the effect of group velocity and lifetime reduction are combined
one obtains a lattice thermal conductivity that is comparable to the measured data
(yellow band in Fig. .).

The results show that a reduction of 𝜅⟂ by -% can be achieved merely by
variations in the layer stacking, which is associated with only a small energy cost.
This can be important for e.g., thermoelectric applications where a low thermal
conductivity in conjunctionwith a high electrical conductivity is necessary to achieve
a high thermodynamic efficiency. Since electrons typically have larger mean free
paths than phonons, they are less likely to be affected by changes in the stacking
order, thus creating the possibility to decouple electrical and thermal transport
properties. While the model was developed for WSe2 it is likely to be also applica-
ble to similar vdW solids.





4.2. Paper II: Thermal conductivity in van der Waals solids

4.2 Paper II: Thermal conductivity in van der
Waals solids

Novel synthesis techniques [, ] provide the opportunity to create highly en-
gineered van der Waals (vdW) solids, which emerge as promising candidates for
a manifold of applications including electronic components [], optoelectronics
[, , ], thermoelectrics [], and spintronics []. Since thermal transport
plays a key role in many of these situations, it is important to develop a detailed
understanding of the thermal conductivity 𝜅 in vdW solids.

Unfortunately, values for the thermal conductivities reported in the literature
exhibit a wide spread and can differ bymore than one order ofmagnitude. This can
be partly attributed to the challenges associated with experimental measurements
of the thermal conductivity in nanostructures with pronounced anisotropy, see e.g.,
[, ]. Possibly even more crucial is the sensitivity of the results to defects and
sample size effects, as the growth of large high-quality TMD single crystals is very
time consuming [].

Given this motivation the present paper investigates the finite temperature prop-
erties as well as the lattice thermal conductivity 𝜅 in Mo and W-based transition
metal dichalcogenides (TMDs) employing a combination of density functional and
Boltzmann transport theory. Once again the calculations were carried out using
the vdW-DF-CX functional, which is shown to yield excellent agreement with ex-
perimental lattice constants at room temperature with an average relative error
below .%.

With regard to the thermal conductivity it is demonstrated that care must be
taken with regard to some computational parameters, in particular the displace-
ment amplitude used for evaluating finite differences. A careful analysis shows
that larger values than commonly used for e.g., materials such as silicon, are re-
quired in order to balance numerical accuracy with the smallness of vdW forces.

The calculated in-plane conductivities at room temperature are in good agree-
ment with experimental data for high-purity material, when only phonon-phonon
and isotopic scattering are included. Explaining the experimental data over the en-
tire temperature, however, requires inclusion of a temperature independent scat-
tering mechanism that limits the phonon mean free path (MFP). The latter effect
is even more pronounced in the case of the out-of-plane conductivity.

The sensitivity of the thermal conductivity to structural inhomogeneities can
be rationalized in terms of the long MFPs of the modes that contribute the most
strongly to 𝜅. The MFP of these modes (including phonon-phonon and isotopic
scattering) is at least 1 𝜇m, which is comparable to silicon but much larger than e.g.,
PbTe. This behavior is promising for thermoelectric applications, where lowering
the lattice part of the thermal conductivity is a widely employed approach for in-
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creasing the thermodynamic efficiency. On the other hand, it can pose problems
for electronic and optoelectronic applications, which require a large 𝜅 for rapid
heat dissipation.

Overall the present study provides a comprehensive set of lattice thermal con-
ductivities for bulk TMDs that establishes bounds set by phonon-phonon scatter-
ing and intrinsic length scales. It thereby forms the basis for future studies on these
systems, which could focus e.g., on genuine vdW solids comprising different layers.

4.3 Paper III: Thermal conductivity in clathrates

Clathrates are chemical substances with a defined lattice structure that can trap
atomic or molecular species [, ]. Inorganic clathrates such as Ba8Ga16Ge30
or Sr8Ga16Sn30 exhibit a combination of electrical and thermal transport proper-
ties that is very favorable for thermoelectric applications [, ]. Here, the earth
alkaline atoms act as guest species that occupy the cages provided by the host struc-
ture, which is most commonly composed of elements from groups  and . Since
the guest atoms in these structures can exhibit “rattler”-like atomic motion due to
their relatively small size compared to the available cage [, , ], they have
been linked to the very small lattice thermal conductivity 𝜅l [, ].

In this paper, the electrical and thermal transport properties of Ba8Ga16Ge30
where studied as a function of the chemical order. Using alloy cluster expansions
trained by density functional theory calculations the chemical order in the form
of the site occupancy factors was determined as a function of temperature. In this
fashion the chemically ordered ground state was determined, which subsequently
served as a starting point for further studies.

The author’s contribution concerned the calculation and analysis of the lattice
thermal conductivity of Ba8Ga16Ge30, which was achieved within the framework
of Boltzmann transport theory based on the calculation of both second and third
order force constants from first principles. The thermal conductivity unlike the
electrical transport coefficients is shown to be rather insensitive to the chemical
order. When phonon-phonon and isotope scattering are taken into account, the
calculations are in reasonable agreement with experiment, albeit somewhat too
low. A closer inspection of the results reveals that only modes with frequencies
below .THz make a substantial contribution to the room temperature conduc-
tivity. Modes above this cutoff, the frequencies of which extend up to THz, have
extremely short lifetimes, which outweigh the rather large group velocities of at
least some of these phonons. The extremely small lattice conductivity is thus pri-
marily the result of the very small Brillouin zone volume occupied by phonon
modes available for thermal transport.





5
Outlook

In the present thesis two different types of materials were investigated with re-
gard to their ability to transport heat. Papers I and II addressed layered materials
with very anisotropic properties. Because of the weak interlayer binding they are
prone to form planar defects, which as shown in this thesis can have dramatic ef-
fects on their ability to conduct heat. At the same time, the D character of the
individual sheets enables the fabrication of heterostructures composed of layers of
different D materials including but not limited to the transition metal dichalco-
genides (TMDs) investigated in the present thesis. Thus while in the present thesis
the focus has been on homogeneous materials, in the future this research ought to
be extended to heterostructures composed of different TMDs and not necessarily
limited to Mo and W-based compounds.

It was discussed in Paper II how differences in mass and structure affect the
phonon dispersion, which in turn determines to a large extent the lattice thermal
conductivity. By combining different layers it becomes possible to engineer these
features and to manipulate both out-of-plane and in-plane transport in a very con-
trolled fashion. In this context, the approach taken in Paper III is potentially very
powerful, i.e. by combining transport calculations with effective models (such as
the cluster expansions in Paper III) and sampling techniques (e.g., Monte Carlo
simulations or genetic algorithms) one can computationally design structures with
specified transport properties. This “inverse design” approach was adopted in Pa-
per III to optimize electrical transport properties in clathrates but is in principle
equally applicable to thermal transport. Conversely, it will be interesting to ex-
plore electrical transport in van der Waals solids and specifically to explore strate-
gies for controlling electron-phonon coupling and decoupling electronic and ther-
mal transport.

The insight and results gained in this thesis are not only important for our un-
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derstanding of van der Waals solids and thermoelectric materials but for thermal
transport in general. In the future, the goal will be to implement the concepts
developed here in experimental settings and to push the limits of materials and
transport. In this fashion this thesis will ultimately contribute to the vast and im-
portant field of energy management.





A
Liouville’s theorem

The following short section gives a derivation of Liouville’s theorem. This theo-
rem is of importances in the theoretical framework of a statistical treatment of
transport phenomena [] and the foundation on which the Boltzmann equation
is formally derived.

Start by introducing a compact notation for the 6N generalized coordinates and
momenta in phase space as q = q1, … , q3N and p = p1, … , p3N. Let the correspond-
ing volume element be dqdp = dq1 ⋯dq3Ndp1 ⋯dp3N. Let 𝜌(q,p, t) be the number
density of states in phases space so that

𝜌(q, p, t)dqdp (A.)

corresponds to the number of states in the volume element at time t. Let V be
a constant volume in phase space and S the surface that enclose V. The rate of
change in the number of states in V is then

𝜕
𝜕t ∫V

𝜌dqdp. (A.)

As long as no states are produced or destroyedwithinV the rate at wich the number
of states changes must equal the net transport of states over S

𝜕
𝜕t ∫V

𝜌 dqdp = − ∫S
𝜌 v ⋅ ndS. (A.)

Here v is the velocity field  across the surface and n the outbound normal. Using
A velocity field in the generalized sense that

v = (
𝜕q1
𝜕t , … , 𝜕q3N

𝜕t , 𝜕q1
𝜕t , … , 𝜕p3N

𝜕t ).





Appendix A. Liouville’s theorem

the divergence theorem the surface integral can be changed into a volume inte-
gral over the divergence of 𝜌v. Since the control volume is not changing the time
derivative can be taken inside the volume integral over 𝜌 and a re-arrangement
gives

∫V
(

𝜕𝜌
𝜕t + ∇ ⋅ (𝜌v))dV = 0. (A.)

The volume is arbitrarily chosen so the integrand must vanish identically. Hence

𝜕𝜌
𝜕t + ∇ ⋅ (𝜌v) = 0. (A.)

Applying the product rule on the terms in the expanded divergence in the conti-
nuity equation equals

𝜕𝜌
𝜕t +

3N

∑
i=1

(
𝜕𝜌
𝜕qi

𝜕qi

𝜕t + 𝜕𝜌
𝜕pi

𝜕pi

𝜕t ) + 𝜌
3N

∑
i

(
𝜕2qi

𝜕qi𝜕t
+ 𝜕2pi

𝜕pi𝜕t)
= 0. (A.)

For each pair of conjugate variables the canonical equations read []

𝜕qi

𝜕t = 𝜕H
𝜕pi

𝜕pi

𝜕t = −𝜕H
𝜕qi

, (A.)

where H(q,p) is the Hamiltonian, and so each term in the last sum in Eq. (A.) is
identically zero since partial derivatives commute. Due to the chain rule combined
with the Poisson bracket  the remaining part of the continuity equation can now
be written as the total derivative

d𝜌
dt

= 𝜕𝜌
𝜕t +

3N

∑
i=1

(
𝜕𝜌
𝜕qi

𝜕qi

𝜕t + 𝜕𝜌
𝜕pi

𝜕pi

𝜕t )

= 𝜕𝜌
𝜕t +

3N

∑
i=1

(
𝜕𝜌
𝜕qi

𝜕H
𝜕pi

− 𝜕𝜌
𝜕pi

𝜕H
𝜕qi

)

= 𝜕𝜌
𝜕t + {𝜌,H} = 0. (A.)

The Poisson bracket for a quantityA related to a dynamical system governed by the Hamilto-
nian H is defined as

{A,H} =
3N

∑
i=1

(
𝜕A
𝜕qi

𝜕H
𝜕pi

− 𝜕A
𝜕pi

𝜕H
𝜕qi )

.





This resembles the result for an incompressibel fluid and one can think of the num-
ber densities of states in phase space as constituting an incompressible fluid. In the
fixed frame of reference it is then shown that the total derivative of the number
density function is zero. In the opposite frame, the co-moving frame that follows
the fluid motion the number density doesn’t change with time. This has the im-
plication that a volume element in phase-space is invariant over time. This is the
result known as Liouville’s theorem and equation Eq. (A.) is called Liouville’s
equation.







Acknowledgments

My deepest and sincerest gratitude goes to my main supervisor Paul Erhart. His
enthusiasm and dedication is more than any student could wish for.

Many thanks to everyone in the group, you all make it even easier to work here.

There is also a person outside our little group that deserves some attention. Adam
consider yourself acknowledged.

And at last, this thesis is dedicated to my wife Hanna and our daughters Nova
and Lilo. Thank you for your support, I love you with all my heart.







Bibliography

[] M.Kardar, Statistical Physics of Particles,  edition ed. (CambridgeUniversity
Press, Cambridge : New York, ).

[] International Energy Agency, Key World Energy Statistics , http://www.
iea.org, , accessed: --.

[] R. Bookstaber, A Demon of Our Own Design: Markets, Hedge Funds, and
the Perils of Financial Innovation (Wiley, Hoboken, N. J., ).

[] United Nations - Department of Economic and Social Affairs, http://esa.
un.org/unpd/wpp/Download/Standard/Population/, data accessed: -
-.

[] H. D. Klemme and G. F. Ulmishek, Effective Petroleum Source Rocks of the
World: Stratigraphic Distribution and Controlling Depositional Factors (),
AAPG Bulletin ,  ().

[] G. Bowden, The Social Construction of Validity in Estimates of US Crude Oil
Reserves, Social Studies of Science ,  ().

[] K. Aleklett, M. Lardelli, and O. Qvennerstedt, Peeking at peak oil (Springer,
New York ; London, ).

[] K. Aleklett, M. Höök, K. Jakobsson, M. Lardelli, S. Snowden, and B. Söder-
bergh,The Peak of theOil Age –Analyzing the world oil productionReference
Scenario in World Energy Outlook , Energy Policy ,  ().

[] I. Chapman, The end of Peak Oil? Why this topic is still relevant despite recent
denials, Energy Policy ,  ().

[] U. S. Energy Information Agency, International Energy Statistics - Total
Primary Energy Production, http://www.eia.gov/cfapps/ipdbproject/
IEDIndex3.cfm, data accessed: --.



http://www.iea.org
http://www.iea.org
http://esa.un.org/unpd/wpp/Download/Standard/Population/
http://esa.un.org/unpd/wpp/Download/Standard/Population/
http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm
http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm


Bibliography

[] Intergovernmental Panel on Climate Change, Climate Change  - The
Physical Science Basis: WorkingGroup I Contribution to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change,  edition ed. (Cam-
bridge University Press, New York, ).

[] Y. Demirel, Energy: production, conversion, storage, conservation, and cou-
pling, Green energy and technology (Springer, London ; New York, ).

[] H. B. Callen, Thermodynamics and an introduction to thermostatistics (Wiley,
New York, ).

[] S. R. D. Groot and P. Mazur, Non-Equilibrium Thermodynamics, dover ed
edition ed. (Dover Publications, New York, ).

[] CRC Handbook of Thermoelectrics,  edition ed., edited by D. M. Rowe
(CRC Press, Boca Raton, FL, ).

[] D. M. Rowe, Thermoelectrics handbook: macro to nano-structured materials
(CRC Press, Boca Raton, FL, ).

[] J. M. Ziman, Electrons and phonons (Clarendon Press, Oxford, ).

[] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-
layer MoS2 transistors, Nature Nanotech. ,  ().

[] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano,
Electronics and optoelectronics of two-dimensional transition metal dichalco-
genides, Nature Nanotech. ,  ().

[] X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y.
Zhang, and F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2
heterostructures, Nature Nanotech. ,  ().

[] M. Massicotte, P. Schmidt, F. Vialla, K. G. Schädler, A. Reserbat-Plantey,
K. Watanabe, T. Taniguchi, K. J. Tielrooij, and F. H. L. Koppens, Picosec-
ond photoresponse in van der Waals heterostructures, Nature Nanotech. ,
 ().

[] H. Guo, T. Yang, P. Tao, Y. Wang, and Z. Zhang, High pressure effect on
structure, electronic structure, and thermoelectric properties of MoS2, J. Appl.
Phys. ,  ().

[] W. Han, Perspectives for spintronics in Dmaterials, APLMaterials , 
().





Bibliography

[] A. D. McNaught and A. Wilkinson, IUPAC. Compendium of Chemical Ter-
minology, nd ed. (Blackwell Scientific Publications, Oxford, ), XML on-
line corrected version: http://goldbook.iupac.org (-) created by M. Nic, J.
Jirat, B. Kosata; updates compiled by A. Jenkins.

[] G. P. Moss, P. A. S. Smith, and D. Tavernier, Glossary of class names of or-
ganic compounds and reactivity intermediates based on structure (IUPACRec-
ommendations ), Pure and Applied Chemistry ,  ().

[] P. Rogl,ThermoelectricsHandbook (CRCPress, BocaRaton, ), Chap. ,
pp. –.

[] A. V. Shevelkov and K. Kovnir, in Zintl Phases, No.  in Structure and
Bonding, edited by T. F. Fässler (Springer, Berlin, Heidelberg, ), pp. –
.

[] G. K. H. Madsen and G. Santi, Anharmonic lattice dynamics in type-I
clathrates from first-principles calculations, Phys. Rev. B ,  ().

[] M. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. An-
dersen, K. Lefmann, J. Andreasson, C. R. H. Bahl, and B. B. Iversen,Avoided
crossing of rattler modes in thermoelectric materials, Nature Mater. , 
().

[] Y. He and G. Galli, Nanostructured Clathrate Phonon Glasses: Beyond the
Rattling Concept, Nano Lett. ,  ().

[] J. L. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf, and G. A. Slack,Glasslike
Heat Conduction in High-Mobility Crystalline Semiconductors, Phys. Rev.
Lett. ,  ().

[] J. Dong, O. F. Sankey, and C. W. Myles, Theoretical Study of the Lattice Ther-
mal Conductivity in Ge Framework Semiconductors, Phys. Rev. Lett. , 
().

[] M. Christensen, S. Johnsen, and B. B. Iversen, Thermoelectric clathrates of
type I, Dalton Trans. ,  ().

[] B. C. Sales, B. C. Chakoumakos, R. Jin, J. R. Thompson, and D. Mandrus,
Structural, magnetic, thermal, and transport properties of X8Ga16Ge30 (X=Eu,
Sr, Ba) single crystals, Phys. Rev. B ,  ().

[] J. D. Bryan, N. P. Blake, H. Metiu, G. D. Stucky, B. B. Iversen, R. D. Poulsen,
and A. Bentien, Nonstoichiometry and chemical purity effects in thermoelec-
tric Ba8Ga16Ge30 clathrate, Journal of Applied Physics ,  ().





Bibliography

[] A. Saramat, G. Svensson, A. E. C. Palmqvist, C. Stiewe, E. Mueller, D.
Platzek, S. G. K. Williams, D. M. Rowe, J. D. Bryan, and G. D. Stucky,
Large thermoelectric figure of merit at high temperature in Czochralski-grown
clathrate Ba8Ga16Ge30, J. Appl. Phys. ,  ().

[] M. Christensen, N. Lock, J. Overgaard, and B. B. Iversen, Crystal Structures
of Thermoelectric n- and p-type Ba8Ga16Ge30 Studied by Single Crystal, Mul-
titemperature, Neutron Diffraction, Conventional X-ray Diffraction and Reso-
nant Synchrotron X-ray Diffraction, J. Am. Chem. Soc. ,  ().

[] E. S. Toberer, M. Christensen, B. B. Iversen, and G. J. Snyder, High tempera-
ture thermoelectric efficiency in Ba8Ga16Ge30, Phys. Rev. B ,  ().

[] D. Cederkrantz, A. Saramat, G. J. Snyder, and A. E. C. Palmqvist, Ther-
mal stability and thermoelectric properties of p-type Ba8Ga16Ge30 clathrates,
J. Appl. Phys. ,  ().

[] N. P. Blake, S. Latturner, J. D. Bryan, G. D. Stucky, and H. Metiu, Band struc-
tures and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30,
Ba8Ga16Si30, and Ba8In16Sn30, J. Chem. Phys. ,  ().

[] N. P. Blake, D. Bryan, S. Latturner, L. Mollnitz, G. D. Stucky, and H.
Metiu, Structure and stability of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30,
Ba8Ga16Si30, and Ba8In16Sn30, J. Chem. Phys. ,  ().

[] G. K. H. Madsen, K. Schwarz, P. Blaha, and D. J. Singh, Electronic structure
and transport in type-I and type-VIII clathrates containing strontium, barium,
and europium, Phys. Rev. B ,  ().

[] B. Eisenmann, H. Schäfer, and R. Zagler, Die Verbindungen AII
8 B

III
16B

IV
30 (AII

= Sr, Ba; BIII= Al, Ga; BIV = Si, Ge, Sn) und ihre Käfigstrukturen, Journal of
the Less Common Metals ,  ().

[] H. Goldstein, Classical Mechanics, nd edition ed. (Addison-Wesley, Read-
ing, Mass, ).

[] J. J. Sakurai and S. F. Tuan,Modern quantummechanics, rev. ed ed. (Addison-
Wesley, Reading, Mass, ).

[] G. P. Srivastava, The physics of phonons (Hilger, Bristol, ).

[] W. Li, J. Carrete, N. A. Katcho, and N. Mingo, ShengBTE: A solver of the
Boltzmann transport equation for phonons, Comp. Phys. Comm. , 
().





Bibliography

[] A. Togo, L. Chaput, and I. Tanaka, Distributions of phonon lifetimes in Bril-
louin zones, Phys. Rev. B ,  ().

[] D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic
Press, London, ).

[] L. Verlet, Computer ’experiments’ on classical fluids I. Thermodynamical
properties of Lennard-Jones molecules, Phys. Rev. ,  ().

[] D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Ke-
blinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E.
Pop, and L. Shi, Nanoscale thermal transport. II. –, Applied Physics
Reviews ,  ().

[] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J.
Maris, R. Merlin, and S. R. Phillpot, Nanoscale thermal transport, J. Appl.
Phys. ,  ().

[] M. S. Green, Markoff Random Processes and the Statistical Mechanics of
Time‐Dependent Phenomena. II. Irreversible Processes in Fluids, The Journal
of Chemical Physics ,  ().

[] R. Kubo, M. Yokota, and S. Nakajima, Statistical-Mechanical Theory of Irre-
versible Processes. II. Response to Thermal Disturbance, Journal of the Phys-
ical Society of Japan ,  ().

[] M. Toda, R. Kubo, and N. Hashitsume, Statistical physics. , Nonequilibrium
statistical mechanics, No.  in Springer series in solid-state sciences, . ed ed.
(Springer, Berlin ; New York, ).

[] P. K. Schelling, S. R. Phillpot, and P. Keblinski, Comparison of atomic-level
simulation methods for computing thermal conductivity, Physical Review B
,  ().

[] S.Merabia andK. Termentzidis, Thermal conductance at the interface between
crystals using equilibrium and nonequilibriummolecular dynamics, Phys. Rev.
B ,  ().

[] E. Schrödinger, An Undulatory Theory of the Mechanics of Atoms and
Molecules, Physical Review ,  ().

[] R. Shankar, Principles of quantum mechanics, . ed ed. (Plenum, New York,
).





Bibliography

[] H. Kroemer,QuantumMechanics For Engineering: Materials Science andAp-
plied Physics (Pearson, Englewood Cliffs, N.J, ).

[] M. Born, Quantenmechanik der Stoßvorgänge, Zeitschrift für Physik , 
().

[] R. M. Martin, Electronic structure: basic theory and practical methods (Cam-
bridge Univ. Press, Cambridge, ).

[] R. P. Feynman, Forces in Molecules, Physical Review ,  ().

[] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules
(Oxford University Press, New York, ).

[] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. ,
B ().

[] P. J. Kohanoff, Electronic Structure Calculations for Solids and Molecules:
Theory and Computational Methods,  edition ed. (Cambridge University
Press, Cambridge, UK ; New York, ).

[] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and
Correlation Effects, Phys. Rev. , A ().

[] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approxima-
tion Made Simple, Phys. Rev. Lett. ,  (), erratum, ibid. , (E)
().

[] G. Gao, W. Gao, E. Cannuccia, J. Taha-Tijerina, L. Balicas, A. Mathkar, T. N.
Narayanan, Z. Liu, B. K. Gupta, J. Peng, Y. Yin, A. Rubio, and P. M. Ajayan,
Artificially Stacked Atomic Layers: Toward New van der Waals Solids, Nano
Lett. ,  ().

[] D.C. Langreth, B. I. Lundqvist, S.D.Chakarova-Käck, V.R.Cooper,M.Dion,
P. Hyldgaard, A. Kelkkanen, J. Kleis, L. Kong, S. Li, P. G. Moses, E. Murray,
A. Puzder, H. Rydberg, E. Schröder, and T. Thonhauser,A density functional
for sparse matter, J. Phys. Condens. Matter ,  ().

[] H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard, S. I. Simak,
D. C. Langreth, and B. I. Lundqvist, Van der Waals Density Functional for
Layered Structures, Phys. Rev. Lett. ,  ().

[] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Van
der Waals Density Functional for General Geometries, Phys. Rev. Lett. ,
 ().





Bibliography

[] K. Berland, C. Arter, V. R. Cooper, K. Lee, B. I. Lundqvist, E. Schröder, T.
Thonhauser, and P. Hyldgaard, van der Waals density functionals built upon
the electron-gas tradition: Facing the challenge of competing interactions, J.
Chem. Phys. , A ().

[] K. Berland and P. Hyldgaard, Exchange functional that tests the robustness
of the plasmon description of the van der Waals density functional, Physical
Review B ,  ().

[] F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern,
Zeitschrift für Physik ,  ().

[] B. H. Bransden and C. J. Joachain, Physics of atoms and molecules, . ed ed.
(Prentice Hall, Upper Saddle River, N.J, ).

[] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue
formalism, Phys. Rev. B ,  ().

[] P. E. Blöchl,Projector augmented-wavemethod, Phys. Rev. B ,  ().

[] C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski,
and P. Zschack, Ultralow Thermal Conductivity in Disordered, Layered WSe2
Crystals, Science ,  ().

[] A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature ,
 ().

[] Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai,
B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z.
Liu, W. Zhou, and P. M. Ajayan, Vertical and in-plane heterostructures from
WS2/MoS2 monolayers, Nature Mater. ,  ().

[] R. B. Wilson and D. G. Cahill, Anisotropic failure of Fourier theory in time-
domain thermoreflectance experiments, Nature Comm. ,  ().

[] J. Liu, G.-M. Choi, and D. G. Cahill, Measurement of the anisotropic thermal
conductivity ofmolybdenumdisulfide by the time-resolvedmagneto-optic Kerr
effect, J. Appl. Phys. ,  ().

[] L. E. Reichl, A Modern Course in Statistical Physics,  edition ed. (Wiley-
VCH, New York, ).

[] R. K. Pathria and P. D. Beale, Statistical Mechanics, Third Edition,  edition
ed. (Academic Press, Amsterdam ; Boston, ).







Paper I





Paper II





Paper III


	Introduction
	Energy transport as a challenge
	Scavenging (waste) heat

	Background
	Energy
	Transport theory
	van der Waals solids
	Clathrates

	 Methodology
	Boltzmann transport theory
	The semiclassical assumption
	The relaxation time approximation
	Boltzmann transport for electrons in an electric field
	Boltzmann transport for phonons
	Lattice thermal conductivity within the RTA
	Determination of lifetimes
	The perturbed lattice Hamiltonian
	The physical picture
	Lifetimes from first principles


	Molecular dynamics simulations
	Atomic forces from first principles
	Density functional theory
	The Kohn-Sham ansatz
	Exchange-correlation functionals
	van der Waals density functionals
	Fourier expansion and pseudopotentials


	Summary of the papers
	Paper I: Ultra-low thermal conductivity in WSe2
	Paper II: Thermal conductivity in van der Waals solids
	Paper III: Thermal conductivity in clathrates

	Outlook
	Liouville's theorem
	Acknowledgments
	Bibliography
	Papers I-III

