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Chemical ordering in zeolites
A computational study of the aluminium distribution in SSZ-13
FANT MAGNUS
Department of Physics
Chalmers University of Technology

Abstract
Over the last century, zeolites have come to be among one of the most widely used
catalysts. With their unique framework and ion exchanging capabilities zeolites show
great promise for future applications in solar cells, water purification and thermal
energy storage. Zeolites are a group of aluminosilicates, where the aluminium atoms
is the origin to many of these interesting properties. In order be able to exploit the
full potential of zeolites, more insight of regarding the aluminium distribution in
the framework is required. By utilizing computational methods such as cluster
expansions and thermodynamic Monte Carlo sampling, this thesis has shed some
new light on how it is energetically favourable for Al to cluster in protonated SSZ-
13. In addition, divalent counter ions was also examined and similar behaviour was
found for them as well. These results prove that the generally accepted Löwenstein’s
rule does not apply for charge compensated zeolites.
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1
Introduction

Throughout the last 60 years zeolites have come to play a huge role in the field
of catalysis. These porous materials had their breakthrough in the petrochemical
industry in the early 1960s, paving the way for more efficient catalytic cracking and
their ion exchange capabilities have found applications in detergents, adsorbents and
in nuclear waste storage. They have also found usage in separation of gases.
What characterizes zeolites is their unique framework, and especially the cavities
and tunnels that are present throughout the material. Zeolites are aluminosilicates,
that consist of alumunium, silicon and oxygen. They are formed from tetrahedral
building blocks, each of which contains four oxygen and either one silicon or one
aluminium atom. The tetrahedra are linked together to form the zeolite structures.
While theoretically, there is an infinite amount of zeolitic structures until now about
190 structures have been dicovered, either occuring naturally or created in synthetic
ways [1].
The presence of aluminium atoms in the framework provides zeolites with properties
that are sought after. A tetrahedron containing aluminium provides a negative net
charge to the framework. To charge compensate, a counter ion enters the zeolitic
network and neutralizes the negative contribution from the aluminium atoms. These
counter ions can be exchanged easily, and together with voids and tunnels in the
zeolite, give rise to the remarkable properties. By altering the amount of Al in the
material, the catalytic properties of the zeolite can be fine tuned, as this changes
both framework and charge.
Even though zeolites have been used heavily throughout the past half-decade, there
is yet much to learn about this group of materials. For instance, little is known
about how aluminium atoms are coordinated relative to each other. More insight in
this field could open up for applications in various areas of technology. For instance,
zeolites show great promise for usage in fuel cells, thermal energy storage, biomass
conversion, water purification as well as CO2 conversion [2].
The rapid development of computational power over the last decades has made
computational physics an alternative to experimental methods. Through electronic
structure calculations, one can acquire material quantities, such as energetics and
band structures, of the material in question. These calculations, however, come at
a rather high computational cost. Thus, they are not very well suited for study-
ing chemical ordering in multi-component systems because to be able to draw any
realistic conclusions an adequate sampling of the configuration space is required.
A more suitable approach for ordering phenomena is by cluster expansions, which
allow for comprehensive sampling of the chemical configuration space while being
both accurate and computationally efficient. In combination with Monte Carlo sim-
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1. Introduction

ulations the cluster expansions can be employed to study various thermodynamical
properties of the scrutinized material.
The aim of this thesis was to further investigate the distribution of aluminium in
zeolites, more specifically the chabasite SSZ-13. This was done using different com-
putational techniques. These techniques include empirical potentials, density func-
tional theory calculations, cluster expansions and Monte Carlo simulations. Cluster
expansions were succesfully used to describe the underlying energetics of this group
of materials.
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2
Theory

In this chapter the theory needed for this thesis is presented. This includes gen-
eral background on zeolites, their formation and characteristics. The computational
methods that have been used in this thesis are also presented along with the under-
lying theory.

2.1 Zeolites
Zeolites are aluminosilicate minerals, which come in various forms and shapes. They
mainly consist of aluminium and silicon units, more specifically of tetrahedral build-
ing blocks of SiO4 and AlO4. These tetrahedra bind to each other via common
oxygen atoms, and are commonly referred to as T-sites. It should be noted that
T-sites can be occupied by other metals as well, such as iron and titanium [3]. They
are often referenced as the primary building unit of zeolites. Due to the valency of
Si atoms, they tend to form bonds in this tetrahedral manner. In the case of the
tetrahedra in zeolites, the binding with Si results in a negative net charge of two
electrons. Tetrahedra share two common O atoms with one another, which results
in zero charge [4]. The building blocks that contain Al, however, will contribute
a negative charge, since they have one valence electron less than Si. Examples of
these tetrahedra are shown in Figure 2.1.

(a) Tetrahedron with Si
(b) Tetrahedron with Al

and compensating
proton

Figure 2.1: The form of the tetrahedron that act as the building block in the
zeolitic framework. Observe that in 2.1b the Al atom has been charge compensated
with a proton.

These tetrahedral elementary blocks give rise to complex structures and forms. The
secondary building units in zeolites, which consists of tetrahedra put together, can
take various forms and shapes. Channels and pores are formed throughout the lattice
of the zeolite. These voids are actually one of the features that render zeolites such

3



2. Theory

an interesting group of materials, as they determine what kind of molecules can
enter the framework, acting as a molecular sieve [5]. The secondary building units
come in a variety of shapes, including rings, squares and hexagon as well ascubes
and hexagonal prisms [6]. These are only a few examples of the different secondary
building blocks, and they can, theoretically, be combined together in infinitely many
ways.

2.1.1 Aluminium distribution of zeolites

Our understanding is incomplete concerning how aluminium atoms are distributed
relative to each other in the zeolitic frameworks. The basic structure of the zeolitic
framework can be determined by X-ray diffraction. Although a lot of the information
concerning chemical composition and the framework of the zeolite can be obtained in
this manner, the aluminium distribution in the system cannot be established. This
is due the almost identical behaviour of Si and Al under X-ray spectroscopy, making
them almost impossible to distinguish [7], and the correlations of sites cannot be
provided by diffraction techniques. During synthesis, the Si/Al ratio can be tailored
to the intended application, but little is known about how the aluminium atoms
actually occupy the structure [8]. Since the aluminium atoms are the source of the
sought-after properties, much research has been put into this. The most commonly
cited rule that exists within the field of Al occupation in zeolites is Löwenstein’s
rule, which states that two aluminium atoms cannot share the same oxygen atom
in their tetrahedra. Altough there are no experimental evidence of this rule, it is
frequently invoked to rationalize data, even of the computational kind [9]. There is,
however, studies that show that this rule does not always apply [10].

2.1.2 Binding sites of counter ions

The charge compensation of Al atoms in the zeolites occurs during synthesis. De-
pending on synthesis conditions, and what reactants are used, the counter ion species
differ. Due to the ion exchange properties of zeolites, the counter ions can be
swapped for other species afterwards. The species of the counter ion is crucual for
the catalytic and adsorbing properties of the zeolite, so depending on application
different cations are used. The counter ions is usually part of the alkali, alkaline
earth and transition metals such as Na+, Li+, Mg2+, Ca2+ and Cu2+ [11] [12]. An
important special case of a counter ion is the proton, which gives rise to many of the
acidic catalytic properties in zeolites [13]. The binding sites for the ions depends on
their size and valency. Studies have shown that protons tend to be associated with
an oxygen linked to the Al tetrahedra, while other monovalent cations such as Na+
occupy interstitial sites [10]. Divalent counter ion species, like Cu2+, is also sited
interstitailly between O atoms [14].
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2. Theory

2.2 Statistical dynamics and computational meth-
ods

When looking at the behaviour of systems of particles, statistical mechanics pro-
vides a powerful mathematical framework for finding relations between microscopic
phenomena of individual particles to macroscopic quantities. Thus, it relates ther-
modynamical concepts to quantum mechanics, or other theories of physics. In this
thesis, statistical physics plays a major role in the computational methods that
was used. The main concept that arises from this are thermodynamical ensembles,
which can be explained from a statistical viewpoint and considered computationally
through molecular dynamics and Monte Carlo integration. In this section, these
concepts are introduced and explained.

2.2.1 The canonical ensemble
By considering a system in contact with a thermal resorvoir, we obtain the canonical
ensemble. The canonical ensemble is characterized by a fixed temperature, but where
energy can be exchanged between the system and the resorvoir. The system can thus
be described with fixed (N, V, T ). The energy can is expressed as E0 = E+Er, where
E and Er is the energy of the system and the reservoir respectively. This means
that the full energy is constant, but that the internal energy of the system varies. In
this part we want to derive the partition functions of the canonical ensemble, since
it contains all of the thermodynamic properties of such a system.
To describe the macrostate of the full sytem we have to consider the microstates of
both the resorvoir, Ωr, and the system of particles Ωs. By putting the total number
of microstates in Boltzmann’s formula we get

S = kB ln ΩsΩr = Ss + kB ln Ωr (2.1)

using the logarithmic rule. We now denote that the microstates depend on the
energy so the second term in (2.1) can be expanded around E0 as

ln Ω(E0 − E) ≈ ln Ωr(E0) +
(
∂ ln Ωr

∂E0

)
(Er − E). (2.2)

By using the definition of temperature, i.e.

1
T

=
(
∂S

∂E

)
N,V

(2.3)

we insert this into the expansion in (2.2) and get the following expression for the
full entropy of the system

Stot = Ss −
E

T
+ kB ln Ωr(E0). (2.4)

When it comes to ordering of materials, not only does the entropy play a role, but
also the energy. This is expressed in the Helmholtz free energy

F = U − TS, (2.5)

5



2. Theory

where U is the internal energy of the system. The partition function for the canonical
ensemble stems from taking every microstate into consideration. As a consequence
of Eq. (2.4) the probability of finding the system in a certain microstate is

P = C exp
(
− E

kBT

)
, (2.6)

where C is a constant. Due the fact that a summation over all microstates sums up
to 1, C = ∑

s exp(−βE) where β = 1/kBT . This sum is also known as the partition
function and is related to the Helmholtz free energy as

Z = exp(−Fβ). (2.7)

This function contains all of the proper thermodynamical information to describe
the system, but the problem lies within computing it for each possible microstate
[15].

2.2.2 Molecular dynamics
Molecular dynamic simulations are based on Newton’s equation of motion. They are
performed by choosing an initial configuration of the system, defining an interatomic
potential and then letting the system evolve in time through the usage of algorithms
like Verlet integration. The simplest type of a molecular dynamic simulation samples
the microcanonical ensemble, since it conserves the energy. Other ensembles can be
represented by adding thermostats and/or barostats. The acquired results from this
kind of simulation are obtained time-averaging, as the microstates evolve over time.
This kind of measurements can be mathematically expressed as

f̄ = lim
t→∞

1
t

∫ t

0
dt′f(r(t′),p(t′)), (2.8)

which simply means averaging some quantity f over time where r and p denote
positions and momenta, respectively.

2.2.3 Monte Carlo integration
The essence of Monte Carlo (MC) algorithms is the usage of random numbers to
sample multidimensional integrals. Unlike molecular dynamic simulations, MC in-
tegration for physical properties relies on averaging over phase space instead of over
a time interval. To this end, the density function for the ensemble has to be known
as it acts as the distribution function for the system. Such a measurement can be
expressed as 〈

f
〉

=
∫

drdpf(r,p)ρ(r,p)∫
drdpρ(r,p) , (2.9)

where f is the measured variable and ρ is the density of the system. The ergodic
hypothesis, which states equality between (2.8) and (2.9)

f̄ =
〈
f
〉

(2.10)
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2. Theory

is often used in the field of computational physics.
There are multiple ways of carrying out MC integration, with the most simple
one being sampling on a uniform interval. There are, however, ways to make the
sampling more accurate and efficient. This can be accomplished through importance
sampling. This means that a probability density ρ(x) is introduced, which will guide
the random walk through phase space to configurations that are more probable. This
is done by carrying out a trial step, evaluating the ratio of ρ(x) for the trial state
and the current state, and depending on the outcome the step is accepted or rejected
[16]. The most common method for this is the Metropolis algorithm [17]. A trial
step for such a routine can be described by

P = min{1, ρ(trial)/ρ(current)}, (2.11)

where P is the probability of accepting a step.

2.3 Density functional theory
Density functional theory (abbreviated DFT) is one of the most widespread tech-
niques within computational physics. It is based on the fact that every property of
a material can be described by the ground state electron density. The theory behind
DFT is remarkably simple as formulated in the Hohenberg-Kohn theorems. These
theorems do not, however, provide a way of employing DFT to any real applica-
tions. Kohn and Sham provided an ansatz paving the way to calculating properties
of many-electron systems. The theorems, derivations and conventions used here
follows the presentation by R. Martin [18].

2.3.1 Hohenberg-Kohn theorems
The theorems declared by Hohenberg and Kohn provides a way for finding the
ground state density of the electrons in a many particle problem. The Hamiltonian
for such a many particle system can be written as

Ĥ = − ~2

2me

∑
i

∇2
i +

∑
i

Vext(r) + 1
2
∑
i 6=j

e2

|ri − rj|
, (2.12)

where the first term of this equation describes the kinetic energy, the second is the
contribution of a external potential and the last term is the interaction between
electrons.
Theorem 1 The external potential Vext working on a system of interacting particles
is determined uniquely by the ground state density of the particles n0(r).
This theroem is proved by considering two external potentials which differ from
each other by more than a constant and which lead to the exact same ground state
energy. This means that the Hamiltonians, Ĥ(1) and Ĥ(2), for the systems will differ,
as well as the ground state wavefunctions Ψ(1) and Ψ(2). By using that Ψ(2) does
not correspond to the ground state of H(1) the following equality can be written

E(1) =
〈
Ψ(1)

∣∣∣ Ĥ(1)
∣∣∣Ψ(1)

〉
<
〈
Ψ(2)

∣∣∣ Ĥ(1)
∣∣∣Ψ(2)

〉
, (2.13)
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under the assumption that the ground state is non-degenerate. By rewriting the
last term in (2.13) and using the Hamiltonian from (2.12) the following expression
is acquired〈

Ψ(2)
∣∣∣ Ĥ(1)

∣∣∣Ψ(2)
〉

=
〈
Ψ(2)

∣∣∣ Ĥ(2)
∣∣∣Ψ(2)

〉
−
〈
Ψ(2)

∣∣∣ Ĥ(1) − Ĥ(2)
∣∣∣Ψ(2)

〉
(2.14)

= E(2) +
∫

d3r
[
V

(1)
ext − V

(2)
ext

]
n0(r). (2.15)

The inequality can thus be written as

E(1) < E(2) +
∫

d3r
[
V

(1)
ext − V

(2)
ext

]
n0(r). (2.16)

By using the same procedure for E(2) we find that

E(2) < E(1) +
∫

d3r
[
V

(2)
ext − V

(1)
ext

]
n0(r). (2.17)

If the two inequalities in Eq. (2.16) and Eq. (2.17) are added the resulting inequality
reads E(1) +E(2) < E(1) +E(2), which is contradictory. This also proves the theorem;
a non-degenerate electron density cannot be identical for two external potentials that
differ by more than a constant. The potential is, however, uniquely determined by
the electron density to within a constant. A corollary to this theorem is that since the
Hamiltonian is uniquely determined by the ground state density but for a constant
shift in the energy, the many-body wavefunctions for all states are determined.
Theorem 2 Independent of the external potential Vext, a universal functional for
energy E[n] can be defined. The ground state energy of the system will be the global
minimum value of this functional, and the density n(r) corresponding to this value
will be the ground state density of the system, for any external potential Vext.
This theorem is proved by considering the fact that all properties of a system are
determined by the electron density n(r). These properties can be seen as a functional
of n(r). The total energy functional for such a system is described as

EHK = T [n] + Eint[n] +
∫

d3rVext(r)n(r) + EII , (2.18)

where the first two terms corresponds to the kinetic and potential energies respec-
tively, the third term to the contribution from the external potential and the last
term is the interaction energy of the nuclei. In addition, the first two terms must
be universal since they only depend on the density.
Consider two different densities n(1)(r) and n(2)(r). The external potential V (1)

ext
corresponds to n(1), and the expectation value of the Hamiltonian in the ground
state with wavefunction Ψ(1) is

E(1) = EHK[n(1)] =
〈
Ψ(1)

∣∣∣ Ĥ(1)
∣∣∣Ψ(1)

〉
. (2.19)

Naturally, the other density n(2) with Ψ(2) has a higher energy for the same external
potential i.e.

E(1) =
〈
Ψ(1)

∣∣∣ Ĥ(1)
∣∣∣Ψ(1)

〉
<
〈
Ψ(2)

∣∣∣ Ĥ(1)
∣∣∣Ψ(2)

〉
= E(2). (2.20)
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This means that the energy in terms of the Hohenberg-Kohn functional for the
correct ground state density n0(r) is lower than for any other density n(r). A
corollary to this theroem is that if the part of the functional describing the internal
energies

FHK = T [n] + Eint[n] (2.21)

is known then the exact ground state density can be obtained by minimizing the
total energy of the system. By using the two theorems, a self-consistency loop can
be defined for finding the ground state density of the system. This loop can be seen
in Figure 2.2. The should be noted that these theorems do not provide any practical
way of solving the many-body wavefunctions.

Vext(r)

Ψi(r)

Ψ0(r)

n0(r)HK

Figure 2.2: By utlizing the Hohenberg-Kohn theorems, the ground state density
of the observed system can be determined iteratively through this procedure.

2.3.2 DFT in practice: The Kohn-Sham equation
Although the Hohenberg-Kohn theorems provide an exact theory, they do not grant
real means to solve the equations for many-particle systems. The difficulty lies in
the interactions between the particles in such a system. The Kohn-Sham approach
is to replace the interacting system with an auxiliary one that still incorporates all
the dynamics of the interacting one. To be able to do this, they made an ansatz
based on two assumption; firstly, the ground state density for the non-interacting
system is the same as for the interacting one. Secondly, it is assumed that the the
auxiliary Hamiltionian contains the usual operator for the kinetic part of the energy
but and effective local potential V σ

eff(r). The energy functional for such a system is

EKS = Ts[n] +
∫

drVext(r)n(r) + EHartree[n] + Exc[n]. (2.22)

This representation is quite similar to that of the Hohenberg-Kohn functional in
Eq. (2.18), but with some modifications. The first term in Eq.(2.22) is due to
the kinetic energy of the system, the second term rises from the potential of the
nuclei and other external fields, the third is the Hartree term which stems from the
Coulomb interaction energy and the fifth term represents the nucleic interactions
and the last one is due to exchange-correlation. The ingenuity in the ansatz lies in
separating the independent kinetic energies of the particles as well as the long range
interactions in the Hartree terms, which means that the exchange-correlation term
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can be approximated as a local functional. The form of the exchange-correlation
functional can be written as

Exc[n] = 1
2

∫
d3rn(r)

∫
d3r′

n̄xc(r, r′)
|r− r′|

. (2.23)

The n̄xc represents the exchange-correlation hole, and there is no exact solution to
how this actually looks. When it comes to the accuracy of actual DFT calculations
the choice of exchange-correlation functional is key for the success of the calculations.
The Kohn-Sham ansatz provide a way to use DFT in practice. As Hohenberg and
Kohn provided a self-consistency loop for iteratively finding the electron density
of the ground state of an interacting many-body system, the ansatz proposed by
Kohn and Sham provides a way of using DFT in practice. The self-consistency loop
complemented with the ansatz is shown in figure 2.3.

VKS(r)

ψi(r)

ψi=1,Ne(r)

n0(r)HK

Figure 2.3: The Kohn-Sahm ansatz provides a way of finding the ground state
properties of a many-body system self-consistently.

2.4 Cluster expansions
While density functional theory is a great tool for acquiring different properties of
materials, is comes with a high computational cost. In many, cases this is not a
major drawback, but when the chemical ordering in a material is of interest, alloy
cluster expansions provide a more efficient way to acquire the wanted property.
This is done by looking at a variation of a property for different configurations of
the chemical compounds in the lattice. In this section, the theory behind cluster
expansions is presented.

2.4.1 Clusters
A cluster expansion is performed by decomposing the structure into clusters. Since
the clusters are parts of the underlying lattice, they are affected by its symmetry.
Cluster can be transformed into each other by the use of symmetric operations. Clus-
ters that transforms into each other under these operations belong to the same orbit.
An orbit is represented by a symmetry inequivalent cluster that can be transformed

10
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into any cluster which belongs to the orbit [19]. It is customary to describe clusters
in orders of singlet, pairs, triplets, quadruplets etc. The cluster size is defined as
the average distance to the lattice points from the geometric center of the cluster.
Due to the short-ranged nature of physical interactions clusters of higher orders
contribute less. In addition, this also limits the size of the cluster, since interactions
between largely separated atoms will be small and thus can be neglected.

2.4.2 Constructing the cluster expansion
By constructing a complete orthogonal basis a CE can represent any function of
the configuration Q(σ), where σ is the occupation vector. For a binary system, the
occupation vector consists of 0 and 1 depending on what species occupy the lattice
point. For each lattice site p one can define M orthogonal point functions

Θn(σp) =


1, if n = 0
− cos(π(n+ 1)σp/M), if n is odd
− sin(πnσp/M), if n is even

, (2.24)

where M is the allowed number of species and n is the point function index, which
goes from n = 0, 1, ...M − 1 [20].
These point functions can be used to form a complete orthogonal set of functions
Πα(σ) in configuration space as

Π(s)
α (σ) = Θn1(σ1)Θn2(σ2)...Θnl

(σα), (2.25)

where l defines the number of sites in the cluster and α corresponds to the set of
point function indices ni. Due to the completeness and orthogonality of the basis set
they can be used to form any function of the configuration and all basis function Π
have one configuration invariant component for the case α = 0, so that any function
of the configuration can be expressed as

Q(σ) = Q0 +
∑
α

∑
s

〈
Π(s)
α′ (σ)

〉
α
m(s)
α J (s)

α . (2.26)

Q0 denotes the configuration invariant term, mα is the multiplicity of the repre-
sentative cluster α and Jα are the effective cluster interactions (ECIs), which are
the free parameter that render a cluster expansion. When constructing a CE the
ECIs must be determined. To this end reference data for a set of configurations
σ1,σ2, ...,σn is needed, as well as a vector of target data QT . The full expression
for the configuration in Eq. (2.26) can be rewritten as

Q = ΠJ . (2.27)

Here, the rows of Π are given by

Πi = [1,
〈
Πα′

1
(σi)

〉
α1
mα1 ,

〈
Πα′

2
(σi)

〉
α2
mα2 , ...]

and J represents the ECIs with J0 = Q0. In reality, obtaining the ECIs is done by
solving eq. (2.27), which is a linear system. Often, the system is underdetermined
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and the rows the sensing matrix Π are correlated. Also, due to the short range of the
physical interactions the solution for the ECIs can be sparse. This can be obtained
numerically by feature selection, which is able to yield models that are less prone to
overfitting, have a greater transferability and even reduce the computational cost of
the procedure. To this end, a variety of optimizng techniques can be used. The ones
used in this thesis are the least absolute shrinkage and selection operator (LASSO),
recursive feature elimination (RFE) and automatic relevence detection regression
(ARDR), which is a Bayesian linear regression technique.
To compare the performance of different models cross-validation (CV) is used. This
is done by splitting the reference data into training and validation sets. The former
is used for obtaining the ECIs and the latter is later used as a reference when looking
at the root mean squared error (RMSE) of the acquired CE as

RMSE =
√√√√ 1
Ns

∑
i

(Qmodel
i −Qtarget

i ), (2.28)

where Ns is the number of structures in the validation set [21].
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Methodology

The methodology used throughout the project is presented in this chapter. During
the study a variety of methods was used, both for purposes of validating the proce-
dure as well as validating the results obtained by their usage. Examples include the
comparison between different exchange-correlation functionals for the relaxation of
the structures, optimizations methods used in the training of the cluster expansions
as well as trying out empirical potentials and DFT for the relaxation of the struc-
tures. Generally, for the cluster expansions, the standard procedure for this type
of computations were used. A flowchart of the subroutines used for creating and
employing cluster expansions can be seen in Figure 3.1.
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Figure 3.1: The general workflow for constructing and employing cluster expan-
sions.

3.1 Structure generation

Most of the structures generated for this work was done using the enumeration
routine in icet [21], whereas format conversions and data handling were carried out
using the Atomic Simulation Environment (ASE) [22]. Structures were generated
from the primitive uni cell, which only included T-sites containing Si. The primitive
structure was retrieved from the Database of Zeolite Structures, which is a database
created by the International Zeolite Association [23]. The primitive unit cell can be
seen in Figure 3.2a.
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(a) Primitive unit cell (b) Enumerated OH site (c) OH exchanged for H

Figure 3.2: (a) Primitive unit cell of SSZ-13. It contains 12 T-sites (beige), and 24
oxygen sites (red) with a total of 36 atoms in the pure Si form (silicalite). (b) One
of the enumerated structures is shown, obtained by enumerating both Al over the
T-sites and all of the possible O sites. (c) shows the same configuration right before
relaxation. The atom representing the OH group is exhanged for for an oxygen atom
and an appended hydrogen.

When generating structures, three different procedures were used. The first way of
constructing reference structures consisted of randomly distributing out Al atoms
over the T-sites in the unit cell. This kind of random distribution was mainly used
in attempts to create structures comprising more than the unit cell. Because of the
high number of possible T-sites in supercells, enumeration of them would be tedious
and the amount of possible configurations rises rapidly with the number of sites in
the structure. The enumeration scheme works in the manner that it finds every
unique possible configuration given the symmetry of the structure. In the case of
the chabasite used throughout this thesis, there are 12 T-sites in the primitive unit
cell. For this primitive unit cell, there are one unique way of replacing a single Si
atom with Al, 9 ways of distributing out two Al atoms and 19 ways of distributing
3 Al atoms in the structure. This follows the rules of combinatorics and the number
of configurations increases rapidly with an increasing number of Al T-sites.

3.1.1 Binding sites of counter ions
Depending on what counter ion was used in the calculations, different methodolo-
gies were used. In the case of protons as counter ions, three different methods in
distributing the proton were considered. Divalent counter ions were allowed to oc-
cupy two different sites in the primitive unit cell of SSZ-13, where the positions were
taken from the work of Fickel and Lobo [14].

3.1.1.1 Protons as counter ions

Initially in the project, each aluminium was charge compensated by placing the
hydrogen at one of the four O atoms that are part of the tetrahedron. A cost
function was used to get the optimal position for the hydrogen.
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Figure 3.3: The binding sites for the divalent counter ions in the pure silicalite.
The binding sites are represented by the large, rust colored atoms.

During the work the binding sites of the protons species were also investigated.
To generate the structures relevant for these type of calculations in the case of
protons, a double enumeration routine was used. No assumptions for the hydrogenic
binding sites were made, instead distributing the charge compensating protons in the
same manner as for the Al atoms in the simple enumeration scheme. In practice,
the enumeration was done using one atom representing the OH that is formed.
This means that the sublattice of possible O sites was enumerated with the same
concentration of OH as that of Al in the system.
The amount of structures rises rapidly with the concentration of Al, with 24 unique
ways of distributing one Al and a charge compensating proton. An example for
such a structure can be seen in Figure 3.2b. In the case of the double enumeration
scheme, the OH species, has to be changed to an O with an appended proton before
relaxation. This is shown in Figure 3.2c.

3.1.1.2 Divalent counter ions

The placement of the divalent counter ion sites can be seen in Figure 3.3. Since there
are only two possible sites for this type of counter ions, it also constrains the number
of Al atoms to two or four in the primitive unit cell. Since this restricts the number
of possible configurations, the enumeration scheme were run for all primitive unit
cell structures and the possible sites for supercells twice the size of the primitive
unit cell. The divalent species used in this thesis were Mg, Ca, Se, Ba, Cu, and Zi.

3.2 Relaxation of structures

To obtain the ground state energy of a structure it needs to be releaxed. This was
mainly performed in two different manners: by using the empirical reactive force
field [24] as implemented in the LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator) software [25] and DFT calculations using the Vienna Ab initio
Simulation Package (VASP) [26] [27].
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3.2.1 Force field calculations
The reactive force field used here was developed specifically for modelling the usage
of methanol to olefin reactions in the ZSM-5 zeolite [24]. This method was only used
in the beginning of the thesis work, in order to see if the low computational cost of
empirical potentials would outweigh the DFT based relaxations, since the latter are
associated with a much higher computational cost.

3.2.2 DFT calculations
The DFT calculations done in this thesis mainly followed the same setup. Three
different exchange-correlation functionals were used in order to validate the result
of the calculations. The other parameters, however, were kept identical for all of the
relaxations. As convergence criteria, the maximal forces acting on the system was
set to have a threshold of 25 × 10−3 eV/Å and the energy difference between ionic
relaxation steps were set to 10−5 eV. When both of these criteria were reached, the
structure was considered releaxed. The plane wave energy cutoff for the calculations
was set to 520 eV. Since cell relaxation was of interest, not only the positions were
allowed to relax but also cell volume and shape. As for the minimization algorithm
used, most of the relaxations started by using the conjugate-gradient method to get
close to the global minimum of the energy, and then switched to using the quasi-
Newton algorithm, which performs better close to the minimum but worse in the
initial steps of the relaxation.
All of the three functionals used throughout the project were of the generalized
gradient approximation (GGA) kind, which considers the gradient of the density
unlike the more simple local density approximation (LDA) functional [28]. Initially
in the project, the vdW-DF-cx functional was used [29]. This functional takes
van-der-Waals contributions into account, which can be necessary when describing
systems where covalent and electrostatic bonds are important and acts as a GGA
functional but with a non-local correction term which includes the van-der-Waals
contributions [29]. These calculations were validated using two other functionals,
namely PBE and PBEsol. PBE is one of the most common functionals in the
field of DFT, because of its generality [30]. The PBEsol is a revision of the PBE
functional, where the equilibrium properties of dense solids are more accurate than
for its predecessor [31]. After the validation of the functionals, PBE was chosen
for the remainder of the project since it yields very similar results as the other two
functionals while it is substantially easier to use in terms of the relaxation behaviour.

3.3 Cluster expansions
When creating a cluster expansion, the workflow followed the order in Figure 3.1.
Below follows a more detailed description of the construction of the cluster ex-
pansion, what parameters were taken into account and how the expansions were
sampled.

1. When setting up the cluster space for the cluster expansion a primitive unit cell
with only Si occupying the T-sites was used. This is referred to as the silicalite

17



3. Methodology

in Figure 3.1. The active species were also set up, which differed depending
on the counter ion species. When enumerating both the T-sites and the ionic
bonding sites, two active sublattices were used. To find appropriate cutoff and
expansion orders, different combinations of these parameters were compared
using the cross-valkidated RMSE. By setting cutoffs, the expansion order, the
active species and the ideal lattice a representation of the SSZ-13 structure is
dcomposed in terms of cluster vectors. A cluster vector is a way of numerically
describing a structure of mixed species.

2. After the cluster space had been constructed, a structure container was set
up. Prior to setting up the structure container, the relaxed structures were
mapped back onto the ideal lattice using the mapping functionality of icet.
If a structure could not be mapped correctly, it was left out. This can be seen
as a crude structure selection. First, an empty structure container was set
up. The mapped reference structures and their potential energies were then
used to fill the structure container, making it a collection of all the reference
structures together with their cluster vectors.

3. In the next step, the optimizer used for the cluster expansion was determined.
icet supports a variety of fit methods for training the cluster expansion. In
order to find the most suitable fitting method, three optimizers were evalu-
ated. The methods used were Automatic Relevance Determination Regression
(ARDR), Recursive Feature Elimination (RFE) and Least Absolute Shrinkage
and Selection Operator (LASSO). When using the optimizer, the number of
reference structures to be used in the training process has to be specified, as
well as the number of hyperparameters for the employed fitting method. Suit-
able values for these parameters were found by minimizing the CV-RMSE.

4. The cluster expansions were now ready to be constructed. Using the reference
data in the structure container the effective cluster interactions (ECIs) were
trained on this set of data. In the first step, the structures in the structure
container were split into two subsets: the training data and the validation
data. The training data was used for training the ECIs of the clusters in
the cluster space. The second data set was used for validating the predictive
power of the cluster expansion. This means that the ECIs acquired from the
training set were used in order to predict the eneregis for the structures in the
validation set.

The acquired cluster expansions were sampled via MC calculations, in the canonical
ensemble and by simulated canonical annealing.

3.4 Sampling the CE in Monte Carlo simulations
For sampling the configuration space of SSZ-13, two different approaches based on
the canonical ensemble were used. In both of these cases, the simulations were
carried out using the mchammer module in the icet package. In addition to the
regular canonical ensemble, the canonical ensemble supported simulated annealing
procedure was used. In all of these simulations, a 2× 2× 2 supercell was used. Just
as in Metropolis based MC routine, a trial step is taken as in the same manner as in
Eq. (2.11), with the density being for a microstate of the canonical ensemble. Due
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to the associative nature between Al and the charge compensating proton, the trial
step functions had to be rewritten for protonated SSZ-13 (see below). Canonical
annealing simulations were performed in order to find the ground state energies
for the structures. The annealing simulations, unlike ordinary canonical ensemble
simulations, run over a temperature interval. With a cooling function working on
the system during the simulation the ground state is more easily obtained than in
regular canonical ensemble computations.

3.4.1 Trial swap function for hydrogen
When sampling the configuration space using the canonical ensemble, the trial step
function for annealing is identical to the ordinary ensemble. Ordinarily, this func-
tions tries to swap one element in the system with another element on a different
site. An example of how this works is that the function randomly picks out a Al site,
as well as a random Si site and check whether the swap is energetically favourable.
In mchammer, this is implemented for swapping one element at a time, which leads
to very low acceptance ratios in the case of the zeolites due to the associative nature
of the Al and H.
In order to take this into account, the trial function was rewritten for this purpose.
In the case of the chabasite, if an Al atom was to be swapped with a Si atom, the
associated OH group which represented the proton had to be swapped as well. In
order to this, a list of all 4 oxygen sites related to the T-sites of the structure was
created. For every step where a Al would be swapped with a Si, or vice versa,
the list was checked to see if there was any OH sites neighbouring the Al site and
the same for the O atoms neighboring the Si site. If both of these criteria were
fulfilled, a random OH site was picked (if there were more than one) and likewise
for the O sites associated with the Si site, and swapped these two as well. Thus, the
physicality of the charge compensation was maintained throughout the simulation.
It should be noted that not all of the aluminium atoms had neighboring OH. At
such an occurance the T-site atoms were allowed to swap sites alone.

3.4.2 Trial swap for divalent counter ions
When Monte Carlo simulations were involving divalent counter ion species the reg-
ular swapping method was used. This means that the counter ions were allowed to
swap sites, independent of the Al swaps.
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4
Binding sites and cluster

expansion of proton compensated
SSZ-13

In this chapter the results from the Al distribution in SSZ-13 with protons as the
counter ion are presented. The chapter will cover the full extent of the procedure
used in this thesis, from structure relaxation to construction of the cluster expan-
sions to MC simulations. It also describes finding concerning the binding sites of
the protons, which proved to have a significant impact on the energy landscape.
To emphasize how the thesis work was carried out, this chapter has been written
in chronological order, from finding the proper relaxation method, to looking at
the hydrogenic energy contributions depending on the binding sites as well as the
energetics stemming from nearest neighbour Al atoms. All of these results were
important in the process of being able to obtain an accurate and predictive cluster
expansion.

4.1 ReaxFF and DFT

Early on in the project, the method best suited for relaxation of structures were
evaluated. To this end, the same set of structures was relaxed using the two different
methods presented in the Methodoly chapter. The structures used were from an
early version of the project, with structures generated by enumeration over the
T-sites only. The database of the structures contained 26 inequivalent structures
with an aluminium content which varied from 0 to 4 per primitive unit cell. The
structures were relaxed using VASP and LAMMPS. The resulting structures were
then compared to each other. In Figure 4.1 the results from these comparisons can
be seen. These results suggests that the ReaxFF potential is not suitable for this
purpose, since there is a systematic error in the energies for the structures. The
energies for the ReaxFF data increases linearly depending on the amount of Al in
the cell in comparison to the DFT data. In addition, the energies for each group of
structures with the same amount of aluminium in the cell had quite a big spread.
The deviations in the groups with the same Al content in the primitive unit cell has a
much larger spread for the empirical potential than the ab-initio calculations. In the
case of four aluminum in the structure, the energies in the ReaxFF data varied with
5 eV between the lowest and highest energy configurations. Meanwhile, the spread
was about 2 eV for the same structures using DFT as the relaxation method. This
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further proves the invalidity of the empirical potential. The spread was, however,
still large for the structure relaxed by DFT. This big spread could either depend
on the protonic binding sites, the aluminum distribution in the structure, had to be
sorted out in order to perform a cluster expansion.

Figure 4.1: The first figure shows the correlation between energies for the same
structures relaxed in two different ways: through ReaxFF and DFT. The blue line
shows a perfect linear dependence, which is not shown for these structures, sug-
gesting that the ReaxFF potential is not suited for our application. The left figure
shows the difference in energy for each structure against the DFT energy. This
shows how the energetic difference between the methods increases with the number
of aluminium in the structure.

Löwenstein’s rule suggest that the energies for structures with Al-Al neighbours
should be higher than energies for structures where the Al atoms are separated. In
order to sort this out, the same structures from the previous results were used to
look at how the energy differs between sets of structures with the same aluminium
count in the cell and how many aluminium were neighbouring each other. This was
done by looking at the energy of structures as a function of the number of Al nearest
neighbours. This can be observed in Figure 4.2. For the structures with 3 and 4 Al
in the structure, the lowest energy configurations correspond to structures where Al
atoms neighbour each other. These results suggests that Löwenstein’s rule actually
does not apply, since the nearest neighbour configurations have the lowest energy in
the data set. To validate these results, more DFT calculations were needed, with a
larger set of structures.
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Figure 4.2: This figure shows the energies for different structures as a function of
the number of Al-Al nearest neighbours in them. The energies for each structure
were obtained using VASP. According to Löwenstein’s rule, the structures with
Al atoms neighbouring each other should not be the lowest energy lowest energy
configuration.

4.2 Energetic contribution of the protonic sites

In order to construct a sensible cluster expansion, the energetic fluctuations in the
energy of structures with same chemical compositions had to be sorted out. This
was done by looking into the possible binding sites for hydrogen, and scrutinizing
how much the energy contribution was from each proton and whether it differed
depending on its position in the structure. By using the same aluminium distribu-
tion, but varying the hydrogen positions, this could be analyzed. This was done
by enumerating the unit cell up to two Al and then distributing the hydrogen to
different oxygen sites in the vicinity of Al. In case of structures with 2 Al atoms in
the cell, the highest and lowest energies corresponded to the configurations where
the aluminium was distributed on the same sites, but with different sites for the
protons. These two configurations can be observed in Figure 4.3.
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(a) Proton located at
bridging oxygen site.

(b) Protons associated
with independent

oxygen sites.

Figure 4.3: Two different types of protonic binding sites for a unit cell with one pair
of Al-Al neighbours. (a)is the lowest energy configuration, while (b) corresponds to
the highest energy configuration. The energy difference is about 30.8eV .

The energy difference for these two sites is about 0.8 eV, which is rather large
considering the only difference is the bonding site of the proton. Because of these
large energetic contributions, the binding sites had to be taken into account in order
to be able to perform an accurate cluster expansion.

To take the protonic site contribution into account, a new enumeration scheme was
employed for both T-sites and protonic bonding sites. To this end, the OH was
treated as a single species. This enumeration led to many more configurations. By
enumerating all possible structures with 1 Al in the primitive unit cell 24 inequivalent
structures were acquired. To validate the results from these relaxations, two other
functionals were used: namely PBE and PBEsol. The results from these relaxations
can be seen in Figure 4.4. These results emphazise the importance of the protonic
binding site, showing that it is energetically favourable for the proton to bind in
the vicinity relative to the Al atom. The difference is about 1 eV if it binds to
a neighbouring O site. Both shear strain and lattice constant of these calculations
serve as measure for the degree of structural relaxation. This had been a problem for
some of the structures in the earlier DFT calulcations, but for this set of structures
this did not occur with any of the functionals.
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Figure 4.4: Comparison between different XC-functionals for the Al-H distance
in the structures generated for the double enumeration scheme. The upper graph
shows the energy for each structure relative to the energy of the structure where
the protons is the farthest away from the Al. The energies of the structures are
similar for all the functionals, while the lattice constant is conserved for the PBE
calculations. The shear asymmetry indicates the degree of relaxation. Here, all
structures are still relatively close to the ideal structure.

To draw any conclusions whether Löwenstein’s rule is applicable, more structures
were generated with 2 Al atoms in the primitive unit cell and the same amount of
charge compensating H. This generated a total amount of 1572 different configu-
rations. From the previous step, relaxing single Al structures, PBE and PBEsol
functionals proved to be much less time consuming, making it much easier to get
a high throughput. These functionals were used instead of the vdF-DF-cx method.
The PBE based calculations managed to relax a total of 683 structures, while the
PBEsol provided 528 configurations. For these two sets of reference structures en-
ergy, lattice constant and shear asymmetry were analyzed. In Figure 4.5 these
results can be studied. The upper graph clarifies what the results from the first
study of Al suggested: Löwenstein’s rule is not applicable since many of the low
energy configurations corresponds to nearest-neighbour Al atoms.
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Figure 4.5: Energy, lattice constant and shear asymmetry of the cell with respect
to the Al-Al distance for a primitive unit cell with 2 aluminium atoms. The first,
second, and third neighbour shell are apparent from the clustering of data points.

4.3 Constructing the cluster expansion
With the hydrogenic contribution to the energy sorted out, a cluster expansion
was ready to be constructed. When constructing the cluster expansion, a series of
parameters had to be determined in order to get the CV-RMSE value as low as
possible. To achieve this, the cutoff radii for each order had to be found, as well
as the most suitable fitting method. The latter were examined with respect to the
size of the training data set and the parameters present when altering the train size.
The dataset used was a combination of the PBE sets described above. This resulted
in a total of 708 reference structures.

4.3.1 Learning curves and cutoffs
To begin with, the most effective fitting method had to be found. This was done
by comparing the training set size for the different methods used as well as the
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convergence with hyper parameters. The latter affect the number of non-zero ECIs
in the cluster expansion. Firstly, the effect of training set size was examined. This
was done by varying the size of the training size for three different fit methods:
ARDR, RFE and LASSO. The results can be seen in Figure 4.6.
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Figure 4.6: Learning curves for the training set size and the number of features
in the cluster expansion. The RMSE converges at approximately 250 reference
structures. The performance of the different fit methods is almost identical with
regard to the training set size.

Next, suitable cutoffs for the cluster expansion had to be found. This was done by
first varying the radius for pairs in an interval between 3.7 and 9 Å. and then looking
at triplets with cutoff radii of 3.7 and 5 Å. The cluster space achieved the lowest
RMSE with cutoffs radii of 5 and 3.7 Åfor pairs and triplets, respectively. Even
though it showed a better RMSE for higher cutoffs it showed a volatile behavior
and thus discarded. The final RMSE of 2.9 meV/atom is very low when compared
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to the range of input energies.
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Figure 4.7: Cluster space convergence with respect to cutoff radii for pairs and
triplets. The upper panel shows the validation RMSE, the middle panel shows the
training RMSE, and the bottom panel exhibits the number of non-zero parameters.

4.4 Cluster expansion and ECIs

The ARDR method was used for fitting the final cluster expansion. The ECIs
acquired can be seen observed in Figure 4.8. This shows the interaction between
the pair in the cluster space. The ECIs are not based on the mixing energy for the
structures, but rather a shifted total energy. This shifted total energy was calculated
as

ECE = Es
ns
− Er
nr
, (4.1)

where s is the current structure, r the reference structure (pure silicalite) and n is
the number of atoms in each of these structures.
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Figure 4.8: ECIs for the pairs in the system.

To visualize the performance of the CE its predictions were compared with the ref-
erence data. This done by looking at the correlation between the predicted energies
of the structures as well as the reference energies. This comparison can be seen in
figure 4.9.
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Figure 4.9: The correlation between the reference structures and the cluster ex-
pansion.

4.5 Monte Carlo simulations
The sampling of the resulting cluster expansion is presented in this section. In these
simulations a supercell of 2 × 2 × 2 the size of the primitive unit cell was used,
containing a total amount of 96 T-sites and 288 atoms in the structure. These
simulations were carried out using the canonical ensemble, and the properties of
interest were the average energies as well as the aluminium distribution. In addition,
the associative behaviour between the Al atoms and the protons were examined.
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4.5.1 Convergence and energies

For the MC runs 10000 trial steps were taken for each atomic site in the structure,
resulting in a total of 288000 steps. This was done for 8 different concentrations
of Al and at 4 different temperatures. The concentrations ranged from 2 up to 16
Al atoms in the supercell, including only even numbers of aluminium atoms. The
temperatures used were 300, 600, and 900 K. Canonical annealing simulations were
also performed for the same Al concentrations using a cooling function where the
temperature decreased from 1800 to 300 K. A comparison between the canonical
annealing and ensemble simulations were done for structures containing 2 and 14
Al. The comparison can be observed in Figure4.10. As the figure suggests the usage
of the canonical ensemble is better suited for the MC calculations, due to the fact
that the canonical ensemble reaches the ground state earlier on and they also have
a lower energy.
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Figure 4.10: Comparison between simulations using canonical annealing and
canonical ensemble for two different Al concentrations. The canonical ensemble
data is taken from the simulations set at T = 300 K.

The energies from the canonical ensemble simulations were then averaged over the
length of the simulations. By comparing the averaged energies with the concentra-
tion of Al for different temperatures, a linear dependence of the energies was found.
This was the expected result of the concentration dependence of the energy, due to
how the energies of the structures were normalized in the cluster expansion. This
can be observed in Figure 4.11
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Figure 4.11: Average energy as a function of the Al-Al concentration of the simu-
lations in the canonical ensemble.

The energy relative to the Al-Al distance and the probability distribution for the MC
simulations containing two aluminium were investigated. This can be observed in
figure 4.12. This shows that is highly favourable for H-SSZ13 to disobey Lẅoenstein’s
rule, and thus letting the Al atoms to neighbour eachother. The aluminium also
swaps sites constantly during the simulation, even though it has been equilibrated.
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Figure 4.12: The energy in relation to the Al-Al distance and the probabilites of
the different states at temperatures of 300 K, 600 K and 900 K.

4.5.2 Clustering of aluminium

Given that the canonical ensemble simulations are sufficient for finding the ground
state they were used further. To this end, pairs were assigned to neighbour shells as
shown in Figure 4.13. The cutoffs used for observing the pairs of each order can be
seen in table 4.1.
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Figure 4.13: Si-Si pair distribution of the pure silicalite. The yellow field indicates
the cutoffs used when counting the pairs.

Table 4.1: The different cutoffs used to observe Al-Al pairs of certain orders.

Order rmin (Å) rmax (Å)
First 2.9 3.5
Second 4.0 5.0
Third 5.0 6.5

The clustering of Al-Al nearest neighbours in the MC simulations were examined,
which means that the clustering effect for different temperatures were accounted
for. The clustering was averaged only for the nearest-neigbour Al-Al pair. This can
be observed in figure placeholder. This suggests that clustering is beneficial for the
protonated SSZ-13 is beneficial at almost all temperatures. This was done with a
counting function which utilize did not utilize self-interaction of the species. This
shows that Al-Al neighbors forms at all temperatures in protonated SSZ-13.
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Figure 4.14: Average count of Al-Al first nearest neighbours in regard of the
amount of Al in the supercell. This shows that clustering is favourable for the
aluminium.
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5
Divalent counter ions

To see whether Löwenstein’s rule was violated for other type of counter ions, charge
compensating divalent species were examined. In this chapter the results from the
structures charge compensated with divalent cations are presented. The construction
of the cluster expansions followed a similar procedure as for H-SSZ-13 and as is not
described further. The different counterion species are presented in the order of
groups in the periodic table. First off are the alkaline earth metals in descending
order and then copper and zinc. In all of these cases, ARDR was found to be the
optimal fit method. Due to almost identical geometries for the cases for the divalent
cations, the cluster radius was found to achieve the lowest RMSE at 6 Åfor pairs
only. This will be shown in the magnesium case, but for the other individual cases
the same procedure was used and the same optimal cutoff was acquired.

5.1 Magnesium compensated structures

When relaxing the structures compensated with Mg2+, 405 structures managed to
converge. Out of these, 375 were succesfully mapped on their original configura-
tions. The DFT energies were compared with the Al-Al distance for the structures
containing two aluminum atoms. This can be observed in Figure 4.2. This suggests
that non-Löwensteinian configurations have lower energies.
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Figure 5.1: The reference energies relative to the Al-Al pair distances for Mg2+

The mapped structures were then used in order to find the optimal cutoffs for the
divalently compensated systems. The cluster space convregence for different cutoffs
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5. Divalent counter ions

can be observed in Figure 5.2. The minimal RMSE was found for pairs only at 6 Å.
Thereafter, the cluster expansion was performed using the ARDR fit method. The
resulting ECIs can be seen in 5.3.
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Figure 5.2: The cluster space convergence for Mg2+ as the counter ion.
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Figure 5.3: The ECIs for the magnesium compensated structures.

The ECIs were sampled using the canonical ensemble for three different tempera-
tures: 600, 900 and 1200 K. All of these simulations were done in supercell of the
same dimensions as in the proton case and for a total of 20000 trial steps. The sim-
ulations were considered to be equilibrated at 2000 steps, leaving the steps prior out
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from the averaging. The energetic contribution in regard of the Al-Al distance can
be seen in Figure 5.4. These results suggests that structures abiding Löwenstein’s
rule are thermodynamically more favourable. Violations of the rule does however
occur at all temperatures used in these computations.
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Figure 5.4: The energetic contribution in regard of the Al-Al distance of the
simulation. The probability density for different temperatures can be seen in the
right part of the figure.

5.2 Calcium counter ions

The same procedure was done for Ca2+ as the counter ion. Out of 324 relaxed
reference structures, 319 could be mapped onto their original configurations. The
energies of the structures were plotted as a function of the aluminum pair distance for
the structures containing 2 Al. This is shown in Figure 5.5a. The cluster expansion
was carried out in the same manner as for Mg2+. The energy in regard of the Al-
Al distance can be seen in Figure 5.5b, together with the probability density for
three different temperatures. In this case, the non-Löwensteinian configuration is
not visited for any of the temperatures.
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(b) MC energies and densitites.

Figure 5.5: The energetic contribution in regard of the Al-Al distance for the
DFT and MC data. Probability densities for the different energies and different
temperatures can be observed for the MC simulations.

5.3 Strontium as counter ion

The next counter ion species to be examined was Sr2+. 405 structures converged
in the relaxation, and out of these 400 managed to be mapped onto their original
configurations. The relaxed energies were plotted as a function of the aluminum
distance. This can be observed in Figure 5.6a. The MC simulation took place
suing the same arrangement as for the other divalently compensated structures.
The resulting energies relative to the Al-Al distance can be observed in Figure
5.6b. Löwenstein’s rule is not violated in any of these simulations, just as for Ca2+
compensated SSZ-13.
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Figure 5.6: The energetic contribution in regard of the Al-Al distance for the
DFT and MC data for Sr2+ compensated structures containing two Al. Probability
densities for the different energies and different temperatures can be observed for
the MC sumilations.

5.4 Barium compensated structures

For Ba2+ compensated zeolites 404 structures was succesfully relaxed. Out of these
357 structures was able to be mapped onto their origin configurations. The DFT
energies relative to the aluminium distances can be seen in figure 5.7a. Figure 5.7b
suggests that nearest neighbour Al-Al do occur at higher temperatures for Ba2+
compensated structures.
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−2.0

−1.6

−1.2

−0.8

−0.4

0.0

0.4

E
ne

rg
y

(e
V

)

10−4 100

600 K

10−4 100

Probability density (1/eV)

900 K

10−4 100

1200 K

(b) MC energies and densities.

Figure 5.7: The energies for the DFT and MC simulations. The MC data depicts
the energy states visited throughout the simulation a tthe different temperatures.
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5.5 Copper counter ions

With Cu2+ as the charge compensating counter ion, all of the 517 relaxed structures
managed to be mapped onto their unrelaxed forms. The reference energies as a
function to the Al-Al distance for each structure can be observed in Figure 5.8a.
The resulting MC energies and probability densites can be seen in Figure 5.8b. Just
as the DFT energies shows, Al-Al nearest neighbours occurs at high frequency.
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Figure 5.8: The energies in relation to the distance between aluminum pairs for
both the converged reference structures and the MC simulations. The occupied
energy states can be seen in the right of 5.8b.

5.6 Zinc compensated structures

405 Zn2+ compensated structures managed to converge during the relaxation. The
energies for these in regard of the Al-Al distance can be observed in Figure 5.9a.
These results show that breaking Löwenstein’s rule does not correspond to the lowest
energy. 394 of the relaxed structures were successfully mapped and used in the CE.
From the MC simulations, this configuration is however visited at temperatures of
900 K and higher. This can be observed in Figure 5.9b.
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Figure 5.9: The DFT and MC simulation energies for zinc compensated structures.
The latter simulations show the probability density for the different temperatures.

5.7 Compilation and comparisons between diva-
lently compensated SSZ-13

The lowest energy configurations in regard of the Al-Al distance for the divalent
counter ion species were compiled together. In Table 5.1 the different counter ion
species and whether they violate Löwenstein’s rule for certain temperatures have
been compiled together.

Table 5.1: Violations of Löwenstein’s rule in regard of counter ion species and
temperature.

Counter ion 600 K 900 K 1200 K
Mg2+ Yes Yes Yes
Ca2+ No No Yes
Sr2+ No No No
Ba2+ No Yes Yes
Cu2+ Yes Yes Yes
Zn2+ No No Yes

In Figure 5.10 an overview of the energetics in respect of the Al-Al distance for the
different counter ions can be observed. No real conclusions can be drawn from these
compilations. The energy difference between first and higher order neighbours does
not indicate whether the rule is prone to be violated for the divalently compensated
structures.
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Figure 5.10: Energy as a function the Al-Al distance for the divalently compen-
sated structures.

Lastly, the interaction strength between the Al-Al neighbours was calculated. These
calculations were based upon the results from the MC simulations. This is shown
in Figure 5.11.
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Figure 5.11: Interaction strengths between Al-Al atoms in regard of the divalent
counter ions compensating the system.
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6
Discussion

In this chapter the results of the thesis are discussed, together with useful insights
that have been gathered throughout this thesis work. Furthermore, it will also
discuss the motivation of tools used in the project and what future endeavours
within the field of zeolites can benefit from this thesis as well as how a natural
continuation of this thesis could be pursued.

6.1 Relaxation process
During the first months of the thesis the ReaxFF potential created by Bai et al.
[24] was used in a large extent. This was due to the fact that the initial DFT
calculations of the SSZ-13 systems probed tedious to relax with large problems with
getting the energies and forces of the structure to converge. When the legitimacy
of the reaction force field potential was refuted, the only resort was to use DFT in
order to collect the needed reference data. Comparing the different functionals in
order to check for the validity of the vdF-DF-cx functional proved to be very fruitful
in this, since it provided a much faster way of relaxing the structures using PBE
as the exchange-correlation functional. This also shows that high throughput DFT
simulations are possible for rather complex molecular systems as SSZ-13.

6.2 Cluster expansions
Initially, the main purpose of this thesis was to look whether cluster expansions could
be an option for studying rather complex molecular structures. This has already
been proven for the case of clathrates, but the succesful employment of cluster
expansions in this thesis further reinforces how powerful a tool cluster expansions can
be when used correctly. Due to the efficiency of cluster expansions in combination
with sampling them in Monte Carlo simulations Löwenstein’s rule could be dismissed
as a universal rule for charge compensated zeolites.

6.3 Löwenstein’s rule
Although violations of Löenstein’s rule has been observed before [10], the extent of
how and to what degree this happens has not before been proved. Although non-
Löwensteinian configurations have the lowest energy for SSZ-13 compensated with
the divalent counter ions examined in this thesis, many of them still proved to exhibit
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Al-Al nearest neighbours throughout the MC simulations. The most interesting case
is probably for Cu2+, since structures compensated with it violated the rule at all
of the temperatures. The case of protonated SSZ-13 is also interesting, since the
lowest energy configuration does not obey Löwenstein’s rule.
The main difference between protonated and divalently compensated SSZ-13 is the
locality of the counter charge. In the case of H+ as the counter ion, the charge
compensation occurs in the close vicinity of the Al, making the pair act as a dipole.
In the case of the divalent atoms, the interstitial binding site makes the charge
compensation not as local as for the protonated case. This is probably the cause
to the fact that non-Löwensteinan structures aren’t that probable for divalently
compensated structures. This can clearly be seen in the relaxed data for all of
the divalent species, since none of them shows that the most favourable structure
violates Löwenstein’s rule.

6.4 Future research

Both Cu2+ and H+ compensated zeolites are widely used as zeolitic catalysts [2]
[32]. It would be interesting to study catalytic behaviour for zeolitic structures
disobeying Löwenstein’s rule. Sodium is the most common counter ion species used
in zeolite synthesis, so using the same computational methodology as done in this
thesis would be very interesting. This was actually pursued, but the binding sites
for Na+ counterions could not be determined to a reasonable extent, disabling the
usage of cluster expansions to study the different energetics of sodium compensated
configurations.
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7
Conclusion

One of the main purposes of the project was to see if cluster expansions could be
employed for zeolites, complex systems compared to the binary alloys that are the
most common system performing this technique. When it comes to the amount
of reference structures needed in order to do the cluster, zeolithic systems seem
to need more of these than for simpler systems to get a high enough accuracy of
the RMSE. This thesis has managed to give a detailed view of how Löwenstein’s
rule is not always applicable for charge compensated zeolites. It has also shown
that DFT calucations of large amount of zeolitic structures, are possible. The PBE
functional proved to be able to handle these complex very efficiently, showing that
high throughput calculations can be acquired for these systems. This has been
shown for various counter ions. From the MC simulations, it has been shown that
the rule is disobeyed for the following charge compensating species: H+, Mg2+,
Ba2+, Cu2+ and Zn2+. Using these insights for catalytic computations would be
highly interesting. Investigating the affect of Na+ and other monovalent counterions
for charge compensation could bring useful insights on how the Al is distributed
throughout the synthesis of zeolites.
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A
Appendix

A.1 Computational resources
The DFT calculations done throughout this thesis were performed on the various
clusters provided by Swedish National Infrastructure for Computing (SNIC).
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