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Abstract

The purpose of this report was to illustrate the procedure of calculating a binary
phase diagram. In this study, the investigated system was the titanium-tungsten
alloy of different compositions at 0 Pa.

The phase diagram of Ti-W alloys is difficult to experimentally determine due to
a slow solid-solid transition. To bypass this problem, Molecular Dynamics (MD) sim-
ulations were employed using MEAM (Modified Embedded-Atom Method) spline,
and CDIP (Composition-Dependent Interatomic Potential) potentials.

Two different simulation methods were used. The direct method simulated a
two-phase coexistence of the alloy, which was used to determine the melting lines.
For the solid-solid transitions two types of λ-integration were used and compared.
These methods are referred to as the multishot and singleshot method in this report.

The direct method was successful and a phase diagram of the high tempera-
ture region of the Ti-W alloy was constructed. Issues encountered with the method
included a minor energy drift that indicated that the system was not entirely equili-
brated as well as difficulties to accurately determine the composition between liquid
and solid.

The λ-integration was not so successful. From the beginning the idea was to
calculate the phase transitions in the entire solid region but this was abandoned
due to time limits. Instead the phase transition for the pure Ti system was calcu-
lated and the results compared to the 2012 Master thesis by Tommy Andersson[2].
Unfortunately, his results couldn’t be replicated and we suspect some kind of sys-
tematic error. However, the ordinary MD-simulations that were run in order to
determine the parameters for the λ-integration went well. It showed that a great
deal of information can be computed with low effort by ordinary MD-simulations.

To construct the low temperature region of the phase diagram, data provided by
Paul Erhart [1], who supervised the project, was used.
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Chapter 1

Introduction

In the fields of solid state physics and material sciences it is sometimes difficult to
fabricate equilibrated samples of materials at the temperature of solid-solid tran-
sitions. This is due their slow transition rates. One example of such a system is
tungsten-titanium alloys [3]. This makes it challenging to experimentally determine
an accurate low temperature phase diagram.

Since the era of computers began, an alternative way of obtaining phase di-
agrams has emerged. Through the usage of computer simulations and advanced
models of atomic interactions the behavior of these systems are now possible to
simulate. These simulations are however computationally very expensive and are
preferably performed on large computer clusters. By combining quantum mechanics,
experimental results, statistical mechanics and computer sciences these simulations
can be performed with good accuracy.

Construction of phase diagrams through atomic simulations are not only theo-
retically interesting, but it is also useful for calculating properties of the Ti-W alloy
when used industrially. W-Ti alloys are for example used in radiation shielding, step
soldering and casting [4]. It is also considered to be used in future fusion reactors
[5].

1.1 Scope

The purpose of this project was to examine the system of W-Ti and to develop a
phase diagram. Research has been conducted in this area before by Lee and Lee 1985
[6], who obtained the phase diagram in figure 1.1. However, their results deviate
from reality, especially in the region of low temperature and high ratio of titanium.
Ti will undergo transitions between hcp and bcc structures in this region, while W
maintain its bcc phase [1]. Our hopes was to be able to get mer accurate results.

In order to complete this task, molecular dynamics simulations were performed.
The plan was to simulate with Monte Carlo sampling if time allowed it. This proved
not to be the case.

1



1.1. SCOPE CHAPTER 1. INTRODUCTION

Figure 1.1: Phase diagram of W-Ti alloy computed by Lee and Lee 1985.[6]. Notice the region in the lower left
corner with high amount of Ti. This region is thought to deviate from reality and it was one of our goals to properly
map out.
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Chapter 2

Theory

This section presents the information that is necessary in order to understand the
basics of atomic simulations. In section 2.1 a short repetition concerning the basics
of thermodynamic and statistical mechanics relevant to this project presented. This
is combined with further theory about mixing entropies and energies. In section
2.2 the systems of tungsten and titanium are presented. In the last section about
MD-simulations, section 2.3, two different methods utilized in molecular dynamics
simulations are introduced.

2.1 Statistical Mechanics and

Thermodynamics

The first section provides a short repetition of thermodynamics. The second section,
2.1.2, include theory of sampling thermodynamic properties. In sections 2.1.3 to
2.1.5 Gibbs-Helmholtz formula, phase diagrams and nucleation are presented.

2.1.1 Thermodynamic potentials, ensambles and identities

The behavior of a system of atoms can be explained to some extent by thermody-
namics and statistical mechanics. A summary of the basic identities, relations and
ensembles concerning this project will be presented below.

The partition function, Z, is derived from the sum of probability of finding an
atom in some state s out of all possible states the system has access to. As the
system has to be in some state, this is equal to one. This gives rise to

1 =
∑
s

P (s) =
∑
s

e−U(s)/kBT

Z
, (2.1)

where P (s) is the probability of the system being in a state s. Solving for the
partition function generates the expression

3
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Z =
∑
s

e−U(s)/kBT , (2.2)

where s is a particular state. The partition function is a fundamental property of a
system since other thermodynamic variables can be derived from it. As an example,
the average energy can be derived accordingly

Ū =
∑
s

U(s)P (s) =
1

Z

∑
s

U(s)e−U(s)/kBT =
1

Z

∑
s

U(s)e−βU(s) =

− ∂ln(Z)

∂β
= −kBT 2∂Z

∂T
,

where β = −1
kBT

. Further, the heat capacity is defined as

Cv =
∂U

∂T
, (2.3)

at constant volume. Thus, the heat capacity can then be derived as an expression
of Z which gives us

C =
1

KBT 2

∂2lnZ

∂β2
. (2.4)

Further we can calculate the entropy as an expression of the partition function
according to

S = −kB
∑
s

P (s)ln(P (s)) =
∂(kBT lnZ)

∂T
. (2.5)

The free energies are important thermodynamic potentials, we can derive the expres-
sion for Helmholtz free energy F . Helmholtz free energy is defined as F = U − TS,
in terms of the partition function this expression transforms to

F = Ū − TS = −kBT ln(Z). (2.6)

If the free energy of a system is known most thermodynamic properties can be
derived. This is why free energy calculations are important.[7]

By using the thermodynamic identity dU = TdS − pdV + µdN , the thermody-
namic identity for Helmholtz energy is obtained, giving us

dF = −SdT − pdV + µdN. (2.7)

The following relations can thus be written(
dF

dT

)
V,N

= −S
(
dF

dV

)
T,N

= p

(
dF

dN

)
T,V

= µ (2.8)
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The thermodynamic identity can also be obtained for Gibbs free energy. The defini-
tion of Gibbs free energy is G = H−TS. Notice that G will reduce to F if p is equal
to zero due to that the enthalpy is defined as H = U + pV . The thermodynamic
identity together with the definition of Gibbs free energy will therefor gives rice to
the following expression

dG = −SdT + V dp+ µN. (2.9)

By taking the derivative the following relations can be derived(
dG

dT

)
P,µ

= −S
(
dG

dP

)
T,µ

= V

(
dG

dµ

)
T,p

= N.[8] (2.10)

Ensemble types

Systems can have different ensembles. This means that in a particular ensemble a
specific set of thermodynamic variables will remain constant. The ensembles which
are used in this report are:

• NPT, which means that the number of particles, pressure and temperature
are fixed for the system. Also known as the isothermal-isobaric ensamble.

• NPH which means that the number of particles, pressure and enthalpy are
fixed. Also known as the isoenthalpic-isobaric ensamble.

• NVE which means that the number of particles, volume and internal energy
is fixed for the system. Also known as the microcanonical ensamble.

• NVT, which means that the number of particles, volume and temperature are
fixed for the system. Also known as the canonical ensamle.

[9]

2.1.2 Sampling of Thermodynamic Quantities

A substance consists of a great number of atoms which all have their individual
position and momentum, as well as other properties such as electron configuration,
nuclear shell excitation etc. The sum of all these individual states for all the atoms
in the substance at a fixed moment is called a microstate. Microstates are points in
the phase space. A macrostate is a group of microstates which all corresponds to the
same average quantities, such as the total energy or temperature of the substance.[9]

Naturally, when performing real experiments, there is no access to the mi-
crostates. Instead averages can be measured of the system to determine the macrostate.
The opposite is true for simulations, where microstates are known and macrostates
will be derived from the microstates. The macrostate are obtained by sampling a

5
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THERMODYNAMICS CHAPTER 2. THEORY

large number of microstates and then average these. It is in principle possible to
sample all microstates of a system to get perfect averages, but the astoundingly
large number of possible configurations in even a relatively small system deem this
impossible. Instead one have to choose how to sample the system. Two common
approaches to this is molecular dynamics simulations (MD-simulations) and Monte
Carlo simulations (MC-simulations).

The first aspect to consider are which contributions to the number of microstates
Ω that are the most important. Combinatorics gives us that

Ω = ΩPositionsΩMomentaΩMixture configurationsΩElectronic configurationsΩOther.

That is, the total number of microstates is the product of the number of possible
configurations of different properties, provided that they are uncorrelated. Some of
these properties have a larger number of possible configurations and will thus give
a larger contribution to Ω. The greatest part of Ω is provided by the positions,
the momenta and the mixture configurations and we can therefore approximate the
number of microstates to

Ω = ΩPositionsΩMomentaΩMixture configurations.

This is where the MD and MC approaches differ.
A sampling of the positions and momenta can together be seen as a trajectory in

the phase space and be summarized in ΩVibrations. Such a trajectory can be created
by setting up a system at an arbitrary configuration, that is a point in the phase
space, and then let the system follow a trajectory through phase space by time
integrating the equations of motion. This is the approach of MD.

If the system consist of more than one type of atoms the number of microstates
of different mixtures will be ΩMixture configurations � 1 making sample mixture config-
urations necessary. The trajectory sampled in the MD approach does only cover a
small number of such configurations and thus the sampling should be performed in
a different manner to extract this quantity. To sample the ΩMixture configurations part
of the microstates MC is a better approach. The method is based on sampling a
large number of random points in phase space, rather than points connected in a
trajectory.[10]

Since the number of microstates Ω is large and the additive quantities are neat
to work with it is convenient to use the logarithm. It is usually presented as

S = kB ln Ω = kB [ln ΩVibrations + ln ΩMixture configurations] = SVibrations+SMixture configurations

that is, the entropy of the system.
Since the purpose of this report is to study the free energy of the solid systems,

the entropy and further more the enthalpy of the system should be known.
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G = H − TS

The enthalpy, H, consists of a vibrational contribution and a mixture contri-
bution. However, in this case MD is sufficient to sample both quantities since the
contributions emerge from different mechanisms. The entropy is related to the num-
ber of possible microstates, but one single microstate itself contains no information
about the entropy. The opposite is true for enthalpy and each point in phase space
can be assigned a value. This means that it is sufficient to sample a trajectory in
phase space to receive the enthalpy of mixing as well as the enthalpy of vibrations.

By performing simulations and sampling using either a combination of MD and
MC or other methods for sampling both vibrational and mixture contributions to
the entropy all the neccesary information is recieved to get the free energy. It is
also possible to replace one of the contributions with an analytical approximation.
A common approximation of the entropy of mixing, derived through combinatorics
and Stirling’s approximation reads:

∆Smix = −NkB [x lnx+ (1− x) ln(1− x)] . (2.11)

Here N is the number of atoms while x and (1 − x) are the proportions of the the
two atom types [9].

All in all we sample four quantities to calculate the free energy; Hvib, Hmix, Svib

and Smix. The enthalpy of vibration and mixture, as well as the entropy of vibration
can be sampled with MD while the entropy of mixing has to be sampled with MC
or approximated with an analytical function.

2.1.3 Gibbs-Helmholtz Formula

Gibbs-Helmholtz formula relates the change in free energy to the change in temper-
ature. By definition

G = H − TS and H = U + pV

and the thermodynamic identity gives us

dU = TdS − pdV.

Combining this leads to
dG = −SdT − V dp.

For dp = 0 this equals to
−S = (dG/dT ).

With this in mind we can write(
d(G/T )

dT

)
p

= {product rule} = T−1

(
dG

dT

)
p

+G
dT−1

dT
=
−ST −G

T 2
= −H

T 2

7
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which concludes to (
d(G/T )

dT

)
p

= −H
T 2
.

This is a useful relation since there is in consequence only need for the free energy
of a single point with respect to temperature and dependence on temperature for
enthalpy of the system to know the free energy for all temperatures.[11]

2.1.4 Phase Diagrams

Phase diagrams are used to illustrate phase changes. To describe how the compo-
sition of a mixture changes during a phase transition a binary phase diagram, see
figure 1.1, can be used. In this figure the different phase regions are plotted in a
temperature-composition diagram.

By Gibbs phase rule we know that in a binary system the degrees of freedom
are equal to the number of phases minus three [7]. This means that a system con-
taining only one phase can change its temperature and composition independently.
For systems containing two phases, a change in either the composition or their tem-
perature would affect the other property. This will be shown as lines of allowed
composition-temperature values in the phase diagram. A three phase system will
only be able to exist for one combination of temperature and composition. This is
shown as a point in the phase diagram.

If an equilibrated system is located in a two phase part of the phase diagram,
and the temperature and proportions of the mixture is known, it will contain two
different compositions of the mixture. The values of the different compositions are
found by drawing a horizontal line from the initial point, I, to the nearest phase
lines. This will result in two new points, the left point, L, and the right point
R. The proportion of each composition can then be determined by the lever rule.
To e.g. find the proportion of the composition at L, Icomp − Lcomp is divided by
Rcomp − Lcomp.[7]

2.1.5 Heterogeneous and Homogenous Nucleation

The nucleation process is important to understand in order to simulate the process
of melting correctly. The effect nucleation gives rise to is relevant in the transition
from a crystallographic (solid) state to a non crystallographic state (liquid) as the
transition is delayed by the effect when heating or cooling a system.

At the melting point, a temperature is reached where a liquid and a solid state
of an element can coexist. A substance is expected to solidify spontaneously if
the temperature is below the melting point due to the difference in Gibbs energy,
∆G = Gl − Gs, which should push the system to undergo a transition. In metals
this point is delayed due to nucleation, it is said that a system can be undercooled.
The same effect in the oposite direction is called overheating.

8
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There are two types of nucleation, the first type is heterogeneous nucleation
which is the effect of a small amount of atoms that are solidified through out the
system. This effect however is very small, approximately 1 K.

The other nucleation type is homogeneous nucleation and has a much grater
effect, an effect of the order of magnitude 100 K. Homogeneous nucleation occurs
when atoms form clusters which are solid in a liquid system. Consider a system
which has a cluster of radius r. Gibbs energy for this system is

G1 = VsGs + VlGl + AlsGls, (2.12)

where Vs, Gs are the volume and Gibbs free energy of the solid. Vl, Gl are the
volume and Gibbs free energy of the liquid and Als, Gls are the area and Gibbs free
energy of the interface of liquid and solid. Comparing G1 to the energy of a pure
liquid

G2 = (Vs + Vl)Gl (2.13)

The formation free energy of solid can be derived as it is the difference of G2 and
G1, ie.

∆G = −Vs(Gl −Gs) + AslGsl. (2.14)

Approximate this type of sequence with clusters to be of spherical shapes with radius
r. Equation 2.14 transforms thus to

∆G = −4πr3

3
(Gl −Gs) + 4πr2Gsl, (2.15)

which is illustrated in figure 2.1.
In order for the liquid to solidify the maxima of ∆G must be overcome, the

maxima is easily obtained by derivation with respect to r to be

∆Gmaxima =
16πGsl

3(Gl −Gs)2
(2.16)

at radius

rmaxima =
2Gls

(Gl −Gs)
. (2.17)

We know further that

Gs −Gl =
L∆T

Tm
, (2.18)

giving the new expressions

∆Gmaxima =
16πG3

slT
2
m

3L2

1

∆T
(2.19)

9
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Figure 2.1: Nucleation function for a metal. Even if a state can lower its free energy, (here bulk free energy), by
changing to another phase, it still has to overcome a free energy barrier, ∆G∗. This barrier occurs as the free
energy increases at the interface between the to phases. However, as the bulk free energy scales with volume and
the interface free energy scales with area the total free energy of the system will decrease if a large enough portion
transforms.

and

rmaxima =
2GslTm
L

1

∆T
(2.20)

for the maximum if the radius and Gibbs free energy. Therefor ∆T is the under-
cooling that is possible before solidification occurs.

Another consequences of nucleation are metastable states. For an equilibrated
system, the free energy is minimized. If for a given state for a system, two different
phases both corresponds to the lowest possible free energy a phase transition point
is reached. At this point both phases are equally likely to exist and the phase of the
system will not change as long as the state does not change.

In our case we are looking at Helmholtz free energy. During a phase transition
in an equilibrated system the temperature will be constant as the free energy will
be constant. If the internal energy of the system were to increase or decrease, the
entropy of the system would change in such a way that the free energy would be
kept constant.

A system can exist in a state where the free energy is not minimized. This is
called a metastable state and these occur due to local minimum in the free energy.
One reason for local a minimum is that the energy of the surface tension is added
to the total free energy when the phase for a portion of a system changes. This is
shown in figure 2.1.[7]

10



2.2. ELEMENTS OF INTEREST CHAPTER 2. THEORY

2.2 Elements of Interest

In this report the elements of interest are titanium and tungsten. To get a better
understanding of the simulations it is good to have some basic knowledge of the
elements that are simulated. The two following sections will be a short overview of
the properties of titanium and tungsten.

2.2.1 Titanium

Titanium (Ti) is a transition metal with atomic number 22 that is known for its
low density (4.506 g/cm3 at r.t.) yet high strength. Its strength-to-density ratio is
actually the highest of all metallic elements and it is also very resistant to corrosion.
The melting point of titanium is 1941 K and it has three different crystalline phases.
In this report we will be interested in the solid state transition between hcp and bcc.
This occurs at 1155 K. The specific heat raises close to this temperature similarly
to what happens at other temperatures of phase transitions.[12]

In the lower right part of the phase diagram in figure 1.1 it is indicated that bcc
Ti has higher solubility than hcp Ti in W. The phase diagram for pure titanium is
shown in figure 2.3a. Some of the properties of the different phases are discussed
below.

α-phase This phase has a hcp structure, see figure 2.2a, and is at atmospheric
pressure the equilibrium state of titanium for temperatures below 1155 K [12].

β-phase The β-phase is a bcc structure, see figure 2.2b, and becomes the most
stable state at 1155 K [12].

ω-phase This is a hexagonal structure that is only stable at high pressures [12].
It will not be of interest for this report.

(a) Hcp [13] (b) Bcc [14]

Figure 2.2: The different crystal structures that are of interest for this report. Tungsten is bcc and the crystal
structure for Titanium is temperature dependent.

11
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2.2.2 Tungsten

The transition metal tungsten, (W), has atomic number 74. Its distinguishing fea-
tures are among others high density (19.25 g/cm3 at r.t.), having the highest melting
point of all elements (3695 K) as well as being brittle and hard.[15]

It has two crystalline forms referred to as the α and the β. The α-form is the
most stable and has a bcc structure, see figure 2.2b; the β-form is only metastable
and has a A15 cubic structure. Due to the metastable nature of the A15 cubic form
pure tungsten in equilibrium consists of only the bcc structure.[15]

In the lower left part of the phase diagram in figure 1.1 it is indicated that the
solubility for W in hcp Ti is close to none. However, above the solid-solid phase
transition to bcc Ti the solubility raises. The phase diagram for pure tungsten is
shown in figure 2.3b.

2.3 MD Simulations

Since computers became available to researchers simulations have been an impor-
tant tool for studying interacting systems. A common problem when faced with a
computational task is that we know the fundamental equations governing the sys-
tem, but that these equations only are analytically solvable for a small set of highly
idealized problems. For instance the Schrödinger equation in quantum mechanics
will give very precise predictions, but it is only analytically solvable for the harmonic
oscillator, a particle in a box and the central potential [18]. For any other system
approximations and perturbation theory must be applied. By using the simulation
approach instead, the problem of unsolvable equations is avoided. Another impor-
tant application for simulations is that it serves as a complement to experiments
due to the simplicity, lower cost and time efficiency.

In this project we are mainly going to use a simulation method called molecular
dynamics (MD) in which one assumes that the atoms are point like and therefore can
be treated by Newtonian mechanics and then iterates the time forward to compute
their trajectories, as described by Frenkel and Smit [10]. The interactions between
the atoms are either abstracted from the quantum mechanical, classical mechanical
level or measured empirically and implemented in the form of potentials or force
fields.

To extract thermodynamic properties from the simulation, the microstates must
be sampled. Statistical mechanics is then employed to calculate, for instance, the
instantaneous temperature from the average of the particle velocities. The time
average of this is then related to the temperature. The whole simulation process
closely resembles a real experiment. The simulations in general includes a prepara-
tion run of the sample, and a production run. This is when a quantity is measured
during a time interval. Statistical noise will be canceled out if the sampling is run
long enough.
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(a) A pressure-temperature phase
diagram for pure titanium [16].
The two phases we are interested
in are the α (hcp) and the β (bcc).

(b) A pressure-temperature phase diagram for
pure tungsten [17].

Figure 2.3

2.3.1 Potentials

The type of potentials used in MD simulations are vital to the outcome. There
exists many different potentials such as semi-empirical, empirical, embedded etc..
For this project the potentials used were MEAM spline and CDIP potentials.

A MEAM potential is an modified EAM potential. The mathemathical expres-
sion for the MEAM potential is

E(ρ̄i,rij) =
∑
i

(
Fi(ρ̄i) +

1

2

∑
i 6=j

φ(rij)

)
. (2.21)

The meaning of the MEAM potential is that it computes pairwise forces in addition
to what the EAM potential computes. These types of potentials are well suited for
for materials of crystal structures sc, bcc, fcc, hcp and diamond.[19]

The CDIP potential us useful for an alloy as it includes the composition de-
pendence, the heat of mixing of the solid solution for the different composition
possibilities. [20]

2.3.2 Direct Simulations

When the melting point is the desired point to investigate and determine accurately,
the two-phase coexisting simulations with a direct method is a good alternative to
λ-integration. This is because theλ-integration can give rice to errors of magnitude
of 100 K is not converged correctly. Thus the free energy won’t be calculated. As
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the name of the direct method indicates, two phases are simulated in direct contact.
Direct contact means that there won’t exist any barriers between the two phases to
separate them.

The desired result of the simulation is to reach a temperature where both solid
and liquid phases can exist simultaneously. Consider water and ice as an exam-
ple, at a temperature below zero o◦ a system with both water and ice will solidify
and become ice and at a temperature above zero the system will liquify. Thus at
temperature zero the system will have both liquid water and solid ice in equilibrium.

Employing the direct method for two-phase coexistence simulation, the nucle-
ation will not be a problem because the solid or liquid phase the system can scale the
temperature freely. This will make the Gibbs free energies equal for both phases.
The correct melting temperature can therefor be achieved. These simulations of
two-phase coexisting are stable performed with NPT and NPH ensembles or NPT
and NVE ensembles.[21]

It is thus possible to perform NVT and NVE simulations for two-phase coexist-
ing. The problem with employing this method is that it is more difficult to reach
the melting point because the energy will be constant. This will easily make the
system lose it’s two-phase coexisting. [22]

Since a simulation of solid and liquid phases in coexistence requires a large system
of at least thousand of atoms in order to get reasonable results, the method will be
quite expensive.[21]

The problem for MD simulations is the accuracy of the potentials, specifically
MEAM and CDIP potentials used in this report. Interatomic potentials do not guar-
antee results that recreates experimental values for the non mechanical properties.
The non mechanical properties involves the liquid-solid transition. [21]

2.3.3 λ-integration

Thermodynamic integration, the coupling parameter method or λ-integration, is
a common and powerful method to calculate the free energy of a system. It was
developed by Kirkwood [23] and later implemented in computer simulations by
Frenkel and Ladd [24]. λ-integration is a general method and a powerful tool for
computation of the free energy although it is computationally somewhat expensive.
[2]

Free energy is, unlike temperature and pressure for example, a quantity that can
not be derived from the coordinates in phase space. The change in free energy can
however be linked to other measurable quantities such as pressure and volume. For
example, the change in Helmholtz free energy in an isothermal process is connected
to the pressure and volume by

dF = −dV P.

So by choosing a reference system for which there exists an analytical expression for
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the total free energy, a thermodynamic path can be selected that takes the refer-
ence system to the real system. By monitoring the changes in the thermodynamic
quantities the change in free energy can be calculated.

Now consider two systems with internal energies UA and UB. By combining these
two thermodynamic potentials a path between the two systems by the introduction
of a coupling parameter, λ, is created

U(λ) = UA + λ(UB − UA). (2.22)

When λ = 0 the potential energy U = UA and when λ = 1 it is U = UB.The for the
canonical partition function Z can be expressed as a function of λ accordingly

Z(λ) =
∑
s

exp(−βUs(λ))

where β = 1/(kbT ). Since Helmholtz free energy F is related to Z , see eq. 2.6, the
free energy could be calculated by assuming that the system is in thermodynamic
equilibrium and ergodic, i.e. we could replace the ensemble average by a time
average.

FB − FA =

∫ 1

0

dF

dλ
dλ =

∫ 1

0

∑
s(dU/dλ) exp(−βUs(λ))∑

s exp(−βUs(λ))
=

∫ 1

0

〈
dU

dλ

〉
λ

dλ

If the coupling function is as in equation (2.22), the calculation of 〈UB − UA〉 can
be performed but any function that takes UA to UB could in principle be used.

To implement this in a MD simulation the system is equilibrated under the
influence of the potential U(λ) for different λ values between 0 and 1. For every
point in the sampled phase space the energy difference between the two potentials
was calculated. The average of this is 〈UB − UA〉λ for the λ in question.

Since the method only provides the difference in free energy, one of the systems
must have a potential for which there exists an analytical expression for the free
energy. One such system that is adequate when dealing with solids is the Einstein
crystal. The system approximates a solid to have N harmonic oscillators that have
no interaction with each other. The free energy can be expressed as

F

NkbT
= −3

2
log

(
k2
bT

2m

h̄2α

)
.

Here m denotes the mass of the particles and α is the spring constant of the oscil-
lators.

For most systems when an Einstein crystal is used as a reference system the
difference in internal energies is the same as the difference in potential energies
since both systems kinetic energies are the same for a point in phase space, 〈UB −
UEinstein〉λ = 〈Epot,B − Epot,Einstein〉λ.[2]
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Chapter 3

Method

To calculate the phase diagram of the alloy the method of molecular dynamics was
employed. The most accurate method to solve atomistic and molecular problems is
using the Schrödinger equation and from the wave-function calculate the forces on
the atoms. Since this is problematic for many-body problems, a simpler and less
accurate method exists. By essentially modeling the atoms as point like particles
and using a potential to calculate the forces between the atoms, simulating their
behavior is possible.[10]

The most important tool was LAMMPS (Large-scale Atomic/Molecular Mas-
sively Parallel Simulator), an open source MD software distributed by the US de-
partment of energy. LAMMPS integrates Newtons equations of motion for long and
short range interaction forces between the particles being simulated. It uses neigh-
bor lists for computational efficiency, in order to exclude computations for atom
pairs at a radius where interactions are negligible. When run in parallel it divides
the simulation space spatially into several subspaces and assigns one processor to
each subspace.[25]

In order to speed up the simulations the code can be run in parallel on many
processors. The computation time does not scale perfectly linearly with the number
of processors as each processor also keep track of some particles in its neighboring
subspaces. This overlap, meaning that multiple processors will keep track of the
same particles, will increase with a larger processor to particle ratio. Thus it is
better to assign a reasonable number of processors to the simulation for optimal
performance, rather than as many as possible. To cut the time of simulations,
instead of assigning many processors to work on the same simulation and then
perform them sequentially, the simulations can run in parallel.

During the project we had access to a computational cluster called Glenn, which
is a Chalmers resource in c3se (Centre for scientific and technical computing at
Chalmers University of Technology in Gothenburg Sweden). Glenn has 350 com-
putational nodes with 16 processors and at least 32 GB RAM on each node and is
built on AMD Opteron 6220 CPU:s.[26] For our work we used one node per simu-

16



3.1. DIRECT METHOD FOR
LIQUID-SOLID TRANSITION CHAPTER 3. METHOD

lation and when we simulated larger datasets we ran several simulations in parallel
on separate nodes. This gave us about 30 and 190 atoms per processor for the
direct and λ-integration methods respectively. We tried running the λ-integration
on two nodes, that is with 15 atoms per processor. This simulation was 22% faster
than the one on one node counted in real time and about 50% more expensive in
per processor time. We therefore thought that one node was the most reasonable
choice.

LAMMPS uses potentials for the implementation of interatomic forces. For
the interactions between atoms of the same type we used MEAM spline potentials
[19] (W[27], Ti[28]) and for the interactions between W and Ti we used a CDIP
potential[29][20].

The post processing of the data was mainly done in python and MATLAB and
to some extent OVITO [30].

3.1 Direct Method for

Liquid-Solid Transition

The melting region Ti-W alloy that was investigated at a pressure of 0 GPa with
MD simulations.

The process of this simulation was to first acquire the hysteresis curve which is
the melting interval that nucleation generates. The hysteresis curve was obtained
by first simulating the titanium and the tungsten system of 3013 and 3024 atoms
respectively from a low initial temperature Tlow which was chosen considerable much
lower than the speculated melting point. The speculated melting point is in this
case the experimental values of W and Ti that are 3695 K and 1941 K respectively.
The temperature was then ramped to a temperature Thigh which was about twice
the amount of the speculated melting temperatures. The second part of the creation
of the hysteresis curve was to simulate the reverse sequence meaning that from a
initial high temperature Thigh, the temperature was decreased to a low temperature
Tlow. For both Ti and W Tlow was chosen to be 90 K and Thigh to be 5000 K and
8000 K, respectively.

The simulations for the hysteresis curve in LAMMPS had each one equilibration
run of 50 000 steps with 1 fs as the time step in NPT with a Nose-Hoover thermostat.
This forced the system to the initial temperature Tlow or Thigh, the second part was
to ramp up or down the temperature in an additional NPT simulation to Tlow or
Thigh with the same thermostat and number of steps. A thermostat in LAMMPS
is a function that controls the temperature. Due to nucleation the simulation that
was ramped up will liquify at a lower temperature than the melting point and
the simulation which was ramped down will solidify at a higher temperature than
the melting point. An example of the hysteresis curve is shown in figure 3.1 for
aluminium.[31]
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Figure 3.1: The figure shows the melting interval for aluminum

A melting interval for the melting point was now determined. In order to inves-
tigate a temperature Tm, which would be a temperature thought to be the melting
point, in the melting interval. The direct method for two-phase coexisting simula-
tions were used when simulating the system using LAMMPS.

A time step of 1 fs was used in the simulations with zero pressure for direct
method of two-phase simulations. The procedure of the simulation is as follows:
the first run is the equilibration run where the entire system was equilibrated to a
temperature Ts, which was chosen below but close to the trial melting point Tm,
keeping the entire system solid initially. The equilibration run was done in NPT
ensemble with 50 000 steps. Then the preparation run is set up where first half the
system was melted to a temperature Thigh, chosen to 8000 K in order to definitely
ensure that half the system is melted and not stuck in the melting interval due to
nucleation.This was also simulated in an NPT ensemble with 50 000 steps. The
solid and the melted half now had an interfacial area at [0,0,1]. The last step in the
preparation run was cooling down the melted part of the system to a temperature
Tm in NPT ensemble with 50 000 steps. The production run could now begin. The
production run was a simulaten in a NPH ensemble where the melted and the solid
part were put together again and equilibrated for 400 000 steps.

The procedure of the direct method of two-phase coexisting simulation was it-
erated with different kinetic energies ie. different Ts and Tm, until the two-phase
coexistence was reached for a temperature.

The average temperature from the production run was then calculated and re-
sulted in TmeltT i, TmeltW and T ximeltT i−W for different compositions.

Rather than two points being the desired result when simulating the alloy W-Ti
for different compositions, the alloy has an entire area to be determined. The alloy
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demands more analysis and simulations which are presented in the sections below.
The same direct method for two-phase coexisting simulation.

3.1.1 Analyze of the Ti-W alloy

The main problem was to determine the composition of the liquid and solid part for
the alloy. The potential energy per atom was dumped by LAMMPS for every 100th
step. By taking the average of bin size 20 with respect to time of simulation step
between 150 000 to 550 000 production run several plots of the number of atom vs
potential energy per atom was generated.

The liquid had a greater potential energy than the liquid, also titanium had a
higher potential energy than tungsten. Therefore two Gaussian curves was fitted to
the data of titanium and tungsten separately. The functions the data was fitted to
was of type

ftot = a1e
(−((x−b1)/c1)2) + a2e

(−((x−b2)/c2)2). (3.1)

The liquid function would be the function which has the higher maximum, so if b1
is grater than b2 the function for the liquid would be

fliq = a1e
(−((x−b1)/c1)2) (3.2)

and the solid function would thus be

fsol = a2e
(−((x−b2)/c2)2). (3.3)

By integrating the equations, the ratios of liquid Ti and W and solid Ti and W
could be determined. Giving the melting lines of the Ti-W alloy by integrating the
functions.

3.1.2 Reaching Equilibrium

Due to the fact that the solid part of the alloy couldn’t freely change atoms, which
was only possible when a vacancy in the solid appeared, a problem to reach equilib-
rium could be expected. The production run in the direct method was now enhanced
to 1 nanosecond, i.e. 106 simulation steps to see if there was a difference and to
determine is the system was reaching equilibrium. The concentration change was
monitored with the software OVTIO.

Also the enthalpy per atom, potential energy per atom and temperature was
analyzed to see if the system was evolving to a liquid or a solid state.

If the potential energy was rising while the temperature decreased, the system
was for sure evolving to a melted state. The opposite would happen when the
potential energy decreased and the temperature was raised.
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3.2 λ-integration for

Solid-Solid Transition

In order to establish the phase boundaries for the Ti-W alloy in the solid region
λ-integration was used. The λ-integration was performed for several different com-
positions and temperatures for the bcc and hcp phases of the Ti-W alloy. This
included pure titanium and pure tungsten.

The simulations gave the free energy F as a function of composition, phase and
temperature. Since the phase with the lowest free energy is the most stable, the
free energy was used to construct the phase diagram. The construction of the phase
diagram is presented in section 3.2.5. The use of λ-integration required a number
of parameters that needed to be decided in two separate types of simulations. They
are called pre-simulations and will be discussed in section 3.2.1 and 3.2.2. After
that the integration step is presented in section 3.2.3. Last, in section 3.2.4, is the
use of Gibbs-Helmholtz equation presented. Gibbs-Holmholtz equation is used to
interpolate between free energies and to create the actual curve which enable an
evaluation of the accuracy of the λ-integration.

3.2.1 Pre-simulations, step 1

First of all we needed good values of the enthalpy over the range of temperatures
and compositions for the different phases. This was because we later wanted to
use Gibbs-Helmholtz equation to predict the free energy for different temperatures
without the need to do expensive λ-integrations. Interpolation and error estimate
with GH will be discussed in more detail in section 3.2.4.

From the same simulation it is also possible to extract the volume change due
to the change in temperature and composition. This is important since the λ-
integration is performed in the NVT ensemble which is very sensitive to volume
changes. A high pressure will be induced due to the stress that arises when the
volume is changed. This high pressure is because of the, in general high bulk modulus
of solids.

This first set of simulations is NPT-simulations with zero pressure. The simula-
tions were performed in cubic systems with around 500 atoms over an interval from
400 K to 1600 K with 100 K steps. This was done for both the hcp and bcc phases
for different compositions. The lattice constants for the different phases were set
to some value close to the expected. The interval for the compositions was (with
pure tungsten as 100%) 2% steps from 0% to 10%, 10% steps from 10% to 80% and
then again 2% steps from 80% to 100%. The reason for the larger intervall for the
tungsten rich region was because we expected that titanium is much more soluble
in tungsten than the other way around.

The simulations was run with a time step of 1 fs. This is a common order of
magnitude for these types of simulations and some NVE simulations for Ti were run
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and showed no drift in energy. Also, since all simulations are performed in some
type of ensemble with constant temperature, the thermostat is able to take care of
an eventual drift in energy as long as it’s not to large.

The simulations were run for 10 ps in order to be equilibrated. The simulations
were then run for 50 ps and the the enthalpy and volume were monitored. The
change in volume could then be related to the change in the lattice parameter.

After the first set of pre simulations, the enthalpy and lattice parameter as a
function of the composition, phase and temperature was known.

3.2.2 Pre-simulations, step 2

The second set of simulations were performed in order to get a good value for the
spring constant that was needed for the λ-integration. In theory we could have used
any value but in practice there would have been problems with numeric convergence.
As a first guess we used the equation

α = 3kbT/〈∆r2〉. (3.4)

Where α is the spring constant and 〈∆r2〉 is the mean square displacement of the
system. The meaning of this was to hold the difference between the two systems
potential energies as constant as possible. This is because the difference between
the potential energies in the EC and the real system is what we wanted to integrate
over, in order to get the change in free energy, see section 2.3.3. This is illustrated
in figure 4.17.

What was really happening when we chose this particular spring constant were
that we used the Einstein model to approximate the density of states for different
phonon frequencies to be a delta function. The choosing of the spring constant made
sure that the mean frequency was the same for the system and the EC. This is illus-
trated in figure 3.2. The equation mentioned (3.4) is a rather crude approximation
as can be seen in the figure, but it did give a hint about where to start looking for
a good value.

When the spring constant was determined, other spring constants close to this
value could be tested to see if they made the transition smoother. A smooth and
constant function would make the integral converge better.

These second set of simulations were NVT simulations. That is the same en-
samble that were used for the λ-integration described later in section 3.2.3. These
simulations were run for the same set of compositions as the first pre-simulations
described in section 3.2.1. Also, the volume used for different temperatures and
compositions was the one that was computed in section 3.2.1. The same time step
and equilibration time was used as before but the simulations were run for a shorter
time, 30 ps, since the computed spring constant was just a good guess and didn’t
need to be so converged as the enthalpy or volume in step 1.
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Figure 3.2: This is a comparison between the density of states for different models. The Debye model is better
than the Einstein model but the Einstein model is easier to implement in the simulations

The simulations were not run for the same temperatures as the earlier runs since
the spring constant is only used for the λ-integration. Thus they were run for the
same temperatures that were used in the λ-integrations. Those temperatures were
400 K, 1000 K and 1600 K.

After the second set of pre-simulations were done the spring constant for the
different phases, compositions and temperatures was known. After this the λ-
integrations could commence.

3.2.3 Integration and convergence

The third step was where the integration was run. When the free energy was cal-
culated it was important to remember that when sampling with MD only the vi-
brational part of the entropy was taken into account. In order to also make sure
that the entropy due to different configurations is included different methods can
be used. One such method is Monte Carlo simulations that can be alternated with
MD-simulations in order to get a better value for the free energy. We didn’t nor
couldn’t implement such an algorithm efficiently with the current potential so the
system entropy was approximated due to different configurations with that of an
ideal solution.

The corresponding reference system was still that of an Einstein Crystal but with
an extra term that takes the mixing entropy into account according to the following
equation

F

NkbT
= −3

2
log

(
k2
bT

2m

h̄2α

)
+ (x log(x) + (1− x) log(1− x)). (3.5)
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Two types of λ-integration were tested. The first method will be referred to
as the multi-shot method. A number of separate simulations were run for different
discrete values of λ. This gave a number of data points for the difference of potential
energy between the real system and the EC for each λ. The data points were then
integrated over the values of λ from 0 to 1 to get the total free energy difference.
The main parameter to get an accurate result is to sample long enough on each
value of λ. That is the same as running the simulation for a long enough time.
20 different, evenly spaced λ between 0 and 1 were used. This is a good balance
between accuracy and use of computer resources.[2]

The second variant is referred to as the single-shot method. This method was
based on the idea that if the system is switched adiabatically it is possible to do the
whole integration in one simulation. The advantage was that a much larger set of
data points were calculated for different λ. This should in theory increase accuracy.
The problem was that when switching the systems, a switch that was to fast won’t
be adiabatic. Hence it must be done with great care. The main parameter for this
method was to switch as slow as possible since a slow switch would increase the
number of samples and would hopefully be adiabatic. A simple switch would switch
at the same speed over the whole interval. A more delicate method was to make
the switch slower at the boundaries (close to λ = 0 and λ = 1) where the system
would be the least stable. A parametrization of the lambda as a function of a time
variable τ according to

λ(τ) = τ 5(70τ 4 − 315τ 3 + 540τ 2 − 420τ + 126)

should have been better.[32]
A good picture to have in mind when thinking about the switch is the following.

Imagine that the atoms are interacting with each other with the real potential. Then
the switch starts and springs are connected between every atom and the position it
vibrates around. Gradually you increase the magnitude of the spring force while the
magnitude of the real potential decreases. When the switch is completed, the atoms
are moving as if they only were connected by their spring, and the interaction due
to the real potential is completely gone.

In order to decide how fast the switching should have been (single-shot) and how
long each simulation should have run for each λ (multi-shot) a series of convergence
tests were executed. One combination of phase, composition and temperature was
used and a number of λ-integrations were run. Different switch times and run times
were compared to a very long run of the order of 200 ps to 300 ps. If the calculated
free energy differed less than 1 meV the integration was well converged.[2].

In order to decide what spring constant to use a series of simulations were run
with different spring constants. They were chosen to be close to the spring constant
that was calculated in section 3.2.2. The free energy difference vs. λ was plotted for
each run and the spring constant that gave the smoothest function was compared
to the guessed spring constant. This step was done for some different compositions,
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temperatures and phases in order to see how the spring constant differ from the
guessed spring constant.

3.2.4 Interpolating and error estimate with GH

In order to speed up the time for the simulations and to check if the computed
values of the free energy were correct, Gibbs-Helmholtz equation was used. This is
what the enthalpy was needed for. GH could be used to predict the value of the free
energy for different temperatures. This is why only some temperatures were used
for the integration. The enthalpy needs to be known for the temperatures between
the known value of the free energy and the temperature for the free energy we want
to predict. This saved a lot of time since it was easy to calculate enthalpy but hard
to calculate the free energy.

The second point was that GH can give an indication about whether the free
energy is correct. If the free energy curve predicted with GH doesn’t cross the other
computed free energy points, something was probably wrong. This is illustrated
in figure 3.3. In the figure the GH curve originating from the middle data point
differ from the other values with around 10 meV to 100 meV. This would give an
indication that the free energy is not so well decided. For example, if the difference
between the free energy of the hcp and bcc phases was close or less than 10 meV
to 100 meV, not much could have been said about which phase has the lowest free
energy.
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Figure 3.3: This is a graph of the free energy of a fictious solid. The free energy is calculated by Gibbs-Helmholtz
equation to temparatures around 400 K. The ideal is that this line would cross inside the data points from the other
simulations. From the graph one can see that the error is probably somewhere around 10 meV-100 meV.

3.2.5 Construction of Solid-Solid Phase Diagram

Two different solid-solid binary phase diagrams were created. The first was purely
done by approximations and the second was done as a combination of approxima-
tions and data. The first step was computing the free energy for systems of different
compositions and temperatures.

Then the free energy was plotted in a free energy - composition diagram for dif-
ferent temperatures as seen in figure 3.4. To compute points for the phase diagrams
common tangent points in the free energy has to be found. These points can then
be plotted in a temperature - composition diagram to create a phase diagram. To
numerically check how alike two tangents are the squared area between them were
compared.

Pure approxiamtion: The approximations used for construction of this phase
diagram was equation 2.11 for the entropy of mixing and the expression in equation
3.6 with Ω = 1 for the enthalpy of mixing. The free energy was then approximated
as Hmix − TSmix as seen in figure 3.4.

Hmix =
1

2
Ωx(1− x) (3.6)

Approximation and data: The Hmix data from our own simulations of Ti-W
systems was not reliable. For that reason it was provided to us by our supervisor
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Figure 3.4: Data for constructing phase diagram by using approximations for the enthalpy and entropy of mixing.
The purple lines are the common tangents and the purple points the tangent points. A system at this temperature
and a composition between the tangent points would get a lower total free energy by dividing it self into two systems
of different compositions, each corresponding to one of the common tangent points.

Paul Erhart [1]. Hmix is the deviation from a straight line drawn between the total
enthalpy of the pure systems.

The fitted curves for the data, as well as the data it self, is shown in figure 3.5.
These curves, together with equation 3.6, was used to construct a phase diagram
using the same method as for the pure approximation phase diagram.
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Figure 3.5: Shows how data for Hmix from simulations was fitted for further analysis. Note that the polynomial is
zero for pure tungsten and the line is zero for pure titanium as there is no enthalpy of mixing for pure substances.
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Chapter 4

Result

The complete phase diagram of the Ti-W alloy will be presented in section 4.1. The
phase diagram is then broken down in the following sections and the part results
are viewed separately. In section 4.2 the results from the two-phase coexisting
simulations with the direct method are revealed and in section 4.3 the results of the
λ-integration in the solid-solid region will be presented.

4.1 Phase Diagram of Ti-W

The results of the two methods were combined and plotted in a complete phase
diagram, which can be seen in figure 4.1. The upper part of the diagram is the
melting region, which have been mapped with the direct method in combination
with the Gaussian fit method. The lower part of the diagram is the solid-solid two
phase region, which have been mapped with common tangent analysis of the data
we recieved from our supervisor and should have been mapped with λ-integration.

4.2 Liquid-Solid Transition

The result of the melting lines will be presented in four sections; simulation of the
melting interval, pure systems, alloy and last the complete high temperature phase
diagram.
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Figure 4.1: The figure shows the results from direct method and λ-integration, ie. the complete phase diagram.
The dark green dots and the blue dots represent the boundaries of the two phase melting region, where the dark
green dots is representing liquid alloy and the blue dots is representing solid alloy. The two red dots are the melting
points of the the pure elements. The pink and light green dots are representing the boundaries of the two phase
solid region and the black dot is the computed solid-solid transition point for pure titanium.

4.2.1 Result from hysteresis simulation

From the simulations of the hysteresis the approximative temperature interval of
the melting point was determined to [1500,2500] K and [2300,4500] K, which is
tabulated in table 4.1 for titanium and tungsten separately.

The simulations are visualized in figure 4.2 and 4.3 with MATLAB for titanium
and tungsten, respectively. The blue line in the figures represent the simulation
that was equilibrated to a high temperature, 5000 K for Ti and 8000 K for W, and
then brought down to a low temperature, 90 K for both Ti and W in LAMMPS.
Thus representing a transition from a liquid state to a solid state. The red line is a
simulation that was equilibrated to the low temperature and then ramped up to the
high temperature, ie. representing a transition form a solid state to a liquid state.

The upper limit, which can be seen in figure 4.2, could clearly be determined for
titanium. The lower limit of the melting interval however is less evident due to that
titanium is not stable in the lower temperature region, which has a phase transition
of second order from solid bcc to solid hcp as the temperature declines.

The upper and lower limit of the melting interval of tungsten could easily be
determined as it is stable above and below the melting interval.

Melting interval T1 T2

Titanium 1500 K 2500 K
Tungsten 2300 K 4500 K

Table 4.1: Determined melting interval for Ti and W from the hysteresis simulations
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Figure 4.2: Plotted melting interval for titanium from hysteresis simulation in LAMMPS. The blue line symbolizes
the transition for Ti from liquid to solid, the red line symbolizes the transition from solid to liquid.

Figure 4.3: Plotted melting interval for tungsten from hysteresis simulation in LAMMPS. The blue line symbolizes
the transition for W from liquid to solid, the red line symbolizes the transition from solid to liquid.
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4.2.2 Pure Tungsten and Titanium Systems

The direct method for the two-phase coexisting simulation resulted in the melting
points of 1883 K and 3884 K for Ti and W, respectively. The standard deviation can
be seen in table 4.2.

Tm σ(T)
Titanium 1883 K 51 K
Tungsten 3884 K 52 K

Table 4.2: Determined melting points for Ti and W from the two-phase coexisting simulations with a direct method
and standard deviation with respect to temperature.

Figure 4.4: Frame 4500 , ie. 450 ps into the simulation, of tungsten in a direct simulation, it can be seen that the
liquid and the solid phase both still exist. Therefore the melting point could be reached. The system is visualized
in OVITO.

Figure 4.5: Frame 4500, or 450 ps into the simulation, of titanium in a direct simulation. It can be seen that the
liquid and the solid phase both still exist. Thus the melting point could be reached. The system is visualized in
OVITO.

The two existing phases can clearly be observed in figures 4.4 and 4.5 that
are visualized with OVITO for tungsten and titanium. The figures are showing
snapshots from the production run in the last time step. Since both phases were
still existing when the production run had finished the melting point should be
reached.

4.2.3 Melting Lines of Ti-W alloy

The result of the simulation for the alloy at different compositions can be seen in
table 4.3 with the standard deviations.

An example of the two phases still coexisting in the simulation of the alloy with
0.5 Ti composition are shown in figure 4.6 at 550 ps into the simulation, these systems
are visualized in OVITO. This meant that the temperature of melting should have
been reached. In figure 4.7 the two phases still exists after 1 ns. It can be noted
that the difference in the amount of liquid has not changed.
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W proportion Tm solid W proportion liquid W proportion σ(T)
0.3 2451 K 0.1838 0.4312 37 K
0.5 2590 K 0.2092 0.3514 57 K
0.45 2765 K 0.3084 0.5984 49 K
0.4 2901 K 0.3151 0.5789 52 K
0.55 3026 K 0.3927 0.6863 57 K
0.6 3086 K 0.4014 0.6229 60 K
0.7 3315 K 0.5213 0.6769 64 K
0.8 3473 K 0.6524 0.8059 61 K
0.9 3684 K 0.8527 0.9660 55 K

Table 4.3: Determined liquid and solid compositions of W for the Ti-W alloy at different ratios of Ti and W from
the direct simulations at respective temperatures Tm

Figure 4.6: Frame 5500, ie 550 ps , of titanium-tungsten in a direct simulation with 50 percent Ti and 50 percent
tungsten, it can be seen that the liquid and the solid phase both still exist. Thus the melting point could be reached.
The system is visualized in OVITO.

Figure 4.7: Frame 10000, ie 1 ns of titanium-tungsten in a direct simulation with 50 percent Ti and 50 percent
tungsten, it can be seen that the liquid and the solid phase both still exist after another 550 ps in comparison to
the time step after 450 ps . Thus the melting point could be reached. The system is visualized in OVITO.
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Figure 4.8: The raw data and fitted data for tungsten and titanium. The raw data of W is the red curve , the green
curve is the titanium raw data.

Figure 4.9: The enthalpy, in eV/atom, is plotted against the time, in ps. The enthalpy is the output from the NPH
ensemble in LAMMPS from the production run.

In order to calculate the concentration and composition of the liquid and solid
part in the alloy, Gaussian curves were fitted to the raw data. A fit for 0.5 Ti
composition is shown in figure 4.8. The raw data of W is the red curve , the green
curve is the Ti raw data. The fitted data has three curves, one each for W and
Ti with a maximum around -8.5 eV/atom and -4 eV/atomrespectively. The two smaller
curves represents the liquid distribution, which are the purple lines, and the solid
distribution, which are the black lines for Ti and W. The larger curves are the actual
fitting to the raw data of W and Ti.

To examine the credibility of the production run the variables of enthalpy, po-
tential energy and temperature was analyzed The enthalpy in the NPH simulation
should be constant, which is plotted in figure 4.9. It can be noted that the enthalpy
for the 0.5 Ti simulation of 400 000 time steps was dropped by 0.087 eV/atom.
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Figure 4.10: The raw data of the potential energy in eV plotted against time, in ps, in the NPH simulation

Figure 4.11: The raw data of the temperature in K plotted against time, in ps, from the production run.

The enthalpy of LAMMPS output from the NPH ensamble is the upper plot in
figure 4.10. The enthalpy could be thought be the total energy as the pressure is
set to zero, in LAMMPS however the NPH simulation has it’s own PV term that
is not the same as the other P and V identities that LAMMPS can give as output.

The potential energy, plotted in figure 4.10 appear to also drop after raising its
potential energy in the NPH simulation with the same amount that the enthalpy
did. Which could mean that the system hasn’t yet reached equilibrium.

The temperature for the alloy with composition 0.5 Ti is plotted with respect to
time in figure 4.11. The temperature appear to stabilize during the production run
while the potential energy is dropping.

Analyzing Ti-W alloy in OVITO

The accuracy of the Gaussian fit to the raw data can be compared to handpicking
the liquid and the solid atoms in OVITO and determining the phase diagram. By
taking the mean of every 1000 time step in the NPH simulation from 3000 to 5500,
an estimate of the accuracy of the Gaussian method is acquired. A comparison of
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(a) This figure shows the selected liquid particles. The accuracy for one time frame could
be better than the method of Gaussian fitting. The system is visualized in OVITO.

(b) The figure shows the system of a simulation of the W-Ti alloy in the production run,
the liquid atoms can clearly be determined. The system is visualized in OVITO.

Figure 4.12: The figure illustrates the accuracy of hand picking liquid particles in OVITO.

Figure 4.13: This figure shows an alternative method of retrieving the phase diagram, which is by handpicking the
liquid atoms.

marked liquid atoms and non marked atoms are visualized with OVITO in figure
4.12

The phase diagram retrieved from this method generated the alloy phase diagram
in figure 4.13. The first thing that could be noted is that the melting area appears
to be smaller than the melting area Gaussian fitting generates.

4.2.4 High Temperature Phase Diagram

The result of all simulations with the direct method was the upper part of the phase
diagram which is plotted in figure 4.14. The accuracy of the Gaussian fit to the raw
data will have a crucial part in the upper part of the phase diagram.
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Figure 4.14: This is the melting line of the alloy titanium-tungsten.

4.3 Solid-Solid Transition

The results for the solid-solid transition will be presented starting with the informa-
tion gathered from the ordinary MD-simulations. These simulation were mainly run
in order to get good parameters for the λ-integration. Although other interesting
features of the systems could also be obtained through these simulations

Following that, the results from the λ-integration will be shown and in the end
of this chapter the low temperature phase diagrams will be given.

The goal from the beginning was to do use λ-integration to map out the phase
diagram for the tungsten-titanium alloy. Unfortunately the λ-integration ultimately
did not work to the extent that it could predict the phase transition in our system.
Instead, the main focus for the lambda integration shifted to reproduce only the
phase transition predicted in Tommy Andersson’s thesis[2]. The phase diagrams are
constructed with external enthalpy data provided by our supervisor Paul Erhart,
see section 3.2.5, and common approximations for the entropy of mixing.

4.3.1 Pure Titanium and Tungsten

The first step for the lambda integration was to do a couple of pre-simulations in
order to determine the enthalpy and the lattice parameter. The lattice parameter
was important since the goal was to simulate in the NVT-ensemble while the en-
thalpy was needed for the Gibbs-Helmholtz equation. The corresponding plot of
the enthalpy is shown in figure 4.15. An interesting feature of the enthalpy is the
behavior around 1000 K, an indication that the system isn’t entirely stable around
this point could be noted.

The lattice parameter for titanium can be seen in table 4.4. Also, the thermal
expansion for tungsten was illustrated in figure 4.16 as an example of another pa-
rameter that could be derived from MD-simulations alone. It is also an important
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Figure 4.15: For this plot a pure titanium system was simulated in a NPT ensemble at different temperatures for
both hcp and bcc structure. Notice the change around 1000 K which indicates an abrupt change in some property.

factor for eventual future studies of the titanium-tungsten system.
Following the NPT simulation which helped with the determination of the en-

thalpy and lattice parameter was the NVT simulation. This simulation helped to
choose which spring constant to use.

The equation 3.4 predicts a spring constant of about 1.5 eV/Å but as seen in figure
4.17 this was not as good as a value of about 3 eV/Å. Because of this, the spring
constants for the integration steps were set to be around twice of the predicted value.

That was all the parameters needed to commence the actual integrations. Al-
though first a series of test were needed to be performed in order to determine the
simulation length.

Temp [K] 400 500 600 700 800 900 1000

bcc [Å] 3.278 3.283 3.290 3.296 3.299 3.300 3.314

hcp [Å] 2.925 2.929 2.933 2.936 2.940 2.944 2.947

(a) Lattice parameters for Titanium in the
range 400 K to 1000 K

Temp [T] 1100 1200 1300 1400 1500 1600

bcc [Å] 3.317 3.319 3.322 3.324 3.326 3.328

hcp [Å] 2.951 2.954 2.957 2.960 2.963 2.966

(b) Lattice parameters for Titanium in the
range 1100 K to 1600 K

Table 4.4: This is the lattice parameters for Titanium at different temperatures.
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Figure 4.16: For this plot a pure tungsten system was equilibrated in a NPT ensemble for different temperatures.
The lattice parameter for the bcc crystal was calculated for each temperature and used to compute the thermal
expansion coefficient.
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Figure 4.17: This is an illustration of how the spring constant affects the convergence. In theory the corresponding
integral will converge to the change in energy but in practice one will get numeric errors for badly chosen spring
constants. According to equation (3.4) a good guess would be 1.5 eV/Å but a larger value is apparently better.

First a convergence test was conducted for the single shot method to determine
a good length of the simulation with respect to accuracy and time, the result can be
seen in figure 4.18. A system of pure hcp titanium at 1200 K was simulated with 19
different switch times. The resulting values of the free energy was then compared
to the value of a longer simulation of 200 ps. We are working with differences in
the free energy in the order of 100 meV, so to be considered converged the absolute
difference due to simulation length should be below 1 meV. We can se in the figure
that convergence is reached after about 60 ps.
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Figure 4.18: The figure illustrates the convergence of the single shot TDI method, that is the absolute difference in
free energy between a long, well converged simulation and shorter simulations. We see that after about 60 ps the
difference stays below1 meV, which should be sufficient for our needs. The system simulated is pure Ti in hcp at
1200 K.

An equivalent test was performed for the multi shot method which can be seen in
figure 4.19. In this case a system of pure bcc Titanium were used instead. The test
was performed for 20 different lengths between 10 ps and 200 ps and was compared to
a run with 300 ps. The result is similar to the single shot method with a convergence
of about 70 to 100 ps.
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Figure 4.19: The figure illustrates the convergence of the multi shot TDI method, that is the absolute difference in
free energy between a long, well converged simulation and shorter simulations. We see that after about 100 ps the
difference stays below1 meV, which should be sufficient for our needs. The system simulated is pure Ti in bcc at
1400 K.

The hcp-bcc transition for pure titanium was calculated with the single shot
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Figure 4.20: The figure shows the free energy of titanium calculated with the single shot method at different
temperatures. Notice the cross of the lines at 1688 K, which indicate the transition temperature. The upper line is
for bcc and the lower line is for hcp. The dots are the the TDI-data, while the interpolation and the extrapolation
is done with GH curves from each TDI point that is then weighted together linearly with respect to which TDI
point that is closest.

TDI method. The result can be viewed in figure 4.20. Notice the interception of
the lines at 1688[K] , which indicates the transition temperature. As a reference, T.
Andersson recieved a temperature of 1280 K with the same method [2]. Two points
of free energy was simulated for each of the two phases, one at 1200[K] and one
at 1400 K. The enthalpy was simulated at eight points evenly distributed between
1000 K and 1700 K for use in the GH formula. The free energy was extrapolated
from each point using GH and then the resulting curves were weighted together
linearly with respect to the distance from the respective TDI points.

The same transition was calculated with the multi shot TDI method and the
result can be seen in figure 4.21. With this method we tried to replicate Tommy
Anderssons results but couldn’t find the transition at the expected value of 1280 K.
The multi shot integration was performed for 100[ps] with a time step of 1 fs. The
lambdas were evenly spaced between 0 and 1 in intervals of 0.05 steps except at
the boundaries were also 0.001, 0.01, 0.99 and 0.999 were used to improve numeric
accuracy. This choice is according to Andersson [2] a balance between accuracy and
use of computational resources.

GH was also used but plotted from every point to indicate how accurat the data
points are. A rough estimate is that the values are within 10 meV/Å.
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Figure 4.21

4.3.2 Mixtures of Titanium and Tungsten

For the mixtures two different phase diagrams were constructed. The first, shown
in figure 4.22, was purely constructed from theoretical approximations. Outside the
phase transition line an equilibrated system will only consist of one composition.
However, inside the phase line an equilibrated system would be divided into two
different compositions.

The second phase diagram is shown in figure 4.23. It was constructed from a
combination of data provided by our supervisor [1] and a theoretical expression for
Smix.
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Figure 4.22: Phase diagram derived by using the entropy approximation seen in equation 2.11 and the expression in
equation 3.6 with Ω = 1 for the entropy of mixing. The common tangent points are found in figure 3.4 for several
temperatures and then put together in this temperature-composition diagram.

Figure 4.23: For this phase diagram data from simulations, see figure 3.5, was used for the Hmix part of the free
energy and equation 2.11 was used for the Smix part. For higher temperatures, the free energy of bcc Ti has to be
considered for the right hand side of the diagram.
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Chapter 5

Discussion

The simulations in LAMMPS that were conducted proved to be more complicated
than expected. The result that is shown in figure 4.1 is partly consisting of results
from our simulations and partly of analyzed data provided by our supervisor Paul
Erhart[1].

The results from the λ-integration and the direct method will be discussed in
section 5.1 and 5.2 respectively in greater details.

5.1 Liquid-Solid Transition

Our first approach to determine the melting lines was to use the NPT and NVE
simulations. In order to check whether there were two phases left or not we planned
to use a radial distribution function (RDF) and interpret the system qualitatively.
The radial distribution is a histogram over the distances between all atom pairs and
reflects the long and short range order of the system. The long range limit in the
function looks different for a liquids and a solids, since a solid has long range order
but a liquid has not. There were two problems with this approach. Firstly the
NVE approach requires a good approximation of the melting temperature, which
we didn’t have access to because the determined melting interval was around 1000 K
for the simulated system.

It would have been necessary to iterate through a large amount of initial ener-
gies with a small enough energy step to not miss the point. This would be a heavy
computational task. This is regarded unsuitable and lead us on to the second prob-
lem. This is the possibility to check if the system has lost its two-phase coexistence,
which is difficult to automate. Also our RDF approach proved to be insufficient for
this task due to the fact that the RDF for the liquid and the solid are too similar.

We therefore changed our approach to keeping the enthalpy and pressure, instead
of the energy, constant. In our new approach the change in energy was checked in
each iteration. The method is more closely described under the method part of this
report. This method is better at finding the melting point.
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The direct method approach with NPT and NPH simulations produced results
for the melting line. The melting point of Ti was determined to 1883 K with a stan-
dard deviation of 51 K. This is 58 K from the experimental value[12]. The melting
point of W was determined to 3884 K with a standard deviation of 52 K this is 1185 K
from the experimental value. The results from the alloy has a standard deviation
from 37 dimension to 61 K. These standard deviations are about half the value of
the standard deviation calculated in an article by Wu et al., 2011 [31] where they
use the same software. The conclusion is that the results have quite low standard
deviation. Therefore the statistical error is small, however, a systematic error can
not be excluded for this reason.

The melting lines in between the melting point of Ti and W were determined
with quite low accuracy. The Gaussian fit turned out to estimate a larger melting
area than if the liquid and solid atoms were handpicked in OVITO. Consider figure
4.12a, the liquid atoms in the figure are the red atoms. These are selected to be
liquid by hand. By comparing this to figure 4.12b where no atoms are picked, the
accuracy for the distinction between the two phases is thought to be quite good.

The method of fitting Gaussian curves in order to determine concentrations
of liquid Ti-W and solid Ti-W gave less accurate results. The problem was that
MATLAB interprets the curves differently than desired and the result could be that
the concentration is larger than 1 or smaller than 0 which is not possible physically.
The reason is that the peaks for liquid and solid were not separated enough for
MATLAB to resolve two accurate peaks. Another problem was that when MATLAB
could make a fit as in figure 4.8 the uncertainty of the liquid and solid peaks is large
due to low resolution.

The result obtained are depending on the potential used. The MEAM spline
and CDIP potentials for the Ti, W and Ti-W system has not thoroughly been in-
vestigated for the melting line. The result should therefore not be dismissed based
on the fact that the result are far from experimental results.

As the phases still remained after 1 ns and ratios of liquid and solid didn’t change
it should be reasonable to conclude that the melting point has been reached. The
equilibrium with respect to the composition of the liquid and solid parts has however
probably not been reached, this conclusion is made based on figure 4.10, where the
potential energy seem to drop during the production run. Therefore the run time
of the production run could have been chosen larger in order to reach equilibrium.
Though this would cause the simulations to be very expensive as the simulations
need to be iterated in the melting interval.

The system size 2956 atoms, or (6x6x42)a where a is the lattice parameter,
should be adequate, as no significant difference was seen in comparison to a system
of 20 000 atoms. A system of 20 000 atoms has been used before in article from et
al Wu, 2011 [31], with values that have the standard deviation in the magnitude of
100 K from experimental values.
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The time step length effect LAMMPS:s accuracy as the Verlet algorithm must
be solved. The time step was chosen to 1 fs, this was thought to be a reasonably
small time step. Consider figure 4.9, in the figure the enthalpy is expected to
remain constant. Because the enthalpy is dropping by 0.0870 eV/atom during the
production run, comparing this to the initial value which was -6.086 eV makes
the drop a 0.014 percent decline. A systematic error may therefore exist in the
simulation. As a time step of 0.1 fs did not improve the decline in enthalpy nor a
time step of 2 fs we ruled out that the enthalpy drop depended on the time step,
which should have been the most likely reason for this error. Ultimately this problem
could not be solved due to time limits.

5.2 Solid-Solid Transition

The goal from the beginning was to map out the complete phase diagram of the
alloy in the solid region but unfortunately this could not be done. Even after a shift
of focus to only simulate the solid phase transition between hcp and bcc Titanium
the transition temperature could not be replicated from Andersson’s thesis [2]. To
aquire the lower part of the phase diagram we used data from our supervisor.

5.2.1 λ-integration

The overall conclusion regarding the λ-integration is that the method is powerful if
used correctly, but that the method can be unstable and requires a great attention
to detail in order to work well.

All of the pre-simulations went well and from that step alone a great deal of
properties, for example the enthalpy and the lattice parameter, can be computed.
Unfortunately, due to time limits, we couldn’t compute the standard deviation for
the sampled properties (the enthalpy, the lattice parameter and the free energy for
the multi shot method). We did compute the standard deviation for titanium at
1400 K early in the project and the standard deviation didn’t affect the GH extrap-
olation more than a couple of meV per atom. This shouldn’t affect the accuracy
very much but unfortunately we don’t have data to support this claim.

Furthermore, things got complicated when the spring constant is to be chosen.
Even though in theory, it should not matter which spring constant is chosen the
numerics can go wrong when implementing it in practice. A good guess would be
to choose the spring constant such that the Einstein crystal and the system has
the same mean square displacement. According to our result the spring constant
should be at least twice the predicted value in order to get good convergence in the
numerics.

Another question that can be discussed is how sensitive the system is to changes
in the lattice parameter. By the calculations in this report, we only know that the
lattice parameter changes with increasing temperature, but no further analysis is
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done. It could be that even a minimal change in the lattice parameter increases the
pressure so much that it could no longer be approximated to zero.

The test of convergence indicated that the length of the simulation should be
enough and the spring constant was not off by miles. The extrapolation with Gibbs
Helmholtz also indicates that the free energy values are converged. This arises
suspicions that there is some kind of systematic error.

5.2.2 Phase Diagrams

Using simulations many predictions of a phase diagram can be made. Figure 4.22
illustrates how the importance of the entropy term in the free energy raises with
temperature. The system will become more disordered for higher temperatures.
The enthalpy expression that is used for this phase diagram, equation 3.6, is always
positive. This means the enthalpy term of the free energy will make it more favorable
for the system not to mix. However, as this term is independent of temperature its
importance decreases for higher temperatures.

The enthalpy curves shown in figure 3.5 has both positive and negative values.
Positive values exists for the hcp titanium rich part. This indicates that tungsten
has rather low solubility in hcp Ti. In the corresponding phase diagram, figure 4.23,
this translates to a straight line on the left hand side. Negative values exist for the
bcc tungsten rich part. This indicates that Ti has some solubility in bcc W. The
effects of this can be seen in the lower right part of the phase diagram.

For these phase diagrams only Hmix, and not the total enthalpy of the simulated
system, is considered. The difference Hvib = Htot−Hmix is a straight line between the
enthalpy of the pure substances and will not affect the common tangent construction.
As the values for Hvib are about 100 times larger than Hmix it can be numerically
difficult to get good polynomial fits of the data without first removing Hvib. The
value of Hvib for a mixture corresponds to the total enthalpy of a system with the
same amount of both elements as the mixture, only without any interaction between
the elements.

It is important to keep in mind that even though the data for Hmix is independent
of temperature, it is not accurate for all temperatures. For the Ti rich part, the
bcc structure will become lower in free energy than the hcp structure for some
temperature. Exactly at what temperature this happens depends on the composition
but for pure titanium Tommy Andersson computed it to be 1280 K [2]. As his
simulations were similar to ours, this transition temperature is of greater relevance
than the experimental one. Close to, and above this temperature a common tangent
construction between a bcc Ti rich system, and the already considered hcp Ti rich
and bcc W rich systems might be possible. This would affect the outcome of the
phase diagram. As indicated by the steep incline of the fitted line in figure 3.5 and
the fact that pure W does not exist in a hcp structure [15], hcp W rich systems does
not have to be considered. This is the reason for using a straight line for the data
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fitting of this region.
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Chapter 6

Conclusion and Outlook

In conclusion the direct simulations of the melting lines could be determined with
quite low statistical error, which are visualized in figure 4.14. The method itself
is considered to be a stable method which is used often and therefore the melting
points of pure W and Ti can be considered quite accurate. However the method of
determining the melting lines of the alloy turned out not to be a adequate method
due to low resolution of the potential energy per atom. The low resolution can be
seen in figure 4.8.

Further conclusion is that the temperature appear to equilibrate but the po-
tential energy and the enthalpy are dropping in the production run which is an
indication of not reaching the equilibrium with respect to composition, but also
that the simulation is not physical.

The lambda integration is also a common method and although computationally
expensive it can be quite powerful. The method has been proved to work on our
system by Tommy Andersson [2] but we couldn’t replicate the results from his
work. We suspect that the problem is some kind of systematic error. The method
is quite complex with a lot of parameters that need to be carefully determined. The
pre simulations went well and a lot of information can be determined from those
simulations alone. In our case the enthalpy and lattice parameter were computed.

MD-simulation in general is a powerful method and widely used. Unfortunately
the methods used are quite delicate and the parameters for the simulations must
be carefully chosen. Not only can the method predict properties of materials but
combined with statistical mechanics, a great feel and understanding can be gained
about the world around us.

For future reference and projects a python code would probably be suitable for
determining the composition of the liquid and solid when determining the melting
lines. This would give the melting lines higher accuracy if written correctly.

The λ-integration could benefit from more thorough studies about how errors in
the enthalpy and lattice parameter affects the accuracy of the calculated free energy.
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Appendix A

LAMMPS

This is an example of LAMMPS code and parts of the output from a terminal

A.1 code

# Basic initialization

dimension 3

boundary p p p

units metal

atom_style atomic

# Defining lattice, regions and creating the atoms

lattice fcc 3.61

#lattice bcc 2.95 (Ti)

variable side equal 6

variable s1 equal ${side}/2.0

variable s2 equal ${side}/2.0+1

region simulationBox block 0 ${side} 0 ${side} 0 ${side}

region liquidBox block 0 ${s1} 0 ${side} 0 ${side}

region solidBox block ${s2} ${side} 0 ${side} 0 ${side}

create_box 1 simulationBox

create_atoms 1 region liquidBox

create_atoms 1 region solidBox

group liquid region liquidBox

group solid region solidBox
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A.1. CODE APPENDIX A. LAMMPS

# Defining the properties of the atoms

mass 1 63.55

#mass 1 79.87 (Ti)

pair_style eam

pair_coeff 1 1 Cu_u3.eam

neighbor 0.3 bin

neigh_modify every 20 delay 0 check no

# Setting the temperature

variable TStartLiquid equal 5000

variable TStartSolid equal 100

variable TExpected equal 1084

#variable TStartLiquid equal 5000 (Ti)

#variable TStartSolid equal 1000 (Ti)

#variable TExpected equal 1941 (Ti)

velocity liquid create ${TStartLiquid} 87287

velocity solid create ${TStartSolid} 87287

# Pre-running to initiate the system to the approximate temperature

# Fixes for the actual simulation

fix myFix all nve

# Dumping, logging and such

dump myDump all custom 200 dump/shouldWork.*.dump id xu yu zu

thermo_style custom step temp etotal pe press pxx pyy pzz vol

thermo 1000

# Timestep and run

run 20000
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A.2. TERMINAL OUTPUT APPENDIX A. LAMMPS

A.2 Terminal output

This is how a common terminal output from LAMMPS look like. Notice that it’s
not from the code above.

LAMMPS (16 Sep 2012)

Lattice spacing in x,y,z = 3.31922 3.31922 3.31922

Created orthogonal box = (0 0 0) to (19.9153 19.9153 19.9153)

2 by 2 by 4 MPI processor grid

Created 432 atoms

Setting atom values ...

432 settings made for type/fraction

CDIP linearized_mode=0

CDIP legacy_mode=0

CDIP ntypes=2

CDIP sigma_cutoff=5.5

CDIP sigma_stepsize=0.0276382

CDIP nknots=200

CDIP pair_pot_cutoff=5.5

CDIP pair_pot_stepsize=0.0276382

CDIP nknots=200

Setting up run ...

Memory usage per processor = 4.95452 Mbytes

Step Temp Enthalpy Lx PotEng varPotEC

0 2400 -4.6862658 19.915314 -4.7099566 0

100 55.7722 -3.0546794 19.915314 -3.5877417 0.29029315

200 2102.9502 -4.4258603 19.915314 -4.669579 0.028296539

300 468.23415 -3.5895698 19.915314 -3.9464079 0.22898296

400 1464.9511 -4.1093414 19.915314 -4.4654485 0.10217556

500 1155.3086 -3.9610809 19.915314 -4.3463666 0.1416101

600 739.46849 -3.7373785 19.915314 -4.0996492 0.19156364

700 1852.027 -4.3091982 19.915314 -4.6177202 0.055998711

800 187.58086 -3.2131493 19.915314 -3.704991 0.26164326

900 2269.6709 -4.6556404 19.915314 -4.7058194 0.0054898805

1000 4.3449743 -3.1311935 19.915314 -3.6172278 0.28560625

1100 2227.6075 -4.5757466 19.915314 -4.6937385 0.010523563

1200 257.05319 -3.343278 19.915314 -3.8017536 0.25400247

1300 1744.3203 -4.2329071 19.915314 -4.5522024 0.069114816

1400 864.66531 -3.9237741 19.915314 -4.2136737 0.17860842

1500 1031.2524 -3.6744302 19.915314 -4.1783864 0.15732695

1600 1602.2625 -4.1886939 19.915314 -4.5401414 0.088737225
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