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Atomic scale modeling of ordering phenomena
Mattias Ångqvist

Department of Physics
Chalmers University of Technology

Abstract

Ordering phenomena in materials often have a crucial impact on materials prop-
erties. They are governed by the competition between entropy and energy. Ac-
cordingly simulating these aspects requires the construction of models that enable
a computationally efficient exploration of the relevant configuration space. The
alloy cluster expansion technique is particular well suited for this task as they can
be trained to reach high accuracy while being computationally suitable for rapid
sampling via Monte Carlo simulations.

In paper I we present the icet software for the construction and sampling of alloy
cluster expansions. In this thesis the alloy cluster expansion method is applied to
study several different materials.

The first group of materials studied are inorganic clathrates. In paper II and III we
studied the ordering behavior and related properties as a function of composition
and temperature for the clathrates Ba8Al𝑥Si46−𝑥, Ba8Al𝑥Ge46−𝑥,
Ba8Ga𝑥Ge46−𝑥 and Ba8Ga𝑥Si46−𝑥. We achieved very good agreement with the
available experimental data for the site occupancy factors (SOFs).

In paper IV and V we constructed the phase diagram for the W-Ti and W-C
system respectively. A cluster expansion for each system was constructed and the
configurational free energy was calculated. By also including other contributions
to the free energy, most notably the vibrational free energy, the phase diagrams for
these systems could be constructed.

In paper VI we studied the SSZ-13 zeolite and showed both that the Löwenstein
rule is not respected with hydrogen as counterion and provided a rationale for this
behavior.

Keywords: Cluster expansion, Monte Carlo, inorganic clathrates, alloys, zeolites,
tungsten carbide, ordering phenomena
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1
Introduction

1.1 Atomic scale modeling of ordering phenomena
This thesis focuses on modeling ordering phenomena in materials using atomic
scale models. It therefore relates to statistical and classical thermodynamics, com-
putational physics, as well as materials physics. This introductory chapter in-
troduces relevant thermodynamic aspects. The computational models used here
are described in Chapters 2 and 3, whereas the studied materials are reviewed in
chapter 4.

1.1.1 Entropy and order
Entropy is a measure of the disorder in a system. The second law of thermodynam-
ics states that disorder in a closed system can only increase; in other words closed
systems tend to evolve from ordered to disordered states. A simplified example of
this is the process of shuffling a standard deck of cards. The initial state when the
deck of cards are in perfect order will “never” appear again in the process of the
shuffling since, assuming random shuffling, the probability to end up in the initial
state is roughly 1 in 1068. As the shuffling continues the deck of cards becomes
more and more disordered.

Another example is the tossing of coins. Imagine having 100 coins and tossing
them all at once. A particular sequence can be denoted as head–tail–head–head–…
and so on. The probability that all come up heads is the probability of the first
coin comes up as heads times the probability that the second coin comes up as
heads and so on, hence the probability is (1/2)100. This probability is the same for
any sequence of the coin toss. Yet from intuition we would expect that all coins
coming up as heads should almost never happen.

1



Chapter 1. Introduction

A-B alloy 

a)

Energetically
Unfavorable

Energetically
Favorable

b) c) d)

Figure 1.1: Chemical ordering it is essentially the issue of figure a), for a given A-
B alloy at a certain temperature and composition what distribution of the atoms
will be observed? Figure b), an ordered structure representing the ground state
structure if A-B bonds are energetically unfavorable. Figure c), another ordered
structure representing the ground state if A-B bonds are energetically favorable.
Figure d), example of a disordered structure.

The resolution to this conundrum lies in the distinction of a specific sequence
of coin tosses, called a microstate, and the total number of heads and tails of a
particular sequence, called a macrostate. All microstates are equally probable but
the probabilities for different macrostates vary over a wide range. The probability
of a particular macrostate is the number of all microstates that correspond to that
macrostate divided by the number of all possible microstates. In the coin-toss
example, the number of total microstates is 2100 and the number of microstates for
a macrostate is given by (100

𝑛 ) = 100!/𝑛!(100 − 𝑛)!. Consequently the probability
of all coins ending up as heads is 1/2100 whereas the probability of ending up with
50 heads is 1029 times more likely with a probability of about 1029/2100. The
number of microstates for a particular macrostate is commonly referred to as the
multiplicity of that macrostate.

Mathematically entropy is measured as 𝑆 = 𝑘𝐵 ln Ω, where 𝑆 is the entropy, 𝑘𝐵
is the Boltzmann constant and Ω is the multiplicity of the system. Hence increasing
the entropy, or the disorder, simply implies that the system changes to a more likely
(macro)state.

The principles of the coin toss example are easily extended to atomic systems.
Imagine a system comprised of 100 𝐴 atoms and as many lattice sites. By mixing
one 𝐵 atom into the system the number of possible microstates increases by a
factor of 100, as there are 100 possible sites to insert the 𝐵 atom. A system of
atoms obeys the same combinatorics as coin flipping. Hence the entropy increases
by mixing and if we are neglecting the atomic interactions the system will have a
tendency to spontaneously start mixing.

2



1.1. Atomic scale modeling of ordering phenomena

1.1.2 Free energy
Entropy goes a long way in explaining the ordering behavior of materials. Yet,
in nature many materials are found to exhibit ordered states, which have (much)
lower entropy than disordered states. Thus if entropy is one half of the picture to
explain ordering in materials, the energy is the other half that has to be included.
Consider again the case of the 𝐴𝐵 atomic system, for which we saw that the
entropy can be tremendously increased by mixing 𝐴 and 𝐵 atoms. In general there
is an energetic cost associated with mixing. If the formation of 𝐴 − 𝐵 bonds is
energetically unfavorable compared to 𝐴 − 𝐴 and 𝐵 − 𝐵 bonds there is a penalty
for mixing and less mixing is expected. On the other hand if 𝐴−𝐵 bonds are more
favorable, the system can both lower its energy and increase its entropy by mixing
and more mixing is expected. This interplay of entropy and energy is expressed in
the Helmholtz free energy of the system

𝐹 = 𝑈 − 𝑇 𝑆, (1.1)

where 𝑈 is the internal energy and 𝑇 is the temperature. Generally speaking a
system described in the canonical ensemble will strive to minimize its free energy.
According to Eq. (1.1) the entropy term becomes more important for higher tem-
peratures. Hence, at a low temperature a system is more likely to be observed in
its low energy state, where the chemical bonds dictate the ordering of the material.
As the temperature is increased, however, the material becomes more disordered
as the entropy term becomes more important.

1.1.3 Examples of ordering in materials
Many crystalline materials exhibit some form of chemical order which is crucial for
understanding their properties. Here, one can distinguish between short and long-
range order. As the terms suggest in the former case order only persists over a few
neighbor shells, whereas long-range order persists over long, possibly macroscopic,
distances.

Long-range order is commonly the result of strong attractive interactions and is
associated with small periodic ordered structures. Short-range order on the other
hand, is typically the result of a competition between energy and entropy as the
attractive interactions are comparable in magnitude to the entropy. To model
the latter type of systems it is therefore imperative to account for both of these
contributions.

In many materials there is an order-disorder transition such that at temperatures
𝑇 < 𝑇𝑐 the system is ordered and for temperatures 𝑇 > 𝑇𝑐 the system is more
or less disordered. The states below and above the transition can, e.g., be long-
range and short-range ordered, respectively. One can intuitively guess that if a

3



Chapter 1. Introduction

material goes from an ordered state (Fig. 1.1 b) and c)) to a disordered state
(Fig. 1.1 d)), the properties of the material can differ drastically. This behavior
is particular pronounced and well studied in many alloys that form intermetallics,
such as AuCu, FePt, or NiAl. It is also present in some of the materials studied in
this thesis including the clathrates (section 4.1 and tungsten carbide (section 4.3).

Another type of ordering transition happens in Al based clathrates (see Paper
III and section 4.1) where one can get a dramatic difference in chemical ordering
for a small change in Al composition.

1.2 Mixing in multi-component systems
1.2.1 The dilute limit
Consider a system of 𝑁 particles where all particles are of type 𝐴 except for 𝑛 par-
ticles of type 𝐵. This system is said to be in the dilute limit if 𝑁 ≫ 𝑛. In the dilute
limit the 𝐵 particles are so few and spread out that one can assume the interactions
between 𝐵 particles to be negligible. Hence, Δ𝐹 , the free energy associated with
adding or subtracting one 𝐵 particle, is independent of composition. The equi-
librium concentration in the dilute limit is then given by 𝑐 = 𝑐0 exp [−Δ𝐹/𝑘𝐵𝑇 ],
where 𝑐0 is the concentration of sites available for substitution.

1.2.2 Concentrated solutions: Mean-field treatment
When the condition 𝑁 ≫ 𝑛 is no longer fulfilled the system is said to be in the
concentrated limit. Here, the 𝐵 atoms have become so numerous that their mutual
interaction must be taken into account and the free energy of adding or removing a
𝐵 atom becomes dependent on the concentration. The simplest treatment applied
in the concentrated limit is provided by the Bragg-Williams model, which can be
viewed as a mean field approximation to the Ising model. The energy, entropy,
and the free energy of the system can be expressed in terms of an order parameter,
which describes, e.g., the average number of 𝐴 − 𝐵 bonds in the structure. The
order parameter observed for a certain temperature and concentration is the one
that minimizes 𝐹 . The Helmholtz free energy of the system is given by [5, 6]

Δ𝐹mix = Δ𝑈mix − 𝑇 Δ𝑆mix,
Δ𝑈mix = 𝜔𝑐(1 − 𝑐),
Δ𝑆mix = −𝑘𝐵 [𝑐 ln 𝑐 + (1 − 𝑐) ln (1 − 𝑐)] ,

(1.2)

where 𝜔 describes the energy cost of mixing and creating an 𝐴 − 𝐵 bond, 𝑐 is the
𝐵 concentration and 𝑘𝐵 is the Boltzmann constant. The effects of Δ𝑈mix and 𝑇 on
Δ𝐹mix are illustrated in Fig. 1.2. Some comments are in order. First, all expressions
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 0

A B
(a) ∆Umix < 0, high T 

∆Umix

−T∆Smix

∆Fmix

 0

A B
(b) ∆Umix < 0, low T 

∆Umix

−T∆Smix

∆Fmix

 0

A B
(c) ∆Umix > 0, high T 

∆Umix

−T∆Smix

∆Fmix

 0

A B
(d) ∆Umix > 0, low T 

∆Umix

−T∆Smix

∆Fmix

Figure 1.2: The free energy of mixing Δ𝐹mix as a function of composition assuming
mixing is (a,b) energetically favorable (Δ𝑈mix < 0) and (c,d) unfavorable (Δ𝑈mix >
0), respectively, at (a,c) high and (b,d) low temperature 𝑇 .

are symmetric in the concentration 𝑐. Secondly, the mixing entropy, Δ𝑆, is positive
across the entire concentration range. Consequently the contribution of entropy
to the free energy is always negative. Hence, for 𝑇 → ∞, entropy will be the
dominating term and the free energy will always be minimized by mixing (Δ𝐹mix <
0). For the case of Δ𝑈mix > 0 there is a competition between energy and entropy
that determines whether the components mix or segregate. For Δ𝑈mix > 0 and
low 𝑇 , Δ𝐹mix can change sign, giving rise to a miscibility gap (Fig. 1.2d).

This very simple form is not suitable for modeling the vast majority of systems.
It can, however, be generalized leading to the semi-empirical CALPHAD approach
to modeling phase diagrams. In this case, the various contributions to the mixing
energy and entropy are expressed in polynomial expansions in temperature and
composition. The expansion coefficients are most commonly obtained by fitting to
experimental data and, more recently, also from first-principles calculations. The
resulting models are widely used in industry and academia for alloy design and
optimization.
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Figure 1.3: (a) Mixing energy and (b) mixing entropy as a function of composition.

1.2.3 Concentrated solutions: Beyond mean-field
The mean-field approach outlined in the previous section is fundamentally semi-
empirical in its nature and requires input in the form of either experimental or
computational data. Experimental data is often difficult and/or expensive to ac-
quire. There are also various cases, in which it is downright impossible to extract
meaningful data from experiments. This applies for example at low temperatures
when thermodynamic equilibrium cannot be reached reliably.

For illustration consider the W–Ti system as analyzed using a combination of
first-principles calculations, lattice models and Monte Carlo simulations (Paper
IV). The analysis reveals a ground state structure at 80% tungsten concentration
[7]. At low temperatures this configuration is much more likely to be observed than
other configurations leading to a distinct feature in the mixing energy (Fig. 1.3a)
and even more so the mixing entropy (Fig. 1.3b). These features are absent in
CALPHAD assessments of the W–Ti system, which instead commonly assume
complete immiscibility, i.e. a positive mixing energy throughout. This approxima-
tion is owed to the fact that W is a refractory metal, which renders experimental
data below approximately 1300 K unreliable.

6



1.3. Thesis guide

1.3 Thesis guide
The W–Ti system alluded to in the previous section is one example for how the com-
bination of first-principles calculations (usually density functional theory (DFT))
and lattice models (usually alloy cluster expansions (CEs)) allows one to accurately
predict the behavior of multi-component mixtures with little or no experimental
input.

This thesis comprises the development of a computational tool for constructing
and sampling CEs (Paper I). This is the approach taken in this thesis, which in
addition to the W–Ti alloy system (Paper IV), extends the application of these
techniques to the analysis of chemical ordering in inorganic clathrates (Papers II
and III) and zeolites (paper VI) as well as vacancy ordering in tungsten carbides
(paper V).

Alloy CEs are introduced in chapter 2. This method is a central part of this
thesis and used in all papers. The sampling of CEs in different thermodynamic
ensembles is covered in chapter 3. In this thesis ordering phenomena has been
studied in several different materials. In chapter 4 these materials are introduced,
their importance and the role ordering is discussed. Finally a summary of the
papers included in this thesis can be found in chapter 5.

7





2
Alloy cluster expansions

2.1 Introduction
The partition function 𝒵, contains all thermodynamic information of a system To
compute 𝒵 one needs to calculate the potential energy for each possible microstate
of the system. For this to be feasible, however, one needs both efficient and accurate
energy calculations, which can be achieved using the alloy CE technique. In the
CE formalism the system of interest is described by an occupation vector �⃗� where
𝜎𝑖 can, for a binary system, assume a value of either 0 or 1 depending on if an A or
B atom is on lattice point 𝑖 (Figure 2.1). Even though the cluster expansion acts
on a perfect lattice it can still capture the contribution of relaxations of the atoms
by using the energies of relaxed structures for constructing the model.

2.2 Definition of a cluster
A cluster is defined as a set of lattice points, ⃗𝛼 = {𝜎1, 𝜎2, ..., 𝜎𝑛}. A cluster is thus
associated with a structure and possibly periodic boundary conditions. The order
of a cluster is defined as the number of lattice points in the cluster. A cluster of
order 1 is called a singlet and clusters of order 2, 3 and 4 are referred to as pairs,
triplets, and quadruplets, respectively. The radius, or size, of the cluster can be
defined as the average distance of all the lattice points from the geometric center
of the cluster. For a given lattice a set of clusters can be conveniently defined as a
set of cutoffs, ⃗𝑟cutoff = {𝑟pair, 𝑟triplet, ...}, such that only pair (triplet) clusters with
a maximum interatomic distance of less than 𝑟pair (𝑟triplet) will be included. For
illustration, Figure 2.3 shows the clusters in the body-centered cubic (BCC) lattice
up to sixth order.

9
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

= A atom = B atom

𝜎 = 0, 1, 0, 1, …

a) b)

Figure 2.1: a) A fixed lattice with numbered lattice points. b) When the lattice
points are occupied by atoms the state of the system can be described by the �⃗�
vector where 𝜎𝑖 is the occupation on site 𝑖.

a) b)

Figure 2.2: Two microstates of the lattice with the same �⃗� vector. a) The atoms
sit perfectly on the underlying lattice. b) Some atoms have small displacements
away from the ideal positions.

Pair 3-body 4-body 5-body 6-body

NN 2NN 3NN Vertex
distance

Figure 2.3: Illustration of the smallest clusters up to sixth order in a BCC lattice.
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2.3. Formal theory

Figure 2.4: Symmetrically equivalent first nearest neighbor pair clusters in a square
lattice. These can be found by taking any one of the specific decorations and
repeatedly applying a 90 degree rotation until all four equivalent clusters are found.

2.3 Formal theory
A CE is able to represent any function of the configuration, 𝑓(�⃗�) if one can construct
a complete orthogonal basis of functions with respect to the scalar product [8]

⟨𝑓, 𝑔⟩ = 1
𝑀𝑁 ∑

�⃗�1…,�⃗�𝑀𝑁

𝑓(𝜎)𝑔(𝜎)), (2.1)

where 𝑓(�⃗�) and 𝑔(�⃗�) are two arbitrary functions of the configuration, 𝑀 is the
allowed number of elements, and 𝑁 is the number of lattice points in �⃗�.

2.3.1 Point functions
For each lattice point 𝑝, we define the 𝑀 orthogonal point functions Θ𝑛(𝜎𝑝)

Θ𝑛(𝜎𝑝) =
⎧{
⎨{⎩

1 if 𝑛 = 0
− cos (𝜋(𝑛 + 1)𝜎𝑝/𝑀) if 𝑛 is odd
− sin (𝜋𝑛𝜎𝑝/𝑀) if 𝑛 is even.

(2.2)

It can be verified that these point functions form an orthogonal set over all possible
occupation numbers [9],

⟨Θ𝑛, Θ𝑛′⟩ =
𝑀−1
∑
𝜎𝑝=0

Θ𝑛(𝜎𝑝)Θ𝑛′(𝜎𝑝) = { 0 if 𝑛 ≠ 𝑛′

≠ 0 if 𝑛 = 𝑛′. (2.3)

11



Chapter 2. Alloy cluster expansions

For example, in a three component system (𝑀 = 3) with 𝜎𝑝 = {0, 1, 2} the possible
point functions are

Θ0(𝜎𝑖) = 1, Θ1(𝜎𝑖) = − cos 2𝜋𝜎𝑖
3 , Θ2(𝜎𝑖) = − sin 2𝜋𝜎𝑖

3 .. (2.4)

2.3.2 Orthogonal basis
Using these point functions an orthogonal, one can produce a set of functions
Π(𝑠)

𝛼 (�⃗�) in the space of the 𝑀𝑁 configurations on the lattice by generating the
point functions for all possible combinations of 𝑠 and lattice points ⃗𝛼. So for a
cluster of lattice sites ⃗𝛼 = {1, 2, ..., | ⃗𝛼|}, and a vector of allowed point function
indices, 𝑠 = 𝑛1, 𝑛2, ..., 𝑛𝑙 the basis functions are given by

Π(𝑠)
𝛼 (𝜎) = Θ𝑛1

(𝜎1)Θ𝑛2
(𝜎2)...Θ𝑛𝑙

(𝜎𝛼) (2.5)

and it can be verified that these form an orthogonal set[9],

⟨ Π(𝑠)
𝛼 , Π(𝑠′)

𝛽 ⟩ = 𝛿𝛼𝛽𝛿𝑠𝑠′. (2.6)

Since the basis functions Π(𝑠)
𝛼 form an orthogonal set we can express any function

of the configuration as
𝑓(𝜎) = ∑

𝛼
∑

𝑠
𝑓𝛼𝑠Π(𝑠)

𝛼 (𝜎). (2.7)

Since all basis functions Π(𝑠)
𝛼 have one configuration invariant component that is

equal to 1 when 𝑠 = {0, 0, ..., 0} we can exclude this term from the sum in Eq. (2.7)
to obtain

𝑓(𝜎) = 𝑓0 + ∑
𝛼

∑
𝑠

𝑓𝛼𝑠Π(𝑠)
𝛼 (𝜎). (2.8)

Finally, for practical reasons, we modify Eq. (2.8) by averaging over each distinct
cluster and point functions and multiply with the multiplicity to arrive at the final
expression for our cluster expansion function

𝑓(𝜎) = 𝑓0 + ∑
𝛼

∑
𝑠

⟨Π(𝑠)
𝛼 (𝜎)⟩

𝛼′
𝑚(𝑠)

𝛼 𝐽 (𝑠)
𝛼 . (2.9)

Here, the summation is carried out over all symmetrically distinct clusters of lat-
tice points. The ⟨...⟩𝛼′ function takes the average over the basis functions for all
clusters 𝛼′ that are symmetry equivalent to 𝛼. 𝐽 (𝑠)

𝛼 are the effective cluster inter-
actions (ECIs), which determine a specific cluster expansion. Finally, 𝑚(𝑠)

𝛼 is the
multiplicity of cluster 𝛼 for a specific combinations of point functions ⃗𝑠. Note that
some authors choose to include 𝑚(𝑠)

𝛼 in 𝐽 (𝑠)
𝛼 .
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2.3. Formal theory

2.3.3 Further considerations
As we have seen from the construction of the basis, all combinations of point
functions are required for constructing the basis. For a binary system where only
the first point function was needed the permutations of these point functions for
any cluster order are all equal. For a ternary system both the first and second
point functions are needed and thus a pair will have four different combinations
of the point functions, i.e. (1, 1), (1, 2), (2, 1) and (2, 2). As will be shown
now, not all of these permutations will result in additional parameters in the CE
due to symmetry. If our pair cluster 𝛼 = {𝜎1, 𝜎2} can be transformed under
periodic boundary conditions and the lattice translational and rotational symmetry
operations to construct the symmetrically equivalent cluster 𝛼′ = {𝜎2, 𝜎1} then
the choice of the ordering in 𝛼 = {𝜎1, 𝜎2} must produce the same contribution to
Eq. (2.9) as choosing 𝛼 = {𝜎2, 𝜎1}. Writing out the different choices we have for 𝛼

Π1,1
𝛼 (𝜎) = Θ1(𝜎1)Θ1(𝜎2)

Π1,2
𝛼 (𝜎) = Θ1(𝜎1)Θ2(𝜎2)

Π2,1
𝛼 (𝜎) = Θ2(𝜎1)Θ1(𝜎2)

Π2,2
𝛼 (𝜎) = Θ2(𝜎1)Θ2(𝜎2)

(2.10)

and for 𝛼′
Π1,1

𝛼′ (𝜎) = Θ1(𝜎2)Θ1(𝜎1)
Π1,2

𝛼′ (𝜎) = Θ1(𝜎2)Θ2(𝜎1)
Π2,1

𝛼′ (𝜎) = Θ2(𝜎2)Θ1(𝜎1)
Π2,2

𝛼′ (𝜎) = Θ2(𝜎2)Θ2(𝜎1).

(2.11)

The basis functions (1, 1) and (2, 2) are thus symmetric in terms of permuting the
lattice points. For (1, 2) and (2, 1) there is, however, an asymmetry and the choice
of the order in the cluster 𝛼 will matter for the end result in Eq. (2.9). The choice
of ordering of the lattice points in a cluster is completely arbitrary and should not
matter to the final result of the cluster expansion. To circumvent the choice of
ordering of lattice points in a cluster we instead only use the point functions (1,
1), (1, 2) and (2, 2) for this cluster. Additionally, for the cluster basis (1, 2) we
use both possibilities of ordering of the pair. The final basis functions for cluster
𝛼 then become the following

Π1,1
𝛼 (𝜎) = Θ1(𝜎1)Θ1(𝜎2)

Π1,2
𝛼 (𝜎) = Θ1(𝜎1)Θ2(𝜎2) + Θ1(𝜎2)Θ2(𝜎1)

Π2,2
𝛼 (𝜎) = Θ2(𝜎1)Θ2(𝜎2)

, (2.12)

where it it is apparent that the choice of the order in the cluster has no effect on its
representation in the cluster space. Note that in Eq. (2.9) the multiplicity 𝑚(1,2)

𝛼
will be twice as large as the other multiplicities.
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Chapter 2. Alloy cluster expansions

2.3.4 Symmetrically indistinct clusters
This section describes the identification of equivalent clusters by using symmetry
operations. For the 𝑛-body cluster 𝛼 = {𝜎0, 𝜎1, .., 𝜎𝑛−1} the symmetrically equiv-
alent clusters are found by converting the lattice points into fractional positions
𝛼 = { ⃗𝑟0, ⃗𝑟1, .., ⃗𝑟𝑛−1}. A symmetry operation ̂⃗𝑠 consists of a linear transformation
by a 3 × 3 matrix ̄𝛾 and a translation ⃗𝜏

⃗𝑟′ = ̂⃗𝑠 ⃗𝑟 = ̄𝛾 ⃗𝑟 + ⃗𝜏 . (2.13)

A lattice typically has a number of associated symmetry operations ⃗𝑆 = ̂⃗𝑠0, ̂⃗𝑠1, ...,
̂⃗𝑠𝑚−1. These symmetry operations can then be used to produce 𝑚 symmetrically

indistinct clusters where the cluster 𝑖 is given by

𝛼𝑖 = { ̂⃗𝑠𝑖 ⃗𝑟0, ̂⃗𝑠𝑖 ⃗𝑟1, .., ̂⃗𝑠𝑖 ⃗𝑟𝑛−1}. (2.14)

Additionally, depending on the periodic boundary conditions, one can also translate
all positions in a cluster with multiples of the unit cell vectors. Figure 2.4 illustrates
the set of equivalent clusters for the nearest neighbor pair.

2.4 Construction of a cluster expansion
Equation (2.9) can represent any function of the configuration 𝑓(�⃗�). The task
remaining in the construction of a CE is to find the ECIs that appear in Eq. (2.9).
To this end, one requires reference data in the form of a set of configurations
{ ⃗𝜎1, ⃗𝜎2, ..., ⃗𝜎𝑛} as well as target data {𝐸1, 𝐸2, ..., 𝐸𝑛}. The sums in Eq. (2.9) can
be replaced with a dot product

𝑓(�⃗�) = 𝑓0 + ∑
𝛼

∑
𝑠

⟨Π(𝑠)
𝛼 (𝜎)⟩

𝛼′
𝑚(𝑠)

𝛼 𝐽 (𝑠)
𝛼 = ⃗𝜔(�⃗�) ⋅ ⃗𝐽 , (2.15)

where

⃗𝜔(�⃗�) = {1, ⟨Π(𝑠𝛼)
𝛼1 (𝜎)⟩

𝛼′
1

𝑚(𝑠𝛼1 )
𝛼1 , … ⟨Π(𝑠′

𝛼1 )
𝛼1 (𝜎)⟩

𝛼′
1

𝑚(𝑠′
𝛼1 )

𝛼1 ,

… ⟨Π(𝑠𝛼𝑛 )
𝛼𝑛 (𝜎)⟩

𝛼′𝑛
𝑚(𝑠𝛼𝑛 )

𝛼𝑛 } ,

and ⃗𝐽 denotes the vector of ECIs where 𝐽0 = 𝑓0. Here, we refer to the vector ⃗𝜔(�⃗�)
as the cluster vector. Note that it can sometimes be useful to move 𝑚(𝑠)

𝛼 from �⃗�
into ⃗𝐽 and let the target values 𝐸𝑖 refer to the primitive unit cell. This will ensure
all elements in �⃗� are in the interval [−1, 1] and avoid a bias due to the number of
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2.5. Linear regression techniques

elements in �⃗�. Now we can cast the problem of finding the ECIs in the form of a
linear equation

Π̄ ⃗𝐽 = ⃗𝐸, (2.16)
with

Π̄⊺ = [�⃗�( ⃗𝜎1), �⃗�( ⃗𝜎2), … �⃗�( ⃗𝜎𝑛)] , (2.17)
⃗𝐽⊺ = [𝐽 (𝑠)

𝛼1 , 𝐽 (𝑠)
𝛼2 , … 𝐽 (𝑠)

𝛼𝑛 ] , (2.18)
⃗𝐸⊺ = [𝐸1, 𝐸2, … 𝐸𝑛] . (2.19)

The ECIs 𝐽 (𝑠)
𝛼 are unknown and since the number of clusters is in principle infinite

there is an infinite number of unknown parameters to determine. Based on physi-
cal intuition we expect that physical interactions are short-ranged and few-bodied.
Therefore, if we construct our basis functions starting from singlets and geometri-
cally small pairs, triplets etc. the CE is expected to converge quickly to yield an
acceptable tolerance and the number of unknown parameters remains manageable.

2.5 Linear regression techniques
2.5.1 Ordinary least squares
There are several ways to solve Eq. (2.19) and find the ECIs. One of the simplest
ways is to use ordinary least-squares (OLS), i.e. to find the ⃗𝐽 that minimizes
∥ ⃗𝐸 − Π̄ ⃗𝐽∥

2
, where Π̄ is the matrix of cluster vectors, ⃗𝐽 is the vector of ECIs and ⃗𝐸

is the vector of target properties. The disadvantage of OLS is that it requires the
problem to be over-determined, which quickly becomes computationally expensive
as the training data typically comes from DFT calculations. Another downside is
that the solutions provided by OLS are commonly dense, i.e. all elements of ⃗𝐽 have
non-zero values, which can be an issue for the final model in terms of computational
effort. OLS is therefore prone to overfitting, which will substantially deteriorate
the ability of the model to predict physical properties [10].

2.5.2 Regularization and over-fitting
To overcome the disadvantages of bare OLS one can add regularization terms to
the objective function and/or employ explicit feature selection algorithms such
as recursive feature elimination (RFE). To illustrate the approach consider the
expression for so-called elastic net optimization

⃗𝐽 = arg min
𝐽

{ 𝛼 ∥ ⃗𝐽∥
1

+ 𝛽 ∥ ⃗𝐽∥2
2

+ 1
2 ∥ ⃗𝐸 − Π̄ ⃗𝐽∥2} , (2.20)

15



Chapter 2. Alloy cluster expansions

where 𝛼 and 𝛽 are so-called hyperparameters, i.e. parameters that are associated
with the optimization algorithm as opposed to the model itself. For 𝛼 = 0 one
obtains ridge regression while for 𝛽 = 0 one recovers the least absolute shrinkage
and selection operator (LASSO). The purpose of the terms associated with 𝛼 and
𝛽 is to force the solution vector ⃗𝐽 to be “short” and combat overfitting.

For illustration consider the LASSO expression

⃗𝐽 = arg min
𝐽

{ 𝛼 ∥ ⃗𝐽∥
1

+ 1
2 ∥ ⃗𝐸 − Π̄ ⃗𝐽∥2} . (2.21)

A high 𝛼 parameter punishes large 𝑙1 norms of the solution vector while ensuring
that the original OLS problem is still solved. In theory this allows one to construct
a large cluster basis and extract the relevant ECIs with just a few training struc-
tures. In other words, this approach in principle enables one to obtain meaningful
solutions for heavily underdetermined systems. By ensuring the vector ⃗𝐽 is sparse
this approach is expected to ensure “physicality” of the solution in the sense of
interactions being short-ranged and few-bodied. In practice, however, it is often
not that simple.

Regularization for CE construction has been demonstrated for the first time in
2013 [11, 12, 13] and has been very successful since. It was introduced under the
name of compressive sensing, which is a task in signal recovery that is usually ap-
proached by finding solutions to an underdetermined linear system but does not
itself solve the linear problem. Rather the compressive sensing field has provided
theorems for the existence of solutions and the probability for finding correct solu-
tions [14]. Unfortunately, this occasionally leads to a confusion of terminology.

The original papers [11, 12] employed the split-Bregman algorithm, which is one
practical approach to solving the LASSO problem. There are, however, various
other techniques available for approaching the general problem of solving both
over and underdetermined linear problems, including LASSO and variants thereof
such as adaptive LASSO [15] or group LASSO [16], elastic net, ridge regression,
automatic relevance determination regression (ARDR) [17] or RFE.

2.5.3 Recursive feature selection
Among the aforementioned techniques, RFE plays a special role as it is not a
minimization algorithm but a pure feature selection approach (several of the other
approaches combine these aspects). In RFE the underlying minimization algorithm
is used to train a model, after which the weakest parameter(s) are removed until
a specified number of features 𝑛𝑓 is reached. The target 𝑛𝑓 is the hyperparameter
associated with RFE.
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RFE can thus be combined with any of the minimization techniques, although
RFE with OLS is the common. The latter combination is computationally very
efficient but has the downside of only working in the overdetermined limit.

2.5.4 Practical considerations
In practice an optimization procedure should (1) be computationally efficient, (2)
require little to no adjustments, and (3) produce physically sound sparse models.

Computational efficiency. OLS is computationally the most efficient technique.
Since all other approaches in some form or another require solving the OLS problem
multiple times during runtime, they are necessarily (many times) more expensive
than standard OLS. An analysis of the scaling behavior of these methods in the
context of force constant expansions shows that the computational cost only be-
comes a significant for models with several thousand target values [10]. In practice
computational efficiency is therefore seldom a limit for CE construction.

Ease of use. As most of the algorithms mentioned above are available in general
purpose implementations, the main consideration here is the number of hyperpa-
rameters that require adjustment and the sensitivity of the final model to these
parameters. In the case of LASSO and ARDR there is effectively one hyperparam-
eter that requires adjustment (although there are internally more). Split-Bregman
requires two parameters to be adjusted. RFE adds another hyperparameter to any
method it is coupled to. In practice, optimal hyperparameters can be determined
automatically, usually in combination with cross-validation (CV) (see below). As
a result all of the methods here are comparable in terms of their ease of use.

Physically sound sparse models. Among the aforementioned techniques, LASSO,
ARDR, and any method in combination with RFE yield solution vectors ⃗𝐽 with
elements that are strictly zero or non-zero. This is very useful from a compu-
tational perspective as it allows one to include a much smaller number of ECIs
when sampling the CE with e.g., Monte Carlo (MC) simulations. In the case of
split-Bregman additional steps are required to remove ECIs that are statistically
insignificant. With respect to the quality of the models, it has been found that
ARDR and RFE-OLS (used in the later papers IV, V, VI) outperform LASSO or
split-Bregman (used in the earlier papers II and III). While these insights evolved
over time by practical experience, the behavior of the different algorithms was
then more systematically investigated in Paper I, which shows that in particular
ARDR has notable advantages. It works well both in the over and underdetermined
limits (unlike RFE-OLS) as well as the transition region (unlike e.g., LASSO). It
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consistently generates sparse solutions (unlike LASSO or split-Bregman with in
particular the former yielding a lot of false positives). Finally, it converges reliably
and is overall very stable. A more comprehensive analysis of these algorithms in
the context of force constant expansions [10] further supports these findings. It
also shows ARDR to exhibit an unfavorable scaling with the size of the training
set, which is, however, only relevant for training sets with several thousand entries
and hence usually of no concern for CE construction.

Practical implementation. Many of the techniques described above are available
via scikit-learn [18, 19], a Python library that allows easy access to several
advanced machine learning linear regression techniques. The icet package (Paper
I) is interfaced to scikit-learn making it easy and user friendly to test different
algorithms for training CEs.

2.6 Cross-validation
Commonly when training models the available data is split into training and test
sets where the training set is used for optimization and the test set for evaluating the
accuracy. The usefulness of these different sets and errors become apparent when
trying to select a good model. For example, if for a particular hyperparameter, e.g.
the 𝛼 for LASSO, the training error is zero but the test error is high, the trained
model is excellent at predicting already seen data but unable to predict new and
unseen data. This is called overfitting and must be avoided.

Another type of overfitting is encountered when one instead finds optimal values
of hyperparameters that yield the minimum test error. Even though the test set is
not part of the training set, information about the training set still seeps into the
training procedure since the parameters obtained in the training are optimal for
the specific test set. To overcome this slightly more hidden type of overfitting one
typically carries out many rounds of training and test splits in a procedure known
as cross-validation.

2.6.1 Leave-one-out cross validation
One type of CV is the leave-one-out CV (LOO-CV), which is defined as

(CV)2 = 1
𝑁

𝑁
∑
𝑛=1

( ̂𝐸(𝑛) − 𝐸𝑛)2 , (2.22)

where 𝐸𝑛 is the calculated energy for structure 𝑛 and ̂𝐸(𝑛) is the predicted value of
the energy of structure 𝑛 as calculated with the CE trained with the (𝑁 − 1) other
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structures. While this method appears to require making 𝑁 cluster expansions,
one can analytically show that it is equivalent to training one CE with the full set,
after which one can compute the LOO-CV score by rescaling the root-mean-square
error (RMSE) over the training set using the correlation of the fit matrix.

When the training curve is steep and the number of available structures is low
the LOO-CV can be a good estimator.

2.6.2 k-fold cross validation
Another commonly used estimator for the error is 𝑘-fold CV. Here, the data is
randomly divided up into 𝑘 evenly sized subsets. One of the 𝑘 subsets is left
out for validation and the remaining 𝑘 − 1 subsets are used for training. This is
repeated for all 𝑘 subsets and the final cross validation score is the average over the
𝑘 splits. Note that 𝑘-fold validation reduces to LOO-CV when 𝑘 equals the number
of available data points. Sometimes it can be desirable to improve statistics of the
CV score beyond what is obtained from a single 𝑘-fold cross validation estimation.
This can happen if one wants to estimate the CV score with a training size of two
thirds resulting in only three folds. The options are then to either repeat the 𝑘-fold
procedure and pick another choice of the sets or do shuffle and split.

2.6.3 Shuffle-and-split
The CV score can also be estimated with a technique known as shuffle-and-split.
Given a training set size, the training set is obtained by randomly drawing struc-
tures from the entire available set and then testing against the remaining structures.
Here, it is common to select with replacement, an approach referred to as bagging.
The procedure can then be repeated as many times as needed to get a reliable
estimate of the CV score. One downside of this method is that several training
structures can occur in the test or train set in a row due to the pseudo-random
nature of the algorithm which might lead to a selection bias. The upside, however,
is that this method offers an easier way to do repeated training-test splits than the
𝑘-fold method.

2.7 Cluster expansion for a binary system
To demonstrate the formalism developed in this chapter we will now explicitly
describe the construction of a CE for simple binary system. In a binary system
only one point function will be used in the cluster functions, Θ1(𝜎𝑝) = − cos (𝜋𝜎𝑝).
Only two occupation numbers are needed as well, 0 and 1, which have corresponding
point function values of −1 and +1, respectively. White and black atoms are to
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𝐸1

𝐸2

𝐸𝑛

𝐽1

𝐽2

𝐽𝑛1     1      1        1         1          1         1      

1 1/9 -1/9 -1/9 -1/3-1/9 1/3

1 -1/3 1/9 -1/9 1/9 -1/3 -1/3

Figure 2.5: Cluster expansions can be constructed by solving a set of linear equation
systems.

be indicated by occupation 0 and 1, respectively. The average over symmetrically
distinct clusters 𝛼′ in Eq. (2.9) for the singlet cluster is

⟨Π𝛼=singlet(�⃗�)⟩𝛼′ =
𝑁�⃗�𝛼′=(1) − 𝑁�⃗�𝛼′=(0)

𝑁�⃗�𝛼′=(0 ∥ 1)
. (2.23)

For a pair the averages become

⟨Π𝛼=pair(�⃗�)⟩𝛼′ =
𝑁�⃗�𝛼′=(0,0) + 𝑁�⃗�𝛼′=(1,1) − 𝑁�⃗�𝛼′=(0,1)

𝑁�⃗�𝛼′=(0,0 ∥ 0,1 ∥ 1,1)
, (2.24)

where 𝑁�⃗�𝛼′=(𝑖,𝑗) is the number of equivalent clusters that have occupation (𝑖, 𝑗)
or (𝑗, 𝑖). To calculate values such as 𝑁𝛼′=(0,0) a summation is done over all index
pairs (𝑖, 𝑗) that are symmetrically equivalent. Hence, the cluster vector �⃗�(�⃗�) is
obtained by summation and averaging of the cluster functions. All the ⃗𝛼 can be
precomputed so a summation can be performed very efficiently. Then all available
configurations can be mapped to cluster vectors �⃗�, representing training and test
sets (Fig. 2.5) as described in the previous section. Once suitable values for the
hyperparameters have been found, by using various cross validation techniques, the
final set of ECIs, ⃗𝐽final, can be obtained. The construction of the cluster expansion
is now complete and the expanded property for a configuration �⃗� can be computed
very efficiently as the dot product �⃗�(�⃗�) ⃗𝐽final.

20



3
Monte Carlo simulations

3.1 Monte Carlo integration
MC methods represent a broad class of computer algorithms that are based on the
use of random numbers to sample high-dimensional functions. MC integration is
one example of such a technique where the average value of an integral

𝐼 = ∫
1

0
𝑑𝑥𝑓(𝑥) = ⟨𝑓(𝑥)⟩ (3.1)

can be approximated by evaluating 𝑓(𝑥) at 𝑁 points 𝑥𝑖 chosen at random with
uniform probability over the interval [0, 1]. The mean value becomes

𝐼𝑁 = ⟨𝑓⟩ = 1
𝑁

𝑁
∑
𝑖=1

𝑓(𝑥𝑖) = 1
𝑁

𝑁
∑
𝑖=1

𝑓𝑖, (3.2)

and the variance
𝜎2

𝑓 = ⟨𝑓2⟩ − ⟨𝑓⟩2 . (3.3)

Such that the integral is approximated by

𝐼 = 𝐼𝑁 ± 𝜎𝑓√
𝑁

. (3.4)

By increasing the number of points 𝑁 the error of the approximation becomes
smaller and as 𝑁 → ∞ one approaches the correct value of 𝐼 .
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3.2 Importance sampling
An alternative approach to decreasing the error is to choose the points 𝑥𝑖 based
on the magnitude of 𝑓(𝑥). Consider a probability density function 𝑝(𝑥) > 0 that
is positive and normalized to 1 on [0, 1]. We can rewrite Eq. (3.1) to obtain

𝐼 = ∫
1

0
𝑑𝑥𝑓(𝑥) = ∫

1

0
𝑑𝑥𝑓(𝑥)

𝑝(𝑥)𝑝(𝑥) = ∫
1

0
𝑑𝑥𝑔(𝑥) = ⟨𝑔(𝑥)⟩𝑝 , (3.5)

where 𝑔(𝑥) = 𝑓(𝑥)/𝑝(𝑥) and the notation ⟨...⟩𝑝 signifies that the average is obtained
from sampling values of 𝑥 according to 𝑝(𝑥). The mean value of the integral can
then be written as

𝐼𝑁 = ⟨𝑓⟩ = 1
𝑁

𝑁
∑
𝑖=1

𝑔𝑖 (3.6)

and 𝐼 can be approximated with

𝐼 = 𝐼𝑁 ± 𝜎𝑔√
𝑁

. (3.7)

Assume now that 𝑝(𝑥) follows the approximate behavior of 𝑓(𝑥), i.e. 𝑝(𝑥) has high
probability density when |𝑓(𝑥)| is large and vice versa. Then 𝑔(𝑥) will become a
smoother function than 𝑓(𝑥) and 𝜎𝑔 < 𝜎𝑓 . This approach of choosing values of 𝑥
where |𝑓(𝑥)| is large is called importance sampling.

3.3 Thermodynamic averages on a lattice
Now, instead of approximating a one-dimensional integral let us consider a binary
lattice �⃗� at a certain temperature 𝑇 and find the average of some quantity 𝐴 that
depends on the configuration. Let the atomic lattice vector �⃗� have dimensionality
𝑁 , where 𝑁 is the number of lattice points and the elements of the vector can
assume values of either 0 or 1. The average value is then

⟨𝐴⟩ = 1
𝑀𝑁 ∑

all possible �⃗�
𝐴(�⃗�)𝑃 (�⃗�). (3.8)

The probability of finding the system at �⃗� is 𝑃(�⃗�), which is defined as

𝑃(�⃗�) = exp (−𝑈(�⃗�)/𝑘𝐵𝑇 )
∑all possible ⃗𝜎′ exp (−𝑈( ⃗𝜎′)/𝑘𝐵𝑇 )

, (3.9)

where 𝑈(�⃗�) is the internal energy of the configuration and 𝑘𝐵 is the Boltzmann
constant. Unfortunately it is impossible to carry out the summation in Eq. (3.8)
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exactly. For illustration, consider that for a system with 100 sites the number of
possible configurations, ignoring symmetry, is 2100 ≈ 1030. Also assume that each
evaluation of 𝐴(�⃗�) requires only one floating point operation (FLOP). The time
to calculate the sum by using the largest computer cluster available 1 would still
require around 106 times longer than the age of the universe. This demonstrates
the necessity to find efficient methods to solve to Eq. (3.8).

3.4 The Metropolis algorithm
A naive approach to approximating Eq. (3.8) via a MC approach is to generate
a large number of different configurations, �⃗�, where each element is randomly
assigned a value of either 0 or 1, and estimating the average. This approach would,
however, converge very slowly as the probability function 𝑃(�⃗�) is commonly a very
sharp function, i.e. 𝑃(�⃗�) is close to zero for most choices of �⃗�. A more prudent
approach would be to try to apply the importance sampling approach introduced
earlier. A direct implementation of importance sampling is difficult, however, since
it is not obvious how to efficiently generate configurations �⃗� according to a suitable
probability. Instead, an efficient way to generate configurations is to implement
a so-called Markov chain, where each new configuration generated is based on a
probability ratio that depends on the previous configuration.

The first adaptation of such a approach was described in 1953 by Metropolis et
al. to determine the equation of state for a hard sphere liquid [20]. It is based on the
understanding that thermodynamic averaging only requires knowledge of relative
rather than absolute probabilities such as in Eq. (3.8). It uses a Markov chain to
generate configurations that are more important by rejecting configurations that
are unlikely, similar to importance sampling.

3.4.1 Markov chain Monte Carlo
A Markov chain is a stochastic process, in which a system undergoes transitions
from one state to another. The Markov process is characterized by a lack of memory
of where it has been. The future of the chain depends solely on the current state.
The transition probability is given by a transition matrix

𝑇 (𝑋 → 𝑋′) ≡ 𝑇𝑋𝑋′, (3.10)

for a transition from state 𝑋 to state 𝑋′. The transition probability has to satisfy

0 ≤ 𝑇𝑋𝑋′ ≤ 1 (3.11)
1The IBM Summit systems at Oak Ridge National Laboratory is currently the largest non-

distributed computer cluster with a peak performance of about 200 PFLOPS.
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and the probability has to be normalized

∑
𝑋′

𝑇𝑋𝑋′ = 1. (3.12)

The task is to generate a Markov chain of configurations such that they have a
distribution proportional to the Boltzmann factor and this distribution should be
independent of the position in the chain and the initial configuration. The Markov
chain can exhibit these properties under certain conditions, at least for a sufficiently
long time, so that the configuration can loose memory of its initial state. These
conditions are:

• The Markov chain needs to be irreducible, i.e. every configuration included
in the ensemble should be accessible from every other configuration within a
finite number of steps.

• There should be no periodicity. Periodicity means that it is not possible to
revisit a configuration except after 𝑡 = 𝑛𝑘 steps, 𝑛 = 1, 2, 3 … , where 𝑘 is
fixed.

A Markov chain that satisfies these conditions is called ergodic. If the Markov
chain is ergodic it converges to a unique stationary distribution. The transition
probability needs to be chosen such that the stationary distribution is the desired
distribution. To assure this, consider the stationary distribution 𝜌(𝑋); one can
also introduce a new function 𝜌(𝑋, 𝑡), which gives the probability of finding config-
uration 𝑋 after 𝑡 Markov steps, which for an ergodic chain becomes independent
of 𝑡 if 𝑡 is large. This function can change from one step to another by

• going from 𝑋 at step 𝑡 to 𝑋′ at 𝑡 + 1 leading to a decrease in 𝜌(𝑋)
• going from 𝑋′ at step 𝑡 to 𝑋 at 𝑡 + 1 leading to an increase in 𝜌(𝑋)

that can be summarized with

𝜌(𝑋, 𝑡+1)−𝜌(𝑋, 𝑡) = − ∑
𝑋′

𝑇 (𝑋 → 𝑋′)𝜌(𝑋, 𝑡)+∑
𝑋′

𝑇 (𝑋′ → 𝑋)𝜌(𝑋′, 𝑡). (3.13)

This equation is called the master equation. The stationary solution of this equa-
tion is found by requiring 𝜌(𝑋, 𝑡 + 1) = 𝜌(𝑋, 𝑡) so we have

∑
𝑋′

𝑇 (𝑋 → 𝑋′)𝜌(𝑋, 𝑡) = ∑
𝑋′

𝑇 (𝑋′ → 𝑋)𝜌(𝑋′, 𝑡). (3.14)

Leaving out the 𝑡-dependence, which is permissible thanks to the “memory loss”
of a Markov chain, yields

𝑇 (𝑋 → 𝑋′)𝜌(𝑋) = 𝑇 (𝑋′ → 𝑋)𝜌(𝑋′), (3.15)
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which is known as the condition of detailed balance. This means that in equilibrium
the average number of steps that results in the system leaving state 𝑋 must be
exactly equal to the number of steps from all other states 𝑋′ to 𝑋. This means
that 𝜌(𝑋) and 𝜌(𝑋′) do not change. Since this is true for all pairs of 𝑋 and 𝑋′

the probability distributions will remain stationary. Reformulating the detailed
balance condition with the transition probability in this form yields

𝑇 (𝑋 → 𝑋′) = 𝜔𝑋𝑋′𝐴𝑋𝑋′, (3.16)
where 𝜔𝑋𝑋′ is the probability for going from state 𝑋 to state 𝑋′ and is symmetric
𝜔𝑋𝑋′ = 𝜔𝑋′𝑋. 𝐴𝑋𝑋′ , which must lie between 0 and 1, is the acceptance probability
for actually performing the change. The detailed balance condition can then be
expressed as

𝐴𝑋𝑋′

𝐴𝑋′𝑋
= 𝜌(𝑋′)

𝜌(𝑋) . (3.17)

If the sought after distribution is the Boltzmann distribution, 𝜌(𝑋) = exp −𝛽𝑈(𝑋),
there are a number of choices for the acceptance probability 𝐴𝑋𝑋′ that will ac-
complish this. The choice of Metropolis et al. was

{𝐴𝑋𝑋′ = exp{𝛽 [𝑈(𝑋′) − 𝑈(𝑋)]} if 𝜌(𝑋′) < 𝜌(𝑋)
𝐴𝑋𝑋′ = 1 if 𝜌(𝑋′) ≥ 𝜌(𝑋). (3.18)

The Metropolis algorithm can now be formulated as follows:

• Starting from a state 𝑋, make a small trial move into a new state 𝑋′ with a
probability of 𝜔𝑋𝑋′ .

• Compare the weights of the distribution for the different states 𝜌(𝑋) and
𝜌(𝑋′). 𝐴𝑋𝑋′ , the acceptance probability, is chosen equal to 1 if 𝜌(𝑋′) >
𝜌(𝑋) else it is chosen to be equal to 𝜌(𝑋′)/𝜌(𝑋).

• The new state 𝑋′ is accepted with probability 𝐴𝑋𝑋′ (the system moves
from 𝑋 to 𝑋′) and is rejected with probability 1 − 𝐴𝑋𝑋′ (the system re-
mains in state 𝑋). To decide if a state is accepted or not, a random number
is generated uniformly in the range [0, 1) and compared to the acceptance
probability. If the random number is larger than the acceptance probability
the trial move is accepted.

Since each trial move is only a small change in the configuration there is an inherent
correlation between the states 𝑋 and 𝑋′. There is thus a correlation length 𝑠 for
the Markov chain and it is necessary to carry out 𝑠 trial steps before reaching a
new uncorrelated configuration. One MC sweep (or cycle) is defined as 𝑁 trial
steps, where 𝑁 is the number of particles, which is commonly used to approximate
𝑠. There is also a need to equilibrate the initial configuration meaning that it is
necessary to run the Metropolis algorithm before the actual sampling commences.
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3.5 Probability of a state
The sampling procedure described in the previous section requires the probability
ratio of two microstates. Let us consider again the rigid binary lattice introduced
above. Each possible combination of zeros and ones on the �⃗� vector describes
a microstate of the system. Consider the case where this system is in thermal
contact with a heat reservoir with constant temperature and an infinitely large
heat capacity, i.e. we can add and remove as much energy as necessary without
affecting the temperature of the reservoir. Since the composition of the system
might change there can also be an exchange of atoms between system and reservoir.

For an isolated system, all possible microstates are equally probable. The system
of 𝑁 sites considered here is, however, not isolated since it is in contact with
a heat reservoir. Rather the joint system and the heat reservoir form an isolated
system. The joint microstates of system and heat reservoir will therefore be equally
probable.

Consider two microstates 𝑠1 and 𝑠2 with a corresponding number of accessible
states Ω𝑅(𝑠1) and Ω𝑅(𝑠2) for each respective reservoir. At this point there is no
way of telling what the actual probabilities of the different states are since the
number of accessible states associated with the heat reservoirs is unknown. All we
know at this point is that the probability of a state is proportional to the total
number of accessible microstates, i.e. 𝑃(𝑠1) ∝ Ω𝑅(𝑠1). Consider now the ratio of
probabilities

𝑃(𝑠1)
𝑃 (𝑠2) = Ω𝑅(𝑠1)

Ω𝑅(𝑠2). (3.19)

Rewriting this equation by using the definition of entropy 𝑆 = 𝑘𝐵 ln Ω one obtains

𝑃(𝑠1)
𝑃 (𝑠2) = 𝑒𝑆𝑅(𝑠1)/𝑘𝐵

𝑒𝑆𝑅(𝑠2)/𝑘𝐵
= 𝑒[𝑆𝑅(𝑠1)−𝑆𝑅(𝑠2)]/𝑘𝐵. (3.20)

Now the ratio of probabilities depends on the change of entropy in the reservoir
when going from state 𝑠1 to state 𝑠2. The change in the entropy of the reservoirs
should be small since the system is small compared to the reservoir. Then we can
use the thermodynamic identity

𝑑𝑆 = 1
𝑇 (d𝑈 + 𝑃 d𝑉 − 𝜇d𝑁) . (3.21)

Since all ensembles discussed in this thesis have constant volume 𝑉 and fixed
number of total atoms (or sites) 𝑁 , the expression can be simplified to 𝑑𝑆 = 𝑆(𝑠2)−
𝑆(𝑠1) = 1

𝑇 (d𝑈 − Δ𝜇Δ𝑁𝐴) = − (𝐸(𝑠2) − 𝐸(𝑠1) − Δ𝜇(𝑁𝐴(𝑠2) − 𝑁𝐴(𝑠1))), where
𝐸 is the internal energy of the system, 𝑁𝐴(𝑠2) and 𝑁𝐴(𝑠1) are the numbers of 𝐴
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atoms in system 𝑠2 and 𝑠1, respectively, and Δ𝜇 is the chemical potential difference
between species 𝐴 and 𝐵

𝑃(𝑠1)
𝑃 (𝑠2) = 𝑒(𝐸(𝑠2)−𝐸(𝑠1)−∆𝜇∆𝑁𝐴)/𝑘𝐵𝑇 . (3.22)

As was shown in section section 3.5 this ratio of probabilities is all that is needed
to carry out a Metropolis MC simulation.

For the sake of completeness, however, let us determine the actual probability of
the microstate. First we separate all terms in Eq. (3.22) related to 𝑠1 to one side
and terms related to 𝑠2 to the other side,

𝑃(𝑠1)𝑒(𝐸(𝑠1)−∆𝜇𝑁𝐴(𝑠1))/𝑘𝐵𝑇 = 𝑃(𝑠2)𝑒(𝐸(𝑠2)−∆𝜇𝑁𝐴(𝑠2))/𝑘𝐵𝑇 . (3.23)

The right hand side does not depend on state 𝑠1 and the left hand side is indepdent
of 𝑠2 and must therefore be equal to a constant

𝑃(𝑠1)𝑒(𝐸(𝑠1)−∆𝜇𝑁𝐴(𝑠1))/𝑘𝐵𝑇 = 𝐴 (3.24)

and the probability becomes

𝑃(𝑠1) = 𝐴𝑒−(𝐸(𝑠1)+∆𝜇𝑁𝐴(𝑠1))/𝑘𝐵𝑇 . (3.25)

Furthermore, the probabilities of all states must sum up to 1

∑
𝑠𝑖

𝑃(𝑠𝑖) = 𝐴 ∑
𝑠𝑖

𝑒−(𝐸(𝑠𝑖)+∆𝜇𝑁𝐴(𝑠1))/𝑘𝐵𝑇 = 1, (3.26)

which leads to
𝐴 = 1

∑𝑠𝑖
𝑒−(𝐸(𝑠𝑖)+∆𝜇𝑁𝐴(𝑠𝑖)))/𝑘𝐵𝑇 . (3.27)

Thus we see that the normalization constant 𝐴 is equal to 1/𝒵 where 𝒵 is the
partition function and the probability of state 𝑠1 becomes

𝑃(𝑠1) = 𝑒−(𝐸(𝑠1)+∆𝜇𝑁𝐴(𝑠1))/𝑘𝐵𝑇

𝒵 = 𝑒−(𝐸(𝑠1)+∆𝜇𝑁𝐴(𝑠1))/𝑘𝐵𝑇

∑𝑠𝑖
𝑒−(𝐸(𝑠𝑖)+∆𝜇𝑁𝐴(𝑠𝑖)))/𝑘𝐵𝑇 . (3.28)

3.6 The canonical ensemble
In the canonical ensemble the volume 𝑉 , the temperature, 𝑇 , and the number of
atoms for each species 𝑁𝑖 are fixed. Equation (3.28) is then simplified so that the
probability of a state only depends on its energy,

𝑃canonical(𝑠1) = 𝑒−𝐸(𝑠1)/𝑘𝐵𝑇

∑𝑠𝑖
𝑒−𝐸(𝑠𝑖)/𝑘𝐵𝑇 . (3.29)
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The probability ratio used in the MC simulation becomes

𝑃canonical(𝑠1)
𝑃canonical(𝑠2) = 𝑒(𝐸(𝑠2)−𝐸(𝑠1))/𝑘𝐵𝑇 . (3.30)

Since the number of atoms of each kind is kept fixed the only configurations
being explored in the MC simulations correspond to a re-ordering of atoms from
the initial configuration. Therefore in lattice based models trial steps consist of
swapping the species between two sites.

3.7 Semi-grand canonical ensemble
In the semi-grand canonical (SGC) ensemble the volume 𝑉 , the temperature 𝑇 ,
the chemical potential difference(s) Δ𝜇𝑖, and the number of sites 𝑁 are fixed but
the relative composition is allowed to change. Equation (3.28) is then kept as is
and the probability of a state becomes (for a binary system)

𝑃SGC(𝑠1) = 𝑒−(𝐸(𝑠1)+∆𝜇𝑁𝐴(𝑠1))/𝑘𝐵𝑇

∑𝑠𝑖
𝑒−(𝐸(𝑠𝑖)+∆𝜇𝑁𝐴(𝑠𝑖)))/𝑘𝐵𝑇 . (3.31)

The probability ratio used in the MC simulation becomes

𝑃SGC(𝑠1)
𝑃SGC(𝑠2) = 𝑒(𝐸(𝑠2)−𝐸(𝑠1)−∆𝜇∆𝑁𝐴)/𝑘𝐵𝑇 , (3.32)

In the SGC ensemble the concentrations (yet not the total number of sites) are
allowed to change. Therefore the trial step consists of selecting a site and changing
its occupation to another species.

Unlike the canonical ensemble the SGC ensemble allows one to access the deriva-
tive of the configurational free energy derivative via

𝜕𝐹
𝑁𝜕 ⟨𝑥⟩ = Δ𝜇, (3.33)

where ⟨𝑥⟩ is the average concentration observed in the MC simulation for a certain
temperature and chemical potential difference. By varying the chemical potential
difference the free energy derivative for all concentrations that fall into single-phase
regions (see below for the importance of this limitation) can be obtained and the
configurational free energy can be found via

𝐹(𝑥, 𝑇 ) = 𝐸0 + ∫
𝑥

0
Δ𝜇d𝑐. (3.34)
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3.8 Variance constrained semi-grand canonical
ensemble

The variance constrained semi-grand canonical (VCSGC) ensemble [21] is similar
in many regards to the SGC ensemble. Both ensembles allow sampling across the
entire concentration axis. In systems with a miscibility gap the SGC ensemble is,
however, unable to sample inside the miscibility gap due to the mapping of chemical
potential difference to concentration is multi-valued [21]. Due to the constraint in
concentration the VCSGC ensemble is able to sample in miscibility gaps.

When sampling in the VCSGC ensemble the trial move consists of changing the
species of a random site as in the case of the SGC ensemble. This trial move is
associated with a probability,

𝑃 = min {1, exp [−𝛽Δ𝐸 − 𝜅Δ𝑁𝐵(𝜙 + Δ𝑁𝐵/𝑁 + 2𝑁𝐵/𝑁)]} , (3.35)

where Δ𝐸 is the energy change associated with the trial move, 𝛽 = (𝑘𝐵𝑇 )−1,
Δ𝑁𝐵 is the number of particles of type 𝐵, 𝑁 is the total number of sites, and
𝜙 and 𝜅 are the average and variance constraint parameters. One of the great
benefits of the VCSGC ensemble is that typically one can keep 𝜅 = 200 and vary
𝜙 from −2.2 to 0.2 to cover the entire concentration axis. In the SGC ensemble
the Δ𝜇 values varies between systems and will thus require more hands-on testing
to sample across the entire concentration axis.

In the VCSGC ensemble the first derivative of the free energy is associated with
the thermodynamical average of concentration ⟨𝑐𝐵⟩ = 𝑁𝐵/𝑁 by,

𝛽 𝜕𝐹
𝜕𝑐𝐵

= 𝜅 (𝜙 + 2⟨𝑐𝐵⟩) . (3.36)

Mapping out the entire concentration axis, ⟨𝑐𝐵⟩ as a function of 𝜙 for a fixed 𝜅
therefore allows one to recover the free energy also in two-phase regions.

3.9 Validity of lattice based models
The partition function that has been discussed in this chapter only considers the
summation over occupations �⃗�. The CE technique namely only considers the oc-
cupation vector and not displacements of the atoms. For real materials, however,
the atoms also undergo vibrations around their equilibrium positions. This vibra-
tional degrees of freedom (DOFs) are thus neglected, except for relaxations, in the
CE, yet they can play a role in the actual value of a thermodynamical average.
This might raise concerns about the validity of the calculated thermodynamical
averages using CEs to represent the Hamiltonian in MC simulations. This section
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therefore considers the approximations made when using a CE in MC simulations
for calculating thermodynamical averages.

In the canonical ensemble (section 3.6) the partition function is defined as

𝒵(𝑁, 𝑉 , 𝑇 ) = ∑
all states j

exp [−𝛽𝐸𝑗(𝑁, 𝑉 , 𝑇 )] . (3.37)

The partition function involves a sum over all microstates 𝑗 of the system, each
of which can be split up into one part consisting of the ordering of the atoms on
a lattice and one part consisting of all possible displacements of the atoms away
from their equilibrium positions for that specific ordering

𝒵(𝑁, 𝑉 , 𝑇 ) = ∑
{�⃗�}

∑
{𝜈∈�⃗�}

exp [−𝛽𝐸 (�⃗�, 𝜈, 𝑁, 𝑉 , 𝑇 )] , (3.38)

where {�⃗�} is the set of all possible �⃗� with constant 𝑁 and {𝜈 ∈ �⃗�} is the set of
all displacements of the atoms which project on �⃗�. Thus {𝜈 ∈ �⃗�} represents a
subspace of the phase space of the original ensemble. The partition function can
then be written as

𝒵(𝑁, 𝑉 , 𝑇 ) = ∑
{�⃗�}

Λ(�⃗�, 𝑁, 𝑉 , 𝑇 ), (3.39)

with
Λ(�⃗�, 𝑁, 𝑉 , 𝑇 ) = ∑

{𝜈∈�⃗�}
exp [−𝛽𝐸 (�⃗�, 𝜈, 𝑁, 𝑉 , 𝑇 )] . (3.40)

In other words Λ(�⃗�, 𝑁, 𝑉 , 𝑇 ) is the partition function for the subspace of the par-
tition function of the full ensemble for which all microstates project to the same
configuration �⃗�. We can associate a free energy, 𝑊(�⃗�, 𝑁, 𝑉 , 𝑇 ), to this partition
function as

𝑊(�⃗�, 𝑁, 𝑉 , 𝑇 ) = − 1
𝛽 ln Λ(�⃗�, 𝑁, 𝑉 , 𝑇 ), (3.41)

which allows us to write the canonical partition function as

𝒵(𝑁, 𝑉 , 𝑇 ) = ∑
{�⃗�}

exp (−𝛽𝑊(�⃗�, 𝑁, 𝑉 , 𝑇 )) . (3.42)

Consider now the Hamiltonian 𝑊(�⃗�, 𝜈, 𝑁, 𝑉 , 𝑇 ), which represents the free energy
of a system, in which there are only displacive DOFs. For a given �⃗� it can be
expressed as

𝑊(�⃗�, 𝜈, 𝑁, 𝑉 , 𝑇 ) = 𝑈0(�⃗�, 𝑁, 𝑉 , 𝑇 ) + 𝐹ex(�⃗�, 𝜈, 𝑁, 𝑉 , 𝑇 ), (3.43)
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where 𝑈0 is the energy of the static configuration in the {𝜈 ∈ �⃗�} subspace with
the lowest energy, i.e. the fully relaxed configuration and 𝐹ex will then contain the
remaining part of the free energy. The probability of a state described by �⃗� is then

𝑃(�⃗�, 𝑁, 𝑉 , 𝑇 ) = exp (−𝛽 [𝑈0(�⃗�, 𝑁, 𝑉 , 𝑇 ) + 𝐹ex(�⃗�, 𝑁, 𝑉 , 𝑇 )])
𝒵(𝑁, 𝑉 , 𝑇 ) . (3.44)

As it has been shown in this chapter, in order to use 𝑃 for calculating thermody-
namical averages one needs to evaluate ratios of probabilities 𝑃 ,

𝑃 (�⃗�1, 𝑁, 𝑉 , 𝑇 )
𝑃 (�⃗�2, 𝑁, 𝑉 , 𝑇 ) = exp (−𝛽 [𝑈0(�⃗�1, 𝑁, 𝑉 , 𝑇 ) + 𝐹ex(�⃗�1, 𝑁, 𝑉 , 𝑇 )])

exp (−𝛽 [𝑈0(�⃗�2, 𝑁, 𝑉 , 𝑇 ) + 𝐹ex(�⃗�2, 𝑁, 𝑉 , 𝑇 )]) . (3.45)

𝑈0 (�⃗�, 𝑁, 𝑉 , 𝑇 ) can now be approximated by taking the zero Kelvin value. Fur-
thermore, in practice it is expected that 𝐹ex is dominated by the vibrational free
energy. A common approximation is therefore to remove the dependency of �⃗� on
𝐹ex and also assume that 𝐹ex is a linear combination of the composition [22]

𝐹ex(𝑁, 𝑉 , 𝑇 ) = 𝑁𝑎𝐹ex,𝐴(𝑇 ) + 𝑁𝑏𝐹ex,𝐵(𝑇 ). (3.46)

If 𝐹ex is linear in the composition then it can be completely removed in the canonical
ensemble since it cancels out in the probability ratio. For the SGC ensemble it
can also for many purposes be left out completely since a linear combination of
concentration is just a shift of the chemical potential by a constant. The value of
𝑈0(�⃗�, 𝑁, 𝑉 ) can now be calculated with a CE that maps �⃗� to the fully relaxed
configuration. Finally 𝑃 reduces to

𝑃(�⃗�, 𝑁, 𝑉 , 𝑇 ) = 1
𝒵𝑒−𝛽𝑈0(�⃗�,𝑁,𝑉 ). (3.47)

A thermodynamic average of a property 𝐴(�⃗�, 𝜈) at 𝑁 , 𝑉 , 𝑇 is then approximated
by the value of 𝐴 for the fully relaxed configuration. This means that even if the
cluster expansion acts on the perfect lattice �⃗�, relaxation effects are still taken
into consideration when calculating ⟨𝐴⟩. Yet, any vibrational or temperature de-
pendence of a property is largely neglected in this approach. If vibrational effects
are important there are ways to deal with this by for example incorporating these
effects into a MC by also including the vibrational part of the free energy in a CE
[23, 24]. To calculate free energies one can pick out representative structures from
the trajectory in a MC simulation and calculate the vibrational free energy and
add this to the configurational free energy, as done for example in Paper V.

3.10 Monte Carlo simulations example
Here, the simulation techniques discussed in this chapter will be exemplified. To
that end, a fictional binary CE was made up for a face-centered cubic (FCC) system
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considering only the nearest neighbor interaction. The one ECI corresponding to
the nearest-neighbor pair, was chosen to be 𝐽 = −1.0 creating a non-mixing system
and energetically unfavorable A-B bonds. The Boltzmann constant 𝑘𝐵 was set to
a value of 1.0 such that temperature and energies in this section are given in units
of 𝐽 .

The simulation cell comprised 10 × 10 × 10 primitive unit cells, and thus 1000
atoms. Each MC simulation was run for 5,000 MC sweeps, i.e. 5 million trial
steps. The system has a miscibility gap that closes somewhere below 𝑇 = 2. In
Fig. 3.1 the free energy derivative as well as the free energy are shown as a function
of concentration for one temperature above the critical temperature (𝑇 = 4) and
one temperature below (𝑇 = 1). At 𝑇 = 1 the SGC ensemble is unable to sample
inside the miscibility gap since one value of Δ𝜇 maps to several compositions inside
the miscibility gap [21]. The values obtained in the SGC and VCSGC ensemble
are consistent for all values where SGC is able to sample.

The free energy at 𝑇 = 1, (Fig. 3.1b), reveals that inside the miscibility gap
one can lower the free energy using a tangent construction by separating into two
phases, one that is rich in A and one that is rich in B. The excess free energy
value for a certain concentration corresponds to the cost of forming an interface
cost between these two phases. Depending on the concentration different types
of interfaces are formed as the excess free energy depends both on the (facet-
dependent) interface free energy 𝛾 and the interface area 𝐴 (Fig. 3.2). At 5%
concentration, just at the edge of the miscibility gap, small clusters of B atoms
appear in the A-rich phase (Fig. 3.2 a)). At concentration 15% the shape that
lowers the interface cost is a compact precipitate (Fig. 3.2 b)). As A atoms keep
being added to the system one can eventually lower the interface cost by connecting
the A phase to the top and bottom of the simulation box forming a pillar (Fig. 3.2
c)). Eventually, as this pillar grows in width it can connect to the sides, forming
a layer, which removes the A-B interface on the sides (Fig. 3.2 d)). At this point
the excess free energy no lower varies with concentration.

The entropy can simply be calculated via 𝑆 = ( 𝑈 − 𝐹)/𝑇 ) (Fig. 3.1 d)).=,
which shows that above the miscibility gap at 𝑇 = 4 the entropy coincides with
the ideal mixing entropy. Inside the misciblity gap, however, the system is clearly
deviating from an ideal mixture.

When employing either the SGC or VCSGC ensemble a more technical aspect
is revealed by looking at Δ𝜇 and 𝜙 as a function of concentration (Fig. 3.3). In
the VCSGC ensemble an even sampling of the concentration axis can be simply
achieved by using an even 𝜙 spacing, while in the case of the SGC the spacing
is generally much more inhomogeneous for an evenly spaced Δ𝜇. Furthermore,
the maximum and minimum values of Δ𝜇 required to sample the full range are
temperature dependent. Hence, the SGC ensemble often requires some additional
steps in order to use it effectively whereas with the VCSGC ensemble one can for
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most systems sample the concentration axis by varying 𝜙 between −2.2 and 0.2
regardless of temperature.

Finally, the acceptance ratios are calculated in the different ensembles (Fig. 3.3
c)). A too low acceptance ratio is not desirable in terms of statistical and computa-
tional efficiency. The general behavior is that the canonical ensemble yields a high
acceptance ratio close to the end points of the concentration axis, with the opposite
behavior for the SGC and VCSGC ensembles. The VCSGC ensemble yields the
highest acceptance ratio inside the miscibility gap in agreement with [25].
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Figure 3.1: Results from MC simulations in different ensembles. In figure a) the
free energy derivative as a function of concentration are shown for temperature 1
and 4. At 𝑇 = 1 there is a miscibility gap hence the missing points for the SGC
ensemble. In figure b) and c) the free energy is shown for temperature 1 and 4
respectively. At 𝑇 = 1 the VCSGC ensemble allows constructing the free energy
inside the miscibility gap. The entropy is shown in figure d). The entropy can be
calculated as 𝑆 = (𝑈 − 𝐹)/𝑇 .
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Figure 3.2: Shapes of the two-phase regions where only one species is shown. In
figure a) the concentration is 5%, right at the beginning of the miscibility gap.
Here the A atoms are randomly mixing in B. In figure b) the concentration is at
15% which is inside the misciblity gap, here the A rich phase is a sphere which
minimizes the area to volume ratio. In figure c) the concentration is at 33 % and
the A rich phase is a pillar. This minimizes the A to B interface since the top
and bottom sides of the pillar do not have a B interface due to periodic boundary
conditions. In figure d) the system is at 50% concentration and the shape is layered
where only the face of the layer interfaces to the B phase due to periodic boundary
conditions.
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Figure 3.3: Results from MC simulations in different ensembles. In figure a) the
chemical potential difference is shown as a function of concentration. The relatively
steep region at low and high concentrations and flat region at intermediate con-
centrations makes it difficult to sample the entire concentration axis with an even
spacing of Δ𝜇. In figure b) the 𝜙 parameter in the VCSGC ensemble is shown as
a function of concentration. The 𝜙 values are linear as a function of concentration
making it easy to evenly cover the concentration axis. In figure c) the acceptance
ratios are shown as a function of temperature, ensemble and concentration. The
general behaviour is that the canonical ensemble has high acceptance ratio at low
and high concentrations and vice versa for the SGC and VCSGC ensemble.
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4
Materials

4.1 Inorganic Clathrates
Inorganic clathrates constitute a class of inclusion compounds that exhibit a cage-
like framework in which the cages are occupied by guest atoms or small molecules
[26, 27]. The guest atoms, which are undersized relative to their respective cage,
can act as so-called rattlers, lowering the lattice thermal conductivity. The frame-
work structure can support a rather wide range of compositions, and two, three or
even more components. The availability of different compositions and the resulting
variability of the distribution of elements in the framework provide opportunities
for optimizing material properties. The framework is typically occupied with ele-
ments from groups 13 and 14, although other combinations are also possible [27, 28].
Inorganic clathrates have been studied in particular as potential high-performance
thermoelectric materials [26, 29, 30, 31]. This is due to their low intrinsic ther-
mal conductivity [32, 29, 33], suitable band gap [34, 35, 36], good dopability, and
compositional variability [37].

4.1.1 Crystal structure
Inorganic clathrate can be categorized according to their symmetry [26, 27]. The
present thesis focuses on type I clathrates, which have received the most attention
so far (Fig. 4.1). The framework structure of type I clathrates contains 46 tetrahe-
drally coordinated host atoms in the unit cell. It is the geometrical arrangement of
these 46 atoms that provides eight voids (or cages) per unit cell for the guest atoms.
There are two smaller dodecahedral cages and six larger tetrakaidecahedral cages.
The crystal structure belongs to the cubic space group Pm ̄3n. In Wyckoff notation
the center of the cages are 2𝑎 and 6𝑑 for the dodecahedral and tetrakaidecahedral
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Figure 4.1: Crystal structure of type I clathrates. The guest species (Ba) occupies
Wyckoff sites of type 2𝑎 and 6𝑑, while the host species (Ga, Al, Ge, Si) occupy
Wyckoff sites of type 6𝑐, 16𝑖, and 24𝑘. The configurations in the bottom row
illustrate the environments for 6𝑐, 16𝑖, and 24𝑘 sites, respectively.

cages, respectively, whereas the framework atoms occupy Wyckoff sites 6𝑐, 16𝑖,
and 24𝑘.

4.1.2 The Zintl concept
The Zintl concept provides a rationale for the stoichiometry of semiconducting
clathrates [26, 27, 38, 39]. It requires four electrons to be available for each tetra-
hedrally bonded host atom, while the guest atom is assumed to donate its valence
electrons to the host framework. The number of electrons required to form bonds
between the 46 host atoms is thus 184. At stoichiometric compositions the material
is thus fully charge balanced.

The general formula for type I clathrates is A8M𝑥M’46−𝑥. The clathrates studied
in this thesis are comprised of Ba, Ga/Al, Ge/Si for A, M and M’, respectively.
Each Ba atom can donate two electrons, whereas Ga/Al and Ge/Si provide three
and four valence electrons, respectively. Therefore, for 𝑥 = 16 all bonds saturated.
Lowering the Ga/Al composition thus leads to electron deficiency and the material
is expected to be n-doped. Likewise, increasing the Ge/Si concentration creates a
p-doped material. As a thermoelectric generator requires both an n-doped and p-
doped material to function, clathrates can in principle achieve both of these limits
by variation of the composition.
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4.1.3 Ordering
The host framework of inorganic clathrates usually comprises several different
Wyckoff sites (in the present work 6𝑐, 16𝑖, and 24𝑘), which are occupied by several
different species (here Ga, Ge, Si, Al). If the different sites were occupied statisti-
cally one would expect for a stoichiometric sample (𝑥 = 16) 16/46 ≈ 35% of the
sites to be occupied by Al or Ga. Measurements of the so-called site occupancy
factors (SOFs) reveal, however, dramatic deviations from this average [37]. The
deviation from an entropically desirable random occupation (i.e., 35%) indicates
that the interaction between the constituents plays a crucial role and the exper-
imentally observed ordering (in form of the SOFs) arises from a competition of
energy and entropy.

The SOFs vary between the compounds and can also show strong, non-monotonic
variations with stoichiometry [37, 40, 41]. Furthermore, the SOFs show an impact
on transport properties [42]. Hence, understanding the ordering of these materials
is crucial for understanding their thermoelectric performance.

4.1.3.1 Empirical rules for SOFs

A set of guidelines for the SOFs has been formulated on the basis of a large set of
experimental data [37]. They are mostly based on the environment of each Wyckoff
site and the observation that direct bonds between trivalent atoms are unfavorable.
There are three different bonding environments, one for each Wyckoff site. The 6𝑐
sites have four 24𝑘 sites as nearest neighbors; the 24𝑘 sites have one 6𝑐 site, two
16𝑖 sites and one 24𝑘 site as nearest neighbors; finally, the 16𝑖 sites have three 24𝑘
site and one 16𝑖 site as nearest neighbors.

The geometry of the lattice thus leads to the following set of rules.

1. A 6𝑐 site has no other 6𝑐 sites in its surrounding and hence 6𝑐 < 100%.

2. The same argument can be made with regard to the other two sites giving
24𝑘 < 50% and 16𝑖 < 50% since there is one 24𝑘 − 24𝑘 and one 16𝑖 − 16𝑖
pair per 24𝑘 site and 16𝑖, respectively.

3. Furthermore, 6𝑐 + 24𝑘 < 100% since the 6𝑐 site binds to four 24𝑘 sites and
the sum of the SOFs should be below 100%.

4. Also 16𝑖 + 24𝑘 ≤ 50%. As pointed out in Ref. [40], however, this rule is too
restricted and the condition to avoid trivalent nearest neighbors is actually
16𝑖 + 24𝑘 ≤ 83.3%.

The violation of the last rule can also be seen in papers I and II in this thesis, where
we present ground state SOFs with no trivalent nearest neighbor and 16𝑖 + 24𝑘 =
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56.25%. With that small modification, the rules, based on simple assumptions, are
in good agreement with the experimental data.

4.1.3.2 Guideline for variations of SOFs

The rules described above cannot provide a direct rationale for explaining the
variations in the SOFs as a function of composition. Different components in the
framework structure will show different variations due to composition [41]. Here,
atomic scale simulation, e.g., based on CEs parametrized using first-principles cal-
culations, provide a way to obtain very detailed information [42, 43, 41]. In Ref. [41]
it was found that Al-based clathrates (Ba8Al𝑥Ge46−𝑥, Ba8Al𝑥Si46−𝑥) exhibit a
strong, non-monotonic variation of the SOFs with Al content, whereas Ga-based
clathrates (Ba8Ga𝑥Ge46−𝑥, Ba8Ga𝑥Si46−𝑥) show a monotonic dependence on Ga
content. It was argued that the differences observed were largely due to the Al–
Al repulsion being twice as strong as the Ga–Ga repulsion. In other words, the
Al-based clathrates demonstrate a more extreme SOF behavior in order to avoid
costly Al–Al bonds. The observations and conclusions from paper III [41] have
not been transferred to a general SOF model of clathrates. The results, however,
demonstrate that information from first-principles calculations provides an efficient
and accurate means to predict and rationalize ordering in these materials.

4.2 Metallic alloys and W-Ti
Metallic alloys are of great importance in technology and are continuously being
developed and are of interest in basic research. Alloying often yield different prop-
erties compared to the original components. For example alloying iron with carbon
creates steel, an alloy that is stronger and harder than pure iron.

A binary system can be categorized in two classes, either the bonds between the
two constituents of the alloy are repulsive or attractive, corresponding to positive or
negative mixing energies, respectively. Cu–Ag [44, 45, 46] and Fe–Cu [44, 47, 48, 49]
are two non-mixing binary systems. In these systems one commonly observes a
wide two-phase region commonly called a miscibility gap. Attractive interactions
between the two constituents on the other hand yield solid solutions, as for example
in Au–Ag [44, 50] and W–V [44, 51] or the formation of intermetallic phases as
in Fe–Pt [44, 52, 53, 54] or Ni–Al [44, 55, 56]. Often mixing or non-mixing are
symmetric in the sense that if A mixes in B then B also mixes in A. There are some
notable examples where this does not happen. One example is Fe–Cr where mixing
Cr in Fe is energetically favorable whereas Fe in Cr is energetically unfavorable
[57, 58, 59]. This behavior can be explained in terms of the magnetic properties
of Fe and Cr. Fe and Cr prefers ferro and antiferromagnetic ordering respectively.
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Non-symmetric mixing behaviour can also be observed in non-magnetic systems
due to asymmetry in lattice structures and their energetics. One such system is
W–Ti, which is studied in this thesis.

4.2.1 W-Ti
At low temperatures pure titanium exhibits a hexagonal close packed (HCP) phase
(𝛼-Ti), which transitions into a BCC phase (𝛽-Ti) at higher temperature, the
latter of whic is dynamically stabilized [60]. Tungsten on the other hand maintains
a BCC structure up to the melting point. W-HCP and other close packed phases
are energetically very unfavorable and not stable during normal conditions [61, 62].
Hence in the W–Ti phase diagram there is a competition between BCC and HCP
phases. Experimentally the W–Ti phase diagram is difficult to measure due to
the high melting points of both Ti and W, which is coupled to slow kinetics,
in particular on the W-rich side. Since experimental data points for tungsten
concentrations around 30% and above are therefore only available down to 1473 K,
the experimental phase diagram for W–Ti has been assessed using rather severe
assumptions [63, 64, 65, 66]. Here, atomic scale simulations enable a theoretical
assessment of the phase diagram, which is not limited by slow kinetics.

4.3 Tungsten Carbide
Tungsten carbide (WC) belongs to the transition metal carbides, which are charac-
terized by high hardness and high melting points [67, 68, 69, 70]. For these reasons
WC is a widely used material for hard and wear-resistant tools used e.g., for metal
cutting and rock drilling [71].

The phase diagram of tungsten carbide reveals many different phases [72] (Fig. 4.2).
At stoichiometric composition, WC has a hexagonal crystal structure, referred to
as the 𝛿-WC phase [73]. The cubic structure, referred to as 𝛾-WC only becomes
stable at very high temperatures and can contain up to 50% vacancies on the car-
bon lattice. It has been observed, however, that 𝛾-WC can exist in the form of
thin interfacial structures or as particles, at lower temperatures due to its favorable
interfacial properties [74, 75, 76, 77, 78]. In cemented carbides, e.g. WC-Co, 𝛾-WC
can exist in the form of thin layers at the interface between a 𝛿-WC particle and
the Co matrix and can thus act as a grain growth inhibitor, leading to improved
mechanical properties [74, 73, 75]. Hence it is of interest to understand and model
the 𝛿-WC and 𝛾-WC phases. In this thesis the phase diagram of 𝛿-WC and 𝛾-WC
has been constructed using computational methods.
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Figure 4.2: Phase diagram of the W–C system [72].

4.4 Zeolites
Zeolites are of great industrial importance due to their use as catalysts. Zeolites
are aluminosilicates that exhibit a microporous crystalline framework with a wide
range of pore sizes and cages (Figure 4.3). This framework is built from SiO4W
tetrahedra, at the center of which resides either an Al or Si atom surrounded by
four O atoms. Each O atom is connected to two Si/Al sites and from these ele-
mental building blocks many different zeolite frameworks can be built. Currently
there more than 200 different zeolite frameworks have been recognized by the In-
ternational Zeolite Association [79].

Starting from a pure framework of Si and O, a substitution of a tetravalent
Si4+ with a trivalent Al3+ creates a charge imbalance. This charge imbalance is
compensated by adding counterions. There can be many different counterions in
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Figure 4.3: Crystal structure of the SSZ-13 chabasite. Oxygen is here depicted in
red and Si/Al sites in beige.

zeolites which each yield different properties. The choice of counterion thus allows
one to engineer zeolites for specific purposes. For instance, by charge compensating
with H+ one creates Brønstedt acid sites, whereas Cu+ counterions will enable redox
chemistry.

The catalytic performance of zeolites depends on the distribution of the Al atoms
in the framework [80, 81] hence understanding and controlling the ordering of Al
atoms is a crucial part of creating and understanding zeolites and their properties.
Unfortunately, as Si is substituted with Al the number of ways the Al atoms and
the counterions can be distributed grows quickly with Al content. Modeling and
describing the ordering in zeolites can thus be a difficult problem.

To rationalize the Al distribution in zeolites it is common practice to refer to
Löwenstein’s rule [82, 83], which states that Al–O–Al motifs are forbidden, i.e. two
Al are not allowed to share the same oxygen. Exceptions to this rule have, however,
been noted [84]. In paper VI the Löwenstein rule is therefore critically examined.
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5
Summary of the papers

5.1 Paper I
In paper I we introduced icet, a tool for constructing and sampling CEs. To
demonstrate the capabilities of icet and CEs we applied it to two different mate-
rials. First, we demonstrated the construction of a CE for the binary alloy Ag–Pd.
The CE was subsequently sampled using MC simulations in order to obtain the
configurational free energy as a function of composition and temperature. Finally,
the free energy was used to construct the phase diagram of Ag–Pd.

Furthermore, we considered ordering in an inorganic clathrate. An ensemble
of CEs was constructed using the shuffle-split method. Each CE in the ensemble
was sampled in MC simulations sampled and the SOFs were obtained by averaging
over these predictions. This approach enabled us quantify the sensitivity of the
predicted properties to uncertainties in the model.

5.2 Paper II
Paper II focused on the inorganic clathrate Ba8Ga16Ge30. A CE was constructed
to represent the energies of fully relaxed structures obtained from DFT calculations
and subsequently sampled by MC simulations, from which the chemical order as
a function of temperature was obtained, specifically the SOFs. Representative
configurations for specific temperatures were extracted from the simulations and
further analyzed with respect to their electrical transport properties using DFT
and Boltzmann transport theory (BTT) calculations. This combination of CE and
MC simulations as well as DFT and BTT allowed us to obtain the thermoelectric
power factor as a function of temperature (Figure 5.1). The approach was validated
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Figure 5.1: Schematic illustration of the methods employed in paper I. DFT: den-
sity functional theory; MC: Monte Carlo simulations; CE: alloy cluster expansion;
BTT: Boltzmann transport theory.

by comparing the SOFs and transport coefficients with experimental data. Another
CE was then constructed to represent the power factor as a function of the chemical
configuration and was employed to determine the chemical ordering that maximized
the power factor. The optimized structure yielded a power factor increase by more
than 60%. This was achieved by reducing the number of trivalent species on the 6𝑐
Wyckoff site. Hence, the approach developed in this paper demonstrates the use
of CEs for structure optimization.

5.3 Paper III
Paper III addressed the chemical ordering in the clathrate systems Ba8Ga𝑥Ge46−𝑥,
Ba8Ga𝑥Si46−𝑥, Ba8Al𝑥Ge46−𝑥, and Ba8Al𝑥Si46−𝑥 as a function of composition (Fig-
ure 5.2). The ordering in these materials can significantly impact the material
properties, see e.g., paper II. Hence, an understanding of the ordering is crucial in
order to understand and optimize these materials. To that end, for each system a
CE was constructed based on the energies of fully relaxed structures obtained from
DFT calculations and the SOFs were obtained from MC simulations. The simu-
lated SOFs agree very well with experimental data (Figure 5.2), which allowed us
to clarify variations and trends in the experimental data. In particular Al-based
clathrates were found to display strongly non-monotonic variations of the SOFs
with composition (Figure 5.2c,d).
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Figure 5.2: Site occupancy factors in intermetallic clathrates as a function of com-
position for Wyckoff sites 6𝑐 (red), 16𝑖 (blue), and 24𝑘 (orange). Solid lines show
simulation results obtained at 700 K whereas the shaded regions indicate a variation
by ± 100 K.

5.4 Paper IV
In paper IV we constructed the phase diagram of W–Ti, a system which features
metastable boundary phases on both sides of the phase diagram. Titanium exhibits
a transition from HCP at low temperatures to BCC at high temperatures, where
the latter is stabilized by vibrations [60]. Tungsten maintains a BCC structure
up to the melting point. Close-packed structures such as HCP are energetically
unfavorable and only thermodynamically stable at high pressures [61, 62]. Thus
in order to construct the W–Ti phase diagram we had to consider two competing
crystal lattices, BCC and HCP. The computational approach was to generate sets of
training structures with varying composition and ordering for both HCP and BCC.
Two CEs were constructed, one for HCP and one for the BCC lattice. Each CE was
sampled using MC simulations in the VCSGC ensemble in order to calculate the
configurational free energy. Finally, using a model for the vibrational free energy,
we were able to construct the phase diagram of W–Ti.

5.5 Paper V
In paper V, we investigated the thermodynamic properties of two WC phases, the
cubic phase (𝛾-WC) and the hexagonal phase (𝛿-WC). In order to study these
phases we considered configurational, vibrational, and electronic DOFs by combin-
ing effective harmonic models as implemented in the hiphive[85, 10] package and
alloy CEs as implemented in the icet package (Paper I).

The hexagonal phase contains less than 1% carbon vacancies and can thus be
modeled in the dilute limit. The 𝛾-WC phase can have vacancy concentrations up
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to 50% and is only thermodynamically stable close to the melting point. To model
the carbon-vacancy lattice in 𝛾-WC a CE was constructed. This CE was sampled
in the SGC ensemble, which is essentially the grand canonical (GC) ensemble since
we are dealing with vacancies, in order to obtain the configurational free energies
as well as finding ground states and representative configurations needed for the
modeling of vibrational and electronic free energy.

It is found that stoichiometric 𝛾-WC is dynamically unstable in the harmonic
approximation but stabilized when introducing up to around 25% carbon vacancies.
This alone demonstrates the challenges faced when modeling the configurational
and vibrational DOFs in 𝛾-WC. In order to model the vibrational DOF effec-
tive harmonic model (EHM) were constructed from ab initio molecular dynamics
simulations at various temperatures. The vibrational free energy of mixing was cal-
culated across the entire concentration range and was found to be anti-correlated
with the mixing energy. Hence the inclusion of vibrational free energy in this sys-
tem is not purely an offset to the total free energy but has a strong concentration
dependence and effectively flattens out the free energy of mixing. We also observed
significant differences in the vibrational properties between ground state and rep-
resentative (high temperature) configurations. Eventually, the phase diagram was
found by tangent constructions with the combined free energies of the different
phases for each temperature (Figure 5.3). Our calculated transition temperatures
are 5 to 10% lower than in experimental studies but the overall phase diagram is
in good agreement.

While the electronic contributions to the free energy are smaller than config-
urational and vibrational ones, we demonstrate that all DOFs are important for
understanding the thermodynamic stability of the cubic phase. We also note that
thermal expansion has a non-negligible effect on the final free energies and phase
diagram. While the cubic phase is found to be stable at temperatures above 2500 K,
our calculations reveal that there exist many ordered low temperature structures,
e.g. W8C7 and W8C4, similar to other transition metal carbides[86], which may be
of important when considering, e.g., cubic interfacial structures or nanoparticles.

5.6 Paper VI
Löwenstein’s rule state that Al–O–Al motifs are energetically very unfavorable,
i.e. two Al atoms should not share the same O atom. In paper VI we examined
the Löwenstein’s rule in zeolites and demonstrated that it works as expected when
applied in its original context. We identify the conditions under which it falls
short and formulate a generalized version that explain both prior observations of
violations of Löwenstein’s rule and how one can achieve Al–O–Al motifs in principle.

As a prototype we considered the SSZ-13 chabasite system due to its small unit
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cell, which simplified the analysis. In zeolites as one substitutes Si4+ with Al3+,
a charge deficit is created which is compensated by adding counterions (H+, Na+,
K+, Rb+). The number of ways one can distribute Al along with the counterions
quickly becomes a combinatorically challenged problem as the Al content increases.
This challenge makes it impractical to study these systems using enumeration and
it also is an indication on how the configurational entropy might matter in these
systems. We thus constructed CEs which allow accurate and efficient computation
of the energy for all distributions of Al and counterions. For each counterion a
CE was constructed using around 100 to 200 training structures as calculated from
DFT. The CV score ranged from 1.7 meV/atom for Rb to 6.6 meV/atom for the
system with free charge carrier compensation. The systems were sampled with MC
simulations in the VCSGC ensemble in order to get thermodynamical averages of
the fraction of nearest neighbor Al–Al pairs (i.e. Al–O–Al motifs) as a function of
composition.

The results reveal very different behavior depending on the counterion species
(Figure 5.4). With counterions Na+, K+, and Rb+ there are almost no Al–Al
nearest neighbors up to about 33% Al. The behavior of these counterions is thus
largely consisten with Löwenstein’s except for some small amount of Al-Al bonds
at lower Al concentration, which are stabilized by entropy.

With H+ as counterion, however, the picture is reverse (Figure 5.4). Here, the
fraction of Al–Al bonds increases rapidly with increasing Al content to 40% Al-Al
nearest neighbor bonds and from there continues to increase gradually. The Al
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atoms are thus effectively attracted to other Al atoms when being charge compen-
sated by hydrogen, which is also noted in Ref. [84].

In paper VI we rationalize this contrast between H+ and the other counterions
by considering counterion size, level of charge localization, and local structure
rearrangements.

Finally, we note that the approach taken in paper VI can be extended to other
zeolite structures as well as other counterions. The rich choice of different frame-
works and counterions in zeolites offers both a challenge in terms of modeling but
also an opportunity in finding optimal zeolites.
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6
Conclusions and outlook

6.1 Conclusions
This thesis was concerned with the study of ordering phenomena in several different
materials. The method of choice has been CEs, which has proven to be a very
efficient and accurate approach.

When applied to inorganic clathrates (papers II and III) or zeolites (paper VI)
these models achieved very good agreement with available experimental results.
More interestingly the microscopic simulations provided novel insight in the order-
ing in these materials that is inaccessible by experiments alone.

In the latter cases, the underlying lattice was vibrationally stable in the rele-
vant concentration range, whence CEs alone were sufficient to capture the leading
contributions to the free energy. This is not always the case as there are many
material systems, in which at least one of the relevant phases is only stabilized
by vibrations. In this thesis, CEs were therefore combined with dynamic models
to account for the configurational and vibrational contributions to the free en-
ergy, respectively. In the case of the W–Ti system (paper IV) CEs were combined
with data from ab-initio molecular dynamics (MD) simulations and thermodynamic
data from CALPHAD to obtain the full phase diagram. In the case of W–C (paper
V) this approach was taken further as cluster and force constant expansions were
combined to analyze the counter effects of configurational and vibrational DOFs.

There are, however, some caveats with this method. The Hamiltonian used in
the MC simulations should in principle also consider the vibrational free energy,
such that the configurations visited in the MC trajectory depend on the vibrational
free energy. The methodology used in this thesis could thus be further improved
by allowing a simultaneous sampling of the vibrational and configurational DOFs.
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One way could be to construct a CE for the vibrational free energy [23], another
could be to create a combined cluster and force constants expansion [87].

6.2 Outlook
Looking forward there are many ways, one may build on the results of this thesis.
Regarding the clathrates there is an abundance of different species one can consider
on both the framework but also as guest atoms. The search for novel thermoelectric
materials could thus start from paper II where we constructed a CE for the power
factor and found the configuration with optimal properties. In principle, one can
repeat the calculations done in paper II in a high-throughput study for many
different clathrates. After creating a number of CEs for different clathrates one
could then start to learn the ECIs given the chemical species involved. The latter
suggestion is informed by paper III, in which trends in the ECIs emerged between
Al or Ga-based clathrate. One could thus train a machine learning model to predict
the ECIs for a given chemical composition, which only has to be accurate enough
to restrict the search space.

In terms of icet and its development many interesting and useful things can be
added. To make high-throughput studies as mentioned above the creation of robust
workflows would be invaluable. Although there is some degree of craftsmanship to
creating a good CE, as we are becoming more experienced in using and creating CEs
the procedures for doing routine tasks like training CEs is converging to algorithms
that could very well be generalized into workflows. These workflows could do
everything from generating suitable training structures to training CEs to running
MC simulations on computer clusters and collecting the simulation data.
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