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Abstract

Ordering phenomena in materials often have a crucial impact on materials prop-
erties. They are governed by the competition between entropy and energy. Ac-
cordingly simulating these aspects requires the construction of models that enable
an computationally efficient exploration of the relevant configuration space. Alloy
cluster expansions are a technique that is particular suitable for this task as they
can be trained to reach high accuracy while being computationally suitable for
rapid sampling via Monte Carlo techniques.

In this thesis alloy cluster expansions have been applied in combination with Monte
Carlo simulations to study the ordering behavior in various inorganic clathrates.
Inorganic clathrates constitute a class of systems with a cage-like framework that
can trap loosely bound atoms or even small molecules. These systems are small
band gap semiconductors and have a very low lattice thermal conductivity, which
gives rise to very good thermoelectric properties. Additionally the host atoms
and cage framework can be occupied by a wide range of elements which provides
extensive opportunities for property optimization. Inorganic clathrates are thus
good examples for systems with a high degree of variability in composition, for
which ordering phenomena play a crucial role.

In paper I we studied the ordering behaviour of Ba8Ga16Ge30. Configurations rep-
resentative for different annealing temperatures were extracted from Monte Carlo
simulations and further analyzed to obtain the temperature dependency of the ther-
moelectric power factor. These data was subsequently used to construct a cluster
expansion for the power factor itself, which enabled us to optimize the chemical
ordering that maximizes this property. The approach developed in this work is
generalizable and can be adapted to other materials.

In paper II we studied the ordering behavior and related properties in the clathrate
systems Ba8Al𝑥Si46−𝑥, Ba8Al𝑥Ge46−𝑥, Ba8Ga𝑥Ge46−𝑥, and Ba8Ga𝑥Si46−𝑥 as a
function of composition and temperature. We achieved very good agreement with
the available experimental data for the site occupancy factors (SOFs). This en-
abled us to reconcile experimental data from different sources and explain the non-
monotonic variations of the SOFs. In particular, we provided a rationale for the
extreme SOF behavior with varying composition observed in Al based clathrates.
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1
Introduction

1.1 Ordering phenomena
This thesis deals with ordering phenomena in inorganic clathrates. The ordering in
a material is dictated by the energetics and the entropy of the material. Common
methods used to model mixtures in multi-component systems is demonstrated in
this chapter. It will be shown that in order to model the ordering of complex
materials the best available models are required.

1.1.1 Entropy and order
Entropy is a measure of the disorder in a system. The second law of thermodynam-
ics states that disorder in a closed system can only increase; in other words closed
systems tend to evolve from ordered to disordered states. A simplified example of
this is the process of shuffling a fresh deck of cards. The initial state when the
deck of cards are in perfect order will “never” appear again in the process of the
shuffling since, assuming random shuffling, the probability to end up in the initial
state are roughly 1 in 1068. As the shuffling continues the deck of cards becomes
more and more disordered.

Another example is the tossing of coins. Imagine having 100 coins and tossing
them all at once. A particular sequence can be denoted as head–tail–head–head–…
and so on. The probability that all come up heads is the probability of the first
coin coming up as heads times the probability that the second coin comes up as
heads and so on, hence the probability is (1/2)100. This probability is the same for
any sequence of the coin toss. Yet from intuition we would expect that all coins
coming up as heads should almost never happen.
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Chapter 1. Introduction

The resolution to this conundrum lies in the distinction of a specific sequence
of coin tosses, called microstates, and the total number of heads and tails of a
particular sequence, called a macrostate. All microstates are equally probable but
the probabilities for different macrostates vary over a wide range. The probabil-
ity of the macrostate is the number of all microstates that correspond to that
macrostate divided by the number of all possible microstates. The number of total
microstates are 2100 and the number of microstates for a macrostate is given by
(100𝑛 ) = 100! /𝑛! (100 − 𝑛)!. Consequently the probability of all coins ending up as
heads is 1/2100 whereas the probability of ending up with 50 heads is 1029 more
likely with a probability of about 1029/2100. Note that the number of microstates
for a particular macrostate is commonly referred to as the multiplicity of that
macrostate.

Mathematically entropy is measured as 𝑆 = 𝑘𝐵 ln Ω, where 𝑆 is the entropy, 𝑘𝐵
is the Boltzmann constant and Ω is the multiplicity of the system. Hence increasing
the entropy, or the disorder, simply implies that the system has changed to a more
likely state.

The principles of the coin toss example are easily extended to atomic systems.
Imagine a system comprised of 100 𝐴 atoms. By mixing one 𝐵 atom into the
system the number of possible microstates increases by a factor of 100, as there
are 100 possible sites to insert the 𝐵 atom. A system of atoms obeys the same
combinatorics as the coin flipping. Hence the entropy increases by mixing and
if we are neglecting the atomic interactions the system will have a tendency to
spontaneously start mixing.

1.1.2 Free energy
Entropy goes a long way in explaining the ordering behaviour of materials. Yet, in
nature many materials are observed to exhibit ordered states, which have (much)
lower entropy than disordered states. Thus if entropy is one half of the picture to
explain disordering, the energy is the other half that has to be included. Consider
again the case of the 𝐴𝐵 atomic system, for which we saw that the entropy can
be tremendously increased by mixing 𝐴 and 𝐵 atoms. In general there is an ener-
getic cost associated with mixing. If the formation of 𝐴 − 𝐵 bonds is energetically
unfavorable compared to 𝐴 − 𝐴 and 𝐵 − 𝐵 bonds there is a penalty for mixing
and less mixing is expected. On the other hand if 𝐴 − 𝐵 bonds are more favor-
able, the system can both lower its energy and increase its entropy by mixing and
more mixing is expected. This interplay of entropy and energy is expressed in the
Helmholtz free energy of the system

𝐹 = 𝑈 − 𝑇 𝑆, (1.1)

2



1.2. Mixing in multi-component systems

where 𝑈 is the internal energy and 𝑇 is the temperature. Generally speaking a
system described in the canonical ensemble will strive to minimize its free energy.
According to Eq. (1.1) the entropy term becomes more important for higher tem-
peratures. Hence, at a low temperature a system is more likely to be observed in its
low energetic state, where the chemical bonds dictate the ordering of the material.
As the temperature is increased, however, the material becomes more disordered.

1.1.3 Examples
Many materials can exhibit some form of chemical order which are crucial to under-
standing their properties. One example is Zn4Sb3 which is a material with a high
thermoelectric figure of merit, which is partially due to its low thermal conductiv-
ity [1]. It has been identified that the source of this low thermal conductivity is
due to Zn disorder and Zn nanostructuring which are sources of phonon scattering
[2, 3, 4].

Skutterudites are another example of material with chemical order, which are
a type of cage like materials which are high performance thermoelectric materials
[5, 6, 7, 8, 9]. The skutterudites owe some of its success as good thermoelectric
materials from their low thermal conductivity. These materials can lower their
thermal conductivity by filling these voids with rare earth metals [10, 11]. It has
been observed that the minima of the thermal conductivity is obtained for a partial
filling of the voids for some skutterudites [7]. An understanding of how these filler
atoms order can thus be very helpful in order to design optimal skutterudites [12].

Yet another example of thermoelectric materials with chemical ordering are the
inorganic clathrates. The clathrates possesses a large unit cell which can support
a wide range of elemental components and compositions. The ordering in inor-
ganic clathrates show large variations with compositions and constituent atoms
[13, 14, 15]. The power factor, which is an integral part of thermoelectric effi-
ciency, has been demonstrated to be able to be optimized by more than 60% for
certain chemical ordering patterns [16]. Inorganic clathrates are described in more
detail in chapter 2.

1.2 Mixing in multi-component systems
1.2.1 The dilute limit
Consider a system of 𝑁 particles where all particles are of type 𝐴 except for 𝑛
particles of type 𝐵. This system is said to be in the dilute limit if 𝑁 ≫ 𝑛. In
the dilute limit the 𝐵 particles are so few and spread out so it is assumed that
interactions between 𝐵 particles can be neglected. Hence, Δ𝐹 , the free energy
associated with adding or subtracting a 𝐵 particle, is constant as a function of
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Chapter 1. Introduction

composition. The equilibrium concentration in the dilute limit is then given by 𝑐 =
𝑐0 exp [−Δ𝐹/𝑘𝐵𝑇 ], where 𝑐0 is the concentration of sites available for substitution.

1.2.2 Concentrated solutions: Mean-field treatment
When the condition 𝑁 ≫ 𝑛 is no longer fulfilled the system is said to be in the
concentrated limit. Here, the 𝐵 atoms have become so numerous that their mutual
interaction must be taken into account and the free energy of adding or removing a
𝐵 atom becomes dependent of the concentration. The simplest treatment applied
in the concentrated limit is provided by the mean field approximation to the Ising
model. The energy, entropy and the free energy of the system can be expressed in
terms of an order parameter, which describes, e.g., the average number of 𝐴 − 𝐵
bonds in the structure. The order parameter observed for a certain temperature
and concentration is the one that minimizes 𝐹 . The Helmholtz free energy of the
system is given by [17, 18]

Δ𝐹mix = Δ𝑈mix − 𝑇 Δ𝑆mix,
Δ𝑈mix = 𝜔𝑐(1 − 𝑐),
Δ𝑆mix = −𝑘𝐵 [𝑐 ln 𝑐 + (1 − 𝑐) ln (1 − 𝑐)] ,

(1.2)

where 𝜔 describes the energy cost of mixing and creating an 𝐴 − 𝐵 bond, 𝑐 is the
𝐵 concentration and 𝑘𝐵 is the Boltzmann constant. The effects of Δ𝑈mix and 𝑇 on
Δ𝐹mix are illustrated in Fig. 1.1. Some comments are in order. First, all expressions
are symmetric in the concentration 𝑐. Secondly, the mixing entropy, Δ𝑆, is positive
across the entire concentration range. Consequently the contribution of entropy
to the free energy is always negative. Hence, for 𝑇 → ∞, entropy will be the
dominating term and the free energy will always be minimized by mixing (Δ𝐹mix <
0. For the case of Δ𝑈mix > 0 there is a competition between energy and entropy
that determines whether the components mix or segregate. For Δ𝑈mix > 0 and
low 𝑇 , Δ𝐹mix can change sign, giving rise to a miscibility gap (Fig. 1.1d).

This very simple form is not suitable for modeling the vast majority of systems.
It can, however, be generalized leading to the semi-empirical CALPHAD approach
to modeling phase diagrams. In this case, the various contributions to the mixing
energy and entropy are expressed in polynomial expansions in temperature and
composition. The expansion coefficients are most commonly obtained by fitting to
experimental data and, more recently, also from first-principles calculations. The
resulting models are widely used in industry for alloy design and optimization.

1.2.3 Concentrated solutions: Beyond mean-field
The mean-field approach outlined in the previous section is fundamentally semi-
empirical in its nature and requires input in the form of either experimental or

4
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Figure 1.1: The free energy of mixing Δ𝐹mix as a function of composition assuming
mixing is (a,b) energetically favorable (Δ𝑈mix < 0) and (c,d) unfavorable (Δ𝑈mix >
0), respectively, at (a,c) high and (b,d) low temperature 𝑇 .

computational data. Experimental data is often difficult and/or expensive to ac-
quire; there are also various cases, in which it is downright impossible to extract
meaningful data from experiments. This applies for example at low temperatures
when thermodynamic equilibrium cannot be reached reliably.

For illustration consider the W–Ti system as analyzed using a combination of
first-principles calculations, lattice models and Monte Carlo simulations. The anal-
ysis reveals a ground state structure at 80% tungsten concentration [19]. At low
temperatures this configuration is much more likely to be observed than other con-
figurations leading to a distinct feature in the mixing energy (Fig. 1.2a) and even
more so the mixing entropy (Fig. 1.2b). These features are absent in CALPHAD
assessments of the W–Ti system, which instead commonly assume complete im-
miscibility, i.e. a positive mixing energy throughout. This approximation is owed
to the fact that W is a refractory metal, which renders experimental data below
approximately 1300 K unreliable.

The combination of first-principles calculations (commonly density functional
theory (DFT)) and lattice models (usually alloy cluster expansions (CEs)) allows
one to accurately predict the behavior of multi-component mixtures with little or no
experimental input. In the present thesis the application range of these techniques
is further extended to analyze ordering in inorganic clathrates.
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Figure 1.2: (a) Mixing energy and (b) mixing entropy as a function of composition.

1.3 Thesis guide
In this thesis a series of inorganic clathrates (chapter 2) has been investigated.
Clathrates are inclusion compounds with complex ordering of the constituent atoms.
For the systems of interest in this work, there are (4616) ≈ 1012 possible ways to place
the atoms in the unit cell, excluding symmetry. One therefore requires extremely
efficient means to evaluate the energies of different configurations in order to inves-
tigate the vast configurational space of these systems. In this work this is achieved
by means of cluster expansions (chapter 3) while Monte Carlo simulations are em-
ployed to obtain thermodynamical averages (chapter 4). The results of this work
have been published in two peer-reviewed journal articles (chapter 5).
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2
Inorganic clathrates

Inorganic clathrates constitute a class of inclusion compounds that exhibit a cage-
like framework in which the cages are occupied by guest atoms or small molecules
[20, 21]. The guest atoms, which are undersized relative to their respective cage,
can act as so-called rattlers, lowering the lattice thermal conductivity. The frame-
work structure can support a rather wide range of compositions, from binary sys-
tems to ternary and higher order. The availability of different compositions and
the resulting variability of the distribution of elements in the framework provide
opportunities for optimizing material properties. Inorganic clathrates have been
studied in particular as potential high-performance thermoelectric materials due
to their low intrinsic thermal conductivity [22, 23], suitable band gap [24, 25, 26],
good dopability, and compositional variability [13].

2.1 Crystal structure
Inorganic clathrate can be categorized according to their symmetry [20, 21]. The
present thesis focuses on type I clathrates, which have received the most attention
so far (Fig. 2.1). The framework structure of type I inorganic clathrates contains
46 tetrahedrally coordinated host atoms in the unit cell. It is the geometrical
arrangement of these 46 atoms that provides eight voids (or cages) per unit cell
for the guest atoms. There are two smaller dodecahedral cages and six larger
tetrakaidecahedral cages. The crystal structure belongs to the cubic space group
Pm ̄3n. In Wyckoff notation the center of the cages are 2𝑎 and 6𝑑 for the dodec-
ahedral and tetrakaidecahedral cages, respectively, whereas the framework atoms
occupy Wyckoff sites 6𝑐, 16𝑖 and 24𝑘.
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Guest 
atoms

Host 
atoms

2a
                  6d

6c
16i

6c
24k

24k

16i

Figure 2.1: Crystal structure of type I clathrates. The guest species (Ba) occupies
Wyckoff sites of type 2𝑎 and 6𝑑, while the host species (Ga, Al, Ge, Si) occupy
Wyckoff sites of type 6𝑐, 16𝑖, and 24𝑘. The configurations in the bottom row
illustrate the environments for 6𝑐, 16𝑖, and 24𝑘 sites, respectively.

2.2 The Zintl concept

The Zintl concept provides a rationale for the stoichiometry of semiconducting
clathrates. It requires four electrons to be available for each tetrahedrally bonded
host atom, while the guest atom is assumed to donate its valence electrons to the
host framework. The number of electrons required to form bonds between the 46
host atoms is thus 184.

The general formula for type I clathrates is A8M𝑥M’46−𝑥. The clathrates studied
in this thesis are comprised of Ba, Ga/Al, Ge/Si for A, M and M’ respectively. Each
Ba atom can donate two electrons, whereas Ga/Al and Ge/Si provide three and
four valence electrons, respectively. Therefore, for 𝑥 = 16 all bonds saturated.
Lowering the Ga/Al composition thus leads to electron deficiency and the material
is expected to be n-doped. Likewise, increasing the Ge/Si concentration creates a
p-doped material. As a thermoelectric element requires both an n-doped and p-
doped material to function, clathrates can in principle achieve both of these limits
by variation of the composition.

8



2.3. Ordering

2.3 Ordering
The host framework of inorganic clathrates usually comprises several different
Wyckoff sites (in the present work 6𝑐, 16𝑖, and 24𝑘), which occupied by several dif-
ferent species (here Ga, Ge, Si, Al). If the different sites were occupied statistically
one would expect for a stoichiometric sample (𝑥 = 16) 16/46 ≈ 35% of the sites
to be occupied by Al or Ga. Measurements of the so-called site occupancy factors
(SOFs) reveal, however, dramatic deviations from this average [13]. The deviation
from an entropically desirable random occupation (i.e., 35%) indicates that the
interaction between the constituents plays a crucial role and the experimentally
observed ordering (i.e. SOFs) arise from a competition of energy and entropy.

The SOFs vary between the compounds and can also show strong, non-monotonic
variations with the stoichiometry [13, 14, 15]. Furthermore, the SOFs show an
impact on transport properties [16]. Hence, understanding the ordering of these
materials is crucial for understanding their thermoelectric performance.

2.3.1 Empirical rules for SOFs
A set of guideline rules for the SOFs has been formulated on the basis of a range
of experimental data [13]. They are mostly based on the environment of each
Wyckoff site and the observation that direct bonds between trivalent atoms species
are unfavorable. There are three different bonding environments, one for each
Wyckoff site. The 6𝑐 sites have four 24𝑘 sites as nearest neighbors; the 24𝑘 sites
have one 6𝑐 site, two 16𝑖 sites and one 24𝑘 site as nearest neighbors; finally, the
16𝑖 sites have three 24𝑘 site and one 16𝑖 site as nearest neighbors.

The geometry of the lattice thus leads to the following set of rules.

1. A 6𝑐 site has no other 6𝑐 sites in its surrounding and hence 6𝑐 < 100%.

2. The same argument can be made to the other two sites giving 24𝑘 < 50%
and 16𝑖 < 50% since there is one 24𝑘 − 24𝑘 and one 16𝑖 − 16𝑖 pair per 24𝑘
site and 16𝑖, respectively.

3. Furthermore, 6𝑐 + 24𝑘 < 100% since the 6𝑐 site binds to four 24𝑘 sites and
the sum of the SOFs should be below 100%.

4. Also 16𝑖 + 24𝑘 ≤ 50%. As pointed out in Ref. [14], however, this rule is too
restricted and the condition to avoid trivalent nearest neighbors is actually
16𝑖 + 24𝑘 ≤ 83.3%.

The violation of the last rule can also be seen in papers I and II in this thesis, where
we present ground state SOFs with no trivalent nearest neighbor and 16𝑖 + 24𝑘 =
56.25%. With that small modification, the rules, based on simple assumptions, are
in good agreement with the experimental data.

9



Chapter 2. Inorganic clathrates

2.3.2 Guideline for variations of SOFs
The rules described above cannot provide a direct rationale for explaining the
variations in the SOFs as a function of composition. Different components in
the framework structure will show different variations due to composition [15].
Here, atomic scale simulation, e.g., based on cluster expansions parametrized us-
ing first-principles calculations, provide a way to obtain very detailed information
[16, 27, 15]. In Ref. [15] it was found that Al-based clathrates (Ba8Al𝑥Ge46−𝑥,
Ba8Al𝑥Si46−𝑥) exhibit a strong, non-monotonic variation of the SOFs with Al con-
tent, whereas Ga-based clathrates (Ba8Ga𝑥Ge46−𝑥, Ba8Ga𝑥Si46−𝑥) show a mono-
tonic dependence on Ga content. It was argued that the differences observed were
largely due to the Al–Al repulsion being twice as strong as the Ga–Ga repulsion.
In other words, the Al-based clathrates demonstrate a more extreme SOF behavior
in order to avoid costly Al–Al bonds. The observations and conclusions from paper
[15] have not been transferred to a general SOF model of clathrates. The results,
however, demonstrate that information from first-principles calculations provides
an efficient and accurate means to predict and rationalize ordering in these mate-
rials.

10



3
Alloy cluster expansions

3.1 Introduction
The partition function 𝒵, contains all thermodynamic information of a system To
compute 𝒵 one needs to calculate the potential energy for each possible microstate
of the system. For this to be feasible, however, one needs very efficient energy cal-
culations. To this end, the alloy CE technique provides a computationally efficient
and accurate way of calculating the energy for different microstates. In the cluster
expansion formalism the system being operated on is described by the occupation
vector 𝝈 where 𝜎𝑖 can, for a binary system, assume a value of either 0 or 1 de-
pending on if an A or B atom is on lattice point 𝑖 (Fig. 3.1). Even though the
cluster expansion acts on a perfect lattice it can still capture the contribution of
relaxations of the atoms by mapping relaxed structures onto the perfect lattice.

The remainder of the chapter is organized as follows:

• The definition of a cluster can be found in section 3.2

• The formal theory of cluster expansions can be found in section 3.3.

• The construction of a cluster expansion and how it can be seen as solving a
linear equation system can be found in section 3.4

• In section 3.5 the concept of compressive sensing is introduced. compressive
sensing (CS) are a class of algorithms that can be used to find the effective
cluster interactions (ECIs) that describe a CE by solving the linear equation
system.

11
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

= A atom = B atom

𝜎 = 0, 1, 0, 1, …

a) b)

Figure 3.1: a) A fixed lattice with numbered lattice points. b) When the lattice
points are occupied by atoms the state of the system can be described by the 𝝈
vector where 𝜎𝑖 is the occupation on site 𝑖.

• Cross-validation is introduced in section 3.6. Cross-validation is used both
to estimate the error of the obtained ECIs and can also be used to find the
best ECIs.

• An example of the procedure for constructing a cluster expansion for a simple
binary system can be found in section 3.7

3.2 Definition of a cluster
A cluster is defined as a set of lattice points, 𝜶 = {𝜎1, 𝜎2, ..., 𝜎𝑛}. A cluster is thus
associated with a cell and possible periodic boundary conditions. The order of a
cluster is defined as the number of lattice points in the cluster. A cluster of order
1 is called a singlet and order 2, 3 and 4 are called pair, triplet and quadruplet
respectively. The radius, or the size, of the cluster is defined as the average distance
of all the lattice points from the geometric center of the cluster. For a given lattice
a set of clusters can conveniently be defined as a vector of cutoffs, 𝒓cutoff. The
set of clusters will contain all clusters of order 𝑖 + 2 with a maximum interatomic
distance of less then or equal to 𝑟cutoff

𝑖 . Figure 3.3 shows the clusters with the
smallest radius of a body-centered cubic (bcc) lattice up to sixth order.
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a) b)

Figure 3.2: Two microstates of the lattice with the same 𝝈 vector. a) The atoms
sit perfectly on the underlying lattice. b) Some atoms have small displacements
away from the ideal positions.

Pair 3-body 4-body 5-body 6-body

NN 2NN 3NN Vertex
distance

Figure 3.3: Illustration of the smallest clusters up to sixth order in a bcc lattice.

Figure 3.4: Symmetrically equivalent first nearest neighbor pair clusters in a square
lattice. These can be found by taking any one of the specific decorations and
repeatedly applying a 90 degree rotation until all four equivalent clusters are found.
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3.3 Formal theory
A CE is able to represent any function of the configuration, 𝑓(𝝈) if one can con-
struct a complete orthogonal basis of functions with respect to the scalar product
[28]

⟨𝑓, 𝑔⟩ = 1
𝑀𝑁 ∑

𝝈1…,𝝈𝑀𝑁

𝑓(𝜎)𝑔(𝜎)) (3.1)

where 𝑓(𝝈) and 𝑔(𝝈) are two arbitrary functions of the configuration, 𝑀 is the
allowed number of elements and 𝑁 is the number of lattice points in 𝝈.

3.3.1 Point functions
For each lattice point 𝑝 we define the 𝑀 orthogonal point functions Θ𝑛(𝜎𝑝)

Θ𝑛(𝜎𝑝) =
⎧{
⎨{⎩

1 if 𝑛 = 0
− cos (𝜋(𝑛 + 1)𝜎𝑝/𝑀) if 𝑛 is odd
− sin (𝜋𝑛𝜎𝑝/𝑀) if 𝑛 is even.

(3.2)

It can be verified that these point functions form an orthogonal set over all possible
occupation numbers [29],

⟨Θ𝑛, Θ𝑛′⟩ =
𝑀−1
∑
𝜎𝑝=0

Θ𝑛(𝜎𝑝)Θ𝑛′(𝜎𝑝) = { 0 if 𝑛 ≠ 𝑛′

≠ 0 if 𝑛 = 𝑛′. (3.3)

For example, in a three component system (𝑀 = 3) with 𝜎𝑝 = {0, 1, 2} the possible
point functions are

Θ0(𝜎𝑖) = 1, Θ1(𝜎𝑖) = − cos 2𝜋𝜎𝑖
3 , Θ2(𝜎𝑖) = − sin 2𝜋𝜎𝑖

3 .. (3.4)

3.3.2 Orthogonal basis
With these point functions an orthogonal set of functions Π(𝑠)

𝛼 (𝝈) in the space of
the 𝑀𝑁 configurations on the lattice can be produced by generating the point
functions for all possible combinations of 𝑠 and lattice points 𝜶. So for a cluster
of lattice sites 𝜶 = {1, 2, ..., |𝜶|}, and a vector of allowed point function indices,
𝑠 = 𝑛1, 𝑛2, ..., 𝑛𝑙 the basis functions are given by,

Π(𝑠)
𝛼 (𝜎) = Θ𝑛1

(𝜎1)Θ𝑛2
(𝜎2)...Θ𝑛𝑙

(𝜎𝛼), (3.5)

and it can be verified that these form an orthogonal set[29],

⟨ Π(𝑠)
𝛼 , Π(𝑠′)

𝛽 ⟩ = 𝛿𝛼𝛽𝛿𝑠𝑠′ . (3.6)
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Since the basis functions Π(𝑠)
𝛼 form an orthogonal set we can express any function

of the configuration as
𝑓(𝜎) = ∑

𝛼
∑

𝑠
𝑓𝛼𝑠Π(𝑠)

𝛼 (𝜎). (3.7)

Since all basis functions Π(𝑠)
𝛼 have one configuration invariant component that is

equal to 1 when 𝑠 = {0, 0, ..., 0} we can exclude this term from the sum in Eq. (3.7)
to obtain

𝑓(𝜎) = 𝑓0 + ∑
𝛼

∑
𝑠

𝑓𝛼𝑠Π(𝑠)
𝛼 (𝜎). (3.8)

Finally, for practical reasons, we modify Eq. (3.8) by averaging over each distinct
cluster and point functions and multiply with the multiplicity and arrive at the
final expression for our cluster expansion function

𝑓(𝜎) = 𝑓0 + ∑
𝛼

∑
𝑠

⟨Π(𝑠)
𝛼 (𝜎)⟩

𝛼′
𝑚(𝑠)

𝛼 𝐽 (𝑠)
𝛼 . (3.9)

Here, the summation is carried out over all symmetrically distinct clusters of lattice
points. The ⟨...⟩𝛼′ function takes the average over the basis functions for all clusters
𝛼′ that are symmetry equivalent to 𝛼. 𝐽 (𝑠)

𝛼 are the ECIs, which determine a
specific cluster expansion. Finally, 𝑚(𝑠)

𝛼 is the multiplicity of cluster 𝛼 for a specific
combinations of point functions 𝒔.

3.3.3 Further considerations
As we have seen from the construction of the basis, all combinations of point
functions are required for constructing the basis. For a binary system where only
the first point function was needed the permutations of these point functions for
any cluster order are all equal. For a ternary system both the first and second
point functions are needed and thus a pair will have four different combinations
of the point functions, i.e. (1, 1), (1, 2), (2, 1) and (2, 2). As will be shown
now, not all of these permutations will result in additional parameters in the CE
due to symmetry. If our pair cluster 𝛼 = {𝜎1, 𝜎2} can be transformed under
periodic boundary conditions and the lattice translational and rotational symmetry
operations to construct the symmetrically equivalent cluster 𝛼′ = {𝜎2, 𝜎1} then
the choice of the ordering in 𝛼 = {𝜎1, 𝜎2} must produce the same contribution to
Eq. (3.9) as choosing 𝛼 = {𝜎2, 𝜎1}. Writing out the different choices we have

Π1,1
𝛼 (𝜎) = Θ1(𝜎1)Θ1(𝜎2)

Π1,2
𝛼 (𝜎) = Θ1(𝜎1)Θ2(𝜎2)

Π2,1
𝛼 (𝜎) = Θ2(𝜎1)Θ1(𝜎2)

Π2,2
𝛼 (𝜎) = Θ2(𝜎1)Θ2(𝜎2)

(3.10)
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and for 𝛼′ we get
Π1,1

𝛼 (𝜎) = Θ1(𝜎2)Θ1(𝜎1)
Π1,2

𝛼 (𝜎) = Θ1(𝜎2)Θ2(𝜎1)
Π2,1

𝛼 (𝜎) = Θ2(𝜎2)Θ1(𝜎1)
Π2,2

𝛼 (𝜎) = Θ2(𝜎2)Θ2(𝜎1).
(3.11)

The point functions basis functions (1, 1) and (2, 2) are thus symmetric in terms of
permuting the lattice points. For (1, 2) and (2, 1) there is, however, an asymmetry
and the choice of the order in the cluster 𝛼 will matter for the end result in Eq. (3.9).
The choice of ordering the lattice points in a cluster is completely arbitrary and
should not matter to the final result of the cluster expansion. To circumvent the
choice of ordering of lattice points in a cluster one instead only use the point
functions (1, 1), (1, 2) and (2, 2) for this cluster. Additionally, for the cluster basis
(1, 2) one uses both possibilities of ordering the pair. The final basis functions for
cluster 𝛼 then become the following

Π1,1
𝛼 (𝜎) = Θ1(𝜎1)Θ1(𝜎2)

Π1,2
𝛼 (𝜎) = Θ1(𝜎1)Θ2(𝜎2) + Θ1(𝜎2)Θ2(𝜎1)

Π2,2
𝛼 (𝜎) = Θ2(𝜎1)Θ2(𝜎2)

, (3.12)

where it it is apparent that the choice of the order in the cluster has no effect on its
representation in the cluster space. Note that in Eq. (3.9) the multiplicity 𝑚(1,2)

𝛼
will be twice as large as the other multiplicities.

3.3.4 Symmetrically indistinct clusters
This section describes the identification of equivalent clusters by using symmetry
operations. For the 𝑛-body cluster 𝛼 = {𝜎0, 𝜎1, .., 𝜎𝑛−1} the symmetrically equiv-
alent clusters are found by converting the lattice points into fractional positions
𝛼 = {𝒓0, 𝒓1, .., 𝒓𝑛−1}. A symmetry operation ̂𝒔 consists of a linear transformation
by a 3 × 3 matrix, ̄𝛾 and a translation 𝝉

𝒓′ = ̂𝒔𝒓 = ̄𝛾𝒓 + 𝝉. (3.13)

A lattice typically have a number of associated symmetry operations 𝑺 = ̂𝒔0, ̂𝒔1, ...,
̂𝒔𝑚−1. These symmetry operations can then be used to produce 𝑚 symmetrically

indistinct clusters where the cluster 𝑖 is given by

𝛼𝑖 = { ̂𝒔𝑖𝒓0, ̂𝒔𝑖𝒓1, .., ̂𝒔𝑖𝒓𝑛−1}. (3.14)

Additionally, depending on the periodic boundary conditions, one can also translate
all positions in a cluster with multiples of the unit cell vectors. Figure 3.4 illustrates
the set of equivalent clusters for the nearest neighbor pair.
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3.4 Construction of a cluster expansion
Equation (3.9) can represent any function of the configuration 𝑓(𝝈). The task re-
maining is in the construction of a cluster expansion is to find the ECIs. To this end,
one requires reference data in the form of a set of configurations {𝝈1, 𝝈2, ..., 𝝈𝒏}
as well as target data {𝐸1, 𝐸2, ..., 𝐸𝑛}. The sums in Eq. (3.9) can be replaced with
a dot product

𝑓(𝝈) = 𝑓0 + ∑
𝛼

∑
𝑠

⟨Π(𝑠)
𝛼 (𝜎)⟩

𝛼′
𝑚(𝑠)

𝛼 𝐽 (𝑠)
𝛼 = 𝝎(𝝈) ⋅ 𝑱, (3.15)

where

𝝎(𝝈) = {1, ⟨Π(𝑠𝛼)
𝛼1 (𝜎)⟩

𝛼′
1

𝑚(𝑠𝛼1 )
𝛼1 , … ⟨Π(𝑠′

𝛼1 )
𝛼1 (𝜎)⟩

𝛼′
1

𝑚(𝑠′
𝛼1 )

𝛼1 ,

… ⟨Π(𝑠𝛼𝑛 )
𝛼𝑛 (𝜎)⟩

𝛼′𝑛

𝑚(𝑠𝛼𝑛 )
𝛼𝑛 } ,

and 𝑱 denotes the vector of ECIs where 𝐽0 = 𝑓0. The vector 𝝎(𝝈) is commonly
called cluster vector. Note that it can sometimes be useful to exclude 𝑚(𝑠)

𝛼 from
𝝎 and let the target values 𝐸𝑖 refer to the primitive unit cell. This will ensure all
elements in 𝝎 are in the interval [−1, 1] and avoid a bias due to the number of
elements in 𝝈. Now we can cast the problem of finding the ECIs in the form of a
linear equation

⎡
⎢⎢
⎣

𝝎(𝝈1)
𝝎(𝝈2)

⋮
𝝎(𝝈𝒏)

⎤
⎥⎥
⎦

⎡
⎢⎢⎢
⎣

𝐽 (𝑠)
𝛼1

𝐽 (𝑠)
𝛼2
⋮

𝐽 (𝑠)
𝛼𝑛

⎤
⎥⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝐸1
𝐸2
⋮

𝐸𝑛

⎤
⎥⎥
⎦

(3.16)

The effective cluster interactions, i.e the 𝐽 (𝑠)
𝛼 of each cluster 𝜶, are unknown and

since the number of clusters is in principle infinite there is an infinite number
of unknown parameters to determine. Based on physical intuition we, however,
expect that physical interactions are short-ranged and few-bodied. Therefore, if
we construct our basis functions starting from singlets and geometrically small
pairs, triplets etc. the CE is expected to converge quickly to yield an acceptable
tolerance and the number of unknown parameters remains manageable.

There have also been advances in the algorithms that solve Eq. (3.16). These CS
algorithms can find the ECIs even if the problem is severely under-determined, i.e.
the number of unknowns are much larger than the number of available data points.
The choice of when to truncate is thus not so important which effectively removes
much of the “human factor“ when it comes to constructing a cluster expansion.
Solving under determined problems and how to do validation is discussed in the
following sections.
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3.5 Compressive sensing
One way to solve Eq. (3.16) when the problem is underdetermined is by taking
advantage of CS algorithms. The CS technique provides a simple and efficient way
to extract the important ECIs and compute their values in one shot [30, 31, 32].
To demonstrate CS it helps to first define the 𝑙𝑝 norm of a vector 𝑢

‖𝑢‖𝑝 = (∑
𝑖

|𝑢𝑖|𝑝)
1/𝑝

. (3.17)

In the CS method the problem is solved by searching for the solution with the
smallest 𝑙1 norm while still reproducing the results with a given accuracy

𝐽CS = arg min
𝐽

{‖𝑱‖1 ∶ ∥Π̄𝑱 − 𝑬∥2 < 𝜖} . (3.18)

Where, in the case of cluster expansions, Π̄ is the matrix of cluster vectors, 𝑱 is
the ECIs and 𝑬 is the target properties. The form in Eq. (3.18) is inconvenient
to work with and it is common practice to work with an unconstrained approach
that minimizes the 𝑙1 norm and the least squares sum of the fitting error

𝑱 = arg min
𝐽

{ 𝜇 ‖𝑱‖1 + 1
2 ∥𝑬 − Π̄𝑱∥2} , (3.19)

where the parameter 𝜇 controls the accuracy of the fit. A high value of 𝜇 leads to
sparse solution but larger prediction error and vice versa. It is, however, difficult
to efficiently implement mixed 𝑙1 and 𝑙2 minimization problems such as Eq.(3.19).

3.5.1 Split Bregman algorithm
Goldstein and Osher proposed the split Bregman algorithm which eliminates this
problem [33]. The split Bregman iteration splits the 𝑙1 norm of the solution from the
objective function and replaces it with a variable 𝒅 which then converges towards
the 𝑙1 term lim𝑘→∞(𝒅−𝜇𝑱) = 0, where 𝑘 is the number of split Bregman iterations.
To this end a least-squares 𝑙2 term is added to the objective function to ensure that
𝒅 = 𝜇𝑱

𝑱 = arg min
𝐽,𝑑

{‖𝒅‖1 + 1
2 ∥Π̄𝑱 − 𝑬∥2 + 𝜆

2 ‖𝒅 − 𝜇𝑱‖2} . (3.20)

This formulation is advantageous because the minimization involving the quadratic
form 1

2 ∥Π̄𝑱 − 𝑬∥2 does not involve any 𝑙1 terms and can be minimized efficiently
using efficient 𝑙2 minimization algorithms. The split Bregman algorithm comprises
the following steps

𝑱𝑘+1 = arg min
𝐽

{1
2 ∥Π̄𝑱 − 𝑬∥2 + 𝜆

2 ∥𝒅 𝑘 − 𝜇𝑱 − 𝒃𝑘∥2} (3.21)
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𝒅𝑘+1 = arg min
𝑑

{||𝒅||1 + 𝜆
2 ∥𝒅 − 𝜇𝑱𝑘+1 − 𝒃𝑘∥2} (3.22)

𝒃𝑘+1 = 𝒃𝑘 + 𝜇𝑱𝑘+1 − 𝒅𝑘+1 (3.23)
Where in Eq.(3.23) the residual after iteration k is added back to the residual
vector 𝒃𝑘+1 for the next iteration in style with a Bregman iteration which result
in a quicker convergence [34]. Starting from 𝒅 0 = 0, 𝒃 0 = 0 and 𝑱 0 = 0. First,
the 𝑙2 minimization in Eq.(3.21) is solved, the second step, Eq.(3.22) separates into
individual vector components and is solved by shrinkage,

𝒅𝑘+1
𝑛 = shrink(𝜇𝑱𝑘+1

𝑛 + 𝒃𝑘
𝑛, 1/𝜆) (3.24)

which is defined by

shrink(𝑦, 𝛼) ≡ sign(𝑦)max(|𝑦| − 𝛼, 0) (3.25)

Shrinkage decreases the absolute magnitude of the 𝑦 vector by 𝛼 and sets it to zero
if 𝑦 ≤ 𝛼. This procedure is then usually repeated until the 𝐽 vector has converged
within a target tolerance.

3.6 Cross-validation
When training a model such as a CE one requires a set of data points that can
be used to train and test the obtained model. Commonly the data points is split
up in a training set and a test set. The training set is the data points used as
input to optimization algorithms that solve problems similar to equation (3.18).
A training set has an associated training error defined as ∥Π̄𝑱 − 𝑬∥2 where 𝑱 is
the parameters obtained from training with the training set, 𝑬 and Π̄ is the target
property and the description matrix for the training set respectively. The test set
is data points which were not used in the training set. The test error is the 𝑙2 norm
of the prediction error of the test set. The usefulness of these different sets and
errors come in when trying to find a good model. For example, if for a particular
value of 𝜇, the training error is zero but the test error is high, the trained model is
excellent at predicting already seen data but are unable to predict new and unseen
data. This is called overfitting and must be avoided. Another type of overfitting is
when one instead find values of 𝜇 that finds the minimum test error. Even though
the test set is not part of the training set, information about the training set still
seeps into the training procedure since the parameters obtained in the training
are optimal for the specific test set. Cross-validation (CV) is a way to overcome
both these types of overfitting both when estimating the error and when finding a
model. In CV the training and tests sets do not remain fixed which reduces the risk
of overfitting to a specific training or testing set. The use of CV scores is widely
accepted as the quantity for determining the accuracy of the CE.
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𝐸1

𝐸2

𝐸𝑛

𝐽1

𝐽2

𝐽𝑛1     1      1        1         1          1         1      

1 1/9 -1/9 -1/9 -1/3-1/9 1/3

1 -1/3 1/9 -1/9 1/9 -1/3 -1/3

Figure 3.5: Cluster expansions can be constructed by solving a set of linear equation
systems.

3.6.1 Leave-one-out cross validation
One type of cross validation is the leave-one-out CV (LOO-CV), which is defined
as

(CV)2 = 1
𝑁

𝑁
∑
𝑛=1

( ̂𝐸(𝑛) − 𝐸𝑛)2, (3.26)

where 𝐸𝑛 is the calculated energy for structure 𝑛 and ̂𝐸(𝑛) is the predicted value
of the energy of structure 𝑛 as calculated with the CE fit with the (𝑁 − 1) other
structures. This method requires making 𝑁 cluster expansions so it can be compu-
tationally expensive. When the training curve is steep and the number of available
structures are few the LOO-CV can be a good estimator compared to other es-
timators which splits the available structures more and hence over estimate the
error.

3.6.2 k-fold cross validation
Another commonly used estimator for the error are k-folds cross validations. Here,
the data is randomly divided up into k evenly sized subsets. One of the k subsets
will be left out for validation and the remaining k-1 subsets will be used for training.
This is repeated for all k subsets and the final cross validation score is the average
validation for the k validation scores. Note that k-fold validation reduces to LOO-
CV when k is the number of available data points.
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3.7 Cluster expansion for a binary system
To demonstrate the formalism developed in this chapter we will now explicitly de-
scribe the construction of a CE for simple binary system. In a binary system only
one point function will be used in the cluster functions, Θ1(𝜎𝑝) = − cos (𝜋𝜎𝑝).
Only two occupation numbers are needed as well, 0 and 1, which have a corre-
sponding point function value of −1 and +1 respectively. Hence a binary cluster
expansions share a lot of similarities with the Ising model. Next, make the choice
that white and black atoms are to be indicated by occupation 0 and 1 respectively.
The average over symmetrically distinct clusters 𝛼′ in equation (3.9) will for the
singlet cluster be

⟨Π𝛼=singlet(𝝈)⟩
𝛼′ =

𝑁𝝈𝛼′=(1) − 𝑁𝝈𝛼′=(0)
𝑁𝝈𝛼′=(0∥1)

. (3.27)

For a pair the averages will become

⟨Π𝛼=pair(𝝈)⟩
𝛼′ =

𝑁𝝈𝛼′=(0,0) + 𝑁𝝈𝛼′=(1,1) − 𝑁𝝈𝛼′=(0,1)
𝑁𝝈𝛼′=(0,0∥0,1∥1,1)

, (3.28)

where 𝑁𝝈𝛼′=(𝑖,𝑗) is the number of equivalent clusters that have occupation (𝑖, 𝑗)
or (𝑗, 𝑖). To calculate values such as 𝑁𝛼′=(0,0) a summation is done over all index
pairs (𝑖, 𝑗) that are symmetrically equivalent. Hence, the construction of the cluster
vector, 𝝎(𝝈), is obtained by summation and averaging of the cluster functions.
All the 𝜶 can be precomputed so a summation can be performed very efficiently
with a computer program. Then all available configurations can be mapped to
cluster vectors, 𝝎, which can constitute different training and test sets (Fig. 3.5) as
described in the previous sections. Once a suitable value for the fitting parameter
𝜇 have been found, by using various cross validation techniques, the final set of
ECIs, 𝑱final, can be obtained. The construction of the cluster expansion is now
complete and the expanded property can for a configuration 𝝈 be computed very
efficiently with 𝝎(𝝈)𝑱final.
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4
Monte Carlo simulations

4.1 Monte Carlo integration
Monte Carlo (MC) methods represent a broad class of computer algorithms that
are based on the use of random numbers to sample high-dimensional functions.
MC integration is one example of such a technique where the average value of an
integral

𝐼 = ∫
1

0
𝑑𝑥𝑓(𝑥) = ⟨𝑓(𝑥)⟩ (4.1)

can be approximated by evaluating 𝑓(𝑥) at 𝑁 points 𝑥𝑖 chosen at random with
uniform probability over the interval [0, 1]. The mean value becomes

𝐼𝑁 = ⟨𝑓⟩ = 1
𝑁

𝑁
∑
𝑖=1

𝑓(𝑥𝑖) = 1
𝑁

𝑁
∑
𝑖=1

𝑓𝑖, (4.2)

and the variance
𝜎2

𝑓 = ⟨𝑓2⟩ − ⟨𝑓⟩2 . (4.3)

Such that the integral is approximated by

𝐼 = 𝐼𝑁 ± 𝜎𝑓√
𝑁

. (4.4)

By increasing the number of points 𝑁 the error of the approximation becomes
smaller and as 𝑁 → ∞ one approaches the correct value of 𝐼 .
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4.2 Importance sampling
An alternative approach to decreasing the error is to choose the points 𝑥𝑖 based
on the magnitude of 𝑓(𝑥). Consider a probability density function 𝑝(𝑥) > 0 that
is positive and normalized to 1 on [0, 1]. We can rewrite equation (4.1) to obtain

𝐼 = ∫
1

0
𝑑𝑥𝑓(𝑥) = ∫

1

0
𝑑𝑥𝑓(𝑥)

𝑝(𝑥)𝑝(𝑥) = ∫
1

0
𝑑𝑥𝑔(𝑥) = ⟨𝑔(𝑥)⟩𝑝 , (4.5)

where 𝑔(𝑥) = 𝑓(𝑥)/𝑝(𝑥) and the notation ⟨...⟩𝑝 signifies that the average is obtained
from sampling values of 𝑥 according to 𝑝(𝑥). The mean value of the integral can
then be written as

𝐼𝑁 = ⟨𝑓⟩ = 1
𝑁

𝑁
∑
𝑖=1

𝑔𝑖 (4.6)

and 𝐼 can be approximated with

𝐼 = 𝐼𝑁 ± 𝜎𝑔√
𝑁

. (4.7)

Assume now that 𝑝(𝑥) follows the approximate behavior of 𝑓(𝑥), i.e. 𝑝(𝑥) has high
probability density when |𝑓(𝑥)| is large and vice versa. Then 𝑔(𝑥) will become a
smoother function than 𝑓(𝑥) and 𝜎𝑔 < 𝜎𝑓 . This approach of choosing values of 𝑥
where |𝑓(𝑥)| is large is called importance sampling.

4.3 Thermodynamic integration on the lattice
Now, instead of approximating a one-dimensional integral let us consider a binary
atomic lattice 𝝈 at a certain temperature 𝑇 and find the average of some quantity
𝐴 that depends on the configuration. Let the atomic lattice vector 𝝈 have dimen-
sionality 𝑁 , where 𝑁 is the number of lattice points and the elements of the vector
can assume values of either 0 or 1. The average value is then

⟨𝐴⟩ = 1
𝑀𝑁 ∑

all possible 𝝈
𝐴(𝝈)𝑃(𝝈). (4.8)

The probability of finding the system at 𝝈 is 𝑃(𝝈), which is defined as

𝑃(𝝈) = exp (−𝑈(𝝈)/𝑘𝐵𝑇 )
∑all possible 𝝈′ exp (−𝑈(𝝈′)/𝑘𝐵𝑇 ), (4.9)

where 𝑈(𝝈) is the internal energy of the configuration and 𝑘𝐵 is the Boltzmann
constant. Carrying out the sum in equation (4.8) is unfortunately impossible to
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4.4. The Metropolis algorithm

carry out exactly. For illustration, consider that for a system with 100 sites the
number of possible configurations, ignoring symmetry, is 2100 ≈ 1030. Also assume
that each evaluation of 𝐴(𝝈) requires only one floating point operation (FLOP).
The time to calculate the sum by using the largest computer cluster available 1

would still require around 106 times longer than the age of the universe. This
demonstrates the necessity to find efficient methods to solve to Eq. (4.8).

4.4 The Metropolis algorithm
A naive approach to approximate Eq. (4.8) using a MC approach is to generate
a large number of different configurations, 𝝈, where each element is randomly
assigned a value of either 0 or 1, and estimating the average. This approach
would, however, lead to very slow convergence due the probability function 𝑃(𝝈)
commonly being a very sharp function, which would lead to 𝑃(𝝈) being close to
zero for most choices of 𝝈. A more prudent approach would be to try to apply
the importance sampling approach introduced earlier. A direct implementation of
importance sampling is difficult, however, since it is not obvious how to efficiently
generate configurations 𝝈 according to a suitable probability. Instead, an efficient
way to generate configurations is to implement a so-called Markov chain, where
each new configuration generated is based on a probability ratio that depends on
the previous configuration.

The first adaptation of such a approach was introduced in 1953 by Metropolis et
al. to determine the equation of state for a hard sphere liquid [35]. It is based on the
understanding that thermodynamic averaging only requires knowledge of relative
rather than absolute probabilities such as in Eq. (4.8). It uses a Markov chain to
generate configurations that are more important by rejecting configurations that
are unlikely, similar to importance sampling.

4.4.1 Markov chain Monte Carlo
A Markov chain is a stochastic process, in which a system undergoes transitions
from one state to another. The Markov process is characterized by a lack of memory
of where it has been. The future of the chain depends solely on the current state.
The transition probability is given by a transition matrix

𝑇 (𝑋 → 𝑋′) ≡ 𝑇𝑋𝑋′ , (4.10)

for a transition from state 𝑋 to state 𝑋′. The transition probability has to satisfy

0 ≤ 𝑇𝑋𝑋′ ≤ 1 (4.11)
1The Sunway TaihuLight in China is currently the largest non-distributed computer cluster

with a peak performance at about 125 PFLOPS.
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Chapter 4. Monte Carlo simulations

and the probability has to be normalized

∑
𝑋′

𝑇𝑋𝑋′ = 1. (4.12)

The task is to generate a Markov chain of configurations such that they have a
distribution proportional to the Boltzmann factor and this distribution should be
independent on the position of the chain and of the initial configuration. The
Markov chain can exhibit these properties under certain conditions, at least for a
sufficiently long time so that the configuration can loose memory of its initial state.
These conditions are:

• The Markov chain needs to be irreducible, that is every configuration included
in the ensemble should be accessible from every other configuration within a
finite number of steps.

• There should be no periodicity. Periodicity means that it is not possible to
revisit a configuration except after 𝑡 = 𝑛𝑘 steps, 𝑛 = 1, 2, 3 … , where 𝑘 is
fixed.

A Markov chain that satisfies these conditions is called ergodic. If the Markov
chain is ergodic it converges to a unique stationary distribution. The transition
probability needs to be chosen such that the stationary distribution is the desired
distribution. To assure this, consider the stationary distribution 𝜌(𝑋); one can
also introduce a new function 𝜌(𝑋, 𝑡), which gives the probability of finding config-
uration 𝑋 after 𝑡 Markov steps, which for an ergodic chain becomes independent
of 𝑡 if 𝑡 is large. This function can change from one step to another by

• going from 𝑋 at step 𝑡 to 𝑋′ at 𝑡 + 1 leading to a decrease in 𝜌(𝑋)
• going from 𝑋′ at step 𝑡 to 𝑋 at 𝑡 + 1 leading to an increase in 𝜌(𝑋)

that can be summarized with

𝜌(𝑋, 𝑡+1)−𝜌(𝑋, 𝑡) = − ∑
𝑋′

𝑇 (𝑋 → 𝑋′)𝜌(𝑋, 𝑡)+∑
𝑋′

𝑇 (𝑋′ → 𝑋)𝜌(𝑋′, 𝑡). (4.13)

This equation is called the master equation. The stationary solution of this equa-
tion is found by requiring 𝜌(𝑋, 𝑡 + 1) = 𝜌(𝑋, 𝑡) so we have

∑
𝑋′

𝑇 (𝑋 → 𝑋′)𝜌(𝑋, 𝑡) = ∑
𝑋′

𝑇 (𝑋′ → 𝑋)𝜌(𝑋′, 𝑡). (4.14)

Leaving out the 𝑡-dependence, which is allowed due to the “memory loss” of a
Markov chain, yields

𝑇 (𝑋 → 𝑋′)𝜌(𝑋) = 𝑇 (𝑋′ → 𝑋)𝜌(𝑋′), (4.15)
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which is known as the condition of detailed balance. This means that in equilibrium
the average number of steps that results in the system leaving state 𝑋 must be
exactly equal to the number of steps from all other states 𝑋′ to 𝑋. This means
that 𝜌(𝑋) and 𝜌(𝑋′) do not change. Since this is true for all pairs of 𝑋 and 𝑋′

the probability distributions will remain stationary. Reformulating the detailed
balance condition with the transition probability in this form yields

𝑇 (𝑋 → 𝑋′) = 𝜔𝑋𝑋′𝐴𝑋𝑋′ , (4.16)
where 𝜔𝑋𝑋′ is the probability for going from state 𝑋 to state 𝑋′ and is symmetric
𝜔𝑋𝑋′ = 𝜔𝑋′𝑋. 𝐴𝑋𝑋′ , which must lie between 0 and 1, is the acceptance probability
for actually committing the change. The detailed balance condition can then be
expressed as

𝐴𝑋𝑋′

𝐴𝑋′𝑋
= 𝜌(𝑋′)

𝜌(𝑋) . (4.17)

If the sought after distribution is the Boltzmann distribution, 𝜌(𝑋) = exp −𝛽𝑈(𝑋),
there are a number of choices for the acceptance probability 𝐴𝑋𝑋′ that will ac-
complish this. The choice of Metropolis et al. was

{𝐴𝑋𝑋′ = exp 𝛽 [𝑈(𝑋′) − 𝑈(𝑋)] if 𝜌(𝑋′) < 𝜌(𝑋)
𝐴𝑋𝑋′ = 1 if 𝜌(𝑋′) ≥ 𝜌(𝑋). (4.18)

The Metropolis algorithm can now be formulated as follows:

• Starting from a state 𝑋, make a small trial move into a new state 𝑋′ with a
probability of 𝜔𝑋𝑋′ .

• Compare the weights of the distribution for the different states 𝜌(𝑋) and
𝜌(𝑋′). 𝐴𝑋𝑋′ , the acceptance probability, is chosen equal to 1 if 𝜌(𝑋′) >
𝜌(𝑋) else it is chosen to be equal to 𝜌(𝑋′)/𝜌(𝑋).

• The new state 𝑋′ is accepted with probability 𝐴𝑋𝑋′ (the system moves from
𝑋 to 𝑋′) and is rejected with probability 1 − 𝐴𝑋𝑋′ (the system remains in
state 𝑋). To decide if a state is accepted or not a random number is generated
uniformly in the range [0, 1] and compared to the acceptance probability. If
the random number is larger than the acceptance probability the trial move
is accepted.

Since each trial move is only a small change in the configuration there is an inherent
correlation between the states 𝑋 and 𝑋′. There is thus a correlation length 𝑠 for
the Markov chain and it is necessary to carry out 𝑠 trial steps before reaching
a new uncorrelated configuration. One MC step (or cycle) is defined as 𝑁 trial
steps, where 𝑁 is the number of particles which is commonly used to approximate
𝑠. There is also a need to equilibrate the initial configuration meaning that it is
necessary to run the Metropolis algorithm before the actual sampling commences.
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4.5 Probability of a state
The sampling procedure described in the previous section requires the probability
ratio of two microstates. Let us consider again the rigid binary lattice introduced
above. Each possible combination of zeros and ones on the 𝝈 vector describes
a microstate of the system. Consider the case where this system is in thermal
contact with a heat reservoir with constant temperature and an infinitely large
heat capacity, i.e. we can add and remove as much energy as necessary without
affecting the temperature of the reservoir. Since the composition of the system
might change there can also be an exchange of atoms between system and reservoir.

For an isolated system, all possible microstates are equally probable. The system
of 𝑁 sites considered here is, however, not isolated since it is in contact with
a heat reservoir. Rather the joint system and the heat reservoir form an isolated
system. The joint microstates of system and heat reservoir will therefore be equally
probable.

Consider two microstates 𝑠1 and 𝑠2 with a corresponding number of accessible
states Ω𝑅(𝑠1) and Ω𝑅(𝑠2) for each respective reservoir. At this point there is no
way of telling what the actual probabilities of the different states are since the
number of accessible states associated with the heat reservoirs is unknown. All we
know at this point is that the probability of a state is proportional to the total
number of accessible microstates, i.e. 𝑃(𝑠1) ∝ Ω𝑅(𝑠1). Consider now the ratio of
probabilities

𝑃(𝑠1)
𝑃 (𝑠2) = Ω𝑅(𝑠1)

Ω𝑅(𝑠2) . (4.19)

Rewriting this equation by using the definition of entropy 𝑆 = 𝑘𝐵 ln Ω one obtains

𝑃(𝑠1)
𝑃 (𝑠2) = 𝑒𝑆𝑅(𝑠1)/𝑘𝐵

𝑒𝑆𝑅(𝑠2)/𝑘𝐵
= 𝑒[𝑆𝑅(𝑠1)−𝑆𝑅(𝑠2)]/𝑘𝐵. (4.20)

Now the ratio of probabilities depends on the change of entropy in the reservoir
when going from state 𝑠1 to state 𝑠2. The change in the entropy of the reservoirs
should be small since the system is small compared to the reservoir. Then we can
use the thermodynamic identity

𝑑𝑆 = 1
𝑇 (d𝑈 + 𝑃d𝑉 − 𝜇d𝑁) . (4.21)

Since all ensembles discussed in this thesis have constant volume 𝑉 and fixed
number of total atoms (or sites) 𝑁 , the expression can be simplified to 𝑑𝑆 = 𝑆(𝑠2)−
𝑆(𝑠1) = 1

𝑇 (d𝑈 − Δ𝜇Δ𝑁𝐴) = − (𝐸(𝑠2) − 𝐸(𝑠1) − Δ𝜇(𝑁𝐴(𝑠2) − 𝑁𝐴(𝑠1))) , where
𝐸 is the internal energy of the system, 𝑁𝐴(𝑠2) and 𝑁𝐴(𝑠1) are the numbers of 𝐴
atoms in system 𝑠2 and 𝑠1, respectively, and Δ𝜇 is the chemical potential difference
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between species 𝐴 and 𝐵
𝑃(𝑠1)
𝑃 (𝑠2) = 𝑒(𝐸(𝑠2)−𝐸(𝑠1)−∆𝜇∆𝑁𝐴)/𝑘𝐵𝑇 . (4.22)

As was shown in section 4.5 this ratio of probabilities is all that is needed to carry
out a Metropolis MC simulation.

For the sake of completeness, however, let us determine the actual probability of
the microstate. First we separate all terms in Eq. (4.22) related to 𝑠1 to one side
and terms related to 𝑠2 to the other side,

𝑃(𝑠1)𝑒(𝐸(𝑠1)−∆𝜇𝑁𝐴(𝑠1))/𝑘𝐵𝑇 = 𝑃(𝑠2)𝑒(𝐸(𝑠2)−∆𝜇𝑁𝐴(𝑠2))/𝑘𝐵𝑇 . (4.23)

The right hand side does not depend on state 𝑠1 and vice versa and must therefore
be equal to a constant

𝑃(𝑠1)𝑒(𝐸(𝑠1)−∆𝜇𝑁𝐴(𝑠1))/𝑘𝐵𝑇 = 𝐴 (4.24)

and the probability becomes

𝑃(𝑠1) = 𝐴𝑒−(𝐸(𝑠1)+∆𝜇𝑁𝐴(𝑠1))/𝑘𝐵𝑇 . (4.25)

Furthermore, the probabilities of all states must sum up to 1

∑
𝑠𝑖

𝑃(𝑠𝑖) = 𝐴 ∑
𝑠𝑖

𝑒−(𝐸(𝑠𝑖)+∆𝜇𝑁𝐴(𝑠1))/𝑘𝐵𝑇 = 1, (4.26)

which leads to
𝐴 = 1

∑𝑠𝑖
𝑒−(𝐸(𝑠𝑖)+∆𝜇𝑁𝐴(𝑠𝑖)))/𝑘𝐵𝑇 . (4.27)

Thus we see that the normalization constant 𝐴 is equal to 1/𝒵 where 𝒵 is the
partition function and the probability of state 𝑠1 becomes

𝑃(𝑠1) = 𝑒−(𝐸(𝑠1)+∆𝜇𝑁𝐴(𝑠1))/𝑘𝐵𝑇

𝒵 = 𝑒−(𝐸(𝑠1)+∆𝜇𝑁𝐴(𝑠1))/𝑘𝐵𝑇

∑𝑠𝑖
𝑒−(𝐸(𝑠𝑖)+∆𝜇𝑁𝐴(𝑠𝑖)))/𝑘𝐵𝑇 . (4.28)

4.6 The canonical ensemble
In the canonical ensemble the volume 𝑉 , the temperature, 𝑇 , and the number of
atoms for each species 𝑁𝑖 are fixed. Equation (4.28) is then simplified so that the
probability of a state only depends on its energy,

𝑃canonical(𝑠1) = 𝑒−𝐸(𝑠1)/𝑘𝐵𝑇

∑𝑠𝑖
𝑒−𝐸(𝑠𝑖)/𝑘𝐵𝑇 . (4.29)
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The probability ratio used in the MC simulation becomes
𝑃canonical(𝑠1)
𝑃canonical(𝑠2) = 𝑒(𝐸(𝑠2)−𝐸(𝑠1))/𝑘𝐵𝑇 . (4.30)

Since the number of atoms of each kind is kept fixed the only configurations
being explored in the MC simulations correspond to a re-ordering of atoms from
the initial configuration. Therefore in lattice based models trial steps consist of
swapping the species between two sites.

4.7 Semi-grand canonical ensemble
In the semi-grand canonical (SGC) ensemble the volume 𝑉 , the temperature 𝑇 ,
the chemical potential difference(s) Δ𝜇𝑖 and the number of sites 𝑁 are fixed but
the composition is allowed to change. Equation (4.28) is then kept as is and the
probability of a state becomes (for a binary system)

𝑃SGC(𝑠1) = 𝑒−(𝐸(𝑠1)+∆𝜇𝑁𝐴(𝑠1))/𝑘𝐵𝑇

∑𝑠𝑖
𝑒−(𝐸(𝑠𝑖)+∆𝜇𝑁𝐴(𝑠𝑖)))/𝑘𝐵𝑇 . (4.31)

The probability ratio used in the MC simulation becomes
𝑃SGC(𝑠1)
𝑃SGC(𝑠2) = 𝑒(𝐸(𝑠2)−𝐸(𝑠1)−∆𝜇∆𝑁𝐴)/𝑘𝐵𝑇 , (4.32)

In the SGC ensemble the concentrations (yet not the total number of sites) are
allowed to change. Therefore the trial step consists of selecting a site and changing
its occupation to another species.

4.8 Validity of lattice based models
The partition function that has been discussed in this chapter only considers the
summation over occupations 𝝈. The CE technique namely only considers the occu-
pation vector and not displacements of the atoms. For real materials, however, the
atoms also undergo vibrations around their equilibrium positions. This displacive
degree of freedom is thus neglected in the CE, yet it can play a role in the actual
value of a thermodynamical average. This might raise concerns about the validity
of the calculated thermodynamical averages using CEs to represent the Hamilto-
nian in MC simulations. This section therefore considers the approximations made
when using a CE in MC simulations for calculating thermodynamical averages.

In the canonical ensemble (Sect. 4.6) the partition function is defined as

𝒵(𝑁, 𝑉 , 𝑇 ) = ∑
all states j

exp [−𝛽𝐸𝑗(𝑁, 𝑉 , 𝑇 )] . (4.33)
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The partition function involves a sum over all microstates 𝑗 of the system, each of
which can be split up into one part consisting of the ordering of the atoms on a
lattice and one part consisting of all possible displacements of the atoms for that
specific ordering

𝒵(𝑁, 𝑉 , 𝑇 ) = ∑
{𝝈}

∑
{𝜈∈𝝈}

exp [−𝛽𝐸 (𝝈, 𝜈, 𝑁, 𝑉 , 𝑇 )] , (4.34)

where {𝝈} is the set of all possible 𝝈 with constant 𝑁 and {𝜈 ∈ 𝝈} is the set of
all displacements of the atoms which project on 𝝈. Thus {𝜈 ∈ 𝝈} represents a
subspace of the phase space of the original ensemble. The partition function can
then be written as

𝒵(𝑁, 𝑉 , 𝑇 ) = ∑
{𝝈}

Λ(𝝈, 𝑁, 𝑉 , 𝑇 ), (4.35)

with
Λ(𝝈, 𝑁, 𝑉 , 𝑇 ) = ∑

{𝜈∈𝝈}
exp [−𝛽𝐸 (𝝈, 𝜈, 𝑁, 𝑉 , 𝑇 )] . (4.36)

In other words Λ(𝝈, 𝑁, 𝑉 , 𝑇 ) is the partition function for the subspace of the full
ensemble for which all microstates project to the same configuration 𝝈. We can
associate a free energy, 𝐻(𝝈, 𝑁, 𝑉 , 𝑇 ), to this partition function as

𝐻(𝝈, 𝑁, 𝑉 , 𝑇 ) = − 1
𝛽 ln Λ(𝝈, 𝑁, 𝑉 , 𝑇 ). (4.37)

The canonical partition function can then be written as

𝒵(𝑁, 𝑉 , 𝑇 ) = ∑
{𝝈}

exp (−𝛽𝐻(𝝈, 𝑁, 𝑉 , 𝑇 )) . (4.38)

Consider now the Hamiltonian 𝐻(𝝈, 𝜈, 𝑁, 𝑉 , 𝑇 ), which represents the free energy
of a system, in which there are only displacive degrees of freedom. For a given 𝝈
it can be expressed as

𝐻(𝝈, 𝜈, 𝑁, 𝑉 , 𝑇 ) = 𝑈0(𝝈, 𝑁, 𝑉 , 𝑇 ) + 𝐹ex(𝝈, 𝜈, 𝑁, 𝑉 , 𝑇 ), (4.39)

where 𝑈0 is the energy of the static configuration in the {𝜈 ∈ 𝝈} subspace with
the lowest energy, i.e. the fully relaxed configuration and 𝐹ex will then contain the
remaining part of the free energy. The probability of a state described by 𝝈 is then

𝑃(𝝈, 𝑁, 𝑉 , 𝑇 ) = exp (−𝛽 [𝑈0(𝝈, 𝑁, 𝑉 , 𝑇 ) + 𝐹ex(𝝈, 𝑁, 𝑉 , 𝑇 )])
𝒵(𝑁, 𝑉 , 𝑇 ) . (4.40)
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As it has been shown in this chapter, in order to use 𝑃 for calculating thermody-
namical averages one needs to evaluate ratios of probabilities 𝑃 ,

𝑃 (𝝈1, 𝑁, 𝑉 , 𝑇 )
𝑃 (𝝈2, 𝑁, 𝑉 , 𝑇 ) = exp (−𝛽 [𝑈0(𝝈1, 𝑁, 𝑉 , 𝑇 ) + 𝐹ex(𝝈1, 𝑁, 𝑉 , 𝑇 )])

exp (−𝛽 [𝑈0(𝝈2, 𝑁, 𝑉 , 𝑇 ) + 𝐹ex(𝝈2, 𝑁, 𝑉 , 𝑇 )]) . (4.41)

𝑈0 (𝝈, 𝑁, 𝑉 , 𝑇 ) can now be approximated by taking the zero Kelvin value, which
effectively is to approximate the Fermi-Dirac distribution by a step function [36].
Furthermore, in practice it is expected that 𝐹ex is dominated by the vibrational
free energy. A common approximation is therefore to remove the dependency of 𝝈
on 𝐹ex and also assume that 𝐹ex is a linear combination of the composition [36]

𝐹ex(𝑁, 𝑉 , 𝑇 ) = 𝑁𝑎𝐹ex,𝐴(𝑇 ) + 𝑁𝑏𝐹ex,𝐵(𝑇 ). (4.42)

If 𝐹ex is linear in the composition then it can be completely removed in the canonical
ensemble since it cancels out in the probability ratio. For the SGC ensemble it
can also for many purposes be left out completely since a linear combination of
concentration is just a shift of the chemical potential by a constant. The value of
𝑈0(𝝈, 𝑁, 𝑉 ) can now be calculated with a CE that maps 𝝈 to the fully relaxed
configuration. Finally 𝑃 reduces to

𝑃(𝝈, 𝑁, 𝑉 , 𝑇 ) = 1
𝒵𝑒−𝛽𝑈0(𝝈,𝑁,𝑉 ). (4.43)

A thermodynamic average of a property 𝐴(𝝈, 𝜈) at 𝑁 , 𝑉 , 𝑇 is then approximated
by the value of 𝐴 for the fully relaxed configuration. This means that even if the
cluster expansion acts on the perfect lattice 𝝈, relaxation effects are still taken into
consideration when calculating ⟨𝐴⟩. Yet, any vibrational or temperature depen-
dence of a property is largely neglected in this approach. If vibrational effects are
important there are ways to incorporate these effects into a MC by also including
the vibrational part of the free energy in the CE [37].
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5
Summary of the papers

5.1 Paper I
Paper I focused on the inorganic clathrate Ba8Ga16Ge30. A CE was constructed to
represent the energies of fully relaxed structures obtained from DFT calculations
and subsequently sampled by MC simulations, from which the chemical order as
a function of temperature was obtained, specifically the SOFs. Representative
configurations for specific temperatures were extracted from the simulations and
further analyzed with respect to their electrical transport properties using DFT

Figure 5.1: Schematic illustration of the methods employed in paper I. DFT: den-
sity functional theory; MC: Monte Carlo simulations; CE: alloy cluster expansion;
BTT: Boltzmann transport theory.
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Figure 5.2: Site occupancy factors in intermetallic clathrates as a function of com-
position for Wyckoff sites 6𝑐 (red), 16𝑖 (blue), and 24𝑘 (orange). Solid lines show
simulation results obtained at 700 K whereas the shaded regions indicate a variation
by ± 100 K.

and Boltzmann transport theory (BTT) calculations. This combination of CE and
MC simulations as well as DFT and BTT allowed us to obtain the thermoelectric
power factor as a function of temperature (Fig. 5.1). The approach was validated
by comparing the SOFs and transport coefficients with experimental data. Another
CE was then constructed to represent the power factor as a function of the chemical
configuration and was employed to determine the chemical ordering that maximized
the power factor. The optimized structure yielded a power factor increase by more
than 60% that was achieved by reducing the number of trivalent species on the 6𝑐
Wyckoff site. Hence, the approach developed in this paper demonstrates the use
of CEs for structure optimization.

5.2 Paper II
Paper II addressed the chemical ordering in the clathrate systems Ba8Ga𝑥Ge46−𝑥,
Ba8Ga𝑥Si46−𝑥, Ba8Al𝑥Ge46−𝑥, and Ba8Al𝑥Si46−𝑥 as a function of composition
(Fig. 5.2). In particular Al-based clathrates were found to display an extreme
variation of SOFs as function of composition (Fig. 5.2c,d). The ordering in these
materials can significantly impact the material properties, see e.g., paper I. Hence,
an understanding of the ordering is crucial in order to understand and optimize
these materials. To that end, in paper II for each system a CE was constructed
based on the energies of fully relaxed structures obtained from DFT calculations
and the SOFs were obtained from MC simulations. The simulated SOFs agree very
well with experimental data (Fig. 5.2), which allowed us to clarify variations and
trends in the experimental data. In particular the CE-MC simulations provide an
explanation of the extreme variations of the SOFs in Al-based clathrates.
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ABSTRACT: Many thermoelectric materials are multicomponent systems
that exhibit chemical ordering, which can affect both thermodynamic and
transport properties. Here, we address the coupling between order and
thermoelectric performance in the case of a prototypical inorganic clathrate
(Ba8Ga16Ge30) using a combination of density functional and Boltzmann
transport theory as well as alloy cluster expansions and Monte Carlo
simulations. The calculations describe the experimentally observed site
occupancy factors and reproduce experimental data for the transport
coefficients. By inverting the cluster expansion, we demonstrate that the
power factor can be increased by more than 60% for certain chemical ordering
patterns that involve reducing the number of the trivalent species on the 6c
Wyckoff site. This enhancement is traced to specific features of the electronic
band structure. The approach taken in the present work can be readily adapted
to other materials and enables a very general form of band structure
engineering. In this fashion, it can guide the computational design of compounds with optimal transport properties.

1. INTRODUCTION

Thermoelectric materials allow one to extract electrical currents
from thermal gradients and vice versa.1,2 They have found
applications in various areas including, for example, power
generation in remote locations, waste heat recuperation, and
active cooling. The thermodynamic efficiency of the conversion
process is quantified by the thermoelectric figure of merit zT.
The latter depends on the Seebeck coefficient S, which
measures the coupling strength between a thermal gradient
and the generated potential difference, the electrical con-
ductivity σ as well as the thermal conductivity κ according to

σ κ=zT TS /2 (1)

The S2σ term in the enumerator is known as the thermoelectric
power factor.3 While in efforts to increase zT it has received
relatively less attention than the thermal conductivity κ,4−7

several strategies for its enhancement have been proposed. The
key challenge is that S and σ are anticorrelated insofar as the
Seebeck coefficient usually decreases with carrier concentration,
whereas the electrical conductivity increases.3 To mitigate this
situation, Hicks and Dresselhaus suggested to reduce
dimensionality by means of quantum well structures,8,9 while
Mahan and Sofo showed conceptually that optimal conditions
are obtained for a very narrow distribution of states with high
group velocities.10 These ideas were in fact later realized, for
example., in the form of nanostructuring,11−13 which also is
useful for reducing the thermal conductivity, resonant levels,3

and band structure engineering.14−16 It is also worthwhile
noting the extremely high power factors that were achieved at
low temperatures in FeSb2.

17,18 They have been attributed to

strong electronic correlation resulting from the interplay
between localization and partially occupied states.
While most of the aforementioned approaches have been

devised in the context of “simple” lattice structures, many
thermoelectric materials including skutterudites, inorganic
clathrates as well as other Zintl compounds, and half-Heusler
alloys2 are multicomponent systems that exhibit some form of
chemical order. Here, using the prototypical inorganic
clathrate19,20 Ba8Ga16Ge30 (Figure 1) as an example, we
demonstrate that the power factor can be enhanced by more
than 60% by optimizing the chemical order. To this end, we
first resolve the coupling between the chemical order and
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Figure 1. Crystal structure of type I clathrates. The guest species (Ba)
occupies Wyckoff sites of type 2a and 6d, while the host species (Ga,
Ge) occupy Wyckoff sites of type 6c, 16i, and 24k.
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transport properties, in particular the power factor, and we then
employ an inverse design approach to identify the structure that
maximizes the power factor. This approach yields a clear
guideline for maximizing the power factor by structural
optimization that we anticipate to be in principle transferable
to other inorganic clathrates.
In this work, we employ a combination of density functional

theory (DFT) and Boltzmann transport theory (BTT)
calculations with alloy cluster expansions (CE) and Monte
Carlo (MC) simulations (Figure 2). This approach is directly

applicable to other materials that exhibit a variable chemical
order. It thereby opens up the avenue for a more controlled and
systematic design of structures with optimal transport proper-
ties that is not limited to thermoelectric materials.
The remainder of the paper is organized as follows. In the

following section, we construct a model for the chemical order
based on electronic structure calculations and describe the
variation of the site occupancy factors with temperature. Using
configurations that are representative for the chemical order at
different temperatures, we then analyze the transport properties
and construct a model that maps ordering patterns to the
power factor at 900 K. This model is subsequently employed to
determine the chemical ordering that maximizes the power
factor.

2. CALCULATION METHODS
2.1. Chemical Ordering. Density functional theory (DFT)

calculations were carried out using the projector augmented
wave method21,22 as implemented in the Vienna ab initio
simulation package.23,24 Exchange−correlation effects were
treated within the generalized gradient approximation as
parametrized by Perdew, Burke, and Ernzerhof (PBE).25 A
set of 200 structures based on the 54-atom primitive unit cell
was created by randomly assigning Ga and Ge atoms to
different Wyckoff sites that comprise the host structure. A
further set of 100 structures was created in the same fashion but
subject to the condition that Ga−Ga first-nearest neighbors
were disallowed. For each structure, both the ionic positions
and the cell metric were fully relaxed until all atomic forces
were less than 10 meV/Å and absolute stresses below 0.1 kbar.
In these calculations, the Brillouin zone was sampled using a Γ-
centered 3 × 3 × 3 k-point mesh, the plane wave basis set was

expanded up to a cutoff energy of 243 eV, and the electronic
self-consistency loop was terminated if the change in the total
energy dropped below 10−5 eV between consecutive iterations.
Subsequently, the DFT energy landscape as well as quantities

such as the band gap and the power factor were represented by
cluster expansions (CE) of the form26,27

∑ Σ= + Π̅
α

α α αA A m J ( )0
(2)

where A denotes the respective quantity of interest and the
summation runs over all symmetry distinct clusters (singlets,
pairs, triplets....). Each cluster has a multiplicity mα and is
associated with an effective cluster interaction (ECI) Jα. The
cluster correlations Π¯α are computed as symmetrized averages
of products over the pseudospin vector Σ. The latter represents
the lattice sites associated with the host matrix where Σ = ± 1
for Ge and Ga, respectively.
The ECIs were obtained using the compressive sampling

technique28 adapted for CE construction.29 The split Bregman
algorithm30,31 was employed to solve the optimization problem
using parameters of μ = 0.001 (which controls the sparseness of
the solution) and λ = 100 (see refs 29, 31 for details concerning
the role of these parameters). A range of different values for μ
and λ were tested. Within reasonable bounds (see e.g., ref 29),
these parameters were found to have inconsequential effects on
the results presented here.
Each CE was carefully tested with respect to its predictive

power using both cross-validation and ground-state searches.
Due to the large number of different crystallographic sites, there
is a large number of distinct clusters, 3 singlets, 13 pairs, and 26
triplets relative to a 5 Å cutoff radius, respectively. These
numbers are noticeably larger than for simpler structures such
as face-centered cubic (see Figure S7), whence the compressive
sampling approach is particularly useful.29

The CEs were sampled using Monte Carlo (MC) simulations
in the canonical ensemble. Supercells typically comprising 2 × 2
× 2 unit cells were initialized at a temperature of 1200 K and
then cooled to 0 K at a rate of 50 K per MC cycle (1 MC cycle
is equivalent to N trial moves, where N is the number of sites in
the simulation). At each new temperature, the system was first
equilibrated for 50 000 MC cycles and then sampled for
100 000 MC cycles. The effect of supercell size on the SOFs is
illustrated in Figure S8.

2.2. Electrical Transport Properties. For several config-
urations, the wave function of the fully relaxed structure was
converged using a Γ-centered 4 × 4 × 4 k-point mesh, followed
by a non self-consistent computation of the eigenenergy spectra
on a Γ-centered 20 × 20 × 20 mesh. Using the interpolated
eigenenergy spectra and electronic group velocities, the
electrical conductivity and the Seebeck coefficient were
computed using both an in-house and the BOLTZTRAP code32

by evaluating the following expressions that are obtained within
the relaxation time approximation to the Boltzmann transport
equation32−34

∑σ τ=
Ω

⊗
∂
∂ϵ ϵ=ϵ

⎛
⎝⎜

⎞
⎠⎟v v

e
g

f2

k
k k k

i
i i ik

2

ki (3)

∑σ τ μ= ⊗ ϵ −
∂
∂ϵ

−

ϵ=ϵ

⎛
⎝⎜

⎞
⎠⎟S v v

eT
g

f
[ ]

k
k k k k k

i
i i i i e

1

ki (4)

Here, Ω is the unit cell volume, gk is the k-point weight, i refers
to the band index, τik is the mode and momentum dependent

Figure 2. Schematic illustration of the relation between the methods
employed in the present work. DFT: density functional theory; MC:
Monte Carlo simulations; CE: alloy cluster expansion; BTT:
Boltzmann transport theory.
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lifetime, vik = ℏ−1
∂ϵik/∂k is the group velocity, f is the

occupation function, and μe is the electron chemical potential.
In the present work, the scattering time was assumed to be
momentum- and state-independent as commonly done in
calculations of this type.32,34,35

We note that semilocal exchange−correlation functionals
such as the PBE functional used in the present work are known
to systematically underestimate the band gap. This error can
have a strong impact on the transport properties in weakly
doped materials. In the present work we are, however,
concerned with very high charge carrier concentrations as
thermoelectrics are typically heavily (degenerately) doped
semiconductors. As shown in Figure S3, under these
conditions, the magnitude of the band gap (while assuming
rigid bands) has a very small effect on the transport properties,
whence the band gap underestimation is of minor concern for
the present work.
As a further validation, we also carried out calculations for

selected structures using the modified Becke−Johnson (mBJ)
functional,36,37 which yields much improved band gaps and
band structures compared to PBE-DFT. The results (Figure
S4) demonstrate that, apart from an increase in the band gap,
the conduction and valence band structure near the band edges
are, however, very similar between PBE and mBJ-DFT,
especially in the region that determines the transport properties
under degenerate doping conditions. For all calculations
reported below, we therefore employ the PBE-DFT band
structure.

3. CHEMICAL ORDERING
Inorganic clathrates of type I, such as Ba8Ga16Ge30, belong to
space group38 Pm3 ̅n (international tables of crystallography
number 223) and feature two smaller and six larger cages per
unit cell.19,20,39 Ba8Ga16Ge30 has been investigated extensively
both experimentally40−45 and theoretically,35,41,46−48 especially
because of its promising thermoelectric properties. Here, the
host structure is composed of Ga and Ge atoms, which occupy
6c, 16i, and 24k Wyckoff sites (Figure 1)49 as revealed by
experimental measurements of the site occupancy factors
(SOFs).39 Analysis of diffraction data yields for example Ga
occupancies between 60 and 76% for the 6c site, which deviates
considerably from the value of Ga/(Ga+Ge) = 16/(16 + 30) =
35% corresponding to the nominal stoichiometry of the
compound.43 The experimental observations have been
condensed into a set of rules for the SOFs,39 partially based
on calculations,46 which have shown that bonds between
trivalent species, in the present case Ga atoms, are energetically
unfavorable.
Here, in order to model the chemical order, we constructed

an alloy CE based on a set of total energies for two hundred
structures that were obtained from DFT calculations. The
structures were generated by randomly assigning Ga and Ge
atoms to lattice sites, while maintaining a ratio of 16:30. The
number of structures can be compared to the total number of
possible configurations, which, excluding symmetry, is close to
1012 for the 54-atom primitive unit cell. The CE nonetheless
yields a very low cross-validation score of 0.9 meV/atom and
excellent overall agreement with the reference data as illustrated
by a juxtaposition of total energies from DFT and CE (Figure
3a). The final CE includes 3 singlet, 13 pair, and 24 triplet
terms and is rather short ranged (Figure 3b).
It must be noted that the stoichiometry of experimentally

synthesized clathrates often deviates from the ideal ratio of

8:16:30 for Ba:Ga:Ge.39,50 These effects can in fact be
represented using the total energy CE used in the present
work.51 In the case of Ba8Ga16Ge30, the variation of the SOFs
with composition is, however, relatively weak and, as apparent
from the comparison below, its description is not essential for
achieving good agreement with experimental transport
coefficients. The effect of composition on ordering will
therefore be the topic of a separate publication.51

The temperature dependence of the Ga SOFs was extracted
by sampling the total energy CE with Monte Carlo (MC)
simulations (Figure 4a). From the data, it is apparent that
already close to the melting temperature the SOFs deviate
strongly from the stoichiometric ratio, which would imply a
value of 16/(16 + 30) = 35%, indicating that the configurational
entropy does not entirely override the energy associated with
ordering even at these temperatures. As the temperature is
reduced, the SOFs deviate more strongly from 35%, as the
chemical distribution is increasingly dictated by energy. The
variation in the SOFs is primarily the result of the energy
penalty on trivalent (Ga) first-nearest-neighbor pairs that has
been pointed out earlier46 and is also apparent in the ECIs
(Figure 3b). It is therefore logical that the number of Ga−Ga
bonds monotonically decreases with decreasing temperature, as
shown in Figure 4b.

Figure 3. (a) Total energies obtained from cluster expansion
(predicted) and electronic structure calculations (target). The data
points shown by triangles were employed for constructing a cluster
expansion for the total energy. Squares indicate data from structures
without first-nearest-neighbor Ga−Ga bonds, whereas diamonds
represent the structure obtained via a simulated annealing procedure
from MC simulations. (b) Effective cluster interactions (ECI) of the
total energy cluster expansion as a function of cluster size.
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The experimentally observed SOF ranges are indicated by
rectangles in Figure 4a. In experimental settings, chemical
ordering will at some temperature become kinetically hindered
as it requires atomic rearrangement, which is a temperature
activated process. The precise conditions, at which freezing of
the chemical order occurs, are unknown whence a temperature
window between 550 and 720 K has been indicated in Figure
4a. Within the indicated temperature range, the agreement
between experiment and model is actually excellent, supporting
the present approach. The experimentally observed structure
can thus be considered as a state of intermediate chemical
order, which has been established during cooling as the result of
slowing kinetics.
At low temperatures, the system eventually reaches a fully

ordered state with rhombohedral symmetry (space group R3,
ITC no. 146, see Table S1 for a compilation of the
crystallographic parameters). As a further validation of the
CE, the total energy of this ordered-state structure was
calculated with DFT, which gave a value that deviates by less
than 2 meV/atom from the CE value, demonstrating not only
the accuracy but the predictive quality of the latter. This fact is
even more remarkable given that the structures used for CE
construction, which were obtained by random sampling,
generally contain a much larger number of Ga−Ga bonds
than the configurations observed during the MC simulations,
even at temperatures close to the melting point.
The ordered configuration, from here on referred to as the

ground-state structure, is characterized by the absence of Ga−
Ga bonds in the first neighbor shell and a minimal number of
Ga−Ga bonds in the second and third shell. In addition, it also
minimizes the Ga SOF for Wyckoff site 16i.

4. ELECTRICAL TRANSPORT PROPERTIES
4.1. Comparison to Experiment. The electrical transport

properties of Ba8Ga16Ge30 have been previously investigated
using first-principles calculations employing either structures
that were constructed using intuition and energy minimiza-
tion34,35,46 or the virtual crystal approximation.47 Here, we
therefore systematically discriminate the effect of thermally

induced disorder on these properties. Specifically, we target n-
type material, which is commonly associated with Ge-excess. In
this section, we benchmark our structural model and establish
two crucial parameters, namely, the charge carrier density
and the effective electronic lifetime, by comparing our
calculations with experimental transport data for n-type
Ba8Ga16Ge30.

42,44,52−55

Five representative configurations per temperature were
extracted from MC simulations at 600, 900, and 1200 K,
respectively. The average and standard deviation of the total
energy of these configurations correspond to the energy
distribution at the respective temperatures sampled by MC
simulations. In addition, we considered ten random structures
and the ground-state structure. The electrical conductivity σ
and the Seebeck coefficient S were computed within the
framework of the Boltzmann transport equation,32 as described
in the above.
We first consider the Seebeck coefficient S (see eq 4), which

varies with the charge carrier concentration ne (Figure S1). For
ne = 3 × 1020 cm−3, the calculations for the MC generated
structures agree well with the experimental data (Figure
5a).42,44,52,53 This charge carrier density in turn is in good
agreement with previous estimates based on experimental
data.35,47 While the variation among the MC generated
structuresregardless of the temperature they representis
rather small, the results for the random structuresand to a
lesser extent the ground-state structurediffer more notably
both in magnitude and the temperature at which S is extremal.
We note that with regard to the Seebeck coefficient, the

temperature dependence in the experiments appears slightly
more linear than in the calculations, which leads to some
deviation at low temperatures. This behavior could be related to
the assumption of a mode- and momentum-independent
relaxation time (compare section on Calculation Methods)
and also affects the power factor (see below).
After having established the carrier density, which is kept

constant at ne = 3 × 1020 cm−3 from this point onward, it is
possible to assess the electrical conductivity σ (see eq 3). The
electronic lifetimes were assumed to be mode- and momentum-
independent τeff ≈ τi(k) (see e.g., refs 32, 34, 35, 46, 47.).56

Since an explicit calculation of τi(k) for Ba8Ga16Ge30 is
computationally currently impractical, we use an effective
lifetime model with a simple temperature dependence τeff =
τ300(300 K/T)1/2 to represent acoustic phonon (piezoelectric)
scattering,57 which using τ300 = 15 fs yields very good
agreement with experimental data (Figure 5b). The thus
obtained effective lifetime at 300 K is in fact very similar to
values from previous studies (see e.g., refs 35, 47), which,
however, neglected the variation of τ with temperature. It is
apparent that the electrical conductivity σ again shows only a
modest variation among the MC structures.
Given the Seebeck coefficient S and the electrical

conductivity σ, we can now evaluate the power factor S2σ,
which most clearly highlights the effect of order on the
electrical transport properties (Figure 5c). The MC-generated
structures yield power factors of 15 to 18 μW/K2cm at 900 K,
which agrees well with experimental data.42,44,52,53 The
maximum power factor occurs at approximately 800−900 K,
which matches the range observed in most experiments. By
comparison, the ground-state (14 μW/K2cm at 900 K) and
random structures (9.6 ± 3.7 μW/K2cm at 900 K) yield
somewhat lower maxima. This suggests that the chemical
ordering that is naturally established during synthesis

Figure 4. (a) Gallium site occupancy factors as a function of
temperature from MC simulations using a 2 × 2 × 2 supercell. The
shaded regions indicate one standard deviation. The boxes represent
the range of the experimental SOF data and roughly indicate the
temperature range, over which the chemical order appears to be frozen
during sample preparation. (b) Fraction of first-nearest Ga−Ga bonds
as a function of temperature. For comparison, the average fraction of
Ga−Ga bonds for a completely random structure is cGa

2 = 12.1%.
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corresponds to relatively optimal conditions with regard to the
power factor, an observation that will be explored in detail
below. Furthermore, we find that maximizing the power factor
by variation of the charge carrier density ne (Figure S2) yields
only a slight improvement of about 5%. This suggests that the
experimental samples are already close to optimality with
regard to ne.

4.2. Order and Electronic Structure. The data presented
above demonstrates that the power factor changes non-
monotonically as a function of chemical order: The MC
generated structures (intermediate level of order) exhibit on
average higher power factors than both the ground state
(highest degree of order) and the random structures (lowest
degree of order). To resolve this behavior, it is instructive to
explore the effect of chemical order on the electronic structure
as both Seebeck coefficient S and electrical conductivity σ are
primarily determined by the electronic eigenenergies and group
velocities, see eqs 3 and 4.
The electronic band structures of configurations representing

different degrees of chemical order (Figure 6) reveal that
decreasing chemical order causes a systematic lowering of the
band gap and a reduction in the dispersion of the lowermost
conduction band level, which implies decreasing group
velocities. With regard to the electrical conductivity σ, these
two effects oppose each other as the (∂f/∂ϵ)ϵ = ϵik term in eq 3
increases with decreasing band gap, whereas smaller group
velocities vi(k) cause a reduction of the other term in the
integrand. (In the widely adopted effective mass approximation,
this is equivalent to asserting an increase in the charge carrier
concentration and a reduction of the mobility due to a higher
effective mass (smaller curvature), see e.g., ref 2.) In the current
case, the two terms appear to largely cancel each other as the
net effect of order on σ is comparably small (Figure 5b).
To further resolve the coupling between order and the

electrical transport properties, a closer inspection of the
underlying band structures is instructive. To this end, we
analyzed the mode-resolved contributions to the power factor,
which are most sensitive to the group velocity. It is found that
for the ground-state configuration, the largest contribution to S
stems from states in the vicinity of the M point, which is the
location of the CBM [fully ordered, Figure 6a, S2σ = 14.2 μW/

Figure 5. Electrical transport properties of n-type material at a carrier
density of 3 × 1020 cm−3. (a) Seebeck coefficient, (b) electrical
conductivity, and (c) power factor as a function of temperature from
calculations in comparison with experimental data from refs 42, 44, 52,
53. The degree of chemical order has a clear effect on the electrical
transport properties as is evident by comparing the results from
samples with a random distribution (dotted lines), the ground-state
structure (dashed lines), and configurations representative of the
chemical order at 600 K (solid red), 900 K (solid orange), and 1200 K
(solid blue). In the case of the MC-generated structures, the
corresponding shaded areas represent one standard deviation.

Figure 6. Effect of chemical order on the electronic structure. Band structures representing (a) the fully ordered ground state, (b) a configuration
with intermediate order extracted from a MC simulation, (c) a random distribution, and (d) the structure optimized for maximum power factor at
900 K. The color scale and the size of the circles indicate the group velocity. The position of the Fermi level is shown by horizontal dashed lines. The
energy scales of the different configurations were aligned using the Ba-1s states as described in ref 58, and the VBM of the ground state was arbitrarily
set to zero.
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K2 cm at 900 K and ne = 3 × 1020/cm3]. While in the case of
intermediate chemical order the relative contribution of these
states is reduced, higher lying states for example along the Γ-X
direction are shifted downward and thus closer to the Fermi
level, providing a significantly larger contribution than in the
case of the ground-state structure (Figure 6b, S2σ = 18.7 μW/
K2 cm). The gain in the density of states in the vicinity of μe +
kBT outweighs the reduced dispersion (smaller group
velocities) around the M-point and gives rise to a slight
increase of the power factor relative to the ground-state
configuration. If the degree of chemical order is further
reduced, the effect of an increase in the density of states near
the Fermi energy levels off (Figure 6c, S2σ = 12.2 μW/K2 cm),
whereas level localization (and thus reduction of the group
velocities) proceeds, causing the power factor to drop again.
The origin of the reduction of band gap and level of

dispersion with decreasing chemical order can be understood
by recalling some general principles from defect physics. The
ground-state structure represents a fully ordered structure,
whereas disordering can be thought of as the insertion of
antisite defects.59 As these are intrinsic defects with small lattice
distortions, the associated defect states are hybridized with
band states (see e.g., refs 3, 60, 61); yet, the associated levels
are to some extent localized. In Ba8Ga16Ge30 (and similar
systems), the formation energies for such antisites are obviously
very small, whence defect concentrations are easily in the
percent range and the collective effect on the band structure
becomes significant.
4.3. Power Factor Optimized Structures. To substan-

tiate the above argumentation, additional CEs were constructed
for the band gap EG as well as the power factor at 900 K (ne = 3
× 1020/ cm3), for which we obtained cross-validation scores of
0.05 eV and 1.5 μW/cmK2, respectively. The CEs were
subsequently sampled using MC simulations based on the CE
for the total energy constructed earlier. Using the total energy
as order parameter,62 these simulations confirm for a large data
sample that the band gap decreases monotonically with
chemical disordering (Figure 7b), whereas the power factor
exhibits a maximum at a finite amount of disorder, which quite
closely coincides with the average level of order between 600
and 1200 K.
Based on the CE for the power factor, we are now in a

position to search for chemical ordering patterns that maximize
the power factor. To this end, simulated annealing runs were
carried out on the landscape corresponding to −S2σ with an
appropriate effective temperature scale. In this fashion, several
structures were obtained with predicted power factors of
approximately S2σ = 24 μW/K2 cm, which were confirmed by a
subsequent DFT-BTT calculation yielding about 27 μW/K2

cm(Table S1).
The optimized structures are only about 8 meV/atom higher

than the ground-state structure, and thus, they are energetically
comparable to the structures obtained during the MC
simulations described above. The most striking difference to
both the ground state and MC-generated representative
structures described above is the redistribution of Ga
occupation from the 6c to the 16i site (ground-state structure:
SOF(6c) = 50%; power factor optimized structure: SOF(6c) =
0%; see Table S1), whereas the average occupation of 24k sites
is unaffected. In terms of the electronic structure, this
redistribution gives rise to a significantly higher density of
states in the vicinity of the conduction band edge along with a
notably larger contribution from Ga atoms on 24k sites than in

either the ground state or the MC-generated structures (Figure
S6). Here, the vanishing Ga occupancy of 6c Wyckoff sites is a
key feature as we generally find that larger power factors are
correlated with a low 6c SOF.
It is now very instructive to analyze the features of the

electronic structure that underlie the outstanding power factor
of this configuration. A closer inspection of the band structure
(Figure 6d) reveals that unlike the other structures (Figure 6a−
c), all of which feature a CBM at the M-point, for the optimized
structure the CBM is located along the Γ-X direction. This is
the result of the lower energy of the corresponding states
compared to the other structures. At the same time, the high
degree of order ensures that the configuration has a large band
gap (EG = 0.55 eV) comparable in magnitude to the ground-
state structure (EG = 0.54 eV).
The integrand in the expression for the Seebeck coefficient

eq 4 is maximal if the group velocity at approximately
μe+1.5kBT is large, which requires dispersed (delocalized)
states. At the same time, it is desirable to have many states in
this energy window, which would be achieved by localization
(nondispersed states). Since similar considerations apply to σ,
optimizing S2σ thus tries to strike a balance between two
diametrically opposed features. A three-dimensional visual-
ization of the CBM (Figure S5) shows that the optimized
configuration achieves a large power factor by featuring
multiple CBM pockets with large group velocities in the
relevant energy range.
Similar features in the band structure involving “complex

carrier pocket shapes”63 were found to enhance thermoelectric
performance also in other materials (see e.g., refs 14, 16,
63−65) The electronic structures that were observed in these
cases can be thought of as realizations of the conditions
formulated by Mahan and Sofo10 according to which one seeks
a narrow distribution of states near the Fermi level with high
group velocities. While enhanced thermoelectric performance
due the existence of multiple band extrema has been shown to
be intrinsic to some materials,64,65 it has been demonstrated
that the relevant features can also be engineered by, for
example, nanoinclusions,14 careful selection of the compo-
nents,16 or volumetric band alignment via alloying.63 The

Figure 7. (a) Power factor and (b) band gap as a function of order
(measured by the total energy) from MC-CE simulations. The
maximum attainable power factor according to CE and DFT-BTT is
indicated by red symbols. The shaded regions represent one standard
deviation.
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present results show that this level of band structure
engineering can even be accomplished by controlling the
chemical order in a material. Furthermore, the present
approach demonstrates that the identification of materials and
compositions can be achieved using models that do not
explicitly describe the electronic structure as long as they are
properly trained with respect to higher-level calculations.

5. CONCLUSIONS

In the present work, we used density functional theory
calculations in conjunction with Monte Carlo simulations,
alloy cluster expansions, and Boltzmann transport theory to
investigate the coupling between chemical order and the
electrical transport properties in the prototypical inorganic
clathrate Ba8Ga16Ge30.
The temperature dependence of the SOFs obtained from

MC−CE simulations shows a strong asymmetry between
different Wyckoff sites. The predicted SOFs in the temperature
range between 550 and 720 K are in good agreement with
experimental data. This observation provides a very sensible
estimate for the temperature range, in which the chemical order
is kinetically frozen in as the material cools down after
synthesis. A simulated annealing procedure furthermore lead to
a ground-state structure that is primarily characterized by the
absence of first-nearest neighbor Ga−Ga bonds.
Subsequently, the electrical conductivity σ and Seebeck

coefficient S were computed for n-type conditions using a
DFT−BTT approach for the ground-state structure, a set of
configurations representing the chemical order at different
temperatures, as well as several random structures. The
magnitude and temperature dependence of the Seebeck
coefficient calculated for the representative structures at an
electron concentration of ne = 3 × 1020/cm3 was shown to
match experimental data. Using a minimal model for the
electronic lifetime based on scattering by acoustic phonons, we
then achieved close agreement between experiment and
calculations for both the electrical conductivity σ and power
factor S2σ. Thus-equipped, the relation between chemical order
and the power factor was scrutinized. It was shown that the
power factor exhibits a nonmonotonic dependence on order
(and temperature) with its average value exhibiting a maximum
roughly in the range found in previous experiments.
Using a direct combination of DFT−BTT and MC−CE, we

then identified structural motifs that maximize the power factor.
Specifically, it was demonstrated that this can be achieved by
minimizing the Ga SOF for 6c Wyckoff sites, which gives yields
calculated power factors up to 27 μW/K2cm, corresponding to
an improvement of about 60% compared to the “normal” order.
The enhancement can be traced to an increase in the density of
states near the conduction band edge with only a small
reduction in the group velocities.
It is beyond the scope of this work to provide a recipe for

synthesizing the exact structure in question, but the relatively
small energy cost associated with the depopulation of the 6c site
suggests that it is thermodynamically within reach. It is possible,
for example, that alloyed clathrates66−69 provide means to
control order more consciously, albeit at the cost of a much
more complex parameter range. Other materials that exhibit
partial ordering/disordering such as the cobaltates and
skutterudites, Zintl compounds, as well as complex al-
loys2,16,70−75 can be anticipated to exhibit similar features and
thus also warrant further study.

Here, modeling and simulation could provide useful guidance
for navigating the complex and multidimensional composition
space. In this context, the approach utilized in the present work,
which combines electronic structure calculations of transport
properties with machine learning protocols, could prove to be
highly useful for band structure engineering. In this fashion, it
can guide the computational design of compounds with optimal
transport properties.
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ABSTRACT: Intermetallic clathrates exhibit great variability
with respect to elemental composition and distribution. While
this provides a lot of flexibility for tuning properties, it also
poses a challenge with regard to developing a comprehensive
understanding of these systems. Here, we employ a
combination of alloy cluster expansions and density functional
theory calculations to exhaustively sample the compositional
space with ab initio accuracy. We apply this methodology to
study chemical ordering and related properties in the clathrate
systems Ba8GaxGe46−x, Ba8GaxSi46−x, Ba8AlxGe46−x, and
Ba8AlxSi46−x as a function of composition and temperature.
We achieve very good agreement with the available experimental data for the site occupancy factors (SOFs) even for
stoichiometries outside the composition range considered during construction of the cluster expansions. This validation enables
us to reconcile the variations in the experimental data and explain nonmonotonic variations of the SOFs. In particular, we provide
a rationale for the extreme SOF behavior with varying composition observed in Al-based clathrates. Furthermore, we quantify the
effect of chemical ordering on both heat capacity and lattice expansion. Finally, we determine the effect of chemical disorder on
the displacements of the guest species (Ba), which enables us to at least partially explain experimental observations of the nuclear
density of Ba in different clathrates.

■ INTRODUCTION

Clathrates represent a broad class of chemical substances with a
defined lattice structure that can trap atomic or molecular
species.1 In particular, so-called intermetallic clathrates such as
Ba8Ga16Ge30 or Sr8Ga16Ge30 have received a lot of attention
due to their thermoelectric performance.2−6 In these systems,
alkaline and earth alkaline but also some rare earth atoms can
occupy cages in the host structure, which is most commonly
composed of elements from groups 13 and 14, although other
constituents are possible.7 These structures are realizations of
the Zintl concept, i.e. the stoichiometric compounds are fully
charge balanced, small gap semiconductors.2,7−9 In practice,
deviations from perfect stoichiometry are common, leading to
intrinsically doped materials, a feature that can be beneficial, for
example, for manipulating electrical transport properties.
Clathrates are classified according to their symmetry.2,7 The

majority of known intermetallic clathrates belong to type I and
crystallize in space group Pm3 ̅n (international tables of
crystallography number 223).7 Many of the compounds studied
so far have the general composition A8B16C30, where B and C
form the host structure and occupy 6c, 16i, and 24k Wyckoff
sites (Figure 1).9 While it is most common for the guest species
A to be cationic and B and C to be anions, there also exist so-
called inverse (cationic) clahtrates, in which the host−guest
polarity is reversed.10

Experimental measurements of the site occupancy factors
(SOFs) in many clathrates show that the elemental distribution

over the different crystallographic sites is not simply random.3

For example, in the case of Ba8Ga16Ge30, analysis of diffraction
data yields Ga occupancies between 60 and 76% for the 6c site,
which deviates considerably from the value of 35% correspond-
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Figure 1. Crystal structure of type I clathrates. The guest species (Ba)
occupies Wyckoff sites of type 2a and 6d, while the host species (Ga,
Al, Ge, and Si) occupy Wyckoff sites of type 6c, 16i, and 24k. The
configurations in the bottom row illustrate the environments for 6c,
16i, and 24k sites, respectively.
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ing to the stoichiometry of the compound.11 The experimental
observations have been condensed into a set of rules for the
SOFs,3 partially based on calculations,12 which have shown that
bonds between trivalent species are energetically unfavorable.
The degree of chemical order has been found to vary not

only between different compounds but also with stoichiometry
with subsequent effects on the host atom structure.3,13,14 By
extension, chemical order has also been shown to impact the
transport properties in these materials.15 This suggests that a
fine control of properties, in particular pertaining to transport,
can be achieved by adjusting composition and stoichiometry.
As a result of the complexity of navigating this multidimen-
sional space as well as the experimental effort required to
resolve order in the form of SOFs, this is, however, a very
challenging task.16

Here, we therefore present a systematic computational study
of chemical order and its effect on structure and thermody-
namics in a series of ternary intermetallic clathrates with A =
Ba, B = Al/Ga, and C = Si/Ge. To this end, we employ a
combination of first-principles calculations and lattice Hamil-
tonians (alloy cluster expansions) that enables us to sample
both temperature and composition space with high accuracy.
Where comparison is possible, our simulations closely match
experimental data, which allows us to reveal the general
behavior of these materials and effects that are not immediately
apparent from the experimental data. We demonstrate that by
varying the composition of these materials, the SOFs and thus
the degree of chemical ordering can be altered dramatically.
Furthermore, the chemical ordering is shown to systematically
affect the average displacement of the guest species (Ba). This
provides a key to understanding the origin of the nonspherical
nuclear density of Ba observed experimentally in some
clathrates.13

Recent computational work on inorganic clathrates has
addressed ground state structures in Ba8Ga16Ge30 (ref 15) as
well as Ba8AlxSi46−x (ref 17) with an emphasis on electronic
properties. In addition, the SOFs in stoichiometric Ba8Ga16Ge30
have been analyzed.15 In the present work, we go beyond these
studies by addressing the variation of the SOFs with
composition and temperature and by conducting this
investigation for a series of clathrates. Furthermore, we
emphasize the coupling between order and thermodynamic
properties as well as the connection to experiment.
The remainder of this paper is organized as follows. In the

next section, we outline the construction of the alloy cluster
expansions used in this work as well as the density functional
theory calculations that were carried out to obtain input data.
This is followed by the presentation of results for
stoichiometric materials, in particular the temperature depend-
ence of the site occupancy factors, which sets up an analysis of
the contributions of chemical order on heat capacity and lattice
expansion. We then extend the scope to nonstoichiometric
compositions, which provide a comprehensive picture of
ordering in these materials along with a rather extensive
comparison with experimental data. Finally, we describe the
coupling between chemical order and the off-center displace-
ment of the guest species (Ba) atoms.

■ METHODOLOGY
Alloy Cluster Expansions. Given a 16:30 ratio between group 13

and 14 elements, there are 46!/30!/16! ≈ 1012 different ways of
distributing the atoms in the primitive unit cell. While this number is
reduced by about one order of magnitude when taking into account

symmetry, the remaining space is still extremely large and cannot be
sufficiently sampled by density functional theory (DFT) calculations
alone. Here, we therefore resort to the alloy cluster expansion (CE)
technique which allows at least in principle an exact mapping of
ordering energetics onto an effective lattice Hamiltonian.18,19 The
energy of the system is expressed in the form of a generalized Ising
model, which not only includes pair (second order) terms but also
higher order “clusters”, including, e.g., triplets (involving three sites) or
quadruplets (four sites). Using a CE, the energy can be formally
written as

∑σ σ= + Π̅
α

α α αE E m J( ) ( )0
(1)

Here, Jα are the so-called effective cluster interactions (ECIs) that are
associated with the symmetry inequivalent clusters α, which occur with
multiplicity mα. The occupation of different sites is represented by the
“spin” vector σ, each value of which indicates the occupation of a site
in the system (here, −1 and +1 for group 13 and 14 elements,
respectively). Finally, Π̅α is a symmetrized product over the spin
variables which, approximately speaking, represents the average
occupation (decoration) of cluster α by the species considered in
the CE. It is important to emphasize that while the CE is itself
restricted to a rigid lattice, atomic relaxation and strain contributions
to the energy are effectively incorporated in the ECIs if the CE is
trained using relaxed structures. Furthermore, we note that the
expansion eq 1 is not restricted to the energy but can be extended to
other properties, including, e.g., electronic properties15 or, as in the
present work, the lattice parameter.

To construct the CE, i.e. obtain the set of ECIs representing the
energy landscape for a certain material, we employed compressive
sampling20 in conjunction with the split-Bregman algorithm,21,22

which has been shown to be very efficient for constructing physically
sound and very accurate CEs.23 To this end, we used our in-house
integrated cluster expansion toolkit (ICET). Recently, we successfully
employed the same approach to describe chemical ordering and its
effect on transport properties in stoichiometric Ba8Ga16Ge30.

15

For each of the four elemental combinations, we constructed a CE
based on a set of 290 structures for Ba8GaxGe46−x and 240 for the
remaining three alloys, which were relaxed and characterized using
DFT calculations. For Ba8GaxGe46−x the set included 101, 163, 21, and
6 structures with stoichiometries of 16:30, 15:31, 14:32, and 13:33,
respectively. For the remaining three materials, the set comprised 171,
42, 21, and 6 structures with stoichiometries of 16:30, 15:31, 14:32,
and 13:33, respectively.

The cluster space considered during the optimization of the ECIs
included 90 clusters up to third order. The μ parameter, which
controls the sparsity of the CS solution, was set to 0.001, while the λ
parameter that enters in the split-Bregman algorithm was set to 100
(see ref 23 for a discussion of these parameters). These values were
chosen based on a preliminary screening study. This specific choice
has, however, only a minor impact on the final results and mostly
affects the efficiency of the optimization procedure.

We note that experimentally vacancies are known to be present in
notable concentrations, especially for samples that are very far from
the stoichiometric composition, e.g., for Ba8GaxGe46−x with x = 3.5−
5.24 Here, we do not include this effect, whence our results for these
extreme compositions should be regarded as idealized approximations
of the real behavior.

The CEs were sampled using Monte Carlo (MC) simulations.
Simulated annealing runs were carried out by initializing a system
composed of one unit cell at 1200 K, after which the temperature was
gradually reduced at a rate of at most 25 K/20 000 MC cycles.25 At
each temperature, the system was equilibrated for 2000 MC cycles
followed by 30 000 MC cycles, during which statistics were gathered.
In addition, simulations were carried out at constant temperature and
variable composition using the variance constrained semigrand
canonical ensemble.26

Electronic Structure Calculations. The parametrization of the
CE Hamiltonian described in the previous section requires total
energies for a set of representative structures. To this end, DFT
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calculations were carried out using the projector augmented wave
method27,28 as implemented in the Vienna ab initio simulation
package.29,30 The generalized gradient approximation as parametrized
in ref 31 was employed to represent the exchange-correlation
functional. The Brillouin zone was sampled using a Γ-centered 3 ×
3 × 3 k-point mesh, and the plane wave basis set was expanded up to
cutoff energies of 319 eV (Ba8AlxSi46−x, Ba8GaxSi46−x), 312 eV
(Ba8AlxGe46−x), and 243 eV (Ba8GaxGe46−x).
Structures comprising a single unit cell of 54 atoms were created by

randomly assigning Ga and Ge atoms to the 6c, 16i, and 24k Wyckoff
sites of the host structure. For each structure, both the ionic positions
and the cell metric were fully relaxed until atomic forces were less than
10 meV/Å and absolute stresses were below 0.1 kbar.
We note that more refined algorithms are available for generating

input structures.23,32 They are, however, difficult if not prohibitive to
apply in the present context due to the very large number of possible
chemical distributions that can be realized already for the primitive
unit cell. The validation presented below demonstrates though that the
approach taken here succeeds in providing predictive as well as
accurate CEs.
For the ground state structures obtained by simulated annealing

(see below), we evaluated the thermal lattice expansion and heat
capacity at the level of the quasi-harmonic approximation using the
PHONOPY package.33 To this end, we conducted additional
calculations at several volumes spanning a range of approximately
0.85a0 to 1.05 a0, where a0 is the calculated lattice parameter.

■ RESULTS AND DISCUSSION

Validation of Cluster Expansions. The performance of
each CE was evaluated using the leave-one-out cross-validation
score, and the final CEs achieved very low scores of 0.6, 0.8, 0.8,
and 1.2 meV/atom for Ba8GaxGe46−x, Ba8AlxGe46−x,
Ba8GaxSi46−x, and Ba8AlxSi46−x, respectively. This accuracy is
not restricted to stoichiometric compositions but applies to a
wide concentration range (Figure 2).

The ECIs decrease in magnitude by approximately one order
of magnitude for each increase in order (Figure 3). The singlet

interactions exhibit a clear hierarchy where 6c > 24k > 16i,
which implies that in the absence of group 13/group 13
interactions, the occupation of 6c sites is energetically the most
favorable.
One can furthermore observe that the pair interactions are

considerably larger if the clathrate contains Al compared to Ga.
As is discussed below, this causes an inversion of the ordering
of the occupation factors for 24k and 16i sites in Ba8AlxSi46−x
and Ba8AlxGe46−x compared to the Ga-containing variants.
Beyond-nearest-neighbor pair as well as triplet terms are
generally much smaller and can be even set to zero without a
big loss of accuracy, in agreement with similar observations for
Ba8AlxSi46−x and Sr8AlxSi46−x.

17

The ordering of the singlet ECIs is in line with the
established rule that at least for Ga-based clathrates, the 16i site
is preferentially occupied by group 14 species.12 As will be
shown below, this rule alone is, however, insufficient to explain
the variation of the SOFs in nonstoichiometric Al-based
clathrates because pair interactions play an important role.
Using simulated annealing, we determined the ground state

structures at stoichiometric composition, which were sub-
sequently relaxed at the DFT level. For all four materials, the
CEs predicted the DFT energy of the ground state structure to

Figure 2. Performance of cluster expansions constructed in this work.
Prediction errors for (a) Ba8GaxGe46−x, (b) Ba8GaxSi46−x, (c)
Ba8AlxGe46−x, and (d) Ba8AlxSi46−x as a function of the DFT target
energy.

Figure 3. Effective cluster interactions as a function of cluster radius
for (a) Ba8GaxGe46−x, (b) Ba8GaxSi46−x, (c) Ba8AlxGe46−x, and (d)
Ba8AlxSi46−x as a function of the radius.
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within 2 meV/atom. In all cases, the chemical distribution
corresponds to the one reported previously for Ba8Ga16Ge30,

15

and the ground state structures belong to space group R3
(International Tables of Crystallography no. 146) and are
provided in the Supporting Information.
Stoichiometric Compositions. Site Occupancy Factors.

Following the successful validation of the CEs, further MC
simulations were carried out to gather statistics concerning the
elemental distribution and in particular the site occupancy
factors (SOFs) as a function of both composition and
temperature.
We first consider the behavior of the stoichiometric systems

(group 13:group 14 = 16:30). The materials exhibit some
qualitative similarities in the temperature dependence of the
SOFs (Figure 4). At high temperatures (1000−1200 K), the

SOF for 6c sites ranges from 55 to 65%, while for 16i sites, it
falls between 20 and 30%. For 24k sites, values from 30 to 40%
are obtained. The statistical limit of 16:30 = 35% is only
reached for all sites in the very high temperature limit (>20 000
K).
For all four systems, the SOFs for 6c and 24k sites approach

50% at low temperatures, whereas the 16i SOF converges to
6.25%. Ultimately, this leads to the ground state structure
described above.15 It is interesting to note that the SOFs for
this structure coincide with those of the lowest energy structure
described in ref 12, which was obtained by simultaneously
minimizing the 16i SOF and the number of Ga−Ga bonds.

While the four materials considered here exhibit very similar
behavior in the low and high-temperature limits, there are clear
differences in the intermediate temperature region. Most
notably, we obtain higher 6c SOFs for the Ga-based clathrates,
which can be traced back to the ECIs according to which pair
interactions are weaker than in the case of the Al-based
clathrates. As a result, the Ga-based clathrates can occupy more
of the energetically favorable 6c sites, tolerating the cost of
relatively more Ga−Ga nearest neighbors.

Heat Capacity. The variation of chemical order with
temperature is driven by the balance between energy and
entropy. Hence, there should also be a configurational energy
term that contributes to the heat capacity of the material. The
latter can be obtained from the temperature dependence of the
average energy ⟨E⟩ recorded during MC sampling or, more
directly, the variance of the energy ⟨ΔE2⟩ according to

Δ = ⟨Δ ⟩
c

E
k T

chem
2

B
2

(2)

According to the MC simulations, at the stoichiometric
composition, the contribution to the heat capacity due to
chemical order can reach values of up to 15 kB/unit cell in the
case of Ba8Ga16Ge30 and Ba8Al16Si30 and of about 10 kB/unit
cell for Ba8Ga16Si30 and Ba8Al16Ge30 (Figure 5a). By
comparison with the temperature variation of the SOFs (Figure
4), it is apparent that Δcvchem becomes maximal approximately in
those temperature regions, at which the SOFs undergo the
largest change. This effect is about 1 order of magnitude smaller
than the vibrational contribution to the (isobaric) heat capacity.
The latter can be obtained from calculations of the phonon
density of states in the quasi-harmonic approximation, which
for the ground state structures yields values between 1200
(Ba8Al16Si30) to 1400 J/(mol K) (Ba8Ga16Ge30) 144 to 168 kB/
unit cell in the temperature range between 300 and 900 K and
thus above the Debye temperature, which is commonly around
300 K.
In the experimental literature, several studies have reported

anomalies in the temperature dependence of the heat capacity
of clathrates.34,35 In particular, May et al. observed an abrupt
increase in the heat capacity of nearly stoichiometric
Ba8Ga16Ge30 at about 650 K by 0.03 J/mol/g = 15 kB/unit
cell, which is comparable in magnitude to the contribution of
chemical order predicted above (Figure 5a). Furthermore, the
temperature of 650 K, at which the feature is observed, falls in
the temperature range of 600−700 K, in which one can expect
the chemical order to be frozen in (see below). This suggests
that the observed jump in heat capacity could be at least partly
caused by chemical ordering. We note that this feature in the
heat capacity is not observed in all studies. This could be caused
by different heating/cooling rates as well as the sensitivity of
Δcchem to composition (see Figure S3 in the Supporting
Information).

Chemical Expansion. From the configurations, for which
DFT calculations have been conducted, it is apparent that the
degree of chemical order also affects the lattice parameter. To
provide a more quantitative description of this coupling,
additional CEs for the cell volume were constructed and
sampled in parallel during the simulated annealing simulations
described above (details pertaining to the construction of these
CEs can be found in the Supporting Information).
The results demonstrate that chemical disordering can

change the lattice parameter by as much as 0.08 Å over the

Figure 4. Site occupancy factors of stoichiometric intermetallic
clathrates as a function of temperature for Wyckoff sites (a) 6c, (b)
24k, and (c) 16i. (d) Fraction of Al−Al or Ga−Ga nearest neighbors.
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temperature range from 0 to 1200 K, both in the negative
(Ba8Ga16Si30 in Figure 5b) and positive direction (Ba8Al16Ge30
and Ba8Ga16Ge30 in Figure 5b). The effect is only negligible in
the case of Ba8Al16Si30. The variation of the lattice parameter
with order translates to a chemical contribution αl

chem to the
linear thermal expansion coefficient. It is largest in the case of
Ba8Al16Ge30, where it reaches 1.6 × 10−6/K (Figure 5b) to be
compared with a thermal expansion coefficient due to phonons
obtained in the quasi-harmonic approximation of αl

phonon = 17 ×
10−6/K (Figure 5c). The chemical expansion in these systems is
thus typically at least 1 order of magnitude smaller than the
phononic contribution.

Nonstoichiometric Compositions. One can readily
synthesize nonstoichiometric intermetallic clathrates with
compositions that deviate substantially from the ideal 16:30
ratio between trivalent and tetravalent ions.3,14 Nonstoichiom-
etry is often desirable because it provides a convenient means
for tuning the charge carrier concentration in these small band
gap systems by (intrinsic) doping. As will be shown in the
following, there is an intimate and nonmonotonic coupling
between the SOFs and the composition that translates into
distinct changes in the structure of the cages (see below).
All four systems were sampled at several different temper-

atures. In addition, we conducted simulated annealing runs in

Figure 5. Contributions due to chemical ordering to (a) heat capacity and (b) lattice parameter. (c) Contribution to thermal expansion due to lattice
vibrations (dotted lines) and chemical ordering (solid lines).

Figure 6. Fraction of Al−Al or Ga−Ga nearest neighbors for (a) Ba8GaxGe46−x, (b) Ba8GaxSi46−x, (c) Ba8AlxGe46−x, and (d) Ba8AlxSi46−x.

Figure 7. Site occupancy factors in intermetallic clathrates as a function of composition for Wyckoff sites 6c (red), 16i (blue), and 24k (orange).
Solid lines show simulation results obtained at 700 K whereas the shaded regions indicate a variation by ±100 K.
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which the temperature was reduced to zero Kelvin to obtain
purely energy optimized ground state structures.
Site Occupancy Factors. For the Ga based clathrate systems,

the SOFs show a relatively smooth variation with composition.
The SOFs increase in the order 16i to 24k to 6c, which
corresponds to the energetic ordering of the singlet ECIs
(Figures 3a and b). At the same time the number of Ga−Ga
neighbors decreases continuously with decreasing Ga content
(Figures 6a and b). This observation correlates with Ga−Ga
repulsion being weaker than Al−Al repulsion, as evident from
the pair ECIs (Figure 3).
A compilation of experimental SOFs from various

sources9,36−39 reveals that the calculated SOFs for Ba8GaxSi46−x
are in excellent agreement with these data and in fact clearly
reveal the chemical trends in this material.
In contrast to the Ga based materials, in the case of the Al

containing systems, we observe a very pronounced, non-
monotonic dependence of the SOFs on Al content (Figures 7c
and d), which is in very good agreement with available
experimental data.9,13,14,40

The composition dependence exhibits two distinct regions
that meet at x ≈ 14, which becomes even more apparent in the
zero temperature limit (Figure 8). For x > 14, the SOFs follow

the same order as in the case of the Ga based clathrates,
whereas the 24k and 16i SOFs are reversed for x ≲ 14. This
behavior can be rationalized by invoking not only the singlet
ECIs but also the pair interactions (Figure 3).
First, we note that for compositions below x = 14 (but not

above), it is possible to accommodate all Al atoms on 6c and
16i sites without the need to occupy 24k sites. Because there
are no bonds between 16i and 6c sites (Figure 1), this strategy
effectively avoids nearest neighbor Al−Al pairs. Because the
pair ECIs for the Al systems are larger by a factor of 2−5
compared to the Ga containing clathrates, avoiding Al−Al
neighbors is energetically more important, and 16i sites become
effectively favored over 24k sites. The strength of the Al−Al
repulsion is also apparent in the much lower fraction of Al−Al
neighbors, which is below 2% for practically the entire
temperature−composition plane (Figure 6c and d).
The effect of the pair ECIs is even notable when comparing

Ba8AlxGe46−x and Ba8AlxSi46−x, as in the latter case the peak in

the 16i SOF around x = 14 is less pronounced (Figures 7c and
d), which is in line with the lower pair ECIs of Ba8AlxSi46−x
(Figures 3c and d).
Similar features as the ones described above were already

observed in the experimental data for both Ba8AlxSi46−x and
Ba8AlxGe46−x, which prompted the formulation of a set of rules
for the SOFs.3 The present analysis provides a rigorous basis
for these rules and demonstrates how the underlying
interaction strengths can be obtained quantitatively, which
allows one to extend the approach more easily to a larger class
of clathrates. We note that the variation of the SOFs at zero
temperature described here (Figure 8) was also observed in a
recent simulation study that focused on the ground state
structures in Ba8AlxSi46−x and Sr8AlxSi46−x.

17

The temperature dependence of the SOFs predicted by our
simulations represents the behavior of materials that have
achieved thermodynamic equilibrium with regard to the
distribution of different chemical species over the available
lattice sites. Experimentally, equilibrium can be expected to be
achieved only above a certain minimum temperature,
corresponding to the onset of mobility for intrinsic defects
that can mediate atomic rearrangement.41 This temperature
range can thus be estimated by comparison of calculated and
experimental SOFs. More specifically, it should correspond to
the temperature below which the calculated SOFs start to
deviate from the experimental data. This yields an estimate for
the temperature, at which chemical order is frozen, between
600 and 700 K.

Off-Center Displacements of Ba Atoms. Experimental
measurements of the nuclear density have shown a non-
spherical distribution of the Ba atoms around the 6d sites of the
type-I clathrate structure in several of the materials considered
here.3,11,13,14,40 This effect has also been included in Rietveld
refinements of diffraction data by assigning six of the Ba atoms
in the structure to either 24k or 24j Wyckoff sites with a partial
occupancy of 25%, corresponding to a fourfold splitting of the
6d site. To assess whether this behavior can at least be partially
explained in terms of the variation of chemical composition of
the cages with Al/Ga content, we extracted representative
configurations from MC simulations at 700 K and relaxed them
using DFT calculations. We then mapped each configuration
onto the respective ideal crystal structure scaled to the lattice
parameter corresponding to the composition (Figure S2 in the
Supporting Information) and computed the displacement of
the Ba atom from the ideal 6d site.
In all four materials near the stoichiometric composition, the

Ba atom is displaced by 15−19 pm from the ideal 6d site
(Figure 9). These numbers are in good agreement with the
radius of the ring-like nuclear density extracted experimen-
tally.3,13 Unfortunately, our statistics are insufficient to extract
the full three-dimensional nuclear density. We can, however,
obtain the radial distribution, which exhibits a shape that is
consistent with a ring-like nuclear density (shown exemplarily
for Ba8AlxGe46−x in Figure 9e).
While in all four materials the off-center displacement

(OCD) is maximal for x ≈ 16, they exhibit differences with
respect to its variation with composition. For Ba8GaxGe46−x and
Ba8AlxGe46−x, the OCD falls off only slowly with Ga/Al content
for 8 ≤ x ≤ 15 with an average value of about 10 to 13 pm. In
contrast, for the Si-containing clathrates, the OCD decreases
strongly and monotonically with composition, reaching
minimal values of about 2 pm at x ≈ 6.

Figure 8. Site occupancy factors for the ground states in (a)
Ba8AlxSi46−x and (b) Ba8AlxGe46−x as a function of composition for
Wyckoff sites 6c (red), 16i (blue), and 24k (orange).
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The trends in the OCDs correlate with the variation of the
lattice parameter with composition (Figure S2 in the
Supporting Information). While in the case of Ba8GaxSi46−x
and Ba8AlxSi46−x the lattice parameter increases with Al/Ga
content, a weaker correlation with the opposite sign is observed
for Ba8GaxGe46−x and Ba8AlxGe46−x. The size of the cages in
which Ba resides scales with the average atomic volume of the
structure and thus the lattice constant (Figure S5 in the
Supporting Information). The strong reduction in the OCD in
the former two materials can therefore be related to a general
decrease in the cage size.
It is noteworthy that the OCDs calculated here in the zero

temperature limit, compare well both in trend and magnitude
with experimental data for the atomic displacement parameter
(ADP) of the Ba 6d site in Ba8GaxGe46−x and Ba8AlxSi46−x.

14,24

Because the ADPs indicate the magnitude of thermal
displacements as obtained from Rietveld refinements, a direct
comparison with the OCDs is, however, not meaningful.
Nonetheless, the underlying structural features, including cage
size and Al content of the cages, are the same, which helps to
explain the correlation of the parameters.
Comment on Nuclear Densities in Ba8AlxGe46−x. The

symmetry of the Ba site in Ba8AlxGe46−x appears to be sensitive
to the synthesis route.13 While for a “shake-and-bake” sample
the Ba 6d site has been found to split fourfold at low
temperatures, yielding 24k or 24j sites, the 6d site symmetry
was maintained in the case of a Czochralski grown crystal. This
difference between the samples is also apparent from the
nuclear densities. It has furthermore been found that the shake-
and-bake sample had an Al content of 15.5 and a 6c SOF of
67%, whereas the Czochralski grown crystals gave 14.8 and
96%, respectively.3 These two points fall in the composition
region for which our simulations show a relatively sharp
transition in the SOFs (Figure 7). The analysis of the Ba
displacements shows that this transition also leads to a rather
abrupt change in the OCDs, in accordance with the
experimental trend.

■ CONCLUSIONS

In the present work, we combined density functional theory
calculations with alloy cluster expansions to study chemical
ordering in four prototypical clathrates (Ba8GaxGe46−x,
Ba8GaxSi46−x, Ba8AlxGe46−x, and Ba8AlxSi46−x). The energy
landscape was sampled as a function of temperature and

composition using Monte Carlo simulations from which we
extracted site occupancy factors, heat capacities, and lattice
constants.
The predicted SOFs are in very good agreement with

experimental data, where comparison is possible (Figure 7).
More importantly, the simulations clarify the experimental
observations and reveal trends across materials. For Ga-based
materials as well as Al-based materials with an Al content above
x = 14, the different sites are occupied in the sequence 6c − 24k
− 16i. If the Al content drops, however, to x ≈ 14 or below, 16i
sites become more preferable than 24k sites. This behavior can
be explained in terms of the ECI parameters of the underlying
CEs. The latter show that Al−Al repulsion is much stronger
than Ga−Ga repulsion (Figure 3), which drives the
redistribution from 24k to 16i sites with decreasing Al content.
Chemical ordering is shown to impact various properties,

including the heat capacity (Figures 5a and Figure S3 of the
Supporting Information) and the lattice parameter (Figures 5b
and c) and Figure S2 of the Supporting Information).
Specifically in the former case, the present results suggest
that the jump in the heat capacity observed in some
experimental measurements can be related to the entropic
contribution associated with chemical (dis)order.
For convenience, let us summarize the essential chemical

trends that have emerged from the comparison of four different
clathrate systems. The singlet ECIs, which determine the
energy cost for occupying different Wyckoff sites, follow the
order 6c > 24k > 16i in all materials considered here. The pair
interaction between group 13 species are, however, notably
more repulsive for Al−Al than for Ga−Ga (Figure 3). As a
result, Al−Al bonds are strongly suppressed at all temperatures
and compositions, whereas the Ga-based materials are more
tolerant to the formation of Ga−Ga bonds (Figure 6). The
repulsive Al−Al interaction furthermore causes an inversion in
the ordering of the SOFs for compositions above x ≈ 14, with
the 16i SOF exceeding the 24k SOF (Figure 7). This behavior
also translates to, e.g., the heat capacity and the lattice
parameter, for which the chemical ordering effect in Al-
containing systems kicks in at higher temperatures than in Ga-
based materials.
While the group 13 component is more dominant in the case

of heat capacity, lattice parameter, and SOFs, the variation of
lattice parameter and Ba OCD with composition is more
sensitive to the group 14 component (Figure 9 and Figure S2 in

Figure 9. Off-center displacements of Ba atoms on 6d sites as a function of composition for (a) Ba8GaxGe46−x, (b) Ba8GaxSi46−x, (c) Ba8AlxGe46−x,
and (d) Ba8AlxSi46−x as well as the distribution of displacements for (e) Ba8AlxGe46−x. Experimental data for the atomic displacement parameters in
Ba8GaxGe46−x and Ba8AlxSi46−x have been taken from refs 24 and14, respectively.
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the Supporting Information). Here, both lattice constant and
OCD in Si-based materials exhibit a pronounced positive
correlation with Al/Ga content. By contrast, a much weaker
variation with the opposite sign is obtained for the lattice
constant in the Ge-containing systems.
We note that in the present work we made some

approximations. Most notably, although experimental data
shows vacancies to be present in substantial concentrations, in
particular at the lower end of the composition range, we did not
include these defects in our simulations. As our results are in
good or very good agreement with experimental data, this
reflects the fact that the inclusion of vacancies is of lesser
importance for the properties considered here. Explicitly
including vacancies implies moving from a quasi-binary
(group 13/group 14) to a quasi-ternary (group-13/group 14/
vacancy) system. While the inclusion of vacancies is beyond the
scope of the present work, it can thus in principle be
accomplished with cluster expansions and could be addressed
in future work.
Generally, the present results demonstrate the potential of

alloy cluster expansions to resolve microscopic features and
reveal trends in complex inorganic materials that otherwise
require extensive experimental work. This is not only very
useful for understanding existing materials but ultimately
creates an avenue for a more systematic exploration of a larger
chemical space.
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