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Ordering phenomena in materials often have a crucial impact on materials prop-
erties. They are governed by the competition between entropy and energy. Ac-
cordingly simulating these aspects requires the construction of models that enable
an computationally efficient exploration of the relevant configuration space. Alloy
cluster expansions are a technique that is particular suitable for this task as they
can be trained to reach high accuracy while being computationally suitable for
rapid sampling via Monte Carlo techniques.

In this thesis alloy cluster expansions have been applied in combination with Monte
Carlo simulations to study the ordering behavior in various inorganic clathrates.
Inorganic clathrates constitute a class of systems with a cage-like framework that
can trap loosely bound atoms or even small molecules. These systems are small
band gap semiconductors and have a very low lattice thermal conductivity, which
gives rise to very good thermoelectric properties. Additionally the host atoms
and cage framework can be occupied by a wide range of elements which provides
extensive opportunities for property optimization. Inorganic clathrates are thus
good examples for systems with a high degree of variability in composition, for
which ordering phenomena play a crucial role.

In paper I we studied the ordering behaviour of Ba Ga Ge . Configurations rep-
resentative for different annealing temperatures were extracted from Monte Carlo
simulations and further analyzed to obtain the temperature dependency of the ther-
moelectric power factor. These data was subsequently used to construct a cluster
expansion for the power factor itself, which enabled us to optimize the chemical
ordering that maximizes this property. The approach developed in this work is
generalizable and can be adapted to other materials.

In paper II we studied the ordering behavior and related properties in the clathrate
systems Ba Al Si , Ba Al Ge , Ba Ga Ge , and Ba Ga Si as a
function of composition and temperature. We achieved very good agreement with
the available experimental data for the site occupancy factors (SOFs). This en-
abled us to reconcile experimental data from different sources and explain the non-
monotonic variations of the SOFs. In particular, we provided a rationale for the
extreme SOF behavior with varying composition observed in Al based clathrates.



Cluster expansion, Monte Carlo, Inorganic clathrates, ordering phe-
nomena
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This thesis deals with ordering phenomena in inorganic clathrates. The ordering in
a material is dictated by the energetics and the entropy of the material. Common
methods used to model mixtures in multi-component systems is demonstrated in
this chapter. It will be shown that in order to model the ordering of complex
materials the best available models are required.

Entropy is a measure of the disorder in a system. The second law of thermodynam-
ics states that disorder in a closed system can only increase; in other words closed
systems tend to evolve from ordered to disordered states. A simplified example of
this is the process of shuffling a fresh deck of cards. The initial state when the
deck of cards are in perfect order will “never” appear again in the process of the
shuffling since, assuming random shuffling, the probability to end up in the initial
state are roughly 1 in . As the shuffling continues the deck of cards becomes
more and more disordered.

Another example is the tossing of coins. Imagine having 100 coins and tossing
them all at once. A particular sequence can be denoted as head–tail–head–head–…
and so on. The probability that all come up heads is the probability of the first
coin coming up as heads times the probability that the second coin comes up as
heads and so on, hence the probability is . This probability is the same for
any sequence of the coin toss. Yet from intuition we would expect that all coins
coming up as heads should almost never happen.
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The resolution to this conundrum lies in the distinction of a specific sequence
of coin tosses, called microstates, and the total number of heads and tails of a
particular sequence, called a macrostate. All microstates are equally probable but
the probabilities for different macrostates vary over a wide range. The probabil-
ity of the macrostate is the number of all microstates that correspond to that
macrostate divided by the number of all possible microstates. The number of total
microstates are and the number of microstates for a macrostate is given by

. Consequently the probability of all coins ending up as
heads is whereas the probability of ending up with 50 heads is more
likely with a probability of about . Note that the number of microstates
for a particular macrostate is commonly referred to as the multiplicity of that
macrostate.

Mathematically entropy is measured as , where is the entropy,
is the Boltzmann constant and is the multiplicity of the system. Hence increasing
the entropy, or the disorder, simply implies that the system has changed to a more
likely state.

The principles of the coin toss example are easily extended to atomic systems.
Imagine a system comprised of 100 atoms. By mixing one atom into the
system the number of possible microstates increases by a factor of , as there
are 100 possible sites to insert the atom. A system of atoms obeys the same
combinatorics as the coin flipping. Hence the entropy increases by mixing and
if we are neglecting the atomic interactions the system will have a tendency to
spontaneously start mixing.

Entropy goes a long way in explaining the ordering behaviour of materials. Yet, in
nature many materials are observed to exhibit ordered states, which have (much)
lower entropy than disordered states. Thus if entropy is one half of the picture to
explain disordering, the energy is the other half that has to be included. Consider
again the case of the atomic system, for which we saw that the entropy can
be tremendously increased by mixing and atoms. In general there is an ener-
getic cost associated with mixing. If the formation of bonds is energetically
unfavorable compared to and bonds there is a penalty for mixing
and less mixing is expected. On the other hand if bonds are more favor-
able, the system can both lower its energy and increase its entropy by mixing and
more mixing is expected. This interplay of entropy and energy is expressed in the
Helmholtz free energy of the system

(1.1)
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where is the internal energy and is the temperature. Generally speaking a
system described in the canonical ensemble will strive to minimize its free energy.
According to Eq. (1.1) the entropy term becomes more important for higher tem-
peratures. Hence, at a low temperature a system is more likely to be observed in its
low energetic state, where the chemical bonds dictate the ordering of the material.
As the temperature is increased, however, the material becomes more disordered.

Many materials can exhibit some form of chemical order which are crucial to under-
standing their properties. One example is Zn Sb which is a material with a high
thermoelectric figure of merit, which is partially due to its low thermal conductiv-
ity [1]. It has been identified that the source of this low thermal conductivity is
due to Zn disorder and Zn nanostructuring which are sources of phonon scattering
[2, 3, 4].

Skutterudites are another example of material with chemical order, which are
a type of cage like materials which are high performance thermoelectric materials
[5, 6, 7, 8, 9]. The skutterudites owe some of its success as good thermoelectric
materials from their low thermal conductivity. These materials can lower their
thermal conductivity by filling these voids with rare earth metals [10, 11]. It has
been observed that the minima of the thermal conductivity is obtained for a partial
filling of the voids for some skutterudites [7]. An understanding of how these filler
atoms order can thus be very helpful in order to design optimal skutterudites [12].

Yet another example of thermoelectric materials with chemical ordering are the
inorganic clathrates. The clathrates possesses a large unit cell which can support
a wide range of elemental components and compositions. The ordering in inor-
ganic clathrates show large variations with compositions and constituent atoms
[13, 14, 15]. The power factor, which is an integral part of thermoelectric effi-
ciency, has been demonstrated to be able to be optimized by more than 60% for
certain chemical ordering patterns [16]. Inorganic clathrates are described in more
detail in chapter 2.

Consider a system of particles where all particles are of type except for
particles of type . This system is said to be in the dilute limit if . In
the dilute limit the particles are so few and spread out so it is assumed that
interactions between particles can be neglected. Hence, , the free energy
associated with adding or subtracting a particle, is constant as a function of
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composition. The equilibrium concentration in the dilute limit is then given by
, where is the concentration of sites available for substitution.

When the condition is no longer fulfilled the system is said to be in the
concentrated limit. Here, the atoms have become so numerous that their mutual
interaction must be taken into account and the free energy of adding or removing a

atom becomes dependent of the concentration. The simplest treatment applied
in the concentrated limit is provided by the mean field approximation to the Ising
model. The energy, entropy and the free energy of the system can be expressed in
terms of an order parameter, which describes, e.g., the average number of
bonds in the structure. The order parameter observed for a certain temperature
and concentration is the one that minimizes . The Helmholtz free energy of the
system is given by [17, 18]

(1.2)

where describes the energy cost of mixing and creating an bond, is the
concentration and is the Boltzmann constant. The effects of and on

are illustrated in Fig. 1.1. Some comments are in order. First, all expressions
are symmetric in the concentration . Secondly, the mixing entropy, , is positive
across the entire concentration range. Consequently the contribution of entropy
to the free energy is always negative. Hence, for , entropy will be the
dominating term and the free energy will always be minimized by mixing (
. For the case of there is a competition between energy and entropy

that determines whether the components mix or segregate. For and
low , can change sign, giving rise to a miscibility gap (Fig. 1.1d).

This very simple form is not suitable for modeling the vast majority of systems.
It can, however, be generalized leading to the semi-empirical CALPHAD approach
to modeling phase diagrams. In this case, the various contributions to the mixing
energy and entropy are expressed in polynomial expansions in temperature and
composition. The expansion coefficients are most commonly obtained by fitting to
experimental data and, more recently, also from first-principles calculations. The
resulting models are widely used in industry for alloy design and optimization.

The mean-field approach outlined in the previous section is fundamentally semi-
empirical in its nature and requires input in the form of either experimental or
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Figure 1.1: The free energy of mixing as a function of composition assuming
mixing is (a,b) energetically favorable ( ) and (c,d) unfavorable (
), respectively, at (a,c) high and (b,d) low temperature .

computational data. Experimental data is often difficult and/or expensive to ac-
quire; there are also various cases, in which it is downright impossible to extract
meaningful data from experiments. This applies for example at low temperatures
when thermodynamic equilibrium cannot be reached reliably.

For illustration consider the W–Ti system as analyzed using a combination of
first-principles calculations, lattice models and Monte Carlo simulations. The anal-
ysis reveals a ground state structure at 80% tungsten concentration [19]. At low
temperatures this configuration is much more likely to be observed than other con-
figurations leading to a distinct feature in the mixing energy (Fig. 1.2a) and even
more so the mixing entropy (Fig. 1.2b). These features are absent in CALPHAD
assessments of the W–Ti system, which instead commonly assume complete im-
miscibility, i.e. a positive mixing energy throughout. This approximation is owed
to the fact that W is a refractory metal, which renders experimental data below
approximately 1300 K unreliable.

The combination of first-principles calculations (commonly density functional
theory (DFT)) and lattice models (usually alloy cluster expansions (CEs)) allows
one to accurately predict the behavior of multi-component mixtures with little or no
experimental input. In the present thesis the application range of these techniques
is further extended to analyze ordering in inorganic clathrates.
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Figure 1.2: (a) Mixing energy and (b) mixing entropy as a function of composition.

In this thesis a series of inorganic clathrates (chapter 2) has been investigated.
Clathrates are inclusion compounds with complex ordering of the constituent atoms.
For the systems of interest in this work, there are possible ways to place
the atoms in the unit cell, excluding symmetry. One therefore requires extremely
efficient means to evaluate the energies of different configurations in order to inves-
tigate the vast configurational space of these systems. In this work this is achieved
by means of cluster expansions (chapter 3) while Monte Carlo simulations are em-
ployed to obtain thermodynamical averages (chapter 4). The results of this work
have been published in two peer-reviewed journal articles (chapter 5).
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Inorganic clathrates constitute a class of inclusion compounds that exhibit a cage-
like framework in which the cages are occupied by guest atoms or small molecules
[20, 21]. The guest atoms, which are undersized relative to their respective cage,
can act as so-called rattlers, lowering the lattice thermal conductivity. The frame-
work structure can support a rather wide range of compositions, from binary sys-
tems to ternary and higher order. The availability of different compositions and
the resulting variability of the distribution of elements in the framework provide
opportunities for optimizing material properties. Inorganic clathrates have been
studied in particular as potential high-performance thermoelectric materials due
to their low intrinsic thermal conductivity [22, 23], suitable band gap [24, 25, 26],
good dopability, and compositional variability [13].

Inorganic clathrate can be categorized according to their symmetry [20, 21]. The
present thesis focuses on type I clathrates, which have received the most attention
so far (Fig. 2.1). The framework structure of type I inorganic clathrates contains
46 tetrahedrally coordinated host atoms in the unit cell. It is the geometrical
arrangement of these 46 atoms that provides eight voids (or cages) per unit cell
for the guest atoms. There are two smaller dodecahedral cages and six larger
tetrakaidecahedral cages. The crystal structure belongs to the cubic space group
Pm n. In Wyckoff notation the center of the cages are and for the dodec-
ahedral and tetrakaidecahedral cages, respectively, whereas the framework atoms
occupy Wyckoff sites , and .
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