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Abstract

Thermoelectric inorganic clathrates of type I are under intense experimental and theo-
retical study. Partly due to its embodiment of the phonon glass electron crystal property
but also because the diversity of elements which can make up the structure. This allows
for a fine tuning of thermoelectrical properties, producing high zT values. Density func-
tional theory calculations and experimental work sample only a small subset of materials
and compositions. In this thesis, cluster expansions based on the compressive sensing
algorithm is developed and used together with Monte Carlo simulations. This method
allow the investigation of configurational dependency on temperature and composition.
The clathrates Ba8Ga16Ge30 , Ba8Ga16Si30 , Ba8Al16Ge30 and Ba8Al16Si30 are studied as
well as their non-stoichiometric versions. Calculated site occupancy factors are in good
agreement with experimental work. The experimental works can be understood with
stoichiometry and vacancies. Secondly, it is found that the band gap decreases as the
disorder increases for all clathrates. Finally the cluster expansion in conjunction with
the Monte Carlo method produces ground state structures that accurately predicts the
energy which is confirmed with density functional theory calculations.
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1
Introduction

The world’s demand for energy continues to grow. Combusting more fossil fuels to meet
these demands increases human environmental impact and the depletion rate of these
fuels. Another way to improve energy output without increasing the fuel consumption
is by increasing the efficiency of electric generators. This can be accomplished by scav-
enging waste heat with thermoelectric generators. There are countless processes which
release waste heat. Thermoelectrics have no moving parts, they are silent, reliable and
require no maintenance.

The cradle of thermoelectricity was in 1821 when Baltic German physicist Thomas
Johann Seebeck discovered the seebeck effect.[1] He observed that a compass needle
would be deflected if it was placed near a closed loop formed from two different conductors
when one of the junctions was heated. After that the field of thermoelectricity took a
slow start. It had a temporary uprising in 1850 due to advances in thermodynamics.
In the 1950s with the development of synthetic semiconductors the basic science of
thermoelectrics started to establish itself and a few semiconductors were manufactured
that had a relatively high rate of conversion compared to today. [1, 2] In the following
three decades, the development of thermoelectrics was slow but steady. It found niche
applications in e.g. space probes.[1, 2] For deep space missions, far away from the
sun, radioisotope thermoelectric generators (RTGs) where the heat source come from
radioactive decay allow for electric power without maintenence for extended periods of
time. In the Voyager spacecraft, launched in 1977 RTG provided Voyager with energy
for longer than 17 years. [1]

1.1 Thermoelectrics

A thermoelectric generator will, when put between a hot and a cold place, i.e. under the
influence of a thermal gradient, generate a current. The maximum efficiency, i.e. how
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1.1. THERMOELECTRICS CHAPTER 1. INTRODUCTION

much heat is transformed into electricity, of a thermoelectric material is given by [1],

η =
(TH − TC)

TH

(1 + ZT )1/2 − 1

(1 + ZT )1/2 + TC/TH
(1.1)

Where TH and TC are the absolute temperatures of the hot and cold reservoirs.
ZT is a figure of merit which involves both the n-type and p-type properties of the
thermoelements[1]. It is common practice to instead use zT , the figure of merit for a
single material. The first part of Eq(1.1) is the Carnot limit and is, according to Carnot’s
theorem, the limit for heat engines and is defined as 1− TC/TH . For TC = 300 K, η as
a function of ZT is visualized in figure 1.1. The figure of merit, zT is given by

zT =
S2σT

κ
(1.2)

It is dimensionless and can be used to compare the efficiency of thermoelectrics. S is
the Seebeck coefficient, σ is the electrical conductivity and κ is the thermal conductivity.

The basic physics of a thermoelectric material is that application of a thermal gra-
dient creates a potential gradient. This can be explained by considering that the charge
carriers are free to move like gas molecules while transporting charge and heat. When a
temperature gradient is applied to a material the charge carriers near the hot reservoir
will move faster than the charge carriers near the cold reservoir resulting in a diffusion
of charge carriers from the hot to the cold reservoir producing an electrostatic potential.
This is known as the Seebeck effect.

When designing a thermoelectric material, it is essential to maximize the zT value.
The challenge is that many of the properties of the thermoelectric have conflicting effects
on the figure of merit. The basic properties of a thermoelectric is:

• Seebeck effect The Seebeck coefficient, S is directly related to the conversion of
temperature gradients to electrical potential gradient. It is defined by,

S =
V2 − V1

T2 − T1
(1.3)

Where V2−V1 is the potential between point 1 and 2 and T2−T1 is the temperature
difference. A high Seebeck coefficient is desired. To this end it is optimal to have
only one type of charge carriers. A mix of charge carriers will make both electrons
and holes diffusing to the cold end resulting in a lower voltage difference. For
metals or degenerate semiconductors the Seebeck coefficient is given by,

S =
8π2k2

B

3eh2
m∗T

( π
3n

)2/3
(1.4)

where n is the carrier concentration, m∗ is the effective mass of the carrier, e is
the electron charge, h is Planck’s constant and kβ is Boltzmann’s constant.
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1.1. THERMOELECTRICS CHAPTER 1. INTRODUCTION

• Electrical conductivity - Ohm’s law.
Ohm’s law states that the current through a conductor between two points is
proportional to the potential difference between two points.

J = σE (1.5)

where J is the current density, σ is the conductivity and E is the electric field. For
a thermoelectric which purpose is to create a current it is clear that a high conduc-
tivity is wanted. The electrical conductivity is related to the carrier concentration
by

σ = neµ (1.6)

where µ is the carrier mobility.

• Thermal conductivity - Fourier’s law.
Fourier’s law shows that the local heat flux density q is dependent on the thermal
conductivity κ and the temperature gradient ∇T ,

q = −κ∇T (1.7)

The thermal conductivity comes from two sources: 1) charge carriers transporting
heat (κe) and 2) phonons traveling through the lattice (κl) thus we have κ = κe+κl.
The electronic contribution κe is proportional to the electrical conductivity σ as
stated by the Wiedemann-Franz law,

κe = σLT (1.8)

where L is the Lorenz number. Now zT can be reformulated in a more detailed
way:

zT =
S2σT

κ
=

S2σT

σLT + κl
(1.9)

As stated previously a high flux of electrons is desirable, which is dependent on the
temperature difference. If heat is transferred by means of thermal conduction this
will decrease the efficiency of the thermoelectric ergo a low thermal conductivity
is required.

The carrier concentration have a conflicting effect of the figure of merit since a high
carrier concentration decreases the Seebeck coefficient but increases the electrical con-
ductivity. Another conflicting property is the effective mass of the charge carriers as
larger effective masses produce high Seebeck coefficient but low electrical conductivity.
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1.2. THERMOELECTRIC MATERIALS CHAPTER 1. INTRODUCTION

Heavy carriers will move with slower velocities and therefore have smaller mobilities.

A good thermoelectric is a material with a low lattice thermal conductivity and high
electric conductivity. Slack et al. [3] suggested that solids with weakly bonded atoms
which can “rattle” in their positions may scatter phonons, leading to a lower thermal
conductivity. However, rattlers scattering phonons may equally well scatter electrons.
To prevent this, one must find a material where the rattlers scatter phonons but do
not disturb charge carriers. Such a material is called a phonon glass-electron crystal
(PGEC). A PGEC material with a high Seebeck coefficient is likely to be a very good
thermoelectric material.

1.2 Thermoelectric materials

Here is a short description of different interesting thermoelectric materials. With the
exception of clathrates, there will not much else said about the other materials.

1.2.1 Half heusler phases

Half heusler phases are interesting thermoelectric materials. They can exhibit many
inhomogeneities such as interstitials, small Heusler inclusions and multiple Half-Heusler
phases.[4]. Inhomogeneities are often interesting for potential thermoelectric material.
Having many of them can allow a fine tuning to achieving great thermoelectric materials.

1.2.2 Layered materials

The concept behind layered materials is that instead of designing a material to both have
low thermal conductivity and high thermopower,combination of two or more nanoblocks
are used, creating a comblex crystas. One example of this is the layered CoO2[5].

1.2.3 Clathrates

Inorganic clathrates or sometimes called Zintl clathrates[6] are cage-like structures, which
enclose bonded atoms (guest atoms) and can be composed of elements from groups 13
and 14 of the periodic table (host atoms). The guest atoms, often loosely bonded in
the cages, can act as rattlers, scattering phonons. Clathrates are thereby practical
realizations of the so-called phonon glass-electron crystal concept [3].

Clathrates are classified according to crystal symmetry. In the present study the
focus is on type I clathrates, which adopt space group Pm3̄n. In this structure the
unit cell contains 46 host atoms that leaves 8 voids or cages for the guest atoms to
occupy. The cages are two small dodecahedron and 6 larger tetrakaidecahedron, where
the centers of the cages correspond to Wyckoff sites 2a and 6d respectively. The host
atoms are found at sites 6c, 16i and 24k (see figure 1.2) The site occupance factors (sof)
of the Wyckoff sites are an important description of the clathrates. It is a quantity which
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can be experimentally observed and it is related to the local order. If the group 13 and
14 atoms were uniformly distributed the sof’s would be 35% group 13 and 65% group
14.

The host elements from group 13 and 14 assume a certain ratio (16:30). This stoi-
chiometry can be explained by the Zintl concept.

1.2.4 Zintl concept

Much of the behaviour can be understood with the Zintl concept [7]. In this model,
four electrons must be available for each tetradrahedrally bonded host atom. The guest
atom is assumed to be ionic and donate its valance electrons to the framework[7]. This
means that with 46 framework atoms, there must be 184 electrons available for the
framework bonding. For Ba8Ga16Ge30 each Ba guest atom donates two electrons and
the the number of valancies for Ga and Ge is 3 and 4. This gives a total of 184 electrons
and the compund is expected to be a semiconductor. Deviation from 16:30 ratio will
result in doping in this model. Exchanging a Ge atom for a Ga atom will result in
one less electron in the framework and the material is assumed p-doped. A Ga to Ge
exchange leads to an excess electron and n-doping.

Because of the interesting properties of clathrates, they have been investigated in
numerous papers. Christensen et al. 2007 [8] experimented on three different samples
of Ba8Al16Ge30 . Each was prepared in a different manner, producing very different
site occupancy factors. The experiment showed that one of the samples had a thermal
conductivity 3 times smaller than another. They claim that controlling the host structure
chemistry is key to manipulating electrical properties and thermal conductivity.

This example is an example of understanding the chemical ordering is key in under-
standing how the thermoelectric will perform. Experiments and density functional the-
ory (DFT) calculations only sample a small subset of materials and configurations. The
main objective of this thesis is to elucidate the relation between chemical order in type-I
clathrates and certain thermodynamic properties. To this end cluster expansions[9] has
been developed using a compressive sensing algorithm[10], which was then used in Monte
Carlo simulations. This approach made it possible to sample configurational dependency
on temperature and composition.

The main focus of this thesis has been on the quasi-binary systems Ba8Ga16Ge30 ,
Ba8Ga16Si30 ,
Ba8Al16Ge30 and Ba8Al16Si30 . The main results are the site occupancy factors which are
in good agreement with experimental results for all binaries. This validates the method
used, allowing to extend the calculations to other properties. The temperature depen-
dence of the band gap is calculated. The findings show that band gap is lowered with
increasing disorder and shows a large increase for decreasing temperatures for all bina-
ries. This result is significant because of the exponential dependence of the charge carrier
concentration[11] and thus the electrical conductivity, as seen in Eq.(1.6). The lattice
parameter show a significant dependence on the ordering of the clathrate. All material
show a decrease in lattice parameter for increasing order, except for Ba8Ga16Si30 showing
an increase in lattice parameter for increasing order.
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Finally the compressive sampling cluster expansion method in conjunction with the
Monte Carlo method produces ground state structures and accurately predicts the en-
ergy which are confirmed by DFT calculations. These ground state configurations are
significant because they represent prototypical structures that embody the key chemical
features in a high symmetry structure. They can thereby serve as starting points for
further theoretical investigations.
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Figure 1.1: The conversion efficiency as a function of ZT with TC = 300K for different
temperature differences. The thermodynamic limit is given by Carnot’s theorem which is
1− TC/TH

Figure 1.2: Left)Crystal structure of clathrate-I. Right) The different cages of the
clathrates with some of the Wykoff positions shown. The cage in the upper right is the
larger tetrakaidecahedron cage with 14 sides, the cage on the bottom left is a smaller do-
decahedron cage with 12 sides.
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Figure 1.3: The left hand of the figure show the thermoelectric device. It consists of a
series of thermoelectric elements with p- and n-doping alternating. On the right hand of the
figure is a closer look on the thermoelements, a heat flow gives rise to a current of charge
carrier, the setup of alternating thermoelements will result that each thermo-couple will act
as a charge source in a series.

Figure 1.4: Atomic environment of different crystal positions of the cage.
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2
Method

Many solid-state structures can be described as substitutional A/B systems, where the
sites of the crystal lattice are occupied by A and B atoms in different configurations. For
simplicity ternary and higher order systems are ignored, but can without much effort be
generalized to include more atom types. If one is interested in the ground state config-
uration or to sample finite-temperature thermodynamic averages you would in principle
be forced to know the energy of the 2N possible configurations for placing A and B atoms
on N lattice sites. For ab-initio calculations this present a problem in that the computa-
tional effort for quantum-mechanical total energy calculations increases rapidly with the
number of atoms in the unit cell so you are limited to small or few configurations. This
makes ab initio calculations unsuitable for determining the ground state configuration,
the energy of random configurations or for construction phase diagrams.

One of the simplest models for calculating the configurational dependency of a quan-
tity, q, is the Ising model,

q(σ) = −
∑
i 6=j

Jσiσj (2.1)

Which is a sum over the nearest neighbours of lattice sites i and j, J is an effective
interaction energy and σi, σj is the atomic spin. For a binary system, one may assign
values of +1 and −1 for atom type A and B respectively. Of course, only considering
nearest neighbours might not pick up all the subtleties a material may exhibit since
atomic interactions seldom extend only to the nearest neighbours. This leads to a version
of an extended Ising model where you consider pairs of atoms inside a certain radius,
rcut,

q(σ) = −
∑
r<rcut

Ji,jσiσj (2.2)

One may now in this fashion add the effect of all imaginable clusters,
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2.1. CLUSTER EXPANSION CHAPTER 2. METHOD

q(σ) =
∑
i

Jiσi +
∑
i 6=j

Ji,jσiσj +
∑
i>j>k

Ji,j,kσiσjσk + . . . . (2.3)

If this expansion is carried out to infinity it will calculate the exact energy for a certain
choice of parameters [9]. This expansion of clusters is called the Cluster Expansion. The
generalisation of which is described in the next section.

2.1 Cluster Expansion

One approach to combat the weakness of direct ab initio calculations for different con-
figurations is the cluster expansion (CE). A configurationally dependent quantity, q, is
given by the CE as:

q(σ) =
∑
α

mαJα 〈Γα′(σ)〉α (2.4)

where the following definitions according to Ref.[12] were used:

• A configuration σ is represented by a vector σi indicating which type of atom
occupies lattice site i. The occupation value can take any value from 0 to Mi − 1
where Mi is the number of atom types can occupy site i.

• α is a cluster such as singlets, pairs, triplets etc. A cluster can be described by a
vector of elements αi that can take any value from 0 to Mi − 1 where 0 indicates
that site i doesn’t belong to the cluster.

• The sum is over all possible clusters that are mutually distinct.

• The average 〈. . .〉α is over all clusters α′ that are equivalent by symmetry to cluster
α.

• Γα′(σ) are cluster functions. They are selected to be of the form

Γα(σ) =
∏
i

γαi,Mi(σi) (2.5)

where γαi,Mi(σi) satisfies γ0(σi) = 1 and the following orthogonality condition

Mi−1∑
σi=0

γαi,Mi(σi)γβi,Mi
(σi) =

{
6= 0 if αi = βi

0 otherwise
(2.6)

• mα is the cluster count, indicating the number of clusters equivalent to α by
symmetry

• Jα are the coefficients to be determined and are also called effective cluster inter-
action (ECI)
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When all clusters α are considered in the sum, the cluster expansion is able to
represent any function q(σ) if the Γα(σ) form an orthogonal basis for the space of con-
figurations, which is true if the orthogonality condition, (2.6) is satisfied [12].

The choice for γαi,Mi(σi) is valid for any function satisfying eq.(2.6). This thesis uses
the same choice as in Ref.[12] which is the following:

γαi,Mi(σi) =


1 if αi = 0

−cos
(
2π
⌈
αi
2

⌉
σi
M

)
if αi > 0 and odd

−sin
(
2π
⌈
αi
2

⌉
σi
M

)
if αi > 0 and even

(2.7)

where d. . . e is the ”round up” operation and αi and σi can range from 0 to Mi − 1

2.2 Compressive sensing

The fitting process in this thesis seeks to reproduce DFT data, taken from a data set
[13]. It is common practice to divide a data set into a training set and one validation
set. The training set is used to fit the parameters, that solution can then be used to
predict the data from the validation set. If the prediction is good for the validation set,
one can assume that it will be good for other configurations that are not part of the
data set. When considering the fitting process the problem is equivalent to solving the
matrix equation,

Π̄ ~J = ~E (2.8)

Where ~E contains the training data and ~J are the coefficients to be fitted and Π̄
contains the configurations in such a way that Πi,j is the value of mα 〈Γα′(σ)〉α from Eq.
(2.4) for the i:th configuration and the j:th cluster.

Considering all possible clusters in Eq. (2.4) is not practically possible. However
physical intuition suggests that only clusters with a limited radius and involving a limited
number of sites will have a significant ECI. There are many intricate methods that involve
taking out sets of trial ECI’s and check their predictive power [10]. These methods is
cumbersome compared to a recently developed technique, compressive sensing (CS),
which provides a simple and efficient way to extract the important ECI’s and compute
their values in one shot [10, 14, 15]. To demonstrate compressive sensing it helps to first
define the lp norm:

‖u‖p =

(∑
i

|ui|p
)1/p

(2.9)

In the compressive sensing (CS) method, the problem is solved by searching for the
solution with the smallest l1 norm which still reproduces the results with a given accuracy,

JCS = arg min
J

{∥∥∥ ~J∥∥∥
1

:
∥∥∥Π̄ ~J − ~E

∥∥∥
2
< ε
}

(2.10)
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2.2. COMPRESSIVE SENSING CHAPTER 2. METHOD

This form is a inconvenient to work with and it is common practice to work with
an unconstrained approach that minimizes the l1 norm and the least squares sum of the
fitting error:

J = arg min
J

{
µ ‖J‖1 +

1

2

∥∥∥ ~E − Π̄ ~J
∥∥∥2
}

(2.11)

the parameter µ controls the accuracy of the fit. A high value of µ leads to sparse
solution but larger fitting error and vice versa.

However it turns out that there are problems to solve mixed l1 and l2 minimization
problems such as Eq.(2.11), Goldstein and Osher proposed the split Bregman algorithm
which eliminates this problem [16]. The split Bregman iteration splits the l1 norm of
the solution from the objective function and replaces it with a variable ~d which then
converges towards the l1 term, limk→∞(~d−µ~J) = 0. To this end a least-squares l2 term
is added to the objective function to ensure that ~d = µ~J

~J = arg min
J,d

{∥∥∥~d∥∥∥
1

+
1

2

∥∥∥Π̄ ~J − ~E
∥∥∥2

+
λ

2

∥∥∥~d− µ~J∥∥∥2
}

(2.12)

This formulation is advantageous because the minimization involving the quadratic

form 1
2

∥∥∥Π̄ ~J − ~E
∥∥∥2

does not involve any l1 terms and can be minimized efficiently using

the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS).
The split Bregman algorithm comprises the following steps

~Jk+1 = arg min
J

{
1

2

∥∥∥Π̄ ~J − ~E
∥∥∥2

+
λ

2

∥∥∥~d k − µ~J −~bk∥∥∥2
}

(2.13)

~dk+1 = arg min
d

{
||~d||1 +

λ

2

∥∥∥~d− µ~Jk+1 −~bk
∥∥∥2
}

(2.14)

~bk+1 = ~bk + µ~Jk+1 − ~dk+1 (2.15)

Where in Eq.(2.15) the residual after iteration k is added back to the residual vector
~bk+1 for the next iteration in style with a Bregman iteration which result in a quicker
convergence [17]. Starting from ~d 0 = 0, ~b 0 = 0 and ~J 0 = 0. In this thesis the BFGS is
used to solve the l2 minimization in Eq.(2.13), the second step, Eq.(2.14) separates into
individual vector components and is solved by shrinkage,

~dk+1
n = shrink(µ~Jk+1

n +~bkn, 1/λ) (2.16)

which is defined by

shrink(y,α) ≡ sign(y)max(|y| − α,0) (2.17)

Shrinkage decreases the absolute magnitute of the y by α and sets it to zero if y ≤ α.
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2.3 Cross-Validation

Since the number of parameters to be fitted in a cluster expansion is theoretically infinite
there will have to be some truncation, there is also the problem of overfitting if too many
parameters are fitted which leads to lower training set error but worse predictability.
Another problem with choosing too few parameters is that there might be a correlation
between 〈Γα′(σ)〉α and

〈
Γβ′(σ)

〉
β

and when Jβ is left out, Jα might get accredited for
the variations of cluster β which has an adverse effect on the predictability on the fit.

The cross validation (CV) score is widely accepted as the quantity for determining
the accuracy of the CE. One variant is the ’leave one out’ CV (LOO-CV) which is defined
as

(CV )2 =
1

N

N∑
n=1

(Ê(n) − En)2 (2.18)

where En is the calculated energy for structure n and Ê(n) is the predicted value of the
energy of structure n as calculated with the CE fit with the (N − 1) other structures.
This method, however, requires making N cluster expansions, there is another method
which only needs one cluster expansion [18][19],

(CV )2 =
1

N

N∑
n=1

(
(Ê(n) − En)

1−Xi (XTX)−1XT
i

)2

(2.19)

which includes all the structures in the data set in the fit and the matrix Xiα contain
〈Γα′(σ)〉α for the i:th configuration.

2.4 The Monte Carlo Method

The partition function is defined as Z =
∑
e−βU , where β is equal to 1/kBT , and the

sum is over all micro states. The partition function is related to the probability Ps that
micro state s is occupied,

Ps =
1

Z
e−βUs (2.20)

The ensemble average of the energy is given by the sum of the energy weighted by
their probability,

〈E〉 =
1

Z

∑
s

Ese
−βEs (2.21)

Since there are 2N micro states for a binary with N lattice sites an explicit evaluation
of Eq.(2.20) is impractical, even for small systems. A numerical recipe for computing
thermal averages is the Metropolis Monte Carlo method. To illustrate this approach first
consider the evaluation of an integral using (unbiased) Monte Carlo,
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I =

∫ 1

0
dxf(x) = 〈f(x)〉 (2.22)

The direct Monte Carlo method would evaluate f(x) by choosing N points xi at
random with uniform probability over the interval [0,1). The mean value becomes,

IN = 〈f〉 =
1

N

N∑
i=1

f(xi) =
1

N

N∑
i=1

fi (2.23)

and the variance,

σ2
f =

〈
f2
〉
− 〈f〉2 (2.24)

and the integral,

I = IN ±
σf√
N

(2.25)

As N → ∞ the Monte Carlo method will find the correct value of I. However,
this method is not suitable for calculating averages such as in Eq.(2.21) since most of
the computing will be spent on points where the Boltzmann factor is negligble which
will increase the variance and the points needed to converge the sum. It is much more
favourable to sample more points where the Boltzmann factor is large.

2.4.1 The Metropolis Method

Metropolis et al 1953 introduced the metropolis algorithm to determine the equation of
state for a hard sphere liquid [20]. It is based on an idea that thermodynamic averaging
only requires knowledge of relative rather than absolute probabilities like in Eq. (2.21).
It uses a Markov chain to generate configurations that are more important by rejecting
configurations that are unlikely, much like in the case of importance sampling and based
on a distribution that is proportional to the Boltzmann factor.

A Markov chain is a stochastic process where a system undergoes transitions from
one state to another. The Markov process is characterized by a lack of memory of where
it has been. The future of the chain depends solely on the current state. The transition
probability is given by a transition matrix,

T (X → X ′) ≡ TXX′ (2.26)

for a transition from state X to state X ′. The transition probability has to satisfy

0 ≤ TXX′ ≤ 1 (2.27)

and the probability has to be normalised,∑
X′

TXX′ = 1 (2.28)
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The task is to generate a Markov chain of configurations such that they have a distri-
bution proportional to the Boltzmann factor and this distribution should be independent
on the position of the chain and of the initial configuration. The Markov chain can ex-
hibit these properties under certain conditions, at least for sufficient long time so that
the configuration can loose memory of its initial state. These conditions are,

• The markov chain needs to be irreducible, that is every configuration included in
the ensemble should be accessible from every other configuration within a finite
number of steps.

• There should be no periodicity. Periodicity means that it is not possible to revisit
a configuration except after t = nk steps, n = 1,2,3 . . . , where k is fixed.

A Markov chain that satisifes these conditions is called ergodic. If the Markov chain is
ergodic it converges to a unique stationary distribution.

The transition probablity need to be chosen such that the stationary distribution is
the Boltzmann distribution. To assure this, consider the stationary distribution ρ(X);
one can also introduce a new function ρ(X,t) which gives the probability of finding
configuration X after t Markov steps which for an ergodic chain becomes independent
of t if t is large. This function can change from one step to another by,

• Going from X at step t to X ′ at t+ 1 leads to a decrease in ρ(X)

• Going from X ′ at step t to X at t+ 1 leads to an increase in ρ(X)

that can be summarized with,

ρ(X,t+ 1)− ρ(X,t) = −
∑
X′

T (X → X ′)ρ(X,t) +
∑
X′

T (X ′ → X)ρ(X ′,t) (2.29)

This equation is called the Master equation. The stationary solution of this equation is
found by requiring ρ(X,t+ 1) = ρ(X,t) so we have,∑

X′

T (X → X ′)ρ(X,t) =
∑
X′

T (X ′ → X)ρ(X ′,t) (2.30)

Leaving out the t-dependence, which is allowed due to basic ”memory loss” property
of a Markov chain, yields,

T (X → X ′)ρ(X) = T (X ′ → X)ρ(X ′) (2.31)

which is known as the condition of detailed balance. This means that in equilibrium
the average number of moves that result in the system leaving state X must be exactly
equal to the number of moves from all other states X ′ to X. This means that ρ(X) and
ρ(X ′) doesn’t change, as this is true for all pair of X and X ′ the probability distributions
will remain stationary.
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Reformulating the detailed balance condition with the transition probability in the
form yields,

T (X → X ′) = ωXX′AXX′ (2.32)

where ωXX′ ,
∑

X′ ωXX′ = 1, is the probability for going from state X to state X ′ also
known as trial step probability. AXX′ which must lie between 0 and 1 is the acceptance
probability of actually commiting the change. The detailed balance condition can then
be expressed as,

AXX′

AX′X
=
ρ(X ′)

ρ(X)
(2.33)

The Metropolish algorithm can now be formulated as follows:

• For a given state X, make a small trial move into a new state X ′ with a probability
of ωXX′ .

• Compare the weights of the distribution for the different states ρ(X) and ρ(X ′).
AXX′ , the acceptance probability, is chosen equal to 1 if ρ(X ′) > ρ(X) else it is
chosen to be equal to ρ(X ′)/ρ(X).

• The new state X ′ is accepted with a probability AXX′ , which means that X ′

replaces the old X system and it is rejected with probability 1 − AXX′ which
means that the system remains in the state X. To decide if a state is accepted or
not a random number is generated uniformly in the range [0,1) and compared to
the acceptance probability. If the random number is larger than the acceptance
probability the trial move is accepted. Since the probabilities have a Boltzmann
distribution the acceptance probability will look like,

AXX′ = e−βU(X)/e−βU(X′) = e−β∆U (2.34)

Since each trial move is only a small change in the configuration there is an inherent
correlation between state X and X ′. There is a correlation step length, s, for the Markov
chain that means it is necessary for s trial moves before reaching a new uncorrelated
configuration. An MC step is defined as N trial steps where N is the number of particles
which is commonly used to approximate s. There is also a need to initialize the initial
configuration meaning that it is necessary to run the Metropolis algorithm, usually in
the order of 10− 50 MC steps depending on temperature and system.

The ensemble average of a physical quantity A is thus choosen as,

〈A〉 =
1

N

N∑
i=1

Ai (2.35)

where N is now the number of MC-steps, Aj is the value of A for configuration Xj

and Aj+1 is the value for configuration Xj after s trial moves and A1 is the value of A
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for the initial configuration Xinit after the initial MC steps which are thrown away. The
variance for A is,

V ar(A) =
〈
A2
〉
− 〈A〉2 . (2.36)

The statistical error is √
V ar(A)√
N

(2.37)

This is true if the sampling of A is uncorrelated. In this thesis the number MC-steps is
of the order 104 making it effectively negligible.
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3
Ba8Ga16Ge30

The Ba8Ga16Ge30 system is a type I clathrate with framework atoms consisting of Ga
and Ge and Ba as host atoms. Only Ba are allowed as host atoms, and no vacancies are
considered for the host atoms. This means that there can be no configurational difference
with respect on the Ba atoms in the cluster expansion. Thus the Ba8Ga16Ge30 system
can be considered a binary mixture.

This chapter will exemplify the techniques discussed in the methods chapter. It will
go more in depth of the fitting procedure. This will allow that the following chapter,
with the rest of the binaries, can in higher degree to be focused on the results rather on
the nuances of how the CSCE performed on each system.

3.1 Fitting the Ba8Ga16Ge30 system

The clathrates of type I have 54 atoms in the unit cell, 46 of which belong to the cage
structure. When considering the unit cell with boundary conditions there are 36 unique
lengths, which means that for a binary mixture there are 37 different clusters if consid-
ering singlets and pairs with no cutoff radius. Compared to Si which have 2 atoms in
the unit cell and 2 different clusters to consider the clathrates are complicated materials,
which is one of the reasons compressive sensing is necessary.

The parameters Jα for the pair interactions can be seen in figure 3.2. The fit con-
sider singlets as well but are not plotted since its value is much larger than that for
the pairs. There is a clear decrease in parameter value for increasing radius. In figure
3.6 the clathrate is visualized along with the prominent bonds found for the parameter
values. The first nearest neighbours bonds, r ≈ 2.5 Å make out a clear cage structure.
The lone, noticable peak, for the parameter value with r ≈ 4.6 Å is 4 bonds that lie on
the two large sides on the larger tetrakaidecahedron cages. Finally the group of bonds
just below r = 6 Å is visualized, these are bonds that crosses a small part of the cage.
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In figure 3.4 the maximum contribution for each pair interaction for the energy,
volume and band gap are shown. The energy dependence on radius is much more pro-
nounced than on the other two quantities which both decline in roughly the same manner.

The CV score can be seen in fig.3.3. Variant 1 is the method described in Eq.(2.19)
and Variant 2 is similar to LOO-CV except for that 30 configurations are picked out and
this is done several times to get an average estimator for the root mean square error per
atom. Fits based on 55 and 160 configurations in training set, seen in more detail in
figure 3.3,t were taken out visualise the spread of the estimated points. Also the CV as
a function of the number of clusters considered is shown, the results show that there is
a exponential dependence of the CV on the number of included clusters. The number
of configurations in the training set was always set to the maximum 200 and with no
radius or energy cutoff for the parameters.

The interrelationship between fitting error, norm of the parameters, number of non-
zero parametrs and the value of µ can be seen in fig. 3.5. The results were obtained
with different training set sizes. Shown are the average RMS for the validation energy
as a function of µ, the l1 norm of the parameters as a function of µ and the number of
non-zero parameters. It shows, as was explained in the method section, that you have
to make a choice between low l1 norm and non-zero parameters and low fitting errors.
There are 37 parameters being fitted and it is shown that when having 20 configurations
the µ = 0 solution has very poor predictability. But when increasing the weight of the
l1 minimization one obtains good predictability for this undetermined system. However,
when the size becomes overdetermined the l2 minimization works but cannot decrease
the number of ECI’s.

3.2 Results

In many of the figures in this section there is an error bar, this is proportional to the
standard deviation often it is a quarter or a fifth of the calculated std. This is to give
an idea of the fluctuations in the sampling. As explained in the method section the
statistical error would be too small to see as an error bar in the figure. In figure 3.7
the ensemble average of the energy during a MC simulation is shown. There is a clear
flattening of the curve after 200 K, the MC simulation finds a minimum energy structure.
This structure was analyzed and it was identified to belong to space group 146. A DFT
calculation on this structure was made. The difference in the energy predicted by the
CE and the DFT calculation is of the size 10−4 eV.

In figure 3.8 the ensemble average of the band gap during an MC simulation is shown.
The band gap shows an increase as the disorder decreases. The calculated band gap and
the CE prediction show a relatively larger error than for the energy. This can in part be
explained that the DFT data is calculated with few k-samples which is enough for the
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energy calculations but both gives an over-estimation of the band gap and adds noise.
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Figure 3.1: The DFT data used for the fitting of the Ba8Ga16Ge30 is presented. In total
there are 200 configurations. The distributions is for Left) Energy for the different configu-
rations. Middle) the Band Gap. Right) The volume.
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Figure 3.2: a) Parameters obtained from compressive sampling split bregman for 170
configurations in training. b) Parameters weighted with how many pairs there are for the
given distance resulting in the maximum contribution to total energy from that distance.
The total energy contribution dies off, as expected, for longer distances
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Figure 3.4: Maximum contribution for the different quantities of the Ba8Ga16Ge30 system.
The dependence on the pair radius is shown. Left) The energy parameters showing a rela-
tively quick decrease as the distance increases. Middle) The Band Gap shows less decrease
with distance compared to energy. Right) The volume parameters also show less decrease
with radius compared to energy.
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Figure 3.5: Results obtained from the Ba8Ga16Ge30 system for different sizes of the training
set. Left) Average RMS for the validation energy as a function of µ. Middle) The l1 norm of
the parameters as a function of µ. Right) The number of non-zero parameters as a function
of µ. Where a non-zero parameter is defined as the absolute value should be larger than the
half of the mean absolute value of the parameters. The relationship between error of the fit
and the norm of the parameters as a function of µ is visualized. A value of µ = 0.65 was
chosen. This was considered a fair trade-off between non-zero parameters and RMS error.

Figure 3.6: Left) The first nearest neighbour bond is shown. The cage structure is visual-

ized. Middle) The red bonds are the noticable peak at 4.6 Å for the energy paramters. The
bonds correspond to four bonds on each of the larger side of the larger cage. Right) The

bonds corresponding to the group of distances at 5.8 Å. The bonds cross a part of the cage
but not entirely across.
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4
Other binaries

With the groundwork laid out in the previous chapter this chapter can generalize the
results and compare the different binaries which are, besides the Ba8Ga16Ge30 , the
Ba8Ga16Si30 , Ba8Al16Si30 and Ba8Al16Ge30 . The different distributions for the data
sets used can be seen in figures 4.1, 4.2 and 4.3. The ground state structure found for
the Ba8Ga16Ge30 are added in the data sets for the new binaries. This configuration
can easily be spotted in the distribution as the one that stands out. For the energy
distribution in Fig.4.2 this configuration has a significantly lower energy compared to
the random structures in the other data set. If this configuration is the T = 0 K struc-
ture for these binaries, and the random configurations represents high temperature (no
order) configurations, the band gap will increase for all the binaries as the temperature
decreases, the volume will increase for all binaries except for Ba8Ga16Si30 which has an
increase in volume for increasing order. In figure 4.1, for the band gap distribution all
the binaries except for Ba8Ga16Ge30 have configurations with no bandgap. That means
that a fit for the band gap for these materials, with this data set, is highly suspicable.

4.1 Result

In figure 4.4 the result for the average occupation factors along with experimental results
from Ref.[7] are visualised. Unfortunately it is not clear how the cooling process was
performed making the temperature position of the experimental results unclear. An
attempt has been made to manually fit them into the simulation results. All the different
materials arrive at the same final result but all in different ways. Most noticable is the
difference whether aluminum or gallium was present. The data was taken with the same
number of MC steps but for the binaries where aluminum was present the acceptance
probability is up to a factor ten, the acceptance can be seen in figure 4.7 This indicates
that there are larger energy barriers in the aluminum-based clathrates compared to the
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gallium-based.
Ba8Al16Si30 achieves ordering at the highest temperature at around 300 K, Ba8Ga16Si30 has

the lowest temperature required to achieve ordering at about 50 K. The temperature in-
tervals in these simulations was 60 K.

In figure 4.5 the average energies are shown along with the DFT value for the ground
state structure found for Ba8Ga16Ge30 . Structural analysis on the configurations show
the same ground state structure. There is a small but noticable difference between the
final energies from the MC simulation and the DFT value of the lowest energy structure
for the silicon-based clathrates. The germanium-based was showed almost exact predic-
tion.

In figure 4.6 the change in lattice parameter as the temperature is lowered is shown,
the Ba8Ga16Si30 system behaves completely different, increasing in size for increasing
order. The largest increase is between 0 K to 300 K, the temperature interval where the
other materials show smallest volume differences. The cluster expansion overshoot the
lattice parameter for all materials.

Figure 4.8 shows the band gap dependence on temperature. All materials show an
increase in the band gap.

Figure 4.9 with data taken from Ref.[7] show the experimental Al occupation of the
wykoff sites alongside the calculated sof’s. There is an apparent phase transition in the
occupatienceis between 14 and 15 Al atoms in the unit cell in the experimental data.
Shown also in the figure is the sof’s for Ba8Al16Ge30 with one vacancy/unit cell. The
vacancy is modeled by defining that all clusters that involve a vacancy has zero energy.
This is a very simplified approach to consider vacancies. A more rigurous approach would
have been to create a CE based on DFT data with vacancies. From there the system
can either be modeled as binary or as a ternary and including the vacancy in the cluster
expansion. Still, some observations can be made. The 24k and 16i sites are largely
unaffected by the vacancy. The 6c occupancy decreased with vacancy in this model. To
study stoichiometry more rigurous, two DFT sets were done for The Ga occupation in
Ba8GaxGe46−x for x = 15 and x = 17. They are charge compensated with q = 1 for Ge
excess and q = −1 for Ga excess. The sof’s compared with sof’s from Ba8Ga16Ge30 CE
is shown for different stoichiometries in figure 4.10. The same approach with vacancies
are applied to these non-stoichiometric systems. The same behaviour is seen here with
little or no effect on 24k and 16i and a clear decrease in 6c occupation.
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Figure 4.1: Distribution for the Band Gap over the different data sets.
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Figure 4.2: Distribution for the Energy over the different data sets.
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5
Quaternaries

Two quaternary clathrate data sets have been generated; Ba8Al16−xGaxSi30 and
Ba8Al16−xGaxGe30 . Figure 5.1 show the Ba8Al16−xGaxSi30 and Ba8Al16Ge30 leave one
out fit. The Ba8Al16−xGaxSi30 cluster expansion is based on a dataset consisting of
Ba8Ga16Si30 and Ba8Al16Si30 dataset from the quasi-binaries discussed in the previous
chapter as well as their ground state structure. It also consists of a Ba8Al16−xGaxGe30

with x = 4,8,12 with 100 configurations for each stoichiometry. The Ba8Al16−xGaxGe30 cluster
expansion is based on the Ba8Ga16Ge30 and Ba8Al16Ge30 datasets from the previous
chapter as well as a set of random Ba8Al16−xGaxGe30 structures with x between 1 and
15 uniformally distributed.
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6
Discussion

The main results in this thesis is the site occupancy factors. They are a bridge between
the real world experiments and the computational model. If the computational model
emulate the experimental results it is reasonable to extrapolate the model beyond what
is possible by experiments. This is, after all, the point, to be able to predict new and
interesting behavior of a material by scanning through the available parameters. It is
one of the most powerful aspects of computational models.

6.1 Site occupancy factors

To be able to establish whether the site occupancy factors is in agreement with experi-
mental results or not one needs to understand how the experiments are done and why
they can differ so much between experiments.

6.1.1 Ba8Ga16Ge30

The experimental results in figure 4.4, derived from table 1 in Ref. [7], is a compilation
from different works. For Ba8Ga16Ge30 the data is a work by Iversen et al [21] where
n- and p-type Ba8Ga16Ge30 is studied. They used different models to obtain frame-
work occupancies from neutron and resonant synchrotron data. These models differ by
what constraints they set on the crystal and is what leads to the different values for
the occupancies and stoichiometries for Ba8Ga16Ge30 . Only one model do not assume
(16:30) ratio. For that model, the p-type ratio is (16.1:28.9) with a standard deviation
of (0.14:0.9). The n-type has a similar ratio of (15.6:29.1) with standard deviation of
(0.12:0.7). The 6c Ga occupation is 63% ± 5% and 72% ± 4% for p-type and n-type
respectively. The other models also show the higher 6c occupation for n-type. In figure
4.10, the sof for varying Ga content is shown. The figure there show that, from a p-type
with ratio of 17:29 to a n-type with ratio 15:31, the 6c occupation is decreasing. Nothing
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is necessarily wrong with these different results. There are a few observations that can
be made.

• The stoichiometry for the experimental samples suggests vacancies. The extremes
of the standard deviations give a minimum of 0.4 and 0 vacancies per unit cell for
n- and p-type respectively and maximum of 2.1 and 2.14 for n-type and p-type.

• The p- and n-type materials each have different synthesis methods. This, along
with that each material are physically different and have different energies asso-
ciated with the kinetics of the atoms can lead to that each material can be in
different stages of thermal relaxation.

• The Ga content for both samples are closer to 16 than any of the p-and n-type
CE’s that were created. For p-type the experimental Ga concentration is about
0.36 which corresponds to about a Ga content of 16.4 with no vacancies. For n-type
the concentration corresponds to Ga content of 16.

• The CE with 16:30 Zintl stoichiometry matches qualitatively well with the exper-
imental values.

• The Ba8Ga16Si30 system have more experimental data for sofs for different Ga
contents. These show a decrease in 6c occupation as Ga decreases compared to
the calculated values seen in figure 4.11 and reaches a plateau. The 16:30 CE for
Ba8Ga16Si30 and Ba8Ga16Ge30 give similar sof dependences of Ga content.

All these observations together could explain the discrepancy in 6c Ga occupation.
The experimental samples are likely to have vacancies. The samples come from dif-
ferent synthesis methods and possibly different thermal histories. The trend of un-
derestimating Ga 6c occupation for decreasing Ga content is seen experimentally in
the Ba8Ga16Si30 system. Meaning that there is a decreasing 6c occupation trend for
Ba8Ga16Ge30 without defects.

The Ga occupation on 16i and 24k show no significant difference between the two
samples which is also what is observed in figure 4.10. This can also be seen in the
Ba8Ga16Si30 system where the 16i and 24k occupation predictions are excellent for dif-
ferent stoichiometries.

An interesting observation is that all the n-type models show a combined 6c+24k
occupation of about 110%. A value which, in this thesis, rarely goes below 100%. Since
it is the high 6c occupation of the n-type that is hard to reproduce there can be a
connection between breaking the occupancy rules (see below) and poor reproduction
from the calculations.

6.1.2 Ba8Ga16Si30

The compilated data for Ba8Ga16Si30 are from six different publications. Two of these
report a 16:30 ratio:
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• Ref. [22], Nataraj et al 2004 used X-ray diffraction and Raman scattering mea-
surements to study Ba8GaxSi46−x with Ga content of 10 and 16 synthesized by
melting elements in an argon atmosphere by an Ar ion gun.

• Ref. [23], Palmqvist et al 2002, studied Ba8Ga16Si30 using multitemperature single
crystal neutron diffraction. Synthesis method is flux growth [24]

There is no significant difference in the sof’s between the different 16:30 samples. The
largest difference is for the 6c site; Palmqvist et al reported 63(1)% where Nataraj et al
found a 67(1)% Ga occupancy for the 6c site. The similarities in the 24k sof and difference
in 6c sof can be explained by the flat temperature dependence of Ga occupation on 24k
and steep dependence for 6c in figure 4.4. The other reported site occupancy factors for
non stoichiometric Ba8Ga16Si30 show a depletion of the 16i and 24k Ga occupation and
no significant difference between the 6c site. The 24k and 16i occupation show excellent
reproduction. The 6c occupation is overestimated. However the general trend that there
are no great Ga content dependence on 6c occupation is reproduced with a relatively
flat Ga occupation dependence on Ga content.

The calculated values for Ba8Ga16Si30 with 16:30 stoichiometry match very well with
the experimental 16:30 values and can even explain that the different experiments showed
a discrepancy in 6c occupation and not in the other sites, a possible explanation is differ-
ent cooling temperatures between the experiments and thus ending up with different sof’s
according to figure 4.4. Furthermore the behaviour for non stoichiometric Ba8Ga16Si30 is
also reproduced. Worth noticing is that none of the Ba8Ga16Si30 samples reported any
vacancies in the framework which would make it more diffucult reproducing the results.
Since 24k and 16i were spot on, it reasons that if there were vacancies in the experimen-
tal samples it is the 6c occupation that is most affected. This is also what is seen for the
vacancy model. The 6c occupation decreases slightly without affecting the other sites
much. Only a few of the experiemental points lies outside the calculated values.

6.1.3 Ba8Al16Ge30

The values for Ba8Al16Ge30 is from Ref. [8] where Christensen et al 2007 prepare three
Ba8AlxGe46−x samples using three different synthesis methods, flux growth, Czochralski
growth and conventional stoichiometric mixing. The prediction works very well close to
16:30 stoichiometry. The experimental data show a transition at 14-15 Al content leading
to full 6c occupation and depletion of 24k similar to the occupation in Ba8Ga16Si30 but
with depletion of 16i. This behaviour is not reproduced in the calculations of this thesis.
The simple introduction to vacancies lowers the already low prediction of 6c occupa-
tion. This shows that the Ba8AlxGe46−x have a complex dependency on Al content. A
hint of this could be by looking at the combined 6c+24k and 16i+24k occupancy. For
Ba8GaxSi46−x , which reproduces it’s experiments well, has a spread of 8 units of per-
cent for 6c+24k and 18 units of percent for 16i+24k. Ba8AlxGe46−x have 14 and 27 units
of percent respectively. Ba8AlxGe46−x is breaking the sum occupation rule of 16i+24k
≤ 50%. Since these sum of occupation rules arise from avoiding direct III-III bonds, the
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breaking of these, and also in what degree it is broken, tells of the energetics associated
with the bonds. The argument is that since the Ba8AlxGe46−x system has larger spread
of the sum of occupation, and also is breaking one summation rule, the bond energies
changes more for different stoichiometries than compared to Ba8GaxSi46−x . The CE for
Ba8AlxGe46−x is with 16:30 stoichiometry. From the MC run the 24k+16i occupation
is 63%. This is a possible reason of why the experimental results are poorly repro-
duced. The general trends of increasing 6c and decreasing 24k and 16i occupation is the
same. Noteworthy is also the fact that 24k occupation goes below 16i, same as for the
experimental data.

6.1.4 Ba8Al16Si30

There is only one experimental sample on sof’s for Ba8Al16Si30 . One reason is of the
experimental difficulties of differentiate Al and Si in X-ray diffraction [25]. The one
point available is for Ba8Al14.1Si30.8 suggesting one vacancy/unit cell. The calculated
sof’s for the fully occupied Ba8AlxSi46−x with 14 Al content overestimate the 6c and 24k
occupation, the former just slightly however. The 16i occupation is underestimated. The
sof’s for the one vacancy system is much closer to the experimental values however. For
Ba8AlxSi46−x the vacancy system is the opposite of the binaries. The 6c is roughly the
same but the 24k has a noticable decrease while 16i occupancy increases, making the
prediction of the experimental value much better.

6.1.5 Rules for occupancy

Christensen et al 2009 [7] established rules for the the maximum trivalent element site
occupancy factor (sof):

• Rule 1: 6c sof(III) ≤ 100%
There are no direct bonds between two 6c sites and 100% occupancy of trivalent
elements can be allowed at the 6c site without causing unfavorable bonds

• Rule 2: 16i sof(III) ≤ 50%
The 16i site binds to three 24k atoms, and one 16i atom. Therefore half of the 16i
sites can be occupied by trivalent elements without forming disfavored trivalent-
trivalent bonds.

• Rule 3: 24k sof(III) ≤ 50%
The 24k site binds to one 6c site, two 16i sites and one 24k site. Therefore only
up to half of the 24k sites can be simultaneously occupied by trivalent elements.

• Rule 4: 6c+24k sof(III) ≤ 100%
The 6c site binds to four 24k sites. The sum of the trivalent occupancies at the 6c
and 24k site should not exceed 100%

• Rule 5: 16i+24k sof(III) ≤ 50%
The 16i atoms bind to three 24k atoms. Thus at a specific 16i site a maximum of one

39



6.2. OUTLOOK CHAPTER 6. DISCUSSION

of the four atoms (16i + 3x24k) can be trivalent elements, that is 25% occupancy
but each 24k atom binds to two 16i sites doubling the allowed combined occupancy.

6.1.6 General conclusions for all binaries

Ba8Ga16Ge30 , Ba8Ga16Si30 and Ba8Al16Ge30 all match very well with the 16:30 experi-
mental results. It can also be said that by varying the stoichiometry to match the ex-
perimental values, predictions for all binaries got better than their 16:30 prediction. By
introducing vacancies Ba8GaxSi46−x and Ba8AlxSi46−x got closer to their experimental
counterparts. Ba8AlxGe46−x did not get excellent experimental agreement. The phase
transition is not picked up on. However general trends were reproduced.

6.2 Outlook

This thesis has laid a groundwork on which much can be built upon. The methodology
used here is in no way restricted to clathrates. Clathrates, as many other promising
thermoelectric materials, have complicated structures. The fact that the cluster expan-
sions, used in conjunction with compressive sensing, works so well with the clathrates
show promise to be successful for other thermoelectric materials. Skutterudites [26],
Zintl phases [27], Zn4Sb3 with interstitial,disordered zinc positions [28] are materials
with complex structures where the order or disorder in the material can be crucial in
understanding and designing thermoelectric materials. The approach taken in this thesis
allows to investigate these systems and related ones. To the authors knowledge, there
are no other work in the literature where the ordering of clathrates or other complex
thermoelectric materials have been studied with cluster expansions and Monte Carlo
simulations. These facts makes it meaningful to continue pursuing and publishing these
studies. It will be interesting for experimentalists who only sample small subsets of the
materials to take part of such results, allowing them to easier focus in on the interesting
temperature- and stoichiometry areas and the most promising chemical constituents of
the material.

The analysis can also further be developed. The Monte Carlo simulations can be used
to pick out a few representattive structures for different temperatures. These structures
can then be analysed to calculate the electrical conductivity, Seebeck coefficient, lattice
thermal conductivity [29][30]. This effectively allows one to map out ZT for different
concentrations, materials and temperatures. The full completion of such a work will be
a huge accomplishment toward creating powerful thermoelectric materials.
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7
Conclusion

The key results is that the order dependence of band gap and lattice parameter is shown
and quantified. The findings show that Band Gap is lowered with increasing disorder
this has a significant effect of electric conductivity which has a exponential dependence
on the band gap.

The lattice parameter for type-I clathrates not only depends on phonon-phonon in-
teraction but also on ordering. Ba8Ga16Si30 show an increase in size while the other
binaries show a decrease.

The site occupancy factors match experimental results very well for 16:30 stoichiom-
etry. A good agreement is also seen in non-stoichiometric Ba8GaxSi46−x and to some
extent Ba8AlxSi46−x . Ssimple vacancy models helps in understanding the experimen-
tal results and can improve the prediction for the sof’s. The Ba8AlxGe46−x system is
reproduced quantitatively except for the phase transition which the CE based on 16:30
mixing cannot reproduce.

The cluster expansion with the compressive sensing algorithm proved to be very
effective in terms of energy fitting. The ground structure found in the Monte Carlo sim-
ulation was very accurately predicted by the CE. This ground state structure correspond
to space group 146 and can serve as starting points for further theoretical investigations.
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