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Path-integral molecular dynamics (PIMD) simulations are crucial for accurately capturing nu-
clear quantum effects in materials. However, their computational intensity often makes it chal-
lenging to address potential finite-size effects. Here, we present a specialized GPU implementation
of PIMD methods, including ring-polymer molecular dynamics (RPMD) and thermostatted ring-
polymer molecular dynamics (TRPMD), into the open-source GPUMD package, combined with
highly accurate and efficient machine-learned neuroevolution potential (NEP) models. This ap-
proach achieves almost the accuracy of first-principles calculations with the computational efficiency
of empirical potentials, enabling large-scale atomistic simulations that incorporate nuclear quantum
effects, effectively overcoming finite-size limitations at a relatively affordable computational cost. We
validate and demonstrate the efficacy of the combined NEP-PIMD approach by examining various
thermal properties of diverse materials, including lithium hydride (LiH), three porous metal-organic
frameworks (MOFs), liquid water, and elemental aluminum. For LiH, our NEP-PIMD simulations
successfully capture the isotope effect, reproducing the experimentally observed dependence of the
lattice parameter on the reduced mass. For MOFSs, our results reveal that achieving good agree-
ment with experimental data requires consideration of both nuclear quantum effects and dispersive
interactions. For water, our PIMD simulations capture the significant impact of nuclear quantum
effects on its microscopic structure. For aluminum, the TRPMD method effectively captures ther-
mal expansion and phonon properties, aligning well with quantum mechanical predictions. This
efficient GPU-accelerated NEP-PIMD implementation in GPUMD package provides an alternative,
accessible, accurate and scalable tool for exploring complex material properties influenced by nuclear

quantum effects, with potential applications across a broad range of materials.

I. INTRODUCTION

Since Rahman’s pioneering work in 1964 [1], molecu-
lar dynamics (MD) simulations have been playing a cen-
tral role in modeling physical and chemical properties
of matter. Two essential components of MD simula-
tions are the interatomic potential and the integrator,
both of which can be treated classically or quantum-
mechanically. When it comes to describing the inter-
atomic interactions, classical empirical models usually
lack the required accuracy, while first-principles meth-
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ods such as quantum-mechanical density functional the-
ory (DFT) calculations have been the standard when
the accuracy in force calculations is crucial, despite be-
ing computationally very demanding. In recent years,
the situation has improved with the advent of machine-
learned potentials (MLPs) or force fields [2] that can
achieve nearly quantum-mechanical accuracy with or-
ders of magnitude enhancement on the computational
efficiency over DFT calculations. With respect to inte-
grators, there are classical ones based on classical sta-
tistical mechanics, leading to classical MD, as well as
quantum-mechanical ones based on path-integral statis-
tical mechanics [3] and the isomorphism between quan-
tum theory and classical statistical mechanics [4], leading
to path integral molecular dynamics (PIMD) [5]. PIMD
can account for nuclear quantum effects (NQEs) [6] by
employing multiple replicas for each atom, which sub-
stantially increases computational cost. While PIMD is
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exact for static properties in systems with distinguishable
nuclei, related techniques, such as centroid molecular dy-
namics [7], ring-polymer molecular dynamics (RPMD)
[8, 9] or thermostatted ring-polymer molecular dynamics
(TRPMD) [10], can approximately capture the NQEs in
dynamic properties.

Due to the improved computational efficiency of MLPs
over DFT calculations, MLP-PIMD simulations have
gained popularity for studying materials with notable
NQEs, particularly in water [11-19]. These previous
studies often used separate packages for force calculation
and integration, typically combining the LAMMPS pack-
age [20] with a MLP model for forces and the 1-PI package
[21-23] for PIMD integration and sampling.

In this study, we implement and benchmark an inte-
grated MLP-PIMD approach within the GPUMD pack-
age [24], leveraging the highly efficient neuroevolution
potential (NEP) approach [25-29]. NEP models have
demonstrated extremely high computational efficiency
comparable to typical empirical force fields [30-32] and
have been employed to study physical properties that
require extensive spatiotemporal sampling, such as frac-
ture [33, 34], thermal transport [30, 31, 35-39], and phase
transitions [40-43] as well as nucleation processes [44],
among others [18, 32, 45, 46]. By integrating PIMD
methods directly into the GPUMD package, we intro-
duce the NEP-PIMD approach, a highly efficient com-
putational tool capable of capturing both accurate inter-
atomic forces and NQEs.

To validate and demonstrate the effectiveness of the
NEP-PIMD approach, we investigate thermal expansion
and related properties in materials with strong NQEs,
including crystalline lithium hydride (LiH), three differ-
ent metal-organic frameworks (MOF's), liquid water, and
elemental aluminum. LiH is ideal for exploring the iso-
tope effect [47, 48], with experimental data available for
isotope-dependent lattice parameters [49, 50]. For MOFs,
experimental studies [51-59] show complex thermal ex-
pansion behavior, with both positive and negative coef-
ficients. To our knowledge, theoretical investigations of
MOFs thermal expansion using PIMD are limited, with
only one study [60] based on an empirical force field. Wa-
ter is a prototypical material for studying NQEs on the
microscopic structure of a condensed system in the liquid
phase. Aluminum is particularly well-suited for investi-
gating quantum dynamics in the form of phonon proper-
ties, as it can be accurately described using low-order
perturbation theory at low temperatures, providing a
suitable reference for results obtained through TRPMD.
Leveraging our highly efficient NEP-PIMD approach, we
systematically investigate the convergence of results with
respect to the number of replicas in large-scale PIMD
simulations, which effectively capture NQEs. Our ap-
proach paves the way for accurate and efficient large-scale
modeling of materials with NQEs using PIMD.

II. METHODS AND MODELS

A. Path-integral molecular dynamics implemented
in GPUMD

In this section, we provide a self-contained overview of
the PIMD formalism, summarizing key results from the
literature and outlining our judicious choices of specific
parameters and algorithms. This is followed by a com-
plete description of the explicit algorithm for our efficient
GPU implementation, which is a key contribution of this
work.

1. PIMD integration algorithms

PIMD is an MD method based on the path-integral
formulation of quantum mechanics [3] and the isomor-
phism between quantum theory and classical statistical
mechanics [4], as first proposed by Parrinello and Rah-
man [5]. The crucial observation for deriving PIMD is
that the quantum partition function for N particles can
be approximately cast to a classical partition function of
NP (P — o) particles with the following Hamiltonian:

Hp =HY +Up,

where
) N2 )
P miw% rgz)_rgz)rl pg_z)
ST N
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That is, each quantum (physical) particle (indexed by
1) is represented as a collection of P classical particles
(replicas, indexed by j). For each i we have rgl) = rgi)_H,
and the relevant interaction terms in Eq. (1) represent
a ring of replicas connected by springs with frequency
wp = kT P/h. Therefore, each physical particle is ap-
proximated by a “ring polymer” with P “beads”. Each
of the P replicas of the N physical particles is still gov-
erned by the potential function U of the system, as can
be seen from Eq. (2). While the mass m/ in the kinetic
energy terms is not necessarily the physical mass m;, we
follow the convention [5] of taking them to be equal.

From the Hamiltonian, one can derive equations of mo-
tion and derive integration algorithms. For simplicity, we
follow the work of Cerrioti et al. [61] to present the algo-
rithms in terms of a single one-dimensional physical par-
ticle, with mass m, position ¢, and momentum p. First,
we consider the free ring polymer consisting of P beads
with the Hamiltonian:
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Next, we define the following transform (k =0 to P —1):
[61]

P

ak = Z%’Cjka (3)
j=1
P

e =Y _p;Ci, (4)
j=1

where
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This leads to a representation of the free ring-polymer
Hamiltonian in terms of uncoupled harmonic oscillators:

P—-1 p.,z 1
HY = Z <27§1 + Qmwqu>

k=0
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where
wi = 2wp sin(kn/P).

This set of equations of motion can be integrated for one
time step At as follows [61]:

Dr < cos(wrAt)pr, — muwy, sin(wg At) G,

1
Gk +— sin(wy At)pr, + cos(wi At) .
mweg

Korol et al. [62] applied the Cayley transform to con-
struct a more robust algorithm:
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After integration, we can change the normal mode vari-
ables back to the original ones:

P-1

q; = 4k Chj, (7)
k=0
P_1

pj = PrCl;j. (8)
k=0

The above integration algorithm is for free ring poly-
mers. To enable extension to interacting systems, the
bead momenta need to be updated before and after the
above set of operations, as follows:

oU At
Pi i g (9)
J

To thermostat the beads, both the Langevin-type ther-
mostat [61] and the massive Nosé-Hoover chain thermo-
stat [63] have been used. When using the Langevin-
type thermostat, the integration over the bead momenta
should be applied before and after the non-thermostatted
operations as follows:

P

P < > piCik, (10)
j=1

~ ~ m

Dk 4= C1kPr + 4 [ 7 C2kEk; (11)

Bp

P-1

pi > Cinb. (12)
k=0

Here &, are normally distributed random numbers with
zero mean and unit variance, cip = e_(At/z)'Vk, Cop =
V1= (c1k)?, v = 1/7p, and v = wy, (k> 0).

The time parameter 7p is an input chosen for the
centroid (k = 0) mode. When all the bead modes are
thermostatted, the algorithm is known as PIMD. With-
out thermostatting, the algorithm is known as RPMD,
which has been proposed as a method for approximating
time-correlation functions [8, 9]. If only the internal bead
modes (k > 0) are thermostatted, the algorithm is known
as TRPMD [10]. Note that we adopted the non-centroid
Yk = wy (instead of vy, = 2wy) as suggested by Rossi et
al. [10] for both TRPMD and PIMD.

The above algorithms can be easily extended to multi-
particle systems in three dimensions. The potential en-
ergy of the system can be evaluated by averaging over
the replicas, while the kinetic energy can be more conve-
niently calculated using the virial estimate [63]:

( r((f)) . FEi).

1

K = kaBT Zl

P
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Here,

1 P
_ 1y
j=1

is the centroid position of atom i, for which periodic
boundary conditions should be taken into account. The

force F§-i) is defined as
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The rank-2 virial tensor is calculated in a similar manner:
N | P NP
_ = (1) () (1) L (7)
W= 3 () -0 e FY Y S Wi
=1 j=1 i=1" j=1

Here, W,(f) is the per-atom virial tensor for the k-th
replica of the i-th atom as calculated from the poten-
tial, which has been derived explicitly for NEP [25, 27].



The pressure tensor is then calculated as
NkgT + W

— v
where V' is the volume of the system.

P =

2. Explicit algorithm for efficient GPU implementation

The algorithms presented above have been imple-
mented into the open-source GPUMD package [24] dur-
ing the course of this study. The implementation is fully
on graphics processing units (GPU) using CUDA pro-
gramming, with minimal data transfer between GPU and
the host. The overall computational workflow of our im-
plementation is as follows.

1. Preparation.

(a) Allocate GPU memory for the bead variables,
such as position, velocity, potential energy,
force, and virial. There are P sets of these
variables.

(b) Pre-compute the transformation matrix Cji
and store the data in GPU memory.

(c) Initialize the pseudo random number genera-
tor and the seeds based on the cuRAND li-
brary in CUDA.

2. Iterate the integration loop.

(a) In the case of PIMD and TRPMD, apply the
Langevin thermostat according to Egs. (10)
o (12). In TRPMD, only the non-centroid
modes (internal bead modes) are thermostat-
ted.

(b) Update velocities according to Eq. (9), for half
time step At/2.

(c) Update positions and velocities for the free
ring-polymer system.
i. Transform to normal modes according to
Egs. (3) and (4).
ii. Perform the time stepping for the normal
mode variables according to Egs. (5) and
(6).
iii. Transform back from normal modes ac-
cording to Egs. (7) and (8).
(d) Calculate forces according to the updated
bead positions.

(e) Update velocities according to Eq. (9), for the
half time step At/2.

(f) When required, control the pressure using a
Berendsen-like algorithm [64], with the instant
pressure calculated according to Eq. (13). Al-
though this algorithm does not lead to a true
isothermal—-isobaric ensemble, it is sufficient
for accurately determining the average simu-
lation cell dimensions.

B. Phonon properties from TRPMD

To showcase the application of the implemented
TRPMD method, we examine the variations in phonon
frequencies and phonon damping parameters in alu-
minum as a function of temperature. Phonon proper-
ties are derived from atomic velocities sampled during
TRPMD simulations. Specifically, the velocities are used
to compute the phonon spectral energy density (SED)
with the Python package DYNASOR [65]. The SED is
a measure of how the kinetic energy of the system is
distributed over the different phonon modes making it
closely related to the phonon dispersion. It can be ob-
tained by defining ¢} (g, t) as the contribution to the j-th
normal coordinate coming from the displacement uy,, of
the p-th atom in Cartesian direction «;, i.e.,

1 P—
ey _ 2 : a ok iq-R,
q; (q7t) - Vm#unp,(q7t)Ap,j (q)e e
’ VN 4

Here, n ranges from 1 to IV, where N is the total number
of unit cells in the crystal, m, represents the mass of
the p-th atom, A57(q) is the complex conjugate of the

vibrational eigenvector, and R?L denotes the position of
the n-th unit cell relative to the origin.

The average kinetic energy of phonon mode j can be
expressed as a time average in terms of q?a(q, t) [66]
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Through the use of Parseval’s theorem the average kinetic
energy may be expressed in the frequency domain as

2
/ Zmlgnoo% £ q,w)} dw.

The SED is simply defined as the integrand

lim — |¢4® 2
Tol—I>noo 27’0 J ( ,W)’

Qo
By applying the convolution theorem and the fact that
the conjugate of a Fourier transformed function x(t) is
equal to the Fourier transform of z* |q q, )|2
can be simplified and the SED becomes

1 > —iwT
®(q,w) = i Z/o Cyq(1)e dr.
Qo

Here Cy4(7) is the autocorrelation function of the time
derivative of q “(q,t) and is defined as

. 1 o vk yrrey
Cy4(t) = lim —/0 47" (q,t — 1) ¢ (g,t) dt.
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As discussed by Rossi et al. [10], the nonlinear au-
tocorrelation function computed using TRPMD has an
error of O (t3).

Phonon frequencies and damping parameters are de-
termined by fitting the velocity correlation function for a
damped harmonic oscillator, expressed in the frequency
domain, to the peaks of the calculated SED. The equa-
tion of the velocity correlation function for a damped
harmonic oscillator is given by

2T w?
(@2 =GB + (T

b(w)=B

where wq is the phonon frequency of the mode, I' is the
damping parameter, related to the phonon lifetime as
I' = 2/7pp, and B is the amplitude. The phonon fre-
quencies correspond to the centroid frequencies of the
peaks, while the damping parameters represent the full
width at half maximum (FWHM) of the peaks.

C. NEP machine-learned potential models
1. NEP formalism

To construct accurate potential models driving the
PIMD simulations, we use the NEP approach [25-27].
This is a neural-network-based MLP trained using the
separable natural evolution strategy (SNES) [67] algo-
rithm. Similar to many other MLPs, such as the Behler-
Parrinello neural network potential [68], the total poten-
tial energy U of a system of N atoms is expressed as
the sum of N site energies, U = >, U;, and each site
energy U, is modeled as a function of set of descriptors,
U; = U;({¢}}). Each descriptor ¢, depends on the atomic
positions and is invariant under translation, rotation and
permutation of atoms of the same species. The explicit
forms of the descriptor in NEP are detailed in Ref. 27.
As for the machine-learning model representing the func-
tion U; = U;({¢}}), a feedforward neural network with a
single hidden layer is used. For multi-species systems, we
utilize the NEP4 version, which was recently introduced
for many-species metals and their alloys [28]. Despite
having only a single hidden layer, NEP4 achieves remark-
able accuracy, efficiency, and generalization capabilities,
even for complex materials such as high-entropy alloys,
marking a major step toward a highly efficient universal
MLP across the periodic table [28]. For interested read-
ers, a step-by-step tutorial on preparing training datasets
and training NEP models is provided in Ref. 39.

2. NEP for LiH

For LiH, we use an iterative method to train the NEP
model to accurately fit the potential energy surface [39)].
A total of 603 structures were sampled, including the MD
simulations at various temperatures (100K to 1000 K),

and with random strain perturbations (in the range of
+1.5% and £3%). Each structure contains 250 atoms.
The Vienna Ab initio Simulation Package (VASP) with
the projector-augmented wave method [69, 70] is used to
obtain the energy, forces, and virial of each structure.
In the DFT calculations, the Perdew-Zunger functional
[71] with the local density approximation (LDA) is used
to describe the exchange-correlation of electrons. The
cutoff energy and the energy convergence threshold were
chosen as 600eV and 1 x 108 eV, respectively. The k-
point mesh was set to 2 x 2 x 2. Then, 447 and 156
structures were randomly selected to form the training
and testing datasets, respectively.

During the training processes, the cutoff radii for the
radial and angular descriptor components were both
set to 5A. The parity plots and accuracy metrics are
shown in Fig. S1 of the Supplemental Material (SM).
The root mean square error (RMSE) values of the total
energy, atomic forces, and virial for the training dataset
are 0.1meV /atom, 9.5meV/A, and 0.8meV /atom, re-
spectively. In the testing dataset, the correspond-
ing RMSE values are 0.1 meV/atom, 9.4meV/A, and
0.8meV/atom. To further validate the MLP accuracy,
we computed the phonon dispersion using the finite-
difference method. As shown in Fig. S2 of the SM, our
trained MLP accurately describes the lattice dynamics
and can be reliably used to simulate the thermal expan-
sion of LiH.

3. NEP for MOFs

Using three MOFs —MOF-5, HKUST-1, and ZIF-8—
as examples of soft porous crystals, we explore the NQEs
on their thermal expansion behavior through PIMD sim-
ulations powered by MLPs. For this purpose, we uti-
lized three machine-learned NEP models, one for each
MOF, previously developed and validated against DFT
calculations at the Perdew-Burke-Ernzerhof (PBE) level,
with 774 structures for each of the three MOF training
datasets [31]. Before investigating the thermal expan-
sion behavior of these three MOF's, we assessed the re-
liability of the NEP models in PIMD simulations, given
that spring interactions between beads might generate
configurations not encompassed by the dataset of the
previously developed NEP models [31]. While the orig-
inal NEP models [31] were trained using PBE reference
calculations that did not include long-range dispersion
interactions, incorporating these interactions is crucial
for accurately modeling the thermodynamic behavior of
MOF crystals [72-74]. Here, we therefore used a newly
developed NEP-D3 approach [74] to perform PIMD sim-
ulations, integrating the original NEP models with dis-
persion interactions using the DFT-D3 method with the
Becke-Johnson damping function [75]. Specifically, the
cutoff radius for the D3 potential and the calculation of
coordination numbers are set to 12A and 6 A, respec-
tively, to balance accuracy and efficiency [74].



To validate this approach, PIMD simulations driven
by the NEP-D3 models were conducted on the primitive
cells of MOF-5, HKUST-1, and ZIF-8 using a ring poly-
mer comprising 64 beads, gradually heating from 100 K
to 500K over 1ns. During these simulations, all six
cell components were independently adjusted to maintain
zero pressure. For each MOF, 50 snapshots were uni-
formly selected from the trajectory, and static DFT cal-
culations were performed on these snapshots. The static
DFT calculation setup was identical to that used for the
previous reference dataset [31]. As shown in Fig. S3 of
the SM, the NEP-D3 and PBE-D3 approaches yield con-
sistent results for total energy, forces, and virials, with
energy, force, and virial RMSE values of 0.4 meV /atom,
53.1meV /A, and 7.7meV/atom, respectively, demon-
strating the reliability of the NEP-D3 model for modeling
thermal expansion behavior in PIMD simulations.

4. NEP for liquid water

For liquid water, the NEP model from Ref. 76 is em-
ployed, which was trained on a data set containing 1888
structures [77] calculated based on the strongly con-
strained and appropriately normed (SCAN) functional
[78]. For more details on the training of this model, see
Ref. 76.

5. NEP for elemental aluminum

For elemental aluminum, bootstrapping and active
learning were utilized for constructing the training
dataset, up to three iterations. The training data in-
cluded: (1) rattled structures based on the face-centered
cubic (FCC) and hexagonal close packed (HCP) phases,
(2) structures from energy-volume curves for the FCC,
HCP, diamond, and body-centered cubic (BCC) phases;
(3) structures generated via simulations of heating under
pressures ranging from —5 to 10 GPa, including molten
configurations; (4) configurations of (111), (110), and
(100) surfaces, as well as vacancy configurations (rat-
tled). In total, the reference dataset contains 1050 con-
figurations and 52187 atoms. Reference data were gen-
erated using DFT calculations as implemented in VASP
and the van-der-Waals density functional method with
consistent exchange [79, 80].

In the NEP model, the cutoff radii for radial and angu-
lar descriptor parts were set to 6 A and 4 A, respectively.
For three-body terms, lax, was set to 4. The neural net-
work has 40 neurons in the hidden layer. The ensemble
model contains 5 submodels, created through bagging.
The NEP model for aluminum was validated against var-
ious physical properties, including bulk phases, surface
properties, melting behavior, and phonon spectra. The
RMSE values obtained by averaging over the ensemble
models are 1.2meV /atom, 30 meV /A, 14meV /atom for
energies, forces, and virials, respectively.

D. NEP-PIMD simulation details

In this work, we study LiH, water, aluminum, and
three typical MOFs, including MOF-5 [81], HKUST-1
[82], and ZIF-8 [83]. For LiH, we used a 10 x 10 x 10
cubic supercell with 8000 atoms. For the MOFs, we em-
ployed orthogonal 4 x 4 x 4 supercells, containing 27 136
atoms for MOF-5, 39 936 atoms for HKUST-1, and 17 664
atoms for ZIF-8, respectively. In Fig. S4 of the SM, we il-
lustrate the supercells of LiH and the three MOF's used in
the MD simulations. The liquid water simulations were
conducted using a cubic cell with 41472 atoms. For alu-
minum, we used a 12 x 12 x 12 cubic supercell with 6912
atoms for the bead convergence test and a 24 x 24 x 24
triclinic supercell with 13 824 atoms for the TRPMD sim-
ulations.

We used a time step of 1fs for LiH and aluminum, and
0.5 fs for MOF's and water. It might be safe to use a time
step of 1fs for MOFs as well, but we decided to follow
the previous work [31], which used a time step of 0.5fs
in classical MD simulations of heat transport. To study
thermal expansion, we control the isotropic pressure with
a target value of 0 GPa in the PIMD simulations. For
LiH, the total simulation time for each temperature was
50 ps, and the last 25 ps were used to calculate the cell
dimensions. For the MOFs, the total simulation time
for each temperature was 30 ps, and the last 10 ps were
used to calculate the cell dimensions. The total sim-
ulation time for water was 30 ps for each temperature,
of which the last 20 ps were used to compute the radial
distribution functions (RDFs). For aluminum, the total
simulation time for each temperature was 510 ps, and the
last 500 ps were used to calculate the cell dimensions and
evaluate the phonon properties.

From the above simulation details, we see that
our implementation of the NEP-PIMD approach in
the GPUMD package achieves state-of-the-art effi-
ciency, allowing for extensive simulations on nanosecond
timescales for systems containing tens of thousand atoms
using a large number of beads, sufficient to converge the
ring polymer, i.e., approach the P — oo limit in Eq. (1).

III. RESULTS AND DISCUSSION

A. LiH

Here, we first consider the natural isotopic abundance
with 7.6% "Li and 92.4% SLi, while H is practically pure
'H (99.99%). There is a balance between computational
accuracy and efficiency with respect to the number of
beads. The NQEs are expected to become more domi-
nant at lower temperatures.

Indeed, as shown in Figure 1, one can see that we need
at least 40 beads to achieve full convergence for tempera-
tures of 200 K and below. Considering the heavier atomic
mass and thus weaker NQEs in other isotopic systems of
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FIG. 1. Convergence of NEP-PIMD simulations with respect
to the number of beads for the lattice parameter of LiH at
various temperatures. The inset shows a zoomed-in view of
the PIMD results at 100 K and 200 K.

LiH, 40 beads should be sufficient and are employed in
all simulations of LiH.

Subsequently, we investigate the thermal expansion
and the isotope-dependent lattice parameters of LiH. We
first present the temperature-dependent lattice parame-
ters (a) of Li'H and Li?H in Figure 2a. In our calcula-
tions, the lattice parameters of Li'H and Li?H from clas-
sical MD simulations are nearly identical, and both show
a linear temperature dependence. This is in contrast to
previous experimental observations [49, 50]. Upon in-
clusion of the NQEs, the correct trend and the isotope-
induced differences are captured, particularly at low tem-
peratures. A similar trend can also be captured by the
quasi-harmonic approximation (QHA) method [85, 86].
The lattice parameters of Li'H and Li?H from QHA cal-
culations match well with those from PIMD simulations
at low temperatures. However, due to the incomplete
treatment of anharmonicity in the QHA method, the
QHA results gradually deviate from the PIMD ones with
increasing temperature.

We define the linear thermal expansion coefficient as:

Odln(a)
o) = .
oT
The discrete temperature-dependent a values are utilized

to estimate «a; and the temperature step is set to 50 K.
Figure 2b shows the room-temperature linear thermal

expansion coefficients of Li'H and Li?H calculated using
both PIMD and classical MD simulations. Our PIMD
results for both Li'H and Li?H are in good agreement
with earlier experimental measurements.

We further vary the atomic masses of Li and H to in-
vestigate whether the isotope effect on the lattice pa-
rameters are captured in NEP-PIMD simulations. Con-
sidering the experimental values measured by Anderson
et al. [50], the simulations are performed at 298.15 K and
five isotopic compositions are studied, including SLi'H,
“Li'H, SLi’H, "Li’H, and "Li®H. The experimental
studies revealed that the lattice parameters of isotopi-
cally engineered LiH can be evaluated using the formula
a = Ap~/24 B [50], where 1 is the reduced mass defined
as 1/(mp;' + myg'), and A and B are two coefficients. In
Figure 2c, we plot the room-temperature lattice param-
eters as a function of the reduced mass pu. The calcu-
lated a values are about 1.5% smaller than the measured
data. This is acceptable since DFT calculations based on
the local density approximation (LDA) tend to underes-
timate the lattice parameter. Considering the isotope
mass effect, the fitting coefficient A is 0.051 A\/g/\/ mol,
which is in excellent agreement with the experimental
value of about 0.054 A,/g/v/mol [50]. In contrast, the
classical MD simulations predict a substantially weaker
dependence. These findings demonstrate that our NEP-
PIMD simulations yield a high accuracy in modeling the
thermal expansion of LiH and its isotope effects.

B. MOFs

Before systematically studying the NQEs in the ther-
mal expansion of three MOF materials, we take MOF-5
as a typical example to check the possible finite-size ef-
fects in the calculations. Figure 3 shows the equilibrated
unit cell volume as a function of temperature calculated
using both classical and PIMD simulations. The conver-
gence of the results with respect to the number of beads
in PIMD simulations is considered separately (Figure 4),
but here we used a sufficiently large value of 64. It is
clear that using the cubic unit cell (the 1 x 1 x 1 super-
cell) leads to unstable results. The results become much
more stable starting from the 2 x 2 x 2 supercell, but
there are still visible differences between the 2 x 2 x 2
and 3 x 3 x 3 supercells. The differences between the
3 x 3 x 3 and 4 x 4 x 4 supercells are quite small. Based
on these observations, we chose the 4 x 4 x 4 supercell
as a safe size in subsequent MD simulations. This choice
of simulation size is consistent with the previous one for
thermal conductivity calculations [31] where phonon an-
harmonicity plays a crucial role.

Figure 4a—c shows the energy profile as a function of
temperature using different numbers of beads. In con-
trast to classical MD simulations, PIMD simulations pre-
dict a higher energy for all three MOF's due to zero-point
energy contributions. Additionally, the energies tend to
converge at bead numbers larger than 32 for all tem-
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a function of temperature 7" for MOF-5, calculated using (a)
classical MD and (b) PIMD (64 beads) simulations. Results
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supercells, illustrating finite-size effects.

peratures, leading to a significantly lower heat capacity
when compared to classical MD. For the temperature-
dependent volume as shown in Figure 4d—f, the PIMD
simulations predict larger volumes than classical MD,
particularly at lower temperatures where NQEs are more
pronounced. The number of beads required to reach con-
vergence is consistent with those observed for the energy.

Based on the V(T) results, the temperature-
independent volumetric TEC at zero pressure can be es-
timated as

dln(V)
or -
Figure 4g—i shows the estimated ay-, fitted using the

ay = (].4)

above equation from PIMD simulation, as a function of
the number of beads. For all MOFSs, ay decreases as
the number of beads increases and reaches convergence
at around 48 beads. The relative difference in the pre-
dicted oy between 48 and 64 beads is less than 1.5% for
MOF-5 and ZIF-8, and 4.5% for HKUST-1. Therefore,
in the subsequent discussion, all PIMD results are based
on simulations using 64 beads.

To quantify the impact of NQEs and long-range dis-
persion interactions on the TEC of MOFs, we estimated
the V(T') (see Fig. S5 of the SM) and corresponding ay
(see Figure 5) from four different sets of MD simulations.
These sets include classical MD and PIMD, each driven
by either NEP or NEP-D3 models. It is evident that
both dispersion interactions and NQEs are crucial for
accurately estimating ay, as the NEP-D3 with PIMD
approach aligns most closely with previous experimen-
tal measurements (see Table S1 of the SM) [51-59]. For
HKUST-1, excluding NQEs, the classical MD simulations
predict a near-zero (NEP-D3) or even positive (NEP) ay,
resulting in a qualitatively incorrect prediction. For ZIF-
8, the relatively large uncertainties in the experimental
data make it slightly inconclusive regarding the role of
long-range dispersion interactions.

C. Water

While we in the previous sections studied the effect of
NQEs on the macroscopic structure, we now examine its
impact on the microscopic structure. Here, this is exem-
plified by the partial RDFs of water (Figure 6), which
are significantly affected by NQEs because of the high
hydrogen content of water.
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for comparison.

The NQEs are particularly apparent in the first
nearest-neighbor peak in both the oxygen—hydrogen (Fig-
ure 6a) and hydrogen—hydrogen (Figure 6b) RDF's, which
are significantly broadened compared to the classical
limit. To converge these calculations one requires at least
32 beads in the temperature range of 280 to 320K con-
sidered here, as illustrated by the FWHM of the first
nearest-neighbor coordination peaks (Figure 7).

We once again observe that the effect of NQEs is more
substantial at lower temperatures. This can be seen, e.g.,
by noting that the peak height difference between the
second peak of the hydrogen—hydrogen RDF from clas-
sical MD and PIMD simulations is larger at 280 K than
at 320K (Figure 6b; see also Figure S6k—o, and Figure
S7). The same effect is also observed in the first peak
of the oxygen—oxygen RDF (Figure S6a—e; also see Fig-
ure S7). Overall the impact of NQEs on the O-O RDF
is, however, much smaller than for the H-H and O-H
RDFs due to the larger mass of O. All of these results
agree well with experiment and previous PIMD simula-
tions [11-13, 90-92].

The case of water also allows us to compare the compu-
tational efficiency of NEP with other MLPs (Figure 8).
For the latter we resort to data from Ref. 23 for the
BPNN [87], DeePMD [88], and MACE [89] models. We
consider the timing for a classical simulation (equivalent
to one bead) for consistency with Ref. 23.

The results demonstrate that for the system sizes con-
sidered here the NEP model is at least about one or-
der of magnitude faster than the next efficient models
(BPNN and DeePMD). This applies even though the lat-
ter were run on many hundred CPU cores (BPNN) and
8 GPUs (DeePMD), respectively, while the NEP data
were obtained using a single A100 GPU. We also note
that the performance of the latter diminishes only slightly
when running on consumer GPUs as illustrated here by
a RTX3080Ti card.

It is also noteworthy that the overhead associated with
the driver-force evaluator approach is almost negligible
for BPNN, DeePMD, and MACE thanks to a combina-
tion of improvements in the implementation of the in-
terface in 1-PI v3.0 [23] and the fact that the computa-
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predicted by classical MD and PIMD (64 beads) simulations
with experimental data. For each MD approach, both NEP
and NEP-D3 results are provided to examine the long-range
dispersion effects. The presented experimental results for each
MOF are obtained by averaging several previous studies [51—
59|, with the corresponding error bar denoting the standard
error of the mean as detailed in Table S1 of the SM.

tional cost of MACE and other MLPs is large enough for
the communication latency not to be an efficiency bot-
tleneck. For those MLPs the cost of a force evaluation
in their present implementations is at least on the order
of 10 ms, which is larger than the typical overhead per
step in 1-PI [23]. In contrast, for NEP models, a typical
force evaluation is approximately on the order of 1ms.
See Figure 8 for a rough comparison; note that the per-
formance of other models may be improved by reducing
their accuracy or model capacity, and a more detailed
comparison is left for future work. See also Figure S8
for a comparison of other NEP models used in this work,
and Figure S9 for scaling behavior with the number of
beads. Due to the fast force evaluation for NEP models,
the cost per step would therefore be significantly affected
by the communication overhead. The direct combination
of PIMD with NEP in GPUMD avoids this extra cost,
providing a much more efficient approach.

D. Aluminum

Figure 9 shows the convergence test of the lattice pa-
rameter of aluminum at various temperatures, obtained
from PIMD simulations. Similar to the convergence
tests for LiH, the NQEs dominate at lower tempera-
tures. The results indicate that 64 beads are sufficient
to achieve convergence even for the lowest temperatures
considered here. Additionally, the lattice parameter has
been determined using the QHA method as implemented
in PHONOPY [85, 86]. At low temperatures, the PIMD
and QHA lattice parameters exhibit similar temperature
dependence, as expected. At higher temperatures, the
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FIG. 6. Partial oxygen—hydrogen (a) and hydrogen-hydrogen
(b) radial distribution functions from classical MD (dashed
line) and 64-bead PIMD (solid line) simulations, for three
different temperatures 280 K (dark color), 300 K (intermedi-
ate color), and 320K (light color).

QHA results diverge from those obtained through PIMD
simulations due to the incomplete treatment of anhar-
monicity in the former. The simulations of Al described
from here on were performed using 16 beads, except for
temperatures under 50 K, where 64 beads were employed
to ensure convergence.

Next, we analyze the phonon properties of aluminum
using TRPMD to demonstrate that the implemented
method can yield quantum dynamical properties. For
this analysis, the lattice parameter is kept fixed at 4.05 A
to make sure the NQEs we observe actually originate
from the dynamics rather than thermal expansion. Fig-
ure 10a—d shows the phonon frequency shift as a func-
tion of temperature for the transversal and longitudi-
nal X and L-modes, where X and L are the recip-
rocal points (1/2,0,1/2) and (1/2,1/2,1/2), respec-
tively. The frequency shift is determined by subtracting
the zero-temperature frequency, obtained with PHONOPY
from the frequency observed at each respective tempera-
ture. Additionally, for comparison, the phonon frequency
shift is determined through self-consistent phonons, both
classically and quantum mechanically. The HIPHIVE
package [93] is used for this analysis. Examining the
frequency shift obtained from classical MD and classical
self-consistent phonons, we observe that it approaches
zero as the temperature approaches absolute zero for all
four modes. This behavior is expected since the zero-
temperature frequency is calculated with small atomic
displacements. In the classical scenario, there is no zero-
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Ref. [23], which is also the source of the timings shown for
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the same time step of 0.5fs). For NEP timing is shown for
both A100 (solid) and RTX3080Ti (dashed) cards.

point energy, and atomic displacements diminish and ap-
proach zero as the temperature decreases to absolute
zero. However, in the quantum mechanical case, the fre-
quency shift is not expected to reach zero due to quantum
fluctuations. Observing the frequency shifts obtained
from TRPMD and quantum mechanical self-consistent
phonons, we see that this holds true, as these shifts are
finite even at low temperatures. This demonstrates that
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FIG. 9. Temperature dependence of the lattice parameter
of aluminum obtained from QHA, classical MD, and PIMD
simulations with different numbers of beads.

TRPMD simulations account for NQEs, while classical
MD simulations do not. The discrepancy between the
self-consistent phonons results and the TRPMD simu-
lations can be attributed to the incomplete inclusion of
anharmonicity in the former. We note that a similar
overestimation has also been observed for other materi-
als [94].

Along with the phonon frequency shift, we also high-
light the critical role of NQEs in calculating phonon
lifetimes. Our study demonstrates how TRPMD en-
ables the incorporation of these effects into simulations.
Figure 10e-h shows the temperature dependence of the
damping parameter I', which is inversely proportional to
the phonon lifetime 7,

For comparison the damping has also been obtained with
perturbation calculations conducted with KALDO [95].

It is evident that the damping obtained through classi-
cal MD approaches zero, meaning phonon lifetimes tend
toward infinity, as the temperature goes to zero. This
characteristic makes damping a more convenient quan-
tity for analysis compared to the lifetimes. By contrast,
due to the inclusion of NQEs, the TRPMD damping re-
mains finite as the temperature approaches zero. When
comparing the damping obtained through TRPMD simu-
lations to that calculated using quantum mechanical per-
turbation theory, a similar temperature dependence is
observed, reinforcing the conclusion that TRPMD effec-
tively captures the quantum dynamical behavior of the
damping. For the two transversal modes, the damping
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obtained through TRPMD increases when the tempera-
ture falls below 70 K and 50 K, respectively. This increase
is also observed in the longitudinal L-mode, though it
is less pronounced. This behavior is likely due to the
coupling between the dynamics of the beads and the
ring-polymer centroid dynamics [10]. While TRPMD
dampens this coupling, it does not entirely eliminate it.
By contrast, the damping of the transversal modes pre-
dicted by quantum mechanical perturbation theory tends
to zero as the temperature nears absolute zero. This
is likely due to the absence of higher-order anharmonic
terms, as KALDO only incorporates force constants up to
the third order.

IV. CONCLUSIONS

In summary, we have presented a specialized GPU im-
plementation of PIMD methods, combined with machine-
learned NEP models, into the GPUMD package. This
enables accurate and scalable MD simulations that ac-
count for NQEs, allowing for overcoming potential finite-
size effects at a relatively affordable computational cost.
The effectiveness of the NEP-PIMD approach has been
validated and demonstrated by studying thermal proper-
ties of four different types of materials: ionic LiH, three
porous MOFs, liquid water, and elemental aluminum.

Our results show that including the NQEs is crucial
for accurately modeling the thermal expansion of LiH,
MOFs and aluminum, achievable with NEP-PIMD sim-
ulations. Specifically, the isotope effect on the lattice pa-
rameter of LiH predicted by NEP-PIMD simulations ex-
hibits a dependence on the reduced mass, in good agree-

ment with the experimental observations, whereas clas-
sical MD simulations predict a negligible isotope depen-
dence. For the porous MOFs, our results indicate that in-
corporating dispersive interactions into the NEP models,
along with NQEs via PIMD, brings the simulated values
closer to experimental data. Furthermore, accounting
for NQEs in liquid water significantly affects the micro-
scopic structure, which is crucial for obtaining simulated
structural properties that align more closely with experi-
mental results. In the case of elemental aluminum, incor-
porating NQEs is essential for accurately capturing ther-
mal expansion and phonon properties. While classical
MD simulations show both the phonon frequency shift
and damping parameter approaching zero as the tem-
perature decreases, TRPMD simulations, which include
NQEs, predict finite values that align well with quantum
mechanical perturbation theory.

This efficient GPU implementation of the NEP-PIMD
approach into the GPUMD package offers an alternative,
accessible, accurate and scalable tool for investigating the
properties of a wide range of materials affected by NQEs,
enabling large-scale PIMD simulations with high fidelity
and efficiency. In this work, we have integrated the NEP
model with PIMD methods in GPUMD because NEP
is currently the only MLP available in GPUMD. While
extending this approach to other MLPs is possible, it re-
quires significant additional effort, which we aim to pur-
sue in future work. Notably, during the preparation of
our manuscript, this implementation of the NEP-PIMD
approach into the open-source GPUMD package has al-
ready been utilized to study various static and dynamic
properties in liquid water [96, 97], isotope effects on ther-
mal conductivity of lithium hydride [98], elastic moduli
and thermal conductivity of crystalline silicon [99], and
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disorder-order phase transition and thermal transport in
CSgBiQI@Clg [100]

V. SUPPLEMENTARY MATERIAL

In the Supplementary Material, we provide additional
data, figures, and analyses that complement and support
the findings presented in the main text. These include
experimental comparisons, detailed results, and perfor-
mance benchmarks. Specifically, the Supplementary Ma-
terial contains the following items:

1. Table S1: Volumetric thermal expansion coeffi-
cients of three MOFs obtained from previous ex-
perimental measurements.

2. Figure S1: Parity plots of total energy, atomic
forces, virial for LiH. The insets show the RMSE
values for both the training and testing datasets.

3. Figure S2: Phonon dispersion relations for LiH.

4. Figure S3: Parity plots of total energy, atomic
forces, virial as predicted by the NEP-D3 ap-
proach, are compared against PBE-D3 calculations
for snapshots extracted from PIMD simulations of
three MOFs.

5. Figure S4: The atomic supercells investigated
in this work: 10 x 10 x 10 cubic supercell of
LiH (8000 atoms), 4 x 4 x 4 supercells of MOF-5
(27136 atoms), HKUST-1 (39936 atoms), and ZIF-
8 (17664 atoms).

6. Figure S5: The volume of MOF-5, HKUST-1, and
ZIF-8 as a function of temperature, obtained from
classical MD simulations driven by NEP or NEP-
D3, along with PIMD simulations using 64 beads,
driven by NEP or NEP-D3.

7. Figure S6: Partial oxygen—-oxygen, oxygen-
hydrogen and hydrogen—hydrogen radial distribu-
tion functions from classical MD and PIMD sim-
ulations with different numbers of beads, each for
five different temperatures.

8. Figure S7: Relative peak height difference be-
tween classical MD and 64-bead PIMD for the first
nearest-neighbor peak in the oxygen—oxygen, sec-
ond peak of the hydrogen—hydrogen and second
peak of the oxygen—hydrogen RDF's.

9. Figure S8: Computational efficiency on a sin-
gle A100 GPU of the NEP models for aluminum,
MOF-5, water, and LiH.
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10. Figure S9: Computational efficiency on a single
A100 GPU of the NEP model for water as a func-
tion of the number of beads.
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data (1050 structures) used for its construction are avail-
able at https://doi.org/10.5281/zenodo.13712924.
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Supplemental Tables

Table S1: Volumetric thermal expansion coefficients of three MOFs obtained from previous experimental
measurements.

Material  ay (107 K~!) Temperature range (K) Approach Reference
MOF-5 -45.9 30293 single-crystal X-ray diffraction  [1]
-42.0 4-600 neutron powder diffraction [2]
-39.3 80-500 powder X-ray diffraction [3]
-43.8 100-425 powder X-ray diffraction [4]
-36.0 20-400 powder neutron diffraction [4]
HKUST-1 -12.3 80-500 powder X-ray diffraction [5]
-14.7 100-300 neutron powder diffraction [6]
-15.3 100-300 powder X-ray diffraction [7]
ZIF-8 35.7 100-300 powder X-ray diffraction [8]
19.6 280-380 powder X-ray diffraction [9]
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Figure S1: Parity plots of (a) total energy, (b) atomic forces, (c) virial for LiH. The insets show the
RMSE values for both the training and testing datasets.
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Figure S3: Parity plots of (a) total energy, (b) atomic forces, (c) virial as predicted by the NEP-D3
approach, are compared against PBE-D3 calculations for snapshots extracted from PIMD simulations
of three MOFs.
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Figure S4: The atomic supercells investigated in this work: (a) 10 x 10 x 10 cubic supercell of LiH
(8000 atoms), 4 x 4 x 4 supercells of (b) MOF-5 (27136 atoms), (¢) HKUST-1 (39936 atoms), and (d)
ZIF-8 (17664 atoms).
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Figure S5: The volume of (a) MOF-5, (b) HKUST-1, and (c) ZIF-8 as a function of temperature,
obtained from classical MD simulations driven by NEP (blue circles) or NEP-D3 (red squares), along
with PIMD simulations using 64 beads, driven by NEP (orange triangles) or NEP-D3 (green pentagons).
For each V(T) result, a solid line is fitted using Eq. (14) of main text.
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Figure S6: Partial oxygen—oxygen (a—e), oxygen-hydrogen (f-j) and hydrogen—hydrogen (ko) radial
distribution functions from classical MD and PIMD simulations with different numbers of beads, each
for five different temperatures: 280K (a,f,k), 290K (b,g,1), 300K (c,h,m), 310K (d,i,n), and 320K
(e,j,0). The insets show a zoomed-in view of the second peaks of the O-H and H-H RDFs at each
temperature.
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Figure S7: Relative peak height difference between classical MD and 64-bead PIMD for the first
nearest-neighbor peak in the oxygen—oxygen (dark color), second peak of the hydrogen—hydrogen

(intermediate color) and second peak of the oxygen—hydrogen (light color) RDFs. Note the peak height
difference increasing when the temperature decreases.
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Figure S8: Computational efficiency on a single A100 GPU of the NEP models for aluminum, MOF-5,
water, and LiH. The efficiency is measured in terms of simulated ns per day of wall-clock time, assuming
a classical simulation (equivalent to one bead) and using a time step of 2fs for aluminum and 0.5 fs for
MOF-5, water and LiH.
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Figure S9: Computational efficiency on a single A100 GPU of the NEP model for water as a function
of the number of beads. The efficiency is measured in terms of simulated ns per day of wall-clock time,
using a time step of 0.5fs. Note that the scaling behavior with number of beads is the same for all
system sizes.
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