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ABSTRACT: Infrared and Raman spectroscopy are widely used
for the characterization of gases, liquids, and solids, as the spectra
contain a wealth of information concerning, in particular, the
dynamics of these systems. Atomic scale simulations can be used to
predict such spectra but are often severely limited due to high
computational cost or the need for strong approximations that
limit the application range and reliability. Here, we introduce a
machine learning (ML) accelerated approach that addresses these
shortcomings and provides a significant performance boost in
terms of data and computational efficiency compared with earlier
ML schemes. To this end, we generalize the neuroevolution
potential approach to enable the prediction of rank one and two
tensors to obtain the tensorial neuroevolution potential (TNEP) scheme. We apply the resulting framework to construct models for
the dipole moment, polarizability, and susceptibility of molecules, liquids, and solids and show that our approach compares favorably
with several ML models from the literature with respect to accuracy and computational efficiency. Finally, we demonstrate the
application of the TNEP approach to the prediction of infrared and Raman spectra of liquid water, a molecule (PTAF−), and a
prototypical perovskite with strong anharmonicity (BaZrO3). The TNEP approach is implemented in the free and open source
software package GPUMD, which makes this methodology readily available to the scientific community.

1. INTRODUCTION
Infrared (IR) and Raman spectroscopy are widely used
techniques for the nondestructive characterization of the
dynamics and to some extent chemistry of materials spanning
the entire range from the gas phase to condensed matter.1−3

Over the years, various theoretical approaches have been
developed for simulating IR and Raman spectra, including in
particular methods based on ab initio molecular dynamics
(MD) simulations.4−8 While these approaches are capable of
reproducing experimental IR and Raman spectra of gases,
liquids, and solids,5,7−9 they are severely limited with respect to
the system sizes and time scales attainable for two main
reasons:5,10 First, ab initio MD simulations rely on computa-
tionally demanding electronic structure calculations that scale
strongly with system size in order to obtain energy and forces
at every time step. Second, similarly expensive calculations of
dipole moment (μ), polarizability (α), or electric susceptibility
(χ) are required for at least many thousands of configurations
to achieve numerical convergence of the underlying correlation
functions.5

MD simulations can be accelerated by using classical force
fields11−13 or empirical interatomic potentials,14,15 which
approximate the potential energy surface (PES) with physically
motivated yet constrained functions and few fitted parameters.

The accuracy of such approaches for general materials is,
however, often limited, negatively affecting the prediction of IR
and Raman spectra.16 Machine learning (ML) potentials are
well suited to address this challenge as they bridge between the
accuracy of quantum mechanical methods and the computa-
tional efficiency of classical force fields or empirical interatomic
potentials.17−21 The power of this approach, in particular for
capturing vibrational properties of materials, has been shown
repeatedly, see, e.g., refs.22−26

The calculation of μ, α, or χ can be accelerated using
parametric models in a similar fashion. Considering only static
charges, the dipole moment is given by μ = ∑i=1

N Qiri, where Qi
and ri are the charge and position of atom i. Many classical
force fields11−13 assign fixed charges to atoms and thereby
provide a convenient approach for calculating μ. Such fixed-
charge models neglect, however, polarization effects, which can
lead to large errors.27 While this situation can in principle be
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ameliorated by fluctuating-charge models,28,29 the latter tend
to lack robustness and can be difficult to generalize.10,30

Both α and χ describe the dielectric response to an applied
electric field. For α or χ, the bond polarizability model is one of
the most frequently used parametric ones and has for example
been applied to alkanes31,32 and zeolites33 as well as carbon
nanotubes.34 However, this simple model often suffers from
unsatisfactory transferability when used in different environ-
ments.35 POLI2VS36 and MB-pol37 are two other parametric
models that can be used for predicting μ and α but are limited
to molecular systems such as water.10

The successful applications of ML potentials have inspired
the development of ML dipole, polarizability, and susceptibility
models.22,38−41 For μ, a rank-1 tensor, both partial-charge and
the partial-dipole ML models have been developed.30 The
objective of the partial-charge models is to assign proper partial
charges for atoms in order to fit the total dipole mo-
ment.22,30,42 Here, one concern is the balance between the
fitting quality of μ and the reproducibility of total charges.22,30

By contrast partial-dipole models such as symmetry-adapted
Gaussian process regression (SA-GPR),38 tensorial embedded-
atom neural network (T-EANN),39 and deep potential (DP)40

treat μ as a sum of vectors30,38 that can be determined from
atom-centered chemical environments.

While this approach works for μ, which is a rank-1 tensor, it
does not transfer to the construction of ML models for α or χ,
which are rank-2 tensors. This has motivated the pioneering
development of the SA-GPR method for tensorial properties38

as well as later the T-EANN39,43 and DP models.10

The combination of ML potentials with ML models for μ, α,
or χ enables the simulations of IR and Raman spectra. This
approach has been used to predict, e.g., the IR spectra of
methanol, n-alkanes, and a peptide,22 IR and Raman spectra of
liquid water,10,20,39,44 or the Raman spectra of various solid
materials.45 While these earlier studies have established the
usefulness of ML models for predicting IR and Raman spectra,
there is still ample room for improvement of current models
for μ, α, or χ in terms of computational and data efficiency30,39

as well as the accessibility of these techniques in order to lower
the threshold for the widespread adoption of such approaches.

This situation motivates the present work, in which we
introduce accurate as well as computationally and data efficient
ML models for rank-1 and rank-2 tensors based on the NEP
framework.21,46,47 We demonstrate the efficacy and efficiency
of the resulting TNEP approach by training models for μ, α,
and χ and combining these with models for the PES to predict
IR and Raman spectra for a molecule (PTAF−), a liquid
(water), and a solid (BaZrO3; Figure 1). We make this
methodology available via the GPUMD package,47 enabling
comprehensive simulations of high-quality IR and Raman
spectra with limited user effort.

2. METHODOLOGY
2.1. NEP Models for the PES. Since the ML models for μ

and α that we introduce below are based on the NEP
framework for modeling PESs,21,46,47 we first provide a brief
review of the latter. Originally NEPs are ML potentials that
model the high-dimensional PES of finite or extended systems,
in the spirit of the neural network potential model proposed by
Behler and Parrinello.48 In this formalism, the total energy of
the system is given by the sum of atomic site energies U =
∑iUi. The site energy Ui for a given atom i depends on the
local environment of the atom, which is represented by an

abstract vector qi
ν with a number of components indexed by ν.

The function mapping from the descriptor to the site energy is
represented by a feed-forward neural network (also known as a
multilayer perceptron) with typically a single hidden layer. The
input layer of the neural network is thus the descriptor vector,
and the output layer consists of a single node whose value is
the site energy Ui of the considered atom i, which can be
formally expressed as

U U q( )i i i= (1)

From the energy, we can derive the rank-2 virial tensor that
serves as the foundation for the dipole and polarizability
models developed in the present work. For a given structure
with N atoms, the virial tensor can be expressed as47

W r
U
ri

N

j i
ij

i

ij
=

(2)

where rij
υ is the υ-component of the vector rij ≡ rj − ri, and ri is

the position of atom i. We refer to the term ∂Ui/∂rij
ν as the

partial force, explicit expressions for which have been
presented in the original works developing the NEP
approach.21,47

2.2. TNEP Rank-1 Tensor Models. To develop an ML
model for predicting μ, we first note that it is a rank-1 tensor
commonly expressed as a vector, in contrast to the energy,
which is a rank-0 tensor (i.e., a scalar). The partial force in eq 2
is a vector, but the summation of it over the whole structure
would be zero as a result of Newton’s third law. To obtain a
vector representation that does not vanish for a general
structure, we note that the quantity defined in eq 2 is a rank-2

Figure 1. Workflow for simulations of IR and Raman spectra using
NEP models for the PES and TNEP models for the dipole moment μ,
the polarizability α, or the susceptibility χ.
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tensor that can adopt both positive and negative values (as it is
the virial tensor in the context of PES models). We can thus
obtain an expression for a vector quantity by contracting this
rank-2 tensor with a vector. A natural choice for the vector to
be contracted is rij, which yields the following expression for
rank-1 tensors such as the dipole moment

i
k
jjjjjj

y
{
zzzzzz

i
k
jjjjjj

y
{
zzzzzzr r

r r
U

r
U

i

N

j i
ij ij

i

ij i

N

j i
ij

i

ij

2= · =
(3)

where rij
2 = rij·rij is the distance squared between atoms i and j.

We note that Ui here should have the dimension of charge
instead of energy. Crucially this goes to show that the NEP
formalism for PESs can be directly used to construct an ML
model for rank-1 tensors such as the dipole moment. Below we
refer to eq 3 as the TNEP dipole model.

2.3. TNEP Rank-2 Tensor Models. To develop ML
models for predicting α or χ, we first note that these are rank-2
tensors. Clearly, the quantity defined in eq 2 is an ideal
candidate. However, using only eq 2 to represent α or χ does
not lead to high regression accuracy because the diagonal
terms of α or χ are usually much larger than the off-diagonal
ones. We therefore represent α (and equivalently χ) as a
combination of eqs 1 and 2 as follows

U r
U
ri

N

i
i

N

j i
ij

i

ij
=

(4)

where δυν is the Kronecker delta. Note that both the first and
second terms on the right-hand side contribute to the diagonal
elements of αυν, but only the second term contributes to the
off-diagonal elements. Ui here has the dimension of polar-
izability instead of energy, yet the entire NEP formalism can be
reused. Below we refer to eq 4 as the TNEP polarizability or
susceptibility model.

2.4. Loss Functions. The NEP approach is named after
the underlying ML model (a neural network) and the
separable natural evolution strategy used as the training
algorithm.49 The latter is a principled real-valued black-box
optimization method that is very well suited for training the
weight and bias parameters in the neural network, of which
there are typically a few thousand. The optimization is driven
by the minimization of a loss function that is given by the
weighted sum of the root-mean-square error (RMSE) of
physical quantities as well as 1 and 2 regularization terms.
For the construction of PES models, the physical quantities
included in the loss function are the energies, forces, and virial
tensors of the structures in the training set

z z z zL U F W( ) ( ) ( ) ( )

regularization terms
e f v= + +

+ (5)

where ΔU(z), ΔF(z), and ΔW(z) are the RMSEs of energies,
forces, and virials calculated using a set of trainable parameters
z, and λe, λf, and λv are the corresponding relative weights.
Explicit expressions for the regularization terms can be found
in ref 47. For the construction of dipole TNEP models, the loss
function is defined in terms of the RMSE of the dipole Δμ(z)

z zL( ) ( ) regularization terms= + (6)

For the construction of polarizability TNEP models, the loss
function is defined in terms of the RMSE of the polarizability
Δα(z)

z zL( ) ( ) regularization terms= + (7)

2.5. Dielectric Response. It is instructive to recall some
relations that describe the response of finite systems (such as
molecules) and extended systems (such as solids and liquids)
to an applied electric field.

If a molecule is subjected to an electric field E, the resulting
displacement of nuclei and electrons induces a dipole, which is
given by50

Eind =

where α is the molecular polarizability.
For an extended system such as a solid or a liquid, one

considers equivalently the dipole moment per unit volume, i.e.,
the polarization

P E0=

where χ is the electric susceptibility. In the context of bulk
liquids, the latter has also been referred to as the bulk
polarizability. For clarity in the following, we use the term
polarizability only to refer to molecular polarizability. There
are different conventions for expressing μ, α, and χ leading to
different units (Sect. S7). Here, we use e·bohr for μ and bohr3
for α, whereas χ is unitless.

We note that under certain conditions, one can approx-
imately connect the molecular polarizability and the electric
susceptibility via the Clausius-Mossotti relation, which is based
on a mean-field treatment of local field effects (see Sect. S8 in
the Supporting Information).

2.6. The IR Intensity. The IR absorption cross section is
given by50

cn
e M( )

4
(1 ) ( )

2
=

(8)

where n is the refractive index of the material, c is the speed of
light, β = 1/kBT, and M(ω) is the absorption line shape given
by the Fourier transform of the autocorrelation function
(ACF) of the (total) dipole moment μ

M t t( )
1

2
( (0))( ( )) e di t= · ·

where ⟨···⟩ indicates the average over time origins, and ϵ ̂ is the
polarization of the light.50 For an isotropic sample, the time
correlation should be averaged over the three directions, i.e.,
the line shape reduces to one-third of the trace of the dipole
time correlation. Since the line shape is sampled classically, we
make a classical approximation for the prefactor by expanding
the Boltzmann factor to first order, which gives

M( ) ( )2 (9)

2.7. The Raman Intensity. The differential Raman cross-
section for Stokes scattering is given by50−52

i
k
jjj y

{
zzzc

n n L ( )
2

out

in
4

=
(10)

where n̂ is the polarization of observed light, ϵ ̂ is the
polarization of the incoming light, and Ω is a solid angle. Here,
it is assumed that the frequency of the incoming light ωin is
significantly larger than the Raman shift ω and significantly
smaller than the band gap, i.e., far from any electronic
excitations. L(ω) is the Raman line shape given by the Fourier
transform of the time-dependent polarizability α(t) (finite
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systems) or susceptibility χ(t) (extended systems), e.g., in the
case of the former

L t t( )
1

2
(0) ( ) e di t=

(11)

Note that the elements of the polarizability (or susceptibility)
tensor are selected by the polarization of the incoming and
outgoing light as indicated in eq 10. Polarized Raman
measurements can be directly related to eq 10 by combinations
of the Raman line shape L(ω). One can also calculate an
average spectrum for isotropic samples.50 The polarizability
tensor (and equivalently the susceptibility tensor) can also be
written as α = γI + β where γ = Tr(α)/3, and β is a traceless
tensor to obtain the isotropic (polarized) and anisotropic
(depolarized) spectrum. This leads to the decomposition

L t t

L t t

( ) (0) ( ) e d

( ) Tr (0) ( ) e d

i t

i t

iso

aniso [ ]
(12)

The electric susceptibility (Sect. 2.5) can be separated into
an electronic and an ionic contribution

( ) ( )ion e= +

where the general frequency dependence of these terms is
emphasized. For the prediction of Raman spectra, we only
need to consider the electronic contribution χe(ω). Further-
more, we limit ourselves to nonresonant Raman spectroscopy.
This means that we require the electric susceptibility in the
ion-clamped static limit, i.e., χe(0), and do not have to consider
the frequency dependence of χe(ω), which arises from
electronic transitions.

2.8. Workflow for Simulations of IR and Raman
Spectra. By combining a NEP model for the PES with TNEP
models for dipole, polarizability, or susceptibility, one obtains a
simple yet general workflow for the computation of IR and
Raman spectra (Figure 1). Starting from a NEP PES model,
large-scale MD simulations are performed to sample the PES
via the GPUMD package, typically for a few hundred pico-
seconds. TNEP dipole, polarizability, or susceptibility models
are then employed to predict μ(t), α(t), or χ(t) along the
trajectory. Finally, IR or Raman spectra are obtained via
Fourier transformation of the respective ACFs via eq 9 or 10.

3. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the TNEP
dipole, polarizability, and susceptibility models in comparison
with models from the literature with respect to both regression
accuracy and computational speed. The comparison includes
the molecules H2O, (H2O)2, and H5O2

+ (the Zundel cation),
as well as a set of configurations representing liquid water.
Structures with dipole, polarizability, and/or susceptibility data
were retrieved from the repository maintained by the
developers of the SA-GPR models38,53 (see Sect. S1 in the
Supporting Information for details). The data set for each of
these systems comprises 1000 configurations, half of which
were use for training, while the other half were used for
validation. The hyperparameters used in the training of the
TNEP models are presented in Tables S1 and S2. In the case
of the SA-GPR method, the results for liquid water were
computed using a publicly available model,54 while the models
for the molecules were trained by us (see Sect. S3 for details).

In the case of the T-EANN method, we only use those data
available in the literature.39

3.1. Dipole Moment. The TNEP dipole models can
achieve very high precision when predicting μ for both
molecules and liquid water with very low RMSEs (Table 1)
and coefficients of determination (R2) very close to one
(Figure S2).

As a further, more intuitive measure, one can also consider
the root-mean-square-error relative to standard deviation
(RRMSE),39 defined as the RMSE divided by the standard
deviation of the reference data (Figure 2a). For the water

monomer (H2O), all three methods yield extremely small
RRMSEs below 0.1%. For the other three systems, including
liquid water, the TNEP and SA-GPR models achieve
comparable accuracy, while the T-EANN models perform
systematically worse. This behavior is particularly pronounced
for liquid water and might arise since the T-EANN model uses
the positions relative to the center of mass as input, which are
not well-defined in periodic systems.55,56

Neutral Molecules. The μ of neutral molecules such as H2O
or (H2O)2 is uniquely defined. In the TNEP approach, μ is
calculated by summing over atomic contributions which, in
contrast to, e.g., the T-EANN approach, does not require

Table 1. RMSEs (in e·bohr) and RRMSEs (unitless) for μ
for the Validation Sets Using NEP Rank-1 Tensor Modelsa

System RMSE RRMSE

H2O 2 × 10−4 0.069%
(H2O)2 105 × 10−4 1.681%
H5O2

+ 14 × 10−4 0.371%
liquid water 17 × 10−4 0.852%

aFor liquid water, the dipole moment is given per water molecule.

Figure 2. RRMSEs for the validation sets according to TNEP, T-
EANN, and SA-GPR models for water systems for (a) μ as well as (b)
α and χ/ρ. Validation RRMSEs for liquid water from T-EANN39 were
reported for the averaged molecular polarizability obtained via the
Clausius-Mossotti relation (S8). The validation RRMSEs for χ/ρ
should be somewhat higher than that for the averaged molecular
polarizability (also see Table S5).
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choosing a reference point. Therefore, the TNEP dipole
models are naturally suitable for neutral molecules.

In this context, we note that we also trained and validated a
model for the QM7B data set containing thousands of neutral
organic molecules,57,58 for which we make similar observations
(Sect. S4). The TNEP model yields a very low RMSE for the
validation set of 1.80 × 10−3 e·bohr atom−1 and a very high R2

score for the validation set of about 0.998.
Charged Molecules. The μ of charged molecules is

nonunique and depends on the choice of the reference
point.4,59 For charged molecules, one should therefore employ
the relative permanent dipole μr defined with respect to the
center of mass when training TNEP dipole models. The
reference μ values in the H5O2

+ data set38,53 have already been
transformed to μr. Therefore, the absolute dipole moment of
H5O2

+ including the movement of the center of mass should
be μ = μr + e·rCOM. The same procedure was applied to the
PTAF− molecule below (Sect. 4.3).
Periodic Systems. Traditional methods for calculating μ

cannot be applied to periodic systems since the position
operator is not uniquely defined.56,60 This issue is overcome
via the modern theory of polarization,38,60,61 which provides a
rigorous definition for the polarization of periodic systems and
established a methodology for calculating μ. It was therefore
used in the present work to obtain μ for periodic systems
including water (Sect. S1) and α-Fe2O3 (Sect. S5). The TNEP
model for α-Fe2O3 yields a very high R2 score for the validation
set close to one.

3.2. Polarizability and Susceptibility. The RMSEs for
the diagonal and off-diagonal elements of α of (H2O), (H2O)2,
and H5O2

+ are quite small (Table 2), indicating the high

accuracy of the TNEP polarizability model. The coefficients of
determination are larger than 0.98 mirroring this trend (Figure
S7 and Figure S8). For liquid water, we consider χ/ρ, which
has the unit of polarizability per atom. The RMSEs for χ/ρ are
on the same order of magnitude as the RMSEs for α (Table 2).

The NEP models achieve an accuracy that is comparable to
that of the T-EANN and SA-GPR models for the polarizability
of (H2O)2 and H5O2

+ as well as the susceptibility of liquid
water (Figure 2b). While the performance for the water
monomer H2O is worse, the TNEP model still yields a
validation RRMSE of less than 1%.

As a further test, we constructed a TNEP polarizability
model for the QM7B data set (Sect. S4). The RMSE values for
the validation set are 4.64 × 10−2 bohr 3 atom−1 and 2.58 ×
10−2 bohr 3 atom−1 for the diagonal and off-diagonal elements
of α, respectively. For comparison, Wilkins et al.62 reported a
higher RMSE value of 5.50 × 10−2 bohr 3 atom−1 over both the
diagonal and off-diagonal elements of α using an SA-GPR
model.

3.3. Computational Speed. It is now instructive to
evaluate the computational performance of TNEP models in
comparison with publicly available SA-GPR models.53,54 To
this end, we consider liquid water systems with varying
numbers of atoms. Starting from a cell containing 96 atoms,
larger samples with up to 69984 atoms were created by
replication.

The SA-GPR models can be run only serially on a central
processing unit (CPU). In contrast, the TNEP model can be
run on a CPU using NEP_CPU,63 e.g., via the interface
provided by the CALORINE package,64 or on a graphics
processing unit (GPU) by using the GPUMD package. The
SA-GPR and TNEP (CPU) models were tested on a server
containing two Intel XEON Platinum 8275CL processors with
a system memory of 256 GB, while the TNEP (GPU) models
were tested on a heterogeneous server containing two Intel
XEON Gold 6148 processors and an Nvidia GeForce RTX
4090 card with a graphics memory of 24 GB.

The comparisons show that for system sizes ≳1000 atoms
the TNEP CPU models are at least 1 order of magnitude faster
than the SA-GPR models on CPUs for both dipole and
polarizability (Figure 3). On CPUs, the TNEP models exhibit

nearly perfect weak scaling over the system sizes considered
here. In contrast, the SA-GPR models show a notable decrease
in speed as the system size increases. Running the TNEP
models on GPUs enables an additional speedup of an order of
magnitude or more. For very small systems, the GPU
implementation is limited by IO. In addition, we note that
GPUMD allows one to evaluate TNEP models on-the-fly during
MD simulations for prediction of tensorial properties with a
small impact on simulation speed (Sect. S10).

4. APPLICATIONS
Having established the accuracy and computational perform-
ance of the TNEP approach by comparison with reference data
sets, we now demonstrate the application of NEP and TNEP
models in combination for predicting the IR and Raman
spectra of molecules, liquids, and solids. To this end, we
employ the correlation function approach outlined above
(Sect. 2.8 and Figure 1).

Table 2. RMSEs (in bohr3) and RRMSEs (unitless) for α
(Molecules) and χ/ρ (Liquid Water) for the Validation Sets
Using TNEP Rank-2 Tensor Modelsa

diagonal elements off-diagonal elements

System RMSE RRMSE RMSE RRMSE

H2O 85 × 10−3 5.89% 4 × 10−3 1.22%
(H2O)2 227 × 10−3 8.82% 137 × 10−3 12.59%
H5O2

+ 23 × 10−3 1.20% 17 × 10−3 1.06%
liquid water 54 × 10−3 16.28% 37 × 10−3 20.38%

aFor liquid water, χ/ρ is given per water molecule.

Figure 3. Comparison of computational speed of SA-GPR and TNEP
models for the dipole (μ) and susceptibility (χ) of liquid water. Here,
the SA-GPR results were obtained using the TENSOAP-FAST
implementation.54
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4.1. IR Spectrum of Water. First, we developed a NEP
PES model for liquid water using energy, atomic forces, and
virial data from density functional theory (DFT) calculations
(Sect. S2).

Next, a system of 216 water molecules was equilibrated in
the NPT ensemble for 100 ps using the trained PES model at
298 K and 1 bar, followed by a further equilibration run in the
NVT ensemble for another 100 ps. Three production runs
were carried out in the NVE ensemble for a duration of 200 ps.
A time step of 0.5 fs was used throughout. We note that
quantum effects can be actually rather pronounced in water as
has been shown by path integral MD simulations in, e.g.,
refs.65−67 Here, however, we decided to carry out classical MD
simulations in order to enable a one-to-one comparison with
the results of earlier studies.

The time dependence of the dipole (μ(t)) was computed for
the production trajectories with a spacing of 1 fs using the
TNEP dipole model for liquid water described above (Sect.
3.1). The IR spectrum was then obtained by Fourier transform
of the dipole moment ACF via eq 9. The final IR spectrum was
obtained by averaging the IR spectra from the production runs.

For comparison, we also ran a 200 ps MD simulation with
the TIP3P force field68 via the CP2K software package,69

where the TIP3P force field uses charges of −0.834 e and
+0.417 e for oxygen and hydrogen, respectively.

The NEP-TNEP method yields an IR spectrum that is in
very good agreement with experimental data70,71 over the
entire frequency range from 0 to 4000 cm−1 (Figure 4a). This
includes the hydrogen-bond stretching band10 between 160
and 250 cm−1, the libration band10 from 400 to 800 cm−1

associated with hindered molecule rotations,37 and the bending
modes37,72 at about 1650 cm−1 as well as the OH stretching
band37,72 from 2800 to 4000 cm−1. The NEP and TNEP
models for PES and μ in conjunction with the underlying
exchange-correlation functional thus succeed in capturing the
entire range stretching from soft intermolecular to stiff
intramolecular modes. This performance is also observed for
the DP model (Figure 4a).

By comparison, classical models produce rather large errors
for the location of several features in the IR spectrum of water.
MD simulations with classical force fields68,73 such as TIP3P
(Figure 4a) and SPC/E tend to predict a blue-shifting of the
bending modes by roughly 100 to 200 cm−1. A similar
tendency was also observed for the POLI2VS model.36 The
results from the MB-pol model on the other hand exhibit a
blue-shift of the OH stretching band by about 50 cm−1.37

The width of the OH stretching band has been proven to be
quite difficult to predict due to the anharmonicity of the OH
stretch mode.37 The NEP-TNEP approach yields a value of
380 cm−1 for the full width at half-maximum of this band,
which is in good agreement with experimental estimates of
about 350 cm−1 from Downing et al.70 Both NEP-TNEP and
DP predictions exhibit a slight high-frequency tail for this
band, which is not visible in the experimental spectra. This
small difference could originate from the strongly constrained
and appropriately normed (SCAN) functional74 that was used
for generating the PES training data10,75 and/or the absence of
quantum effects in the (classical) MD simulations.10,37

4.2. Raman Spectra of Water. To obtain the Raman
spectra of liquid water, we sampled the time dependence of
χ(t) using the TNEP susceptibility model and subsequently
computed the ACFs for the same trajectories used for the
prediction of the IR spectra. The full spectrum given by eq 10

and averaged over the available trajectories was then split into
isotropic (polarized) and anisotropic (depolarized) contribu-
tions via eq 12.

The anisotropic spectrum predicted by the NEP-TNEP
approach is overall in very good agreement with experimental
data (Figure 4b).76,77 The locations of the peaks and relative
intensities of the stretching, bending, and librational modes in
the simulated anisotropic Raman spectra are all well produced.
It is noteworthy that in the low frequency region below
approximately 1000 cm−1, the variation between the
experimental spectra is larger than the variation between the
ML models and the experimental data. This could be related to
difficulties associated with processing the experimental raw
data in this frequency region.

The T-EANN and DP models yield results similar to those
of the NEP-TNEP approach in the region up to about 1900

Figure 4. Comparison of (a) infrared as well as (b) anisotropic
(depolarized) and (c) isotropic (polarized) Raman spectra of water at
ambient conditions from simulations and experiment. Experimental
data from Downing et al.,70 Max et al.,71 Brooker et al.,76 and
Morawietz et al.77 Simulated spectra from T-EANN,39 MB-pol,37 and
DP10,44 models were adapted from the literature. In (a) and (b), the
spectra were normalized by the integral between 80 and 2500 cm−1,
while in (c), they were normalized by the integral between 1000 and
2500 cm−1.
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cm−1. On the other hand, all ML models underestimate the
intensity of the association band between 1900 and 2500 cm−1,
which is arising from the combination of librational and
bending modes.37,77 Here, the NEP-TNEP prediction is
actually still the one that comes closest to the experimental
spectra.

The broad high-frequency peak above 3000 cm−1, which is
associated with the OH stretch mode, is notably blue-shifted
and broadened for the T-EANN model, while the DP model
strongly underestimates the intensity of this peak. In contrast,
the NEP-TNEP combination predicts this feature in good
agreement with the experimental data.

Finally, the parametric MB-pol model yields the worst
agreement with experiment, for example, strongly over-
estimating the intensity of the bending band while under-
estimating the libration band.

With regard to the isotropic Raman spectrum (Figure 4c),
one should first note the variation among the experimental
data. In particular, in the region below 1000 cm−1, the resulting
uncertainty is comparable or even larger than the deviation
between the NEP-TNEP prediction and the experimental data,
while the position of the libration band predicted by T-EANN
appears red-shifted. With regard to the higher frequency
region, both NEP-TNEP and T-EANN reproduce the bending
band well. In the case of NEP-TNEP, this also applies for the
OH stretch band, whereas in the case of T-EANN, a blue-shift
can be observed similar to that of the anisotropic spectrum
(Figure 4b).

4.3. IR Spectrum of PTAF−. The NEP-TNEP method for
predicting IR spectra can be easily adopted for other molecular
systems as long as the underlying observables to be learned are
available. Naturally, this includes the molecular configurations
along a chemical reaction such that experimentally observable
spectral changes can be connected to metastable complexes.
One such complex is PTAF− (see inset in Figure 5), the
intermediate reaction minimum in the deprotection reaction 1-
phenyl-2-trimethylsilylacetylene (PTA) with tetra-n-butylam-
monium fluoride.78−81

To train NEP and TNEP models, we obtained PES and μ
data for a set of 20170 structures via DFT calculations using
the ORCA code,82 the PBE functional,83 and a def2-TZVP
basis set84 while enforcing tight convergence of the self-
consistent field cycles. Subsequently, MD simulations at
various temperatures were performed in the NVE ensemble
using a time step of 0.1 fs for 1 ns, during which μ(t) was
recorded with a time resolution of 0.5 fs.

The IR spectra obtained via the analysis of the ACF of μ
show a pronounced temperature dependence in particular of
the line widths (Figure 5). The molecule supports several soft
modes with frequencies in the region below 250 cm−1, which
are associated with the bending of and rotation about the
ethynyl linker. These modes in particular lead to strong mode
coupling (i.e., anharmonicity), which underlies the changes in
line width and the redistribution of the dipole strength across
the spectrum. Here, the computational efficiency of the NEP-
TNEP implementation in GPUMD was crucial to resolve these
features, as it enabled sampling on the nanosecond time scale,
which would be prohibitive for DFT-MD simulations and
computationally very expensive for a CPU implementation.

4.4. Raman Spectra of BaZrO3. BaZrO3 is a perovskite
that is being investigated, e.g., as a proton conductor for
applications in fuel cells. It has also been the subject of various
fundamental studies, as it is a prototypical antiferroelectric

perovskite.85−87 It features soft and strongly temperature-
dependent phonon modes,88,89 which have been carefully
analyzed with Raman spectroscopy,90 rendering BaZrO3 an
ideal application for the present approach.

For benchmarking, we constructed models for χ using both
the TNEP and SA-GPR approaches. The reference data set
comprised cubic and tetragonal supercells with up to 40 atoms.
The training structures were taken from MD simulations at
different temperatures and pressures, generated using a NEP
PES model constructed in an earlier study.89 In total, the
reference data set contained 940 structures. 140 structures
were randomly placed in a holdout set for validation, while
training sets were compiled by the shuffle-split method
(random selection with replacement) with 200 to 800
structures and five data sets per training set size.

A comparison of models generated using different choices
for the size of the neural network as well as the descriptor
demonstrates that viable models can be obtained for a wide
range of parameters and that even small models with as few as
1500 or so parameters can yield very good results (Figure
S12). Yet fine-tuning of these parameters as well as the
regularization parameters (Figure S13) allows one to maximize
model performance.

The convergence of RMSEs and R2 scores with training set
size is similar for TNEP and SA-GPR with slightly better
performance for TNEP (Figure 6). In both cases, training sets
of about 400 structures already yield very good models,
demonstrating the data efficiency of these approaches. This
behavior has also been observed in the construction of models
for amino acids.91

Next MD simulations were carried out using 12 × 12 × 12
supercells (8640 atoms) and a time step of 1 fs using the NEP
model for the PES. Following equilibration at 300 K and 0 GPa
in the NPT ensemble, the time-dependent susceptibility χ(t)

Figure 5. IR spectra for the metastable PTAF− complex (see the
inset) at various temperatures. The gray dashed line represents the
broadened integrated absorption coefficients of the harmonic
spectrum obtained directly from DFT calculations. The overall
agreement is good considering the lack of anharmonic corrections
(intensity and vibrational frequencies) and temperature sensitivity of
the spectrum obtained from DFT calculations.
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was recorded for 500 ps using a time resolution of 5 fs. For
production, we used a TNEP model for χ trained against the
full data set, but we found that models based on at least
approximately 400 structures yield results that are practically
indistinguishable within the statistical uncertainty. The Raman
line shape was subsequently obtained via the ACF of χ
according to eq 11. We then computed the Raman spectra for
parallel (Figure 7a,b) and crossed polarization (Figure 7c,d),
which in Porto notation correspond to Z(XX) Z̅ and Z(XY)Z̅,
respectively, where X and Y are arbitrary crystal axes. The final
spectra were obtained by averaging over 20 independent MD
trajectories.

The results are overall in very good agreement with
experiment, especially considering the very strong anharmo-
nicity of this material and the strong temperature dependence
of the vibrational spectrum.88 The main difference with respect
to the position of the peaks is a slight red-shift in the predicted
spectra in the region above 600 cm−1. This overly soft response
can be attributed to the underlying exchange-correlation
functional (vdW-DF-cx, refs.92,93), which the NEP model
truthfully reproduces. One can also observe an inversion in the
intensity of the low- and high energy features. This effect is
almost certainly due to the classical sampling used here. It is
rather common to correct for quantum effects in IR and f irst
order Raman spectra by including a factor similar to the
prefactor in eq 8. In the case of BaZrO3 the room-temperature
Raman spectrum arises, however, due to second-order
scattering, i.e., due to combinations of modes. In that case,
the application of the commonly used correction factor is no
longer valid. Here, we omit such corrections entirely.

The Raman spectra depend on the crystal orientation with
respect to the excitation laser. The present approach allows
one to readily map out this dependence via eqs 10 and 11
(Figure 7b,d). While we are unaware of experimental
measurements of the polarization dependence for BaZrO3,
we note that such experiments have been carried out for, e.g.,

NaCl.94 As demonstrated in the previous study, such
measurements can provide valuable additional information.

5. CONCLUSIONS
In this contribution, we introduced an extension of the NEP
approach to tensors, resulting in the TNEP scheme. This was
achieved by constructing expressions for rank-1 and rank-2
tensors based on the expression for the virial, which is a rank-2
tensor that arises naturally from derivatives of the energy (a
rank-0 tensor) with respect to the atomic distances. This
approach, which can be extended to tensors of higher rank,
thus allows one to easily construct models that are equivariant.

We demonstrated the accuracy of this approach and its
computational efficiency by constructing models for the dipole
moment μ, the molecular polarizability α, and the electric
susceptibility χ for several molecules, a liquid, and two
crystalline materials. In particular, the computational speed
of the current method and its implementation in the GPUMD

package provide a significant advantage in terms of both the
time scales and system sizes that can be sampled.

Finally, we applied the approach to predict IR and Raman
spectra of liquid water, the molecule PTAF−, and the
perovskite BaZrO3 in very good agreement with available
experimental data, illustrating the range of systems that can be
readily addressed by using the TNEP methodology introduced
here.

Figure 6. Variation of (a) RMSEs and (b) R2 scores with training set
size for TNEP and SA-GPR models based on five training sets per size
generated by shuffle-split. In the case of TNEP, we used Nneu = 20,
nmax
R = nmax

A = 4, and λ1 = λ2 = 2 × 10−3 (compare Figures S12 and
S13).

Figure 7. Raman spectra of BaZrO3 for (a,b) parallel and (c,d)
crossed polarization from simulations using a combination of NEP
and TNEP models (red lines) as well as experiment (gray lines).90

The spectra shown in (a,c) have been predicted for the nominal
alignments used in the experimental measurements. The correspond-
ing polarizations are indicated by the dashed horizontal lines in (b,d).
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S1 Dipole, polarizability, and susceptibility data for water sys-
tems

Data for the dipole moment (µ), the polarizability (α), and the electronic part of the electric suscepti-
bility (χe) for molecular water species as well as liquid water were retrieved from a public repository.1,2

The µ and α data for the molecules H2O, (H2O)2, and H5O2
+ provided in the repository were calcu-

lated at the coupled cluster singles and doubles (CCSD) level of theory3,4 with the d-aug-cc-pVTZ5,6

basis set. The data for liquid water in the repository were generated using the Perdew–Burke–Ernzerhof
(PBE)7 functional and ultra-soft pseudo-potentials (USPPs).8 The repository contains data for the rel-
ative dielectric permittivity εr. Here, the latter was converted to the electric susceptibility χe = εr−1
for training.

We demonstrate here two approaches to calculate dipole moment for periodic systems (liquid water)
via the modern theory of polarization2,9,10. A total of 50 structures was randomly selected from the
liquid water data set. In the first approach, the total µ of each structure was calculated using the
Berry phase formulation9. The calculations were performed using the CP2K software package11 with
density functional theory (DFT) implemented using the gaussians and plane waves (GPW) method.
The TZV2PX-MOLOPT-GTH basis set and GTH-PBE pseudopotentials were used.7,12 In addition,
the DFT-D3 correction13 was employed to capture dispersive van-der-Waals interactions. As shown
in Fig. S4a, most of the calculated µ are consistent with the reference µ, while some of them have
significant offsets. These µ data points were shifted by N ·L, where N is an integer and L is the lattice
parameter, thereby account for the phase shift that arises in the modern theory of polarization9. As
shown in Fig. S4b, the shifted µ data points are consistent with the reference µ data. In the second
approach, the total µ of each structure was calculated using maximally localized Wannier functions
(MLWFs)14

µ = 6e
∑
i

rOi + e
∑
j

rHj − 2e
∑
k

rMLWF
k ,

where rOi and rHj are the coordinates of oxygen and hydrogen atoms and rMLWF
k is the coordinate of

the Wannier centers belonging to a water molecule.15 In this case, a proper coordinate transformation
of the oxygen and hydrogen atoms as well as the Wannier centers is required before calculating the
total dipole moment.(Fig. S5) As shown in Fig. S4c, the µ data points calculated from MLWFs are
consistent with the reference µ data.

S2 Training of NEP PES model for water
We used the potential energy surface (PES) data set for liquid water from Ref. 16,17 to train a
neuroevolution potential (NEP) PES model to be used for MD simulations. The data set contains 1888
structures in total, for which energy, forces, and virials have been computed using DFT calculations.
The strongly constrained and appropriately normed (SCAN)18 functional and the projector augmented
wave (PAW) method19 (with hard setups) were used. All data were randomly divided into training
and validation data sets with a ratio of 4:1. The hyperparameters used in the training of the NEP
model are tabulated in Table S3. The root-mean-square errors (RMSEs) for energy, forces, and virials
converged after 3 × 105 generations of training, and the predicted energies, forces, and virials closely
match the DFT reference data, as shown in Fig. S9. We also performed an NPT (isothermal-isobaric)
MD simulation of liquid water (64 molecules) using the NEP PES model at 330K and 1bar. The
radial distribution functions (RDFs) for O–O and O–H pairs extracted from these simulations agree
well with ab initio molecular dynamics (AIMD) simulation in the literature20 (Fig. S10).

S3 Training of SA-GPR models for water molecules
Since we did not find publicly accessible models for H2O, (H2O)2 and H5O2

+, we trained new
symmetry-adapted Gaussian process regression (SA-GPR) models for µ and α using the same data
sets as those used for training the tensorial neuroevolution potential (TNEP) models (Sect. S1). The
default hyperparameters were used in the training.
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S4 Training of TNEP models for QM7b data set
We also consider the QM7b data set21 that comprises 7211 small organic molecules with up to six
elements (H, C, N, O, S, Cl). The reference µ and α data22 were calculated at the CCSD level of
theory using the d-aug-cc-pVDZ basis set5,6. 70% of the data were use for training, while the remaining
data were used for validation. The parameters in the training of the TNEP dipole and polarizability
models are shown in Table S1 and Table S2. Both the dipole and polarizability models achieve very
high precision for the QM7B data set (Fig. S3).

S5 Training of TNEP dipole model for α-Fe2O3

We also consider yet another crystalline system in α-Fe2O3. The primitive structure of α-Fe2O3
reported by Mendili et al.23 was used here, which is defined by three vectors: a = (5.03, 0.00, 0.00),
b = (−2.515, 4.356, 0.00), and c = (0.00, 0.00, 13.75), measured in units of Å. A 2 × 2 × 1 supercell
was created and used as the initial structure for AIMD simulations. The simulation system contained
120 atoms. The AIMD simulations were performed using a time step of 0.5 fs and the CP2K software
package11. The forces on the atoms were evaluated using the DZVP-GTH-PADE basis set and GTH-
PADE pseudopotentials24,25. To maintain the temperature at 300K, a Nosé-Hoover thermostat was
employed26. During the simulation, a magnetic moment of 5µB was assigned to each iron atom, where
µB represents the Bohr magneton. The simulation was run for a total of 2000 time steps, and snapshots
were saved with an interval of 1 fs. In total, 1000 structures were sampled and used for post-processing.
The µ data of the 1000 structures were calculated using the Berry phase formulation,9 where the origin
of the coordinate system was used as the reference point. The calculated values vary continuously with
the simulation time, indicating that all configurations are on the same branches of the Berry phase
and no shifts are required for calculating µ (Fig. S6a). The 1000 data points were randomly divided
into a training data set and a validation data set with a ratio of 7:3. The hyperparameters used for
training the TNEP dipole model are tabulated in Table S1. The µ values predicted by the TNEP
model are consistent with the DFT reference values (Fig. S6b). The coefficient of determination (R2)
is close to one.

S6 Training of TNEP susceptibility model for BaZrO3

The training data points were taken from MD snapshots at various temperatures and pressures obtained
using a previously published NEP model for the BaZrO3 PES.27 Both the cubic and tetragonal phases
were included, with supercell sizes varying from the primitive cell to 4 × 2 × 1 repetitions. The
final dataset consisted of 940 structures, for which the relative permittivity εr was obtained from
DFT calculations using the PAW formalism19,28 as implemented in the Vienna Ab-initio Simulation
Package29,30. The van-der-Waals density functional with consistent exchange (vdW-DF-cx) was used
to describe the exchange-correlation energy contribution31,32. A plane-wave energy cutoff of of 510 eV
was used along with Gaussian smearing with a width of 0.01 eV. Projection operators were evaluated
in reciprocal space and an additional support grid was used for evaluation of augmentation charges for
increased accuracy.

The hyperparameters used for training the TNEP models for BaZrO3 are tabulated in Table S2.
The relative permittivity was converted to electric susceptibility via the relation χe = εr − 1 for
training. Five-fold leave-one-out cross validation was carried out, where the dataset was split into five
equal parts. Five separate models were then trained, each using one of these splits as a validation
set. These models were trained until their validation set RMSE stopped improving, which occurred
after 6× 105 generations. Their mean coefficient of determination (R2) was 0.950(2) for the diagonal
and 0.984(2) for the off-diagonal elements. These quantities serve as accuracy estimates for the final
model, which was trained on the entire dataset. Training of this model was considered converged after
6× 105 generations based on the cross validation result, after which the TNEP model predicted values
for the susceptibility consistent with DFT reference values (Fig. S11).
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S7 Note on units of polarizability and susceptibility
For a single molecule, the molecular polarizability α connects the induced dipole moment µind (charge
times distance per molecule) to the electric field E (potential per distance),

µind = αE. (S1)

For a bulk material, the electric susceptibility χ connects the polarization (or dipole density) P
(charge times distance per volume) to the electric field E (potential per distance),

P = ϵ0χE. (S2)

It is now instructive to consider the different units involved in the expressions above. Here, we
explicitly included the unit mol, which is strictly part of the SI system but often left out. This is
done in order to emphasize the transition from molecular quantities (α) to bulk quantities (ϵ0χ). This
occurs, for example, in the Clausius-Mossotti relation, where α is related to ϵ0χ by scaling with the
number volume density ρ. Here, we see that α has units of Fm2/mol whereas ϵ0χ has units of F/m
and thus units of α per volume. The following table summarizes the SI units of the quantities as
defined above.

Quantity SI unit
µind Cm/mol
E V/m
α Cm2/(Vmol) = Fm2/mol

P C/m2

ϵ0 F/m
χ 1

ρ mol/m3

We note that there are various ways in which the relations Eqs. (S1) and (S2) are written in the
literature. One can for example subsume ϵ0 into χ, which emphasizes the symmetry with α. One can
also choose to express α in units of ϵ0, i.e., α = ϵ0α

′, in which case α′ has units of volume.

S8 Note on the Clausius-Mossotti relation
For non-polar liquids or gases, the Clausius-Mossotti relation33 can be used to approximate the relation
between the average molecular polarizability α = Tr(α)/3 and the average electric susceptibility χ =
Tr(χ)/3. It is based on a mean-field approximation to account for local field effect and is given by

χe

χe + 3
=

ρα

3ϵ0
,

where ρ is the number volume density. The quantities are expressed in SI units. The Clausius-Mossotti
can also be written in terms of the relative permittivity εr, which is related to the electric susceptibility
via εr = 1 + χ.

Note that all quantities here are isotropic and therefore represented by scalars. Here, α is the
molecular polarizability, ρ is the number volume density, ϵ0 is the permittivity of vacuum, and εr is
the relative permittivity.

S9 Rotational equivariance of TNEP models
Here, we explicitly demonstrate that the TNEP dipole and polarizability model are invariant to ro-
tations by taking the water monomer (H2O) as an example. Dipole moments (µ) and polarizabilities
(α) were predicted for the validation set using the TNEP models described in the manuscript. Then,
structures were subjected to rotations (R) at random angles. Dipole moments (µ′) and polarizabilities

4



(α′) of the rotated structures were also predicted using the TNEP models. According to the rotational
symmetries of rank-1 and rank-2 tensors, the rotational transformed dipole moments (µ′′) and polar-
izabilities (α′′) should be (RµT)T and RαR−1, respectively. The parity plots of µ′′ and α′′ versus µ′

and α′ for the validation set of H2O clearly demonstrate the expected rotational invariance (Fig. S14).

S10 On-the-fly prediction of dipoles and polarizability during
MD simulations

Predicting dipoles or polarizabilities can be efficiently performed on-the-fly during MD runs in GPUMD.
Fig. S15 shows how the performance of MD simulations scales with system size when tensorial prop-
erties are predicted at every tenth timestep, compared to a baseline without any tensorial predictions.
Note that the overhead of evaluating tensorial properties on-the-fly during MD of course depends on
how often they are to be evaluated, i.e., the number of timesteps between predictions.
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Figure S1: The learning curves for (a) dipole moment and (b) effective polarizability of liquid water.
The effective polarizability is given by ᾱ = χ/ρ, where ρ in the number volume density. For all
cases, the validation data set consists of 500 independent configurations. Arrows indicate the intrinsic
standard deviation of the validation data set.
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Figure S2: TNEP predicted dipole moment compared to ab initio data for the validation sets of (a)
H2O, (b) (H2O)2, (c) H5O2

+, and (d) liquid water. The coefficients of determination (R2), RMSEs
and RRMSEs are indicated in each subpanel. For liquid water, the dipole moment is given per water
molecule.
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Figure S3: TNEP predictions as compared to CCSD reference data of (a) dipole moment, (b) diagonal
elements of the polarizability, and (c) off-diagonal elements of the polarizability for the validation set
of the QM7b set.
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Figure S4: Dipole moments per molecule calculated in this work compared to reference data1,2 for
50 liquid water structures that were evaluated in this work.

Figure S5: Schematic plot of coordinate transformation of water molecules and their Wannier centers
before calculating the total dipole moment. Red, white, and slate-blue balls represent oxygen atoms,
hydrogen atoms, and Wannier centers, respectively.
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Figure S6: (a) Dipole moment per formula unit of α-Fe2O3 calculated by DFT as a function of
simulation time. (b) The comparison between the TNEP predictions and DFT values of dipole moment
for the validation data set of α-Fe2O3.

Figure S7: TNEP predicted diagonal polarizability as compared to ab initio data for the validation
sets of (a) H2O, (b) (H2O)2, (c) H5O2

+, and (d) liquid water. For liquid water we show the effective
polarizability given by ᾱ = χ/ρ, where ρ in the number volume density. R2 scores, RMSEs, and
RRMSEs are given in each subpanel. For liquid water the polarizability is divided given per water
molecule.
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Figure S8: TNEP predicted off-diagonal polarizability compared to the ab initio values for the
validation sets of (a) H2O, (b) (H2O)2, (c) H5O2

+, and (d) liquid water. For liquid water we show
the effective polarizability given by ᾱ = χ/ρ, where ρ in the number volume density. R2 scores,
RMSEs, and RRMSEs are given in each subpanel. For liquid water the polarizability is given per
water molecule.
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Figure S9: NEP model for the PES of liquid water. (a) RMSEs of energy, force, and virial for the
validation set as a function of the number of generations. (b–d) Comparison between NEP predictions
and DFT reference values of energies, forces, and virials for the validation set of liquid water.
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Figure S10: Validation of NEP model for the PES of liquid water. RDFs for (a) O–O and (b) O–H
pairs extracted from MD simulations based on the NEP PES model constructed in this work and
AIMD simulations20 at 330K and 1bar.

Figure S11: Comparison between TNEP predictions and DFT reference values for the (a) diagonal
and (b) off-diagonal elements of the susceptibility χ of BaZrO3. The R2 scores and RMSEs represent
the means from five-fold hold-one-out cross-validation.
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Figure S12: Impact of neural network architecture on model performance for TNEP models for the
susceptibility of χ of BaZrO3. (a) The number of model parameters split by descriptor and neural
network. (b, c) Box plots of R2 for the (b) diagonal and (c) off-diagonal components of χ; outliers are
shown by small open circles. Nneu indicates the number of neurons in the hidden layer of the neural
network. nmax specifies the number of basis functions used to construct the radial (nR

max) and angular
(nA

max) descriptors; see Ref. 34 for the full expressions for the network and the descriptors. Here, we
use nmax = nR

max = nA
max. Training was carried out using training sets generated by k-fold splitting of

the 940 structures available. The comparison demonstrates that viable models can be obtained for a
wide range of parameters, and that even small models with as few as 1500 or so parameters can yield
very good results. Yet fine-tuning of the architecture (and the regularization parameters, see Fig. S13)
allows one to optimize model performance.
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was carried out using a set comprising 800 structures. The neural network contained Nneu = 20
neurons and the radial and angular descriptors were constructed using nmax = 4 (see Fig. S12).
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Figure S14: Demonstration of rotational invariance of TNEP predictions. The comparison shows
the prediction for unrotated structures (with superscript ′′) vs predictions for rotated structures (with
superscript ′) of (a) dipole moment, (b) diagonal elements of the polarizability, and (c) off-diagonal
elements of the polarizability for the validation set of monomeric H2O.
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Figure S15: Scaling benchmark demonstrating cost of evaluating dipoles or polarizabili-
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Table S1: Hyperparameters used in training of TNEP models for the dipole moment (µ) for H2O,
(H2O)2, H5O2

+, liquid water, organic molecules (QM7B set), and α-Fe2O3. Here, rR
c (rA

c ) is the cutoff
radius for the radial (angular) components of the descriptor, nR

max (nA
max) is the Chebyshev polynomial

expansion order for the radial (angular) components, l3bmax (l4bmax, l5bmax) is the Legendre polynomial
expansion order for the three-body (four-body, five-body) terms angular components, NR

bas (NA
bas) is

the number of basis functions that are used to build the radial (angular) descriptor functions, Nneu is
the number of neurons in the hidden layer of the neural network, λ1 (λ2) is the L1 (L2) regularization
parameter, Npop is the population size in the natural evolution strategy algorithm, Nbat is the size of
each batch used during training, and Ngen is the maximum number of generations to be evolved.

Parameter H2O (H2O)2 H5O2
+ liquid water QM7B set α-Fe2O3

rR
c (Å) 6 6 6 6 6 6
rA
c (Å) 4 4 4 4 4 4
nR

max 6 6 6 6 6 6
nA

max 6 6 6 6 6 6
l3bmax 4 4 4 4 4 4
l4bmax 2 2 2 2 2 2
l5bmax 1 1 1 1 1 1
NR

bas 10 10 10 10 10 10
NA

bas 10 10 10 10 10 10
Nneu 10 10 10 10 30 10
λ1 0.00005 0.0008 0.0012 0.0005 0.001 0.0001
λ2 0.00005 0.0008 0.0012 0.0005 0.001 0.0001

Nbatch full-batch full-batch full-batch full-batch full-batch full-batch
Npop 80 80 80 80 80 80
Ngen 2× 105 2× 105 2× 105 2× 105 4× 105 2× 105
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Table S2: Hyperparameters used in training of TNEP polarizability and susceptibility models for
H2O, (H2O)2, H5O2

+, liquid water, and BaZrO3. Compared to the TNEP dipole model, an additional
parameter λs should be set, which stands for the relative weight between the off-diagonal elements and
diagonal elements of rank-2 tensors in the construction of loss functions.

Parameter H2O (H2O)2 H5O2
+ liquid water QM7B set BaZrO3

rR
c (Å) 6 6 6 6 6 6
rA
c (Å) 4 4 4 4 4 4
nR

max 6 6 6 6 6 4
nA

max 6 6 6 6 6 4
l3bmax 4 4 4 4 4 4
l4bmax 2 2 2 2 2 0
l5bmax 1 1 1 1 1 0
NR

bas 10 10 10 10 10 12
NA

bas 10 10 10 10 10 12
Nneu 10 10 10 10 30 20
λ1 0.008 0.02 0.002 0.001 0.03 −1 (adaptive adjustment)
λ2 0.008 0.02 0.002 0.001 0.03 −1 (adaptive adjustment)

Nbatch full-batch full-batch full-batch full-batch full-batch full-batch
Npop 80 80 80 80 80 50
Ngen 2× 105 2× 105 2× 105 2× 105 4× 105 6× 105

λs 10 1 1 1 1 1

Table S3: Hyperparameters used in training a NEP PES model for MD simulations of water.
Parameter Liquid water
rR
c (Å) 6
rA
c (Å) 4
nR

max 9
nA

max 7
l3bmax 4
l4bmax 2
l5bmax 0
NR

bas 9
NA

bas 7
Nneu 100
λ1 −1 (adaptive adjustment)
λ2 −1 (adaptive adjustment)

Nbatch 750
Npop 50
Ngen 3× 105
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Table S4: Hyperparameters used in training a NEP models for the prediction of infrared spectra for
PTAF– .

Parameter PTAF− PES PTAF− µ

rR
c (Å) 8 8
rA
c (Å) 4 6
nR

max 8 15
nA

max 6 8
l3bmax 4 4
l4bmax 0 2
l5bmax 0 0
NR

bas 8 12
NA

bas 8 12
Nneu 40 80
λ1 0.1 −1 (adaptive adjustment)
λ2 0.1 −1 (adaptive adjustment)
λe 1 1
λf 3 1
λv 0 0.1

Nbatch 1× 105 5× 105

Npop 50 50
Ngen 2× 105 5× 105

Table S5: Validation data for dipole and polarizability of water. RRMSEs (unitless) for µ and α for
the validation sets using NEP, T-EANN and SA-GPR rank-1 tensor models.

µ α

System TNEP T-EANN SA-GPR TNEP T-EANN SA-GPR
H2O 0.069% 0.020% 0.023% 0.991% 0.020% 0.024%
(H2O)2 1.681% 6.600% 3.866% 1.762% 4.200% 1.258%
H5O2

+ 0.371% 1.300% 0.130% 0.246% 0.300% 0.080%
liquid water 0.852% 16.000% 0.544% 0.680% 2.200% 0.329%
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