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Infrared and Raman spectroscopy are widely used for the characterization of gases, liquids, and
solids, as the spectra contain a wealth of information concerning in particular the dynamics of these
systems. Atomic scale simulations can be used to predict such spectra but are often severely limited
due to high computational cost or the need for strong approximations that limit application range
and reliability. Here, we introduce a machine learning (ML) accelerated approach that addresses
these shortcomings and provides a significant performance boost in terms of data and computational
efficiency compared to earlier ML schemes. To this end, we generalize the neuroevolution potential
approach to enable the prediction of rank one and two tensors to obtain the tensorial neuroevo-
lution potential (TNEP) scheme. We apply the resulting framework to construct models for the
dipole moment, polarizability, and susceptibility of molecules, liquids, and solids, and show that our
approach compares favorably with several ML models from the literature with respect to accuracy
and computational efficiency. Finally, we demonstrate the application of the TNEP approach to the
prediction of infrared and Raman spectra of liquid water, a molecule (PTAF– ), and a prototypical
perovskite with strong anharmonicity (BaZrO3). The TNEP approach is implemented in the free
and open source software package gpumd, which makes this methodology readily available to the
scientific community.

I. INTRODUCTION

Infrared (IR) and Raman spectroscopy are widely used
techniques for the non-destructive characterization of the
dynamics and to some extent chemistry of materials
spanning the entire range from the gas phase to con-
densed matter [1–3]. Over the years, various theoretical
approaches have been developed for simulating IR and
Raman spectra, including in particular methods based
on ab-initio molecular dynamics (MD) simulations [4–8].
While these approaches are capable of reproducing exper-
imental IR and Raman spectra of gases, liquids and solids
[5, 7–9], they are severely limited with respect to the sys-
tem sizes and time scales attainable for two main reasons
[5, 10]: Firstly, ab-initio MD simulations rely on com-
putationally demanding electronic structure calculations
that scale strongly with system size in order to obtain
energy and forces at every time step. Secondly, similarly
expensive calculations of dipole moment (µ), polarizabil-
ity (α) or electric susceptibility (χ) are required for at
least many thousand configurations to achieve numerical
convergence of the underlying correlation functions [5].

MD simulations can be accelerated by using classical
force fields [11–13] or empirical interatomic potentials
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[14, 15], which approximate the potential energy surface
(PES) with physically motivated yet constrained func-
tions and few fitted parameters. The accuracy of such
approaches for general materials is, however, often lim-
ited, negatively affecting the prediction of IR and Raman
spectra [16]. Machine-learning (ML) potentials are well
suited to address this challenge as they bridge between
the accuracy of quantum mechanical methods and the
computational efficiency of classical force fields or em-
pirical interatomic potentials [17–21]. The power of this
approach, in particular for capturing vibrational prop-
erties of materials has been shown repeatedly, see, e.g.,
Refs. 22–26.

The calculation of µ, α or χ can be accelerated us-
ing parametric models in similar fashion. Consider-
ing only static charges, the dipole moment is given by
µ =

∑N
i=1 Qiri, where Qi and ri are the charge and po-

sition of atom i. Many classical force fields [11–13] assign
fixed charges to atoms and thereby provide a convenient
approach for calculating µ. Such fixed-charge models
neglect, however, polarization effects, which can lead to
large errors [27]. While this situation can in principle
be ameliorated by fluctuating-charge models [28, 29], the
latter tend to lack robustness and can be difficult to gen-
eralize [10, 30].

Both α and χ describe the dielectric response to an
applied electric field. For α or χ, the bond polarizabil-
ity model is one of the most frequently used paramet-
ric ones, and has for example been applied to alkanes
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FIG. 1. Workflow for simulations of IR and Raman spectra
using NEP models for the PES and TNEP models for the
dipole moment µ, the polarizability α or the susceptibility χ.

[31, 32], zeolites [33] as well as carbon nanotubes [34].
However, this simple model often suffers from unsatisfac-
tory transferability when used in different environments
[35]. POLI2VS [36] and MB-pol [37] are two other para-
metric models that can be used for predicting µ and α,
but are limited to molecular systems such as water [10].

The successful applications of ML potentials have in-
spired the development of ML dipole, polarizability, and
susceptibility models [22, 38–41]. For µ, a rank-1 ten-
sor, both partial-charge and the partial-dipole ML mod-
els have been developed [30]. The objective of the partial-
charge models is to assign proper partial charges for
atoms in order to fit the total dipole moment [22, 30, 42].
Here, one concern is the balance between the fitting qual-
ity of µ and the reproducibility of total charges [22, 30].
By contrast partial-dipole models such as symmetry-
adapted Gaussian process regression (SA-GPR) [38], ten-
sorial embedded-atom neural network (T-EANN)[39],
and deep potential (DP) [40] treat µ as a sum of vec-
tors [30, 38] that can be determined from atom-centered
chemical environments.

While this approach works for µ, which is a rank-1
tensor, it does not transfer to the construction of ML
models for α or χ, which are rank-2 tensors. This has
motivated the pioneering development of the SA-GPR
method for tensorial properties [38] as well as later the
T-EANN [39, 43] and DP models [10].

The combination of ML potentials with ML models
for µ, α or χ enables the simulations of IR and Raman
spectra. This approach has been used to predict, e.g., the
IR spectra of methanol, n-alkanes, and a peptide [22], IR
and Raman spectra of liquid water [10, 20, 39, 44] or
the Raman spectra of various solid materials [45]. While
these earlier studies have established the usefulness of
ML models for predicting IR and Raman spectra, there
is still ample room for improvement of current models for
µ, α or χ in terms of computational and data efficiency
[30, 39] as well as the accessibility of these techniques in
order to lower the threshold for the widespread adoption
of such approaches.

This situation motivates the present work, in which we
introduce accurate as well as computationally and data
efficient ML models for rank-1 and rank-2 tensors based
on the NEP framework [21, 46, 47]. We demonstrate the
efficacy and efficiency of the resulting TNEP approach
by training models for µ, α, and χ, and combining these
with models for the PES to predict IR and Raman spec-
tra for a molecule (PTAF– ), a liquid (water), and a solid
(BaZrO3; Fig. 1). We make this methodology available
via the gpumd package [47], enabling comprehensive sim-
ulations of high-quality IR and Raman spectra with lim-
ited user effort.

II. METHODOLOGY

A. NEP models for the PES

Since the ML models for µ and α that we introduce be-
low are based on the NEP framework for modeling PESs
[21, 46, 47], we first provide a brief review of the latter.
Originally NEPs are ML potentials that model the high-
dimensional PES of finite or extended systems, in the
spirit of the neural network potential model proposed by
Behler and Parrinello [48]. In this formalism, the total
energy of the system is given by the sum of atomic site
energies U =

∑
i Ui. The site energy Ui for a given atom

i depends on the local environment of the atom, which
is represented by an abstract vector qνi with a number of
components indexed by ν. The function mapping from
the descriptor to the site energy is represented by a feed-
forward neural network (also known as a multilayer per-
ceptron) with typically a single hidden layer. The input
layer of the neural network is thus the descriptor vector
and the output layer consists of a single node whose value
is the site energy Ui of the considered atom i, which can
be formally expressed as

Ui = Ui(q
ν
i ). (1)

The NEP approach is named after the underlying ML
model (a neural network) and the separable natural evo-
lution strategy used as the training algorithm [49]. The
latter is a principled real-valued black-box optimization
method that is very well suited for training the weight
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and bias parameters in the neural network, of which there
are typically a few thousand. The optimization is driven
by the minimization of a loss function that is given by the
weighted sum of the root-mean-square errors (RMSEs)
of physical quantities as well as L1 and L2 regularization
terms. For the construction of PES models, the physical
quantities included in the loss function are the energies,
forces, and virial tensors of the structures in the training
set. The full expressions for these quantities can be found
in Ref. 47. Here, we only present the expression for the
virial tensor that serves as the foundation for the dipole
and polarizability models developed in the present work.
For a given structure with N atoms, the virial tensor can
be expressed as [47]

W υν = −
N∑
i

∑
j ̸=i

rυij
∂Ui

∂rνij
, (2)

where rυij is the υ-component of the vector rij ≡ rj − ri,
and ri is the position of atom i. We refer to the term
∂Ui/∂r

ν
ij as the partial force, explicit expressions for

which have been presented in the original works devel-
oping the NEP approach [21, 47].

B. TNEP rank-1 tensor models

To develop a ML model for predicting µ, we first note
that it is a rank-1 tensor commonly expressed as a vec-
tor, in contrast to the energy, which is a rank-0 tensor
(i.e., a scalar). The partial force in Eq. (2) is a vector,
but the summation of it over the whole structure would
be zero as a result of Newton’s third law. To obtain a
vector representation that does not vanish for a general
structure, we note that the quantity defined in Eq. (2) is
a rank-2 tensor that can adopt both positive and nega-
tive values (as it is the virial tensor in the context of PES
models). We can thus obtain an expression for a vector
quantity by contracting this rank-2 tensor with a vector.
A natural choice for the vector to be contracted is rij ,
which yields the following expression for rank-1 tensors
such as the dipole moment

µ = −
N∑
i

∑
j ̸=i

rij ·
(
rij ⊗

∂Ui

∂rij

)

= −
N∑
i

∑
j ̸=i

r2ij

(
∂Ui

∂rij

)
, (3)

where r2ij = rij ·rij is the distance squared between atoms
i and j. We note that Ui here should have the dimension
of charge instead of energy. Crucially this goes to show
that the NEP formalism for PESs can be directly used
to construct a ML model for rank-1 tensors such as the
dipole moment. Below we refer to Eq. (3) as the TNEP
dipole model.

C. TNEP rank-2 tensor models

To develop ML models for predicting α or χ, we first
note that these are rank-2 tensors. Clearly, the quantity
defined in Eq. (2) is an ideal candidate. However, using
only Eq. (2) to represent α or χ does not lead to high
regression accuracy because the diagonal terms of α or χ
are usually much larger than the off-diagonal ones. We
therefore represent α (and equivalently χ) as a combi-
nation of Eqs. (1) and (2) as follows

αυν =

N∑
i

Uiδ
υν −

N∑
i

∑
j ̸=i

rυij
∂Ui

∂rνij
, (4)

where δυν is the Kronecker delta. Note that both the first
and second term on the right-hand side contribute to the
diagonal elements of αυν , but only the second term con-
tributes to the off-diagonal elements. Ui here has the di-
mension of polarizability instead of energy, yet the entire
NEP formalism can be reused. Below we refer to Eq. (4)
as the TNEP polarizability or susceptibility model.

D. Dielectric response

It is instructive to recall some relations that describe
the response of finite (such as molecules) and extended
systems (such as solids and liquids) to an applied electric
field.

If a molecule is subjected to an electric field E the
resulting displacement of nuclei and electrons induces a
dipole, which is given by [50]

µind = αE,

where α is the molecular polarizability.
For an extended system such as a solid or a liquid,

one considers equivalently the dipole moment per unit
volume, i.e., the polarization

P = ϵ0χE,

where χ is the electric susceptibility. In the context of
bulk liquids the latter has also been referred to as the
bulk polarizability. For clarity in the following, we use
the term polarizability only to refer to the molecular po-
larizability. There are different conventions for express-
ing µ, α, and χ leading to different units (Sect. S7).
Here, we use e · Å for µ and Å3 for α whereas χ is unit-
less.

We note that under certain conditions, one can ap-
proximately connect the molecular polarizability and the
electric susceptibility via the Clausius-Mossotti relation,
which is based on a mean-field treatment of local field
effects (see Sect. S8 in the Supporting Information).
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E. The IR intensity

The IR absorption cross section is given by [50]

σ(ω) =
4π2

ℏcn
ω
(
1− e−βℏω)M(ω),

where n is the refractive index of the material, c the
speed of light, β = 1/kBT and M(ω) is the absorption
lineshape given by the Fourier transform of the autocor-
relation function (ACF) of the (total) dipole moment µ,

M (ω) =
1

2π

∫ ∞

−∞
⟨µ (0) · µ (t)⟩ e−iωtdt,

where ⟨· · · ⟩ indicates the average over time origins. Since
the lineshape is sampled classically, we make a classical
approximation for the prefactor by expanding the Boltz-
mann factor to first order, which gives

σ(ω) ∝ ω2M(ω). (5)

F. The Raman intensity

The differential Raman cross-section is given by [50, 51]

∂2σ

∂ωout∂Ω
=

(
ωin ± ω

2π

)4

Lijkl(ω), (6)

where Ω is a solid angle. Here, it is assumed that the
frequency of the incoming light ωin, is significantly larger
than the Raman shift ω, and significantly smaller than
the band gap, i.e., far from any electronic excitations.
Lijkl(ω) is the Raman lineshape given by the Fourier
transform of the time-dependent polarizability α(t) (fi-
nite system) or susceptibility χ(t) (extended systems),
e.g., in the case of the former

Lijkl(ω) =
1

2π

∫ ∞

−∞
⟨αij (0)αkl (t)⟩ e−iωtdt. (7)

The elements of the polarizability (or susceptibility) ten-
sor are selected by components of the polarization of the
incoming and outgoing light as

αij = ϵ̂in
i ·α · ϵ̂out

j . (8)

This allows one to split the spectrum into an isotropic
and an anisotropic part. To this end, the polarizability
tensor (and equivalently the susceptibility tensor) can be
rewritten as α = γI + β where γ = Tr(α)/3 and β is a
traceless tensor. This leads to the decomposition

Liso(ω) ∝
∫ ∞

−∞
⟨γ (0) γ (t)⟩e−iωtdt

Laniso(ω) ∝
∫ ∞

−∞
⟨Tr[β (0)β (t)]⟩e−iωtdt.

(9)

The electric susceptibility (Sect. II D) can be separated
into an electronic and an ionic contribution

χ = χion(ω) + χe(ω),

where the general frequency dependence of these terms
is emphasized. For the prediction of Raman spectra we
only need to consider the electronic contribution χe(ω).
Furthermore, we limit ourselves to non-resonant Raman
spectroscopy. This means that we require the electric
susceptibility in the ion-clamped static limit, i.e., χe(0),
and do not have to consider the frequency dependence of
χe(ω), which arises from electronic transitions.

G. Workflow for simulations of IR and Raman
spectra

By combining a NEP model for the PES with TNEP
models for dipole, polarizability or susceptibility, one ob-
tains a simple yet general workflow for the computation
of IR and Raman spectra (Fig. 1). Starting from a NEP
PES model, large-scale MD simulations are performed to
sample the PES via the gpumd package, typically for a
few hundred picoseconds. TNEP dipole, polarizability or
susceptibility models are then employed to predict µ(t),
α(t) or χ(t) along the trajectory. Finally, IR or Raman
spectra are obtained via Fourier transformation of the
respective ACFs via Eqs. (5) or (6).

III. PERFORMANCE EVALUATION

In this section, we evaluate the performance of TNEP
dipole, polarizability, and susceptibility models in com-
parison with models from the literature with respect to
both regression accuracy and computational speed. The
comparison includes the molecules H2O, (H2O)2, and
H5O2

+ (the Zündel cation), as well as a set of configura-
tions representing liquid water. Structures with dipole,
polarizability, and/or susceptibility data were retrieved
from the repository maintained by the developers of the
SA-GPR models [38, 52] (see Sect. S1 in the Supporting
Information for details). The data set for each of these
systems comprises 1000 configurations, half of which were
use for training, while the other half were used for vali-
dation. The hyperparameters used in the training of the
TNEP models are presented in Tables S1 and S2. In the
case of the SA-GPR method, the results for liquid wa-
ter were computed using a publicly available model [53]
while the models for the molecules were trained by us (see
Sect. S3 for details). In the case of the T-EANN method,
we only use those data available in the literature [39].

A. Dipole moment

The TNEP dipole models can achieve very high pre-
cision when predicting µ for both molecules and liquid
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FIG. 2. Relative test errors for the validation sets according
to TNEP, T-EANN, and SA-GPR models for water systems
for (a) µ as well as (b) α and χ/ρ. The relative test er-
ror for liquid water from T-EANN [39] was reported for the
averaged molecular polarizability obtained via the Clausius-
Mossotti relation (Sect. S8). The relative test for χ/ρ should
be somewhat higher than that for the averaged molecular po-
larizability.

water with very low RMSEs (Table I) and correlation
coefficients very close to one (Fig. S1).

As a further, more intuitive measure, one can also con-
sider the relative error [39], defined as the RMSE divided
by the standard deviation of the reference data (Fig. 2a).
For the water monomer (H2O) all three methods yield ex-
tremely small relative errors below 0.1%. For the other
three systems, including liquid water, the TNEP and SA-
GPR models achieve comparable accuracy while the T-
EANN models perform systematically worse. This be-
havior is particularly pronounced for liquid water and
might arise since the T-EANN model uses the positions
relative to the center of mass as input, which are not well
defined in periodic systems [54, 55].

Neutral molecules. The µ of neutral molecules such
as H2O or (H2O)2 is uniquely defined. In the TNEP ap-
proach µ is calculated by summing over atomic contribu-
tions which, by contrast to, e.g., the T-EANN approach,
does not require choosing a reference point. Therefore,
the TNEP dipole models are naturally suitable for neu-
tral molecules.

In this context, we note that we also trained and val-
idated a model for the QM7B data set containing thou-
sands of neutral organic molecules [56, 57], for which
we make similar observations (Sect. S4). The TNEP
model yields a very low RMSE for the validation set of
9.51× 10−4 e · Å/atom.

Charged molecules. The µ of charged molecules
is non-unique and depends on the choice of the refer-

TABLE I. RMSEs in e · Å/atom for µ for the validation sets
using NEP rank-1 tensor models.

System RMSE
H2O 3.8× 10−5

(H2O)2 92.8× 10−5

H5O2
+ 10.9× 10−5

liquid water 29.3× 10−5

ence point [4, 58]. For charged molecules, one should
therefore employ the relative permanent dipole µr de-
fined with respect to the center of mass, when training
TNEP dipole models. The reference µ in the H5O2

+

data set [38, 52] have already been transformed to µr.
Therefore, the absolute dipole moment of H5O2

+ includ-
ing the movement of the center of mass should then be
µ = µr+e ·rCOM. The same procedure has been applied
to the PTAF– molecule below (Sect. IV C).

Periodic systems. Traditional methods for calcu-
lating µ cannot be applied to periodic systems since
the position operator is not uniquely defined [55, 59].
This issue is overcome via the modern theory of polar-
ization [38, 59, 60], which provides a rigorous definition
for the polarization of periodic systems and established
a methodology for calculating µ. It was therefore used
in the present work to obtain µ for periodic systems in-
cluding water (Sect. S1) and α-Fe2O3 (Sect. S5).

B. Polarizability and susceptibility

The RMSEs for the diagonal and off-diagonal ele-
ments of α of (H2O), (H2O)2 and H5O2

+ are quite small
(Table II), indicating the high accuracy of the TNEP
polarizability model. The coefficients of determination
are larger than 0.98 mirroring this trend (Fig. S6 and
Fig. S7). For liquid water, we consider χ/ρ, which has
the same unit as the polarizability per atom. The RM-
SEs for χ/ρ are on the same order of magnitude as the
RMSEs for α (Table II).

The NEP models achieve an accuracy that is compa-
rable to the T-EANN and SA-GPR models for the po-
larizability of (H2O)2 and H5O2

+ as well as the suscep-
tibility of liquid water (Fig. 2b). While the performance
for the water monomer H2O is worse, the TNEP model
still yields a relative testing errors of less than 1%.

As a further test we constructed a TNEP polarizabil-
ity model for the QM7B data set (Sect. S4). The RMSE
values for the validation set are 6.88 × 10−3 Å3

atom−1

and 3.28 × 10−3 Å3
atom−1 for the diagonal and off-

diagonal elements of α, respectively. For comparison,
Wilkins et al. [61] reported a higher RMSE value of
8.15 × 10−3 Å3

atom−1 over both the diagonal and off-
diagonal elements of α using a SA-GPR model.
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TABLE II. RMSEs in Å3
atom−1 for α (molecules) and χ/ρ

(liquid water) for the validation sets using TNEP rank-2 ten-
sor models.

System diagonal off-diagonal
H2O 42.0× 10−4 1.9× 10−4

(H2O)2 56.1× 10−4 33.8× 10−4

H5O2
+ 4.8× 10−4 3.6× 10−4

liquid water 26.6× 10−4 18.2× 10−4

C. Computational speed

It is now instructive to evaluate the computational
performance of TNEP models in comparison with pub-
licly available SA-GPR models [52, 53]. To this end, we
consider liquid water systems with varying numbers of
atoms. Starting from a cell containing 96 atoms, larger
samples with up to 69 984 atoms were created by repli-
cation.

The SA-GPR models can only be run serially on a cen-
tral processing unit (CPU). In contrast, the TNEP model
can be run on CPUs using NEP_CPU [62], e.g., via the in-
terface provided by the calorine package [63], or on
graphics processing units (GPUs) by using the gpumd
package. The SA-GPR and TNEP (CPU) models were
tested on a server containing two Intel XEON Platinum
8275CL processors with a system memory of 256GB,
while the TNEP (GPU) models were tested on a het-
erogeneous server containing two Intel XEON Gold 6148
processors and an Nvidia GeForce RTX 4090 card with
a graphics memory of 24GB.

The comparisons show that the TNEP CPU models
are at least one order of magnitude faster than the SA-
GPR models on CPUs for both dipole and polarizability
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FIG. 3. Comparison of computational speed of SA-GPR and
TNEP models for dipole (µ) and susceptibility (χ) of liquid
water. Here, the SA-GPR results were obtained using the
TENSOAP-FAST implementation [53].

(Fig. 3). On CPUs the TNEP models exhibit nearly per-
fect weak scaling over the system sizes considered here.
In contrast, the SA-GPR models show a notable decrease
in speed as the system size increases. Running the TNEP
models on GPUs enables an additional speed up by an
order of magnitude or more. For very small systems the
GPU implementation is limited by IO.

IV. APPLICATIONS

Having established the accuracy and computational
performance of the TNEP approach by comparison with
reference data sets, we now demonstrate the application
of NEP and TNEP models in combination for predicting
IR and Raman spectra of molecules, liquids, and solids.
To this end, we employ the correlation function approach
outlined above (Sect. II G and Fig. 1).

A. IR spectrum of water

Firstly, we developed a NEP PES model for liquid wa-
ter using energy, atomic forces, and virial data from den-
sity functional theory (DFT) calculations (Sect. S2).

Next, a system of 216 water molecules was equilibrated
in the NPT ensemble for 100 ps using the trained PES
model at 298K and 1 bar, followed by a further equi-
libration run in the NVT ensemble for another 100 ps.
Three production runs were carried out in the NVE en-
semble for a duration of 200 ps. A time step of 0.5 fs was
used throughout.

The time dependence of the dipole (µ(t)) was com-
puted for the production trajectories with a spacing of 1 fs
using the TNEP dipole model for liquid water described
above (Sect. III A). The IR spectrum was then obtained
by Fourier transforming the dipole moment ACF via
Eq. (5). The final IR spectrum was obtained by aver-
aging the IR spectra from the production runs.

For comparison, we also ran a 200 ps MD simulation
with the TIP3P force field [64] via the CP2K software
package [65], where the TIP3P force field uses charges
of −0.834 e and 0.417 e for oxygen and hydrogen, respec-
tively.

The NEP-TNEP method yields an IR spectrum that is
in very good agreement with experimental data [66, 67]
over the entire frequency range from 0 to 4000 cm−1

(Fig. 4a). This includes the hydrogen-bond stretch-
ing band [10] between 160 and 250 cm−1, the libration
band [10] from 400 to 800 cm−1 associated with hin-
dered molecule rotations [37], the bending modes [37, 68]
at about 1650 cm−1 as well as the OH stretching band
[37, 68] from 2800 to 4000 cm−1. The NEP and TNEP
models for PES and µ in conjunction with the underlying
exchange-correlation functional thus succeed in capturing
the entire range stretching from the soft intermolecular
to the stiff intramolecular modes. This performance is
also observed for the DP model (Fig. 4a).
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By comparison classical models produce rather large
errors for the location of several features in the IR spec-
trum of water. MD simulations with classical force fields
[64, 69] such as TIP3P (Fig. 4a) and SPC/E tend to pre-
dict a blue-shifting of the bending modes by roughly 100
to 200 cm−1. A similar tendency was also observed for
the POLI2VS model [36]. The results from the MB-pol
model on the other hand exhibit a blue-shift of the OH
stretching band by about 50 cm−1 [37].

The width of the OH stretching band has been proven
to be quite difficult to predict due to the anharmonicity
of the OH stretch mode [37]. The NEP-TNEP approach
yields a value of 380 cm−1 for the full width at half max-
imum of this band, which is in good agreement with ex-
perimental estimates of about 350 cm−1 from Downing’s
experiment [66]. Both NEP-TNEP and DP predictions
exhibit a slight high-frequency tail for this band, which
is not visible in the experimental spectra. This small
difference could originate from the strongly constrained
and appropriately normed (SCAN) functional [70] that
was used for generating the PES training data [10, 71]
and/or the absence of quantum effects in the (classical)
MD simulations [10, 37].

B. Raman spectra of water

To obtain the Raman spectra of liquid water we sam-
pled the time dependence of χ(t) using the TNEP sus-
ceptibility model and subsequently computed the ACFs
for the same trajectories used for the prediction of the
IR spectra. The full spectrum given by Eq. (6) and av-
eraged over the available trajectories was then split into
isotropic and anisotropic contributions via Eq. (9).

The anisotropic spectrum predicted by the NEP-
TNEP approach is overall in very good agreement with
experimental data (Fig. 4b) [72, 73]. The locations of
peaks and relative intensities of the stretching, bend-
ing, and librational modes in the simulated anisotropic
Raman spectra are all well produced. It is noteworthy
that in the low frequency region below approximately
1000 cm−1, the variation between the experimental spec-
tra is larger than the variation between the ML models
and the experimental data. This could be related to dif-
ficulties associated with processing the experimental raw
data in this frequency region.

The T-EANN and DP models yield similar results
as the NEP-TNEP approach in the region up to about
1900 cm−1. On the other hand, all ML models under-
estimate the intensity of the association band between
1900 and 2500 cm−1, which is arising from the combi-
nation of librational and bending modes [37, 73]. Here,
the NEP-TNEP prediction is actually still the one that
comes closest to the experimental spectra.

The broad high-frequency peak above 3000 cm−1,
which is associated with the OH stretch mode, is no-
tably blue-shifted and broadened for the T-EANN model,
while the DP model strongly underestimates the inten-
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FIG. 4. Comparison of (a) infrared as well as (b) anisotropic
and (c) isotropic Raman spectra of water at ambient condi-
tions from simulations and experiment. Experimental data
from Downing et al. [66], Max et al. [67], Brooker et al. [72],
and Morawietz et al. [73]. Simulated spectra from T-EANN
[39], MB-pol [37], and DP [10, 44] models were adapted from
the literature. In (a) and (b) the spectra were normalized by
the integral between 80 and 2500 cm−1, while in (c) they were
normalized by the integral between 1000 and 2500 cm−1.

sity of this peak. In contrast, the NEP-TNEP combi-
nation predicts this feature in good agreement with the
experimental data.

Finally, the parametric MB-pol model yields the worst
agreement with experiment, for example, strongly over-
estimating the intensity of the bending band while un-
derestimating the libration band.

With regard to the isotropic Raman spectrum
(Fig. 4c), one should first note the variation among the
experimental data. In particular in the region below
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1000 cm−1, the resulting uncertainty is comparable or
even larger than the deviation between the NEP-TNEP
prediction and the experimental data, while the position
of the libration band predicted by T-EANN appears red-
shifted. With regard to the higher frequency region both
NEP-TNEP and T-EANN reproduce the bending band
well. In the case of NEP-TNEP this also applies for the
OH stretch band, whereas in the case of T-EANN a blue-
shift can be observed similar to the anisotropic spectrum
(Fig. 4b).

C. IR spectrum of PTAF–

The NEP-TNEP method for predicting IR spectra can
be easily adopted for other molecular systems as long as
the underlying observables to be learned are available.
Naturally, this includes the molecular configurations
along a chemical reaction, such that experimentally ob-
servable spectral changes can be connected to metastable
complexes. One such complex is PTAF– (see inset in
Fig. 5), the intermediate reaction minimum in the SN2
deprotection reaction 1-phenyl-2-trimethylsilylacetylene
(PTA) with tetra-n-butylammonium fluoride [74–76].

To train NEP and TNEP models, we obtained PES
and µ data for a set of 20 170 structures via DFT calcula-
tions using the ORCA code [77], the PBE functional [78],
and a def2-TZVP basis set [79] while enforcing tight con-
vergence of the self-consistent field cycles. Subsequently,
MD simulations at various temperatures were performed
in the NVE ensemble using a timestep of 0.1 fs for 1 ns,
during which µ(t) was recorded with a time resolution of
0.5 fs.
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FIG. 5. IR spectra for the metastable PTAF– complex (see
inset) at various temperatures.

The IR spectra obtained via the analysis of the ACF
of µ show a pronounced temperature dependence in par-
ticular of the linewidths (Fig. 5). The molecule supports
several soft modes with frequencies in the region below
250 cm−1, which are associated with bending of and rota-
tion about the ethynyl linker. These modes in particular
lead to strong mode coupling (i.e., anharmonicity), which
underlies the changes in linewidth and the redistribution
of the dipole strength across the spectrum. Here, the
computational efficiency of the NEP-TNEP implemen-
tation in gpumd was crucial to resolve these features,
as it enabled sampling on the nanosecond time scale,
which would be prohibitive for a DFT-MD simulations
and computationally very expensive for a CPU imple-
mentation.

D. Raman spectra of BaZrO3

BaZrO3 is a perovskite that is being investigated, e.g.,
as a proton conductor for applications in fuel cells. It
has also been the subject of various fundamental studies,
as it is a prototypical antiferroelectric perovskite [81–
83]. It features soft and strongly temperature-dependent
phonon modes [84, 85], which have been carefully ana-
lyzed with Raman spectroscopy [80], rendering BaZrO3
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FIG. 6. Raman spectra of BaZrO3 for (a) parallel and (b)
crossed polarization from simulations using a combination of
NEP and TNEP models as well as experiment [80].
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an ideal application for the present approach.
A TNEP model for χ was trained using cubic and

tetragonal supercells with up to 40 atoms. The training
structures were taken from MD simulations at different
temperatures and pressures, generated using a NEP PES
model constructed in an earlier study [85]. In total the
reference data set contained 940 structures.

MD simulations were carried out using 12 × 12 × 12
supercells (8640 atoms) and a timestep of 1 fs. Following
equilibration at 300K and 0GPa in the NPT ensemble,
the time-dependent susceptibility χ(t) was recorded for
500 ps using a time resolution of 5 fs. The Raman line-
shape was subsequently obtained via the ACF of χ ac-
cording to Eq. (7). We then computed the parallel and
crossed Raman spectra, which in Porto notation corre-
spond to Z(XX)Z̄ (xxyy in Eq. (7)) and Z(XY )Z̄ (xyxy
in Eq. (7)), respectively. The final spectra were obtained
by averaging over 20 independent MD trajectories.

The results are overall in very good agreement with
experiment, especially considering the very strong an-
harmonicity of this material and the strong temperature
dependence of the vibrational spectrum [84]. The main
difference is a slight red-shift in the predicted spectra
in the region above 600 cm−1. This overly soft response
can be attributed to the underlying exchange-correlation
functional (vdW-DF-cx, Refs. 86, 87), which the NEP
model truthfully reproduces.

V. CONCLUSIONS

In this contribution, we have introduced an extension
of the NEP approach to tensors, resulting in the TNEP
scheme. This was achieved by constructing expressions
for rank-1 and rank-2 tensors based on the expression for
the virial, which is a rank-2 tensor that arises naturally
from derivatives of the energy (a rank-0 tensor) with re-
spect to the atomic distances. This approach, which can
be extended to tensors of higher rank, thus allows one to
easily construct models that are equivariant.

We demonstrated the accuracy of this approach and its
computational efficiency by constructing models for the
dipole moment µ, the molecular polarizability α, and
the electric susceptibility χ for several molecules, a liq-
uid as well as two crystalline materials. In particular, the
computational speed of the current method and its im-
plementation in the gpumd package provide a significant
advantage both in terms of the time scales and system
sizes that can be sampled.

Finally, we applied the approach to predict IR and
Raman spectra of liquid water, the molecule PTAF– ,

and the perovskite BaZrO3 in very good agreement with
available experimental data, illustrating the range of sys-
tems that can be readily addressed using the TNEP
methodology introduced here.
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S1 Dipole, polarizability, and susceptibility data for water sys-
tems

Data for the dipole moment (µ), the polarizability (α), and the electronic part of the electric suscepti-
bility (χe) for molecular water species as well as liquid water were retrieved from a public repository.1,2

The µ and α data for the molecules H2O, (H2O)2, and H5O2
+ provided in the repository were calcu-

lated at the coupled cluster singles and doubles (CCSD) level of theory3,4 with the d-aug-cc-pVTZ5,6

basis set. The data for liquid water in the repository were generated using the Perdew–Burke–Ernzerhof
(PBE)7 functional and ultra-soft pseudo-potentials (USPPs).8 The repository contains data for the rel-
ative dielectric permittivity εr. Here, the latter was converted to the electric susceptibility χe = εr−1
for training.

S2 Training of NEP PES model for water
We used the potential energy surface (PES) data set for liquid water from Ref. 9,10 to train a neu-
roevolution potential (NEP) PES model to be used for molecular dynamics (MD) simulations. The
data set contains 1888 structures in total, for which energy, forces, and virials have been computed us-
ing density functional theory (DFT) calculations. The strongly constrained and appropriately normed
(SCAN)11 functional and the projector augmented wave (PAW) method12 (with hard setups) were
used. All data were randomly divided into training and validation data sets with a ratio of 4:1. The hy-
perparameters used in the training of the NEP model are tabulated in Table S3. The root-mean-square
errors (RMSEs) for energy, forces, and virials converged after 3× 105 generations of training, and the
predicted energies, forces, and virials closely match the DFT reference data, as shown in Fig. S8. We
also performed an NPT (isothermal-isobaric) MD simulation of liquid water (64 molecules) using the
NEP PES model at 330K and 1bar. The radial distribution functions (RDFs) for O–O and O–H pairs
extracted from these simulations agree well with ab initio molecular dynamics (AIMD) simulation in
the literature13 (Fig. S9).

S3 Training of SA-GPR models for water molecules
Since we did not find publically accessible models for H2O, (H2O)2 and H5O2

+, we trained new
symmetry-adapted Gaussian process regression (SA-GPR) models for µ and α using the same data
sets as those used for training the tensorial neuroevolution potential (TNEP) models (Sect. S1). The
default hyperparameters were used in the training. The RMSEs of µ for the validation sets of H2O,
(H2O)2, and H5O2

+ were calculated to be 0.0001, 0.0242, and 0.0005 a.u., close to the values of 0.0004,
0.036, and 0.001 a.u. that we estimated from the literature.2 This consistence indicates that the SA-
GPR models trained here have achieved the accuracy of those reported in literature.

S4 Training of TNEP models for QM7b data set
We also consider the QM7b data set14 that comprises 7211 small organic molecules with up to six
elements (H, C, N, O, S, Cl). The reference µ and α data15 were calculated at the CCSD level of
theory using the d-aug-cc-pVDZ basis set5,6. 70% of the data were use for training, while the remaining
data were used for validation. The parameters in the training of the TNEP dipole and polarizability
models are shown in Table S1 and Table S2. Both the dipole and polarizability models achieve very
high precision for the QM7B data set (Fig. S2).

S5 Training of TNEP dipole model for α-Fe2O3

We also consider yet another crystalline system in α-Fe2O3. The primitive structure of α-Fe2O3
reported by Mendili et al.16 was used here, which is defined by three vectors: a = (5.03, 0.00, 0.00),
b = (−2.515, 4.356, 0.00), and c = (0.00, 0.00, 13.75), measured in units of Å. A 2 × 2 × 1 supercell
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was created and used as the initial structure for AIMD simulations. The simulation system contained
120 atoms. The AIMD simulations were performed using a time step of 0.5 fs and the CP2K software
package17. The forces on the atoms were evaluated using the DZVP-GTH-PADE basis set and GTH-
PADE pseudopotentials18,19. To maintain the temperature at 300K, a Nosé-Hoover thermostat was
employed20. During the simulation, a magnetic moment of 5µB was assigned to each iron atom, where
µB represents the Bohr magneton. The simulation was run for a total of 2000 time steps, and snapshots
were saved with an interval of 1 fs. In total, 1000 structures were sampled and used for post-processing.
The µ data of the 1000 structures were calculated using the Berry phase formulation,21 where the origin
of the coordinate system was used as the reference point. The calculated values vary continuously with
the simulation time, indicating that all configurations are on the same branches of the Berry phase and
no shifts are required for calculating µ (Fig. S5a). The 1000 data points were randomly divided into
a training data set and a testing data set with a ratio of 7:3. The hyperparameters used for training
the TNEP dipole model are tabulated in Table S1. The µ values predicted by the TNEP model are
consistent with the DFT reference values (Fig. S5b). The coefficient of determination (R2) is greater
than 0.999.

S6 Training of TNEP susceptibility model for BaZrO3

The training data points were taken from MD snapshots at various temperatures and pressures obtained
using a previously published NEP model for the BaZrO3 PES.22 Both the cubic and tetragonal phases
were included, with supercell sizes varying from the primitive cell to 4 × 2 × 1 repetitions. The
final dataset consisted of 940 structures, for which the relative permittivity εr was obtained from
DFT calculations using the PAW formalism12,23 as implemented in the Vienna Ab-initio Simulation
Package24,25. The van-der-Waals density functional with consistent exchange (vdW-DF-cx) was used
to describe the exchange-correlation energy contribution26,27. A plane-wave energy cutoff of of 510 eV
was used along with Gaussian smearing with a width of 0.01 eV. Projection operators were evaluated
in reciprocal space and an additional support grid was used for evaluation of augmentation charges for
increased accuracy.

The hyperparameters used for training the TNEP models for BaZrO3 are tabulated in Table S2.
The relative permittivity was converted to electric susceptibility via the relation χe = εr − 1 for
training. Five-fold leave-one-out cross validation was carried out, where the dataset was split into
five equal parts. Five separate models were then trained, each using one of these splits as a test set.
These models were trained until their test set RMSE stopped improving, which occurred after 6× 105

generations. Their mean coefficient of determination (R2) was 0.950(2) for the diagonal and 0.984(2)
for the off-diagonal elements. These quantities serve as accuracy estimates for the final model, which
was trained on the entire dataset. Training of this model was considered converged after 6 × 105

generations based on the cross validation result, after which the TNEP model predicted values for the
susceptibility consistent with DFT reference values (Fig. S10).

S7 Note on units of polarizability and susceptibility
For a single molecule, the molecular polarizability α connects the induced dipole moment µind (charge
times distance per molecule) to the electric field E (potential per distance),

µind = αE. (S1)

For a bulk material, the electric susceptibility χ connects the polarization (or dipole density) P
(charge times distance per volume) to the electric field E (potential per distance),

P = ϵ0χE. (S2)

It is now instructive to consider the different units involved in the expressions above. Here, we
explicitly included the unit mol, which is strictly part of the SI system but often left out. This is
done in order to emphasize the transition from molecular quantities (α) to bulk quantities (ϵ0χ). This
occurs, for example, in the Clausius-Mossotti relation, where α is related to ϵ0χ by scaling with the
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number volume density ρ. Here, we see that α has units of Fm2/mol whereas ϵ0χ has units of F/m
and thus units of α per volume. The following table summarizes the SI units of the quantities as
defined above.

Quantity SI unit
µind Cm/mol
E V/m
α Cm2/(Vmol) = Fm2/mol

P C/m2

ϵ0 F/m
χ 1

ρ mol/m3

We note that there are various ways in which the relations Eqs. (S1) and (S2) are written in the
literature. One can for example subsume ϵ0 into χ, which emphasizes the symmetry with α. One can
also choose to express α in units of ϵ0, i.e., α = ϵ0α

′, in which case α′ has units of volume.

S8 Note on the Clausius-Mossotti relation
For non-polar liquids or gases, the Clausius-Mossotti relation28 can be used to approximate the relation
between the average molecular polarizability α = Tr(α)/3 and the average electric susceptibility χ =
Tr(χ)/3. It is based on a mean-field approximation to account for local field effect and is given by

χe

χe + 3
=

ρα

3ϵ0
,

where ρ is the number volume density. The quantities are expressed in SI units. The Clausius-Mossotti
can also be written in terms of the relative permittivity εr, which is related to the electric susceptibility
via εr = 1 + χ.

Note that all quantities here are isotropic and therefore represented by scalars. Here, α is the
molecular polarizability, ρ is the number volume density, ϵ0 is the permittivity of vacuum, and εr is
the relative permittivity.
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Figure S1: TNEP predicted dipole moment compared to ab initio data for the validation sets of (a)
H2O, (b) (H2O)2, (c) H5O2

+, and (d) liquid water.
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Figure S2: TNEP predictions as compared to CCSD reference data of (a) dipole moment, (b) diagonal
elements of the polarizability, and (c) off-diagonal elements of the polarizability for the validation set
of the QM7b set.

Figure S3: Dipole moments calculated in this work compared to reference data1,2 for 50 liquid water
structures that were evaluated in this work.
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Figure S4: Schematic plot of coordinate transformation of water molecules and their Wannier centers
before calculating the total dipole moment. Red, white, and slate-blue balls represent oxygen atoms,
hydrogen atoms, and Wannier centers, respectively.

Figure S5: (a) Dipole moment of α-Fe2O3 calculated by DFT as a function of simulation time. (b)
The comparison between the TNEP predictions and DFT values of dipole moment for the testing data
set of α-Fe2O3.
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Figure S6: TNEP predicted diagonal polarizability as compared to ab initio data for the validation
sets of (a) H2O, (b) (H2O)2, (c) H5O2

+, and (d) liquid water. For liquid water we show the effective
polarizability given by ᾱ = χ/ρ, where ρ in the number volume density.
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Figure S7: TNEP predicted off-diagonal polarizability compared to the ab initio values for the
validation sets of (a) H2O, (b) (H2O)2, (c) H5O2

+, and (d) liquid water. For liquid water we show the
effective polarizability given by ᾱ = χ/ρ, where ρ in the number volume density.
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Figure S8: (a) RMSEs of energy, force, and virial for the validation set as a function of the number
of generations. (b–d) Comparison between TNEP predictions and DFT reference values of energies,
forces, and virials for the validation set of liquid water.
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Figure S9: RDFs for (a) O–O and (b) O–H pairs extracted from MD simulations based on the NEP
PES model constructed in this work and AIMD simulations13 at 330K and 1bar.

Figure S10: Comparison between TNEP predictions and DFT reference values for the (a) diagonal
and (b) off-diagonal elements of the susceptibility χ of BaZrO3. The R2 and RMSEs represent the
means from five-fold hold-one-out cross-validation.
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Table S1: Hyperparameters used in training of TNEP models for the dipole moment (µ) for H2O,
(H2O)2, H5O2

+, liquid water, organic molecules (QM7B set), and α-Fe2O3. Here, rR
c (rA

c ) is the cutoff
radius for the radial (angular) components of the descriptor, nR

max (nA
max) is the Chebyshev polynomial

expansion order for the radial (angular) components, l3bmax (l4bmax, l5bmax) is the Legendre polynomial
expansion order for the three-body (four-body, five-body) terms angular components, NR

bas (NA
bas) is

the number of basis functions that are used to build the radial (angular) descriptor functions, Nneu is
the number of neurons in the hidden layer of the neural network, λ1 (λ2) is the L1 (L2) regularization
parameter, Npop is the population size in the natural evolution strategy algorithm, Nbat is the size of
each batch used during training, and Ngen is the maximum number of generations to be evolved.

Parameter H2O (H2O)2 H5O2
+ liquid water QM7B set α-Fe2O3

rR
c (Å) 6 6 6 6 6 6
rA
c (Å) 4 4 4 4 4 4
nR

max 6 6 6 6 6 6
nA

max 6 6 6 6 6 6
l3bmax 4 4 4 4 4 4
l4bmax 2 2 2 2 2 2
l5bmax 1 1 1 1 1 1
NR

bas 10 10 10 10 10 10
NA

bas 10 10 10 10 10 10
Nneu 10 10 10 10 30 10
λ1 0.00005 0.0008 0.0012 0.0005 0.001 0.0001
λ2 0.00005 0.0008 0.0012 0.0005 0.001 0.0001

Nbatch full-batch full-batch full-batch full-batch full-batch full-batch
Npop 80 80 80 80 80 80
Ngen 2× 105 2× 105 2× 105 2× 105 4× 105 2× 105
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Table S2: Hyperparameters used in training of TNEP polarizability and susceptibility models for
H2O, (H2O)2, H5O2

+, liquid water, and BaZrO3. Compared to the TNEP dipole model, an additional
parameter λs should be set, which stands for the relative weight between the off-diagonal elements and
diagonal elements of rank-2 tensors in the construction of loss functions.

Parameter H2O (H2O)2 H5O2
+ liquid water QM7B set BaZrO3

rR
c (Å) 6 6 6 6 6 6
rA
c (Å) 4 4 4 4 4 4
nR

max 6 6 6 6 6 4
nA

max 6 6 6 6 6 4
l3bmax 4 4 4 4 4 4
l4bmax 2 2 2 2 2 0
l5bmax 1 1 1 1 1 0
NR

bas 10 10 10 10 10 12
NA

bas 10 10 10 10 10 12
Nneu 10 10 10 10 30 20
λ1 0.008 0.02 0.002 0.001 0.03 −1 (adaptive adjustment)
λ2 0.008 0.02 0.002 0.001 0.03 −1 (adaptive adjustment)

Nbatch full-batch full-batch full-batch full-batch full-batch full-batch
Npop 80 80 80 80 80 50
Ngen 2× 105 2× 105 2× 105 2× 105 4× 105 6× 105

λs 10 1 1 1 1 1

Table S3: Hyperparameters used in training a NEP PES model for MD simulations of water.
Parameter Liquid water
rR
c (Å) 6
rA
c (Å) 4
nR

max 9
nA

max 7
l3bmax 4
l4bmax 2
l5bmax 0
NR

bas 9
NA

bas 7
Nneu 100
λ1 −1 (adaptive adjustment)
λ2 −1 (adaptive adjustment)

Nbatch 750
Npop 50
Ngen 3× 105
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Table S4: Hyperparameters used in training a NEP models for the prediction of infrared spectra for
PTAF– .

Parameter PTAF− PES PTAF− µ

rR
c (Å) 8 8
rA
c (Å) 4 6
nR

max 8 15
nA

max 6 8
l3bmax 4 4
l4bmax 0 2
l5bmax 0 0
NR

bas 8 12
NA

bas 8 12
Nneu 40 80
λ1 0.1 −1 (adaptive adjustment)
λ2 0.1 −1 (adaptive adjustment)
λe 1 1
λf 3 1
λv 0 0.1

Nbatch 1× 105 5× 105

Npop 50 50
Ngen 2× 105 5× 105
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