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This paper provides a comprehensive overview of the latest stable release of the graphics process-
ing units molecular dynamics package, GPUMD 4.0. We begin with a brief review of its development
history, starting from the initial version. We then discuss the theoretical foundations for the devel-
opment of the GPUMD package, including the formulations of the interatomic force, virial and heat
current for many-body potentials, the development of the highly efficient and flexible neuroevolu-
tion potential (NEP) method, the supported integrators and related operations, the various physical
properties that can be calculated on the fly, and the GPUMD ecosystem. After presenting these
functionalities, we review a range of applications enabled by GPUMD, particularly in combination
with the NEP approach. Finally, we outline possible future development directions for GPUMD.

I. INTRODUCTION

The molecular dynamics (MD) simulation method is
one of the most powerful atomistic simulation meth-
ods used to study material properties, ranging from
the atomic to the micro and even the mesoscale. An
MD package serves as the computational engine behind
atomistic simulations, making it an essential tool for re-
searchers in this field. Open-source MD packages play a
pivotal role in the development of algorithms and their
practical applications. Among the most widely used
free and open-source MD packages are GROMACS [1],
LAMMPS [2], and OpenMM [3], to name a few. The
GPUMD package, which also belongs to this group, is the
subject of this review. While not yet as widely adopted as
the aforementioned packages, GPUMD has been gaining
popularity at a rapid pace (Figure 1). It has been in-
cluded in the list maintained by Talirz et al. [4, 5], which
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FIG. 1. Number of publications (including preprints) per year
using GPUMD, up to April 30, 2025.
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tracks trends and statistics in atomistic simulation en-
gines, and exhibits the highest relative growth rate for
the last two years. Since its first release in August 2017
(version 1.0) [6] and the update in May 2022 (version
3.3.1) [7], many new features have been added, warrant-
ing a comprehensive review.
GPUMD has many distinguishing features making it

appealing to both users and developers. It is an MD
package developed for heterogeneous CPU-GPU comput-
ing platforms from the ground up, like HOOMD-blue [8]
and GALAMOST [9] (later renamed to PyGAMD [10]).
It is also one of the first MD packages that incorporates
native machine-learned potentials, which makes it appli-
cable to numerous complex materials that are inacces-
sible to traditional empirical potentials. The machine-
learned potentials in GPUMD can deliver near-quantum-
mechanical accuracy at the speed of empirical potentials,
enabling predictive and efficient simulations of a wide
range of processes and properties. In this paper, we give a
comprehensive review and discussion of the past, present,
and future of GPUMD.

II. THE DEVELOPMENT HISTORY OF
GPUMD

While the first version of GPUMD was released in 2017
[6], its development dates back to 2011 when it began as
an exercise for a CUDA programming course. At that
time, the package only supported the Lennard-Jones po-
tential and its sole functionality was to calculate the ther-
mal conductivity via the Green-Kubo method. This func-
tionality was further developed in 2013, with improved
computational efficiency for the Coulomb-Buckingham
potential [11].
In 2015, a general formulation of force, virial, and heat

current for many-body potentials was developed, provid-
ing the foundation for an efficient implementation of the
heat current [12]. This advancement led to an efficient
GPU implementation [6] of many-body potentials such
as the embedded atom method [13, 14], Stillinger-Weber
[15], and Tersoff potentials [16]. With these develop-
ments, the first version of GPUMD [6] was released as
open-source software in 2017, containing about 10 000
lines of source code, written in CUDA C.
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The next major development in GPUMD was the ad-
dition of the homogeneous nonequilibrium MD method
[17] and related spectral decomposition techniques [17–
19] during 2018 and 2019. These developments made
GPUMD a popular package for heat transport applica-
tions.

In 2019, the development of interatomic potentials,
such as a variant of the Tersoff potential [20] and the
so-called force-constant potential [21], began. However,
the focus quickly shifted to general-purpose machine-
learned potentials. In 2021, a native machine-learned
potential, the neuroevolution potential (NEP) [22], was
developed. The NEP approach underwent several im-
provements [7, 23, 24] from 2021 to 2024. The rapid
growth in the popularity of GPUMD in recent years has
been driven to a large extent by the development of the
NEP approach, which provides highly efficient and accu-
rate potential models for a wide range of materials [25].

The latest version of GPUMD, released [26] in April
2025, is GPUMD 4.0, which we will describe here. For
simplicity, we will use GPUMD to refer to GPUMD 4.0
unless otherwise stated.

III. CURRENT FEATURES IN GPUMD

We categorize the functionalities of GPUMD into three
major areas: potentials, integrators, and properties. For
a detailed discussion on CUDA programming aspects and
the physical foundations underlying GPUMD, we refer
the interested reader to relevant textbooks [31, 32]. Be-
fore examining the three functional categories, we provide
a concise overview of GPUMD, focusing on its practical
usage.

GPUMD is primarily developed using CUDA C++ (al-
though it has also been adapted to work with HIP). Upon
compilation, two executables are generated: gpumd and
nep. The nep executable serves the training of NEP mod-
els, while the gpumd executable is designed for conducting
MD simulations. For the nep executable, two files are re-
quired:

1. nep.in: This file governs the training process.

2. train.xyz: This file contains the training data.

Similarly, for the gpumd executable, at least two files must
be provided:

1. run.in: This file controls the MD simulation.

2. model.xyz: This file defines the system to be sim-
ulated.

Both the train.xyz and model.xyz files adhere to the
standard extended XYZ file format. The nep.in file in-
cludes straightforward commands that specify the hyper-
parameters for NEP training.

In contrast, the run.in file is comparatively more com-
plex and flexible. In the simplest cases, users only need

to define the interatomic potential using the potential
keyword and create ensenble-run blocks to specify the
MD simulation process. Within an ensenble-run block,
users can incorporate operations to modify the simula-
tion process or compute and output useful quantities.
More details will be discussed later, and comprehensive
documentation is available at https://gpumd.org/.

A. Interatomic Potentials

Interatomic potentials describe the interactions be-
tween atoms and are required inputs to MD simulations.
GPUMD supports both conventional empirical potentials
and machine-learned potentials, as listed in Table I.

1. Empirical Potentials

With respect to empirical potentials, GPUMD sup-
ports the 12-6 Lennard-Jones potential [27], the em-
bedded atom method potential [13, 14], the Tersoff po-
tential [16], and the registry-dependent interlayer po-
tential [33–36]. The interlayer potential accurately de-
scribes anisotropic interlayer van-der-Waals interactions
of layered materials and is usually used in combination
with another potential for the intralayer interactions.
Note that the NEP approach has been specifically im-
plemented [29] as an intralayer potential that retains the
computational efficiency of traditional empirical poten-
tials such as Tersoff, while achieving near ab-initio accu-
racy.

2. Machine-Learned Potentials

For machine-learned potentials, GPUMD currently
supports three types: the force constant potential [21],
the NEP, and the deep potential [28]. Both force con-
stant and deep potential models need to be trained us-
ing external packages, specifically the hiphive [37] and
DeePMD-kit [28] packages, respectively. The NEP ap-
proach, on the other hand, is a native machine-learned
potential fully implemented in GPUMD, including both
training and inference.

3. Formulation of Force, Virial and Heat Current

For all the interatomic potentials in GPUMD, the im-
plementation follows the formalism established for gen-
eral many-body potentials [12]. All the potential models
are defined in terms of the site energy Ui for a given atom
i, whose summation gives the total potential energy of
the system:

U =
∑
i

Ui.

https://gpumd.org/
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TABLE I. Interatomic potentials implemented in the GPUMD package.

Interatomic potential Reference Comments

Lennard-Jones (LJ) [27] The classical two-body potential
Embedded-atom method (EAM) [13, 14] Empirical many-body potential for metals
Tersoff [16] Empirical many-body potential for covalent bonds
Force-constant potential (FCP) [21] Machine-learned potential for equilibrium dynamics
Neuroevolution potential (NEP) [7, 22–24] General-purpose machine-learned potential
Deep potential (DP) [28] General-purpose machine-learned potential
Hybrid anisotropic interlayer potential (ILP) and NEP [29] For various Van der Waals structures
Hybrid ILP and Stillinger-Weber (SW) potential [30] For transition metal dichalcogenide structures

The site energy generally depends on its local environ-
ment and can be formally expressed as

Ui = Ui({rij}j∈Ni),

where {rij}j∈Ni
is the set of position differences from

atom i to neighboring atoms j ∈ Ni:

rij ≡ rj − ri.

The force acting on atom i can be derived as follows:

Fi = − ∂

∂ri

∑
j

Uj

= −∂Ui

∂ri
− ∂

∂ri

∑
j ̸=i

Uj

= −
∑
j ̸=i

∂Ui

∂rij

∂rij
∂ri

−
∑
j ̸=i

∑
k ̸=j

∂Uj

∂rjk

∂rjk
∂ri

=
∑
j ̸=i

∂Ui

∂rij
−
∑
j ̸=i

∂Uj

∂rji

=
∑
j ̸=i

(
∂Ui

∂rij
− ∂Uj

∂rji

)
.

This establishes the validity of the (weak form of) New-
ton’s third law. That is, for a general many-body poten-
tial, there exists a pair-wise force

Fij =
∂Ui

∂rij
− ∂Uj

∂rji
(1)

between any pair of atoms i and j that fulfills

Fij = −Fji.

After realizing the existence of the above pairwise
force, the virial tensor and heat current can be elegantly
formulated. Starting from the definition of the virial ten-

sor, we have

W ≡
∑
i

ri ⊗ Fi

=
∑
i

∑
j ̸=i

ri ⊗ Fij

=
∑
i

∑
j ̸=i

ri ⊗
(
∂Ui

∂rij
− ∂Uj

∂rji

)
=
∑
i

∑
j ̸=i

ri ⊗
∂Ui

∂rij
−
∑
i

∑
j ̸=i

ri ⊗
∂Uj

∂rji

=
∑
j

∑
i̸=j

rj ⊗
∂Uj

∂rji
−
∑
i

∑
j ̸=i

ri ⊗
∂Uj

∂rji

=
∑
i

∑
j ̸=i

rij ⊗
∂Uj

∂rji
. (2)

There are a few equivalent expressions for the virial ten-
sor. For example, it can also be expressed as

W = −
∑
i

∑
j ̸=i

rij ⊗
∂Ui

∂rij
.

However, the expression in the last line of Eq. (2) is more
convenient in heat transport applications. To see this, we
derive the heat current from its definition:

J ≡ d

dt

∑
i

ri

(
Ui +

1

2
miv

2
i

)
= Jpot + Jkin,

where Jkin =
∑

i vi

(
Ui +

1
2miv

2
i

)
is the kinetic part of

the heat current. The potential part can be further de-
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rived as follows:

Jpot =
∑
i

ri
d

dt

(
Ui +

1

2
miv

2
i

)

=
∑
i

ri

∑
j ̸=i

∂Ui

∂rij
· (vj − vi) + Fi · vi


=
∑
i

ri
∑
j ̸=i

[
∂Ui

∂rij
· (vj − vi) +

(
∂Ui

∂rij
− ∂Uj

∂rji

)
· vi

]

=
∑
i

ri
∑
j ̸=i

[
∂Ui

∂rij
· vj −

∂Uj

∂rji
· vi

]

= −1

2

∑
i

∑
j ̸=i

rij

[
∂Ui

∂rij
· vj −

∂Uj

∂rji
· vi

]
= −

∑
i

∑
j ̸=i

rij
∂Ui

∂rij
· vj

=
∑
i

∑
j ̸=i

rij
∂Uj

∂rji
· vi. (3)

The last three lines in Eq. (3) are all legitimate expres-
sions of the heat current in periodic systems. The last
line is, however, a more convenient one in practical im-
plementation, as it only involves the velocity vi of the
central atom i, and not the velocities vj of the neigh-
boring atoms j. Based on this consideration, we define a
per-atom virial according to Eq. (2):

Wi =
∑
j ̸=i

rij ⊗
∂Uj

∂rji
(4)

such that W =
∑

i Wi and

Jpot =
∑
i

Wi · vi. (5)

Therefore, the per-atom virial expression in Eq. (4) is the
basis for both pressure and heat current calculations in
GPUMD.

From Eqs. (1) and (4), it is evident that the terms
∂Ui/∂rij and ∂Uj/∂rji are crucial in these calculations.
The term ∂Ui/∂rij is known as the partial force [12], and
the other term can be obtained by exchanging indices
(i ↔ j). Thus, the calculations of force, virial (pres-
sure), and heat current in GPUMD ultimately hinge on
the calculation of partial forces. This elegant formulation
is fundamental for the efficient GPU implementation of
many-body potentials without resorting to atomic func-
tions [6].

It is worth emphasizing that the formulation above ap-
plies to all potential models in GPUMD. Given that NEP
is the most commonly used potential model in GPUMD,
we discuss its formulation in more detail below.

4. Neuroevolution Potentials

The NEP approach generally follows the Behler-
Parinello neural network potential methodology [38], but
it differs in terms of the atomic-environment descriptor
and the training method. Specifically, we describe the
latest version of NEP here, known as NEP4 [24].
In NEP4, the site energy Ui for a given atom i is a

function of an abstract descriptor vector qi with a num-
ber of components qiν (ν = 1, 2, · · · , Ndes). Each descrip-
tor component characterizes the structural and chemical
environments of atom i partially. The descriptor com-
ponents are divided into two groups, one with radial de-
pendence only, called radial descriptors, and the other
with additional angular dependence, called angular de-
scriptors.
The radial descriptors are labeled by the index n and

are constructed as a sum of radial functions over the
neighboring atoms:

qin =
∑
j ̸=i

gn(rij). (6)

The radial function gn(rij) is constructed as a linear com-
bination of a set of NR

bas + 1 basis functions:

gn(rij) =

NR
bas∑

k=0

cIJnkfk(rij). (7)

The basis functions fk(rij) are defined as

fk(rij) =
1

2

[
Tk

(
2
(
rij/r

R
c − 1

)2 − 1
)
+ 1
]
fc(rij),

where Tk(x) is the k-th order Chebyshev polynomial of
the first kind. The function fc(rij) is a smoothing func-
tion defined as

fc(rij) =

{
1
2

[
1 + cos

(
πrij/r

R
c

)]
, rij ≤ rRc ;

0, rij > rRc ,

where rRc is a cutoff radius beyond which the basis func-
tions are zero. The chemical species are embedded in the
expansion coefficients cIJnk of the radial functions, where
I and J indicate the types of atoms i and j. These coeffi-
cients are trainable, resulting in different radial functions
for different pairs of atoms.
The angular descriptors depend both on the radial dis-

tances rij , and the angles θijk formed by the rij and rik
vectors,

cos θijk =
rij · rik
rijrik

.

The simplest angular descriptors in NEP are defined in
terms of the Legendre polynomials Pl(x):

qinl =
2l + 1

4π

∑
j ̸=i

∑
k ̸=i

gn(rij)gn(rik)Pl(cos θijk). (8)
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The radial and angular dependencies are indicated by
the subscripts n and l in qinl. Note that the radial func-
tions in qinl are defined similarly to Eq. (7) but a different
cutoff radius rAc and expansion order NA

bas can be used.
Efficient evaluation of the angular descriptors requires
transforming the Legendre polynomial to spherical har-
monics. There are also other types of angular descriptors
in NEP. For more details, we refer to Ref. 7.

The descriptor vector qi is assembled from the radial
and angular descriptors described above. Then the site
energy in NEP is formally written as Ui(q

i). Currently,
only a singe hidden layer is used in the neural network
model for NEP, and the site energy can be explicitly writ-
ten as

Ui =

Nneu∑
µ=1

w(1)
µ tanh

(
Ndes∑
ν=1

w(0)
µν q

i
ν − b(0)µ

)
− b(1). (9)

Here, tanh(x) is the activation function, w(0) are the
weight parameters connecting the input layer (with di-
mension Ndes) and the hidden layer (with dimension
Nneu), w

(1) represents the weight parameters connecting
the hidden layer and the output layer (the site energy),
b(0) represent the bias parameters in the hidden layer,
and b(1) is the bias parameter in the output layer. All
these parameters are trainable, similar to the expansion
coefficients in the radial functions.

In terms of the descriptor vector, the partial force can
be written as

∂Ui

∂rij
=

Ndes∑
ν=1

∂Ui

∂qiν

∂qiν
∂rij

.

With the partial force available, force, virial, and heat
current can all be readily evaluated. The derivative
∂qiν/∂rij could be evaluated using autodifferentiation
techniques. However, we opted to derive explicit and sim-
plified expressions by hand and implemented them using
native CUDA kernels. This approach reduces external
dependencies of the GPUMD package and optimizes its
computational performance.

NEP can be used in combination with other potentials
[39, 40]. In addition to the interlayer potential mentioned
above, it can also be used in combination with the DFT-
D3 potential [41] and the Ziegler-Biersack-Littmark po-
tential [42]. The DFT-D3 potential can capture weak
van-der-Waals interactions, while the Ziegler-Biersack-
Littmark potential is usually used to ensure the physi-
cality of the (repulsive) interaction when atoms get very
close to each other.

Recently, Liang et al. [43] developed NEP89, a com-
prehensive foundation model covering virtually the en-
tire periodic table, which has been released alongside
GPUMD 4.0. NEP89 can be used out-of-the-box or as a
starting point that can be conveniently fine-tuned with
a relatively small amount of additional training data for
system-specific applications.

B. Integrators and Related Operations

1. The Velocity-Verlet Integrator

Integrators solve the equations of motion and are cen-
tral to the atomic dynamics in MD simulations. With-
out any external control, an isolated system adheres to
Hamiltonian dynamics, resulting in a microcanonical en-
semble. In this ensemble, the number of particles N , the
volume V (or more precisely the simulation cell), and the
total energy E of the system remain constant. Hence, it
is known as theNV E ensemble. The velocity-Verlet inte-
grator [44] is used in GPUMD, which can be formulated
more formally in terms of the Liouville operator and the
Trotter decomposition [45]. The integration for one time
step ∆t can be expressed as follows:

ri(t+∆t) ≈ ri(t) + vi(t)∆t+
1

2

Fi(t)

mi
(∆t)2;

vi(t+∆t) ≈ vi(t) + ∆t
Fi(t) + Fi(t+∆t)

2mi
.

In GPUMD, a statistical ensemble is specified by the
ensemble keyword, followed by a specific ensemble type.
For example, the NV E ensemble is invoked by the com-
bined keyword ensemble nve. The keywords for the
various integrators/ensembles and related operations are
listed in Table II.

2. Thermostats and Barostats

Other statistical ensembles can be realized by control-
ling temperature T and/or pressure P . By controlling
the temperature only, we have the NV T ensemble.
Here, the energy is not constant, but the tempera-
ture has a well-defined mean value in equilibrium.
GPUMD supports several thermostats for tempera-
ture control, including the Berendsen thermostat [46]
(ensemble nvt_ber), the Nosé-Hoover chain thermostat
[45] (ensemble nvt_nhc), the Bussi-Donadio-Parrinello
thermostat (also called stochastic velocity rescal-
ing thermostat) [47] (ensemble nvt_bdp), and the
Langevin thermostats [48, 49] (ensemble nvt_lan
and ensemble nvt_bao). By controlling the pressure
as well, we have the NPT ensemble. GPUMD sup-
ports a few barostats for pressure control, including
the Berendsen barostat [46] (ensemble npt_ber),
the Martyna-Tuckerman-Tobias-Klein barostat [45]
(ensemble npt_mttk), and the Bernetti-Bussi barostat
(also called stochastic cell rescaling barostat) [50]
(ensemble nvt_scr). If pressure is controlled but
temperature is not, we have the NPH ensemble which
conserves the enthalpy H in equilibrium. This has only
been implemented in the Martyna-Tuckerman-Tobias-
Klein approach [45] (ensemble nph_mttk).
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TABLE II. Integrators and related operations implemented in
the GPUMD package. NHC: Nose-Hoover chain; BDP: Bussi-
Donadio-Parrinello; SCR: stochastic cell rescaling; MTTK:
Martyna-Tuckerman-Tobias-Klein. NEMD: non-equilibrium
molecular dynamics; MSST: multi-scale shock technique; TI:
thermodynamic integration; RS: reversible scaling; AS: adi-
abatic switching. PIMD: path-integral molecular dynam-
ics; RPMD: ring-polymer molecular dynamics; TRPMD:
thermostatted RPMD; SGC: semi-grand canonical; VCSGC:
variance-constrained SGC.

Integrators/ensembles Keyword

NV E ensemble nve

Berendsen NV T ensemble nvt_ber

NHC NV T ensemble nvt_nhc

BDP NV T ensemble nvt_bdp

Langevin NV T ensemble nvt_lan

Langevin NV T ensemble nvt_bao

Berendsen NPT ensemble npt_ber

SCR NPT ensemble npt_scr

MTTK NPT ensemble npt_mttk

MTTK-based NPH ensemble nph_mttk

NEMD heat transport ensemble heat_nhc

NEMD heat transport ensemble heat_bdp

NEMD heat transport ensemble heat_lan

Equilibrium TI ensemble ti

Nonequilibrium TI ensemble ti_spring

Nonequilibrium TI, RS path ensemble ti_rs

Nonequilibrium TI, AS path ensemble ti_as

Nonequilibrium TI, liquid ensemble ti_liquid

Hugoniostat shock method ensemble nphug

NEMD shock piston ensemble wall_piston

NEMD shock mirror ensemble wall_mirror

NEMD shock harmonic ensemble wall_harmonic

MSST ensemble msst

PIMD ensemble pimd

RPMD ensemble rpmd

TRPMD ensemble trpmd

Canonical MC mc canonical

SGC-MC mc sgc

VCSGC-MC mc vcsgc

Change box once change_box

Deform box during a run deform

Fix a group of atoms fix

Move a group of atoms move

Add external forces to atoms add_force

Add electric field to ions add_efield

Add stopping forces to atoms electron_stop

The thermostats can also be applied locally to
a group of atoms to enable non-equilibrium MD
simulations for applications such as heat transport.
These include the Bussi-Donadio-Parrinello thermostat
(ensemble heat_bdp), the Nose-Hoover chain thermo-
stat (ensemble heat_nhc), and the Langevin thermo-
stat (ensemble heat_lan). Among these, the Langevin
thermostat is recommended for heat transport applica-
tions [51].

3. Thermodynamic Integration and Free Energy
Calculations

We have implemented a series of thermodynamic inte-
gration methods for Helmholtz and Gibbs free-energy cal-
culations, which are useful for studying phase diagrams.
These include the equilibrium approach (ensemble ti)
and non-equilibrium approach (ensemble ti_spring).
These methods only apply to solids, and the free en-
ergies are calculated in reference to the Einstein crys-
tal [52]. The non-equilibrium approaches allow for ef-
ficient integration along a reversible scaling path [53]
(ensemble ti_rs) or an adiabatic switching path [54]
(ensemble ti_as). For liquids (ensemble ti_liquid),
the free energies are calculated in reference to the
Uhlenbeck-Ford model [55].

4. Shock Simulation Methods

We have implemented a few shock methods [56].
One method is based on the constant stress Hugo-
niostat method [57] (ensemble nphug). With a tar-
get stress, this algorithm adjusts the temperature to
make the system converge to the Hugoniot. Another
method is based on the multi-scale shock technique [58]
(ensemble msst). Besides, there are a few nonequi-
librium MD methods, where a shock wave is gener-
ated by a moving wall, which can be a fixed layer of
atoms (piston) (ensemble wall_piston), a momentum
mirror that reflects atoms (ensemble wall_mirror),
or a harmonic potential that pushes atoms away
(ensemble wall_harmonic).

5. Path-Integral Methods

The above integrators are for classical MD simula-
tions. Nuclear quantum effects can be partially cap-
tured by path-integral MD simulation methods, which
have recently been implemented into GPUMD [59].
Apart from the normal path-integral MD algorithm
based on the Langevin thermostat and normal modes
[58] (ensemble pimd), we also implemented the ring-
polymer MD [60] (ensemble rpmd) and thermostatted
ring-polymer MD [61] (ensemble trpmd). For the nor-
mal modes, we used the robust integration algorithm
based on the Cayley transform [62].

6. Hybrid Monte Carlo and Molecular Dynamics

MD simulations can be supplemented by Monte Carlo
simulations to enable sampling of the compositional de-
grees of freedom in mixed (alloyed) systems. Recently, a
series of hybrid Monte Carlo and MD simulation meth-
ods have been implemented into GPUMD [63], includ-
ing the canonical Monte Carlo ensemble (exchanging



8

pairs of atoms of different species) (mc canonical), the
semi-grand canonical Monte Carlo ensemble (flipping the
species of single atoms) (mc sgc), and the variance-
constrained semi-grand canonical Monte Carlo ensemble
[64, 65] (mc vcsgc). The choice of input parameters in
terms of normalization follows the expressions in Ref. 66.

7. Other Operations

Apart from the various integrators/ensembles, the time
evolution can also be altered by other related operations.
The change_box keyword can be used to deform the box
instantly, and the deform keyword can be used to de-
form the box during a run. A group of atoms can be
fixed (frozen) by using the fix keyword or be moved as
a rigid body using the move keyword. External forces
can be added to the atoms via the add_force keyword,
and external electric forces can be added to ions (charged
atoms) via the add_efield keyword. Frictional forces on
fast-moving atoms due to electronic collisions can be in-
voked by the electron_stop keyword, which is useful in
irradiation damage or ion implantation simulations.

C. Properties

The usefulness of a MD package is finally manifested
in the physical properties that can be calculated using it.
GPUMD supports dumping of trajectories, and moreover
enables the calculation of many useful quantities on the
fly.

1. The Dump-like Keywords

During any MD simulation, it is recommended to
dump the basic thermodynamic quantities for the whole
system, using the dump_thermo keyword. The quantities
dumped include temperature, kinetic energy, potential
energy, pressure tensor, and the simulation cell metric.

Trajectories and related quantities can be dumped us-
ing the dump_xyz keyword. This will generate an output
file in the extended XYZ format that can be visualized
by programs such as OVITO [67]. In this file, the trajec-
tory is stored frame by frame. Each frame contains N+2
lines, where N is the number of atoms in the frame that
is written in the first line. The second line contains in-
formation such as the global time, boundary conditions,
cell metric, total energy, virial, and stress. The next N
lines then contain the atom symbols, positions, and pos-
sibly other per-atom quantities. A related keyword for
path-integral MD simulations is dump_beads. Finally,
the dump_restart keyword can be used to save a file that
can be used to restart a simulation, although the present
implementation does not lead to a perfect restart in some
cases.

TABLE III. Dump and compute keywords implemented in the
GPUMD package. RPMD: ring-polymer molecular dynam-
ics; RDF: radial distribution function; ADF: angular distri-
bution function; SDC: self-diffusion coefficient; MSD: mean-
square displacement; EMD: equilibrium molecular dynam-
ics; HNEMD: homogeneous nonequilibrium molecular dynam-
ics; HNEMDEC: HNEMD with Evans-Cummings algorithm;
VDOS: vibrational density of states.

Properties Keyword

Thermodynamic quantities dump_thermo

Trajectory and related quantities dump_xyz

Trajectory for the beads in PIMD dump_beads

Restarting file dump_restart

Space-time average compute

RDF compute_rdf

ADF compute_adf

Angular dependent RDF compute_angular_rdf

SDC compute_sdc

MSD compute_msd

Viscosity compute_viscosity

EMD thermal transport compute_hac

HNEMD thermal transport compute_hnemd

HNEMDEC thermal transport compute_hnemdec

Spectral decomposition compute_shc

Modal decomposition (EMD) compute_gkma

Modal decomposition (HNEMD) compute_hnema

Electronic transport compute_lsqt

Phonon properties compute_phonon

VDOS compute_dos

2. The Compute-like Keywords

The compute-like keywords are used to calculate
physical quantities on the fly. The simplest key-
word is compute, which calculates the spatial and time
averages of various quantities. This is useful for,
e.g., getting a temperature profile or a stress distri-
bution. There are also keywords for common struc-
tural properties, such as the radial distribution func-
tion (compute_rdf), the angular distribution function
(compute_adf), and the angular-dependent radial distri-
bution function (compute_ardf).

The majority of the compute-like keywords are related
to transport properties. These usually involve time-
correlation functions, making on-the-fly calculations
valuable for minimizing data storage. The transport
properties include the self-diffusion coefficient from the
velocity autocorrelation function (compute_sdc) or the
mean-square displacement (compute_msd), the viscosity
(compute_viscosity), the thermal conductivity from
heat current autocorrelation function (compute_hac),
the thermal conductivity from homogeneous nonequi-
librium MD simulations [17] (compute_hnemd and
compute_hnemdec), the spectral (compute_shc) [17] and
modal [19] (compute_hnema and compute_gkma) de-
compositions as well as electronic transport properties
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TABLE IV. Packages and repositories related to GPUMD and/or NEP.

Packages Code repository

NEP CPU https://github.com/brucefan1983/NEP_CPU

calorine [68] https://gitlab.com/materials-modeling/calorine

GPUMD-Wizard https://github.com/Jonsnow-willow/GPUMD-Wizard

gpyumd https://github.com/AlexGabourie/gpyumd

GPUMDkit https://github.com/zhyan0603/GPUMDkit

MAGUS [69, 70] https://gitlab.com/bigd4/magus

mdapy [71] https://github.com/mushroomfire/mdapy

NepTrain https://github.com/aboys-cb/NepTrain

NepTrainKit https://github.com/aboys-cb/NepTrainKit

NEP Active https://github.com/psn417/NEP_Active

nep maker https://github.com/psn417/nep_maker

PyNEP https://github.com/bigd4/PyNEP

PySED [72] https://github.com/Tingliangstu/pySED

somd https://github.com/initqp/somd

nep-data https://gitlab.com/brucefan1983/nep-data

GPUMD-Tutorials https://github.com/brucefan1983/GPUMD-Tutorials

from the linear-scaling quantum transport methods [73]
(compute_lsqt). The linear-scaling quantum transport
calculations are based on tight-binding models.

GPUMD also supports direct calculation of phonon
properties, such as phonon dispersions using the finite-
displacement method (compute_phonon) and vibrational
density of states from the mass-weighted velocity auto-
correlation function (compute_vdos).

IV. THE GPUMD ECOSYSTEM

While the nep and gpumd executables are standalone
programs that operate without external dependencies,
they can be complemented by other tools and packages,
collectively forming the GPUMD ecosystem.

A. Tools within the GPUMD Package

The tools are included with the tools directory of
the GPUMD package. Most utilities in the tools di-
rectory focus on the preparation and analysis of training
and test datasets for NEP. For example, abacus2xyz,
castep2exyz, cp2k2xyz, orca2xyz, and vasp2xyz are
designed to convert outputs from various quantum chem-
istry packages into training/test datasets formatted in
the extended XYZ format. Similarly, dp2xyz, mtp2xyz,
and runner2xyz facilitate the conversion of training
datasets from other formats into the extended XYZ for-
mat.

B. Additional Related Packages

Additional related packages are listed in Table IV,
most of which are based on the NEP_CPU package. This

package contains a standalone C++ implementation of
the inference of NEP, which serves as the computa-
tional engine for many Python-based packages listed in
Table IV. Furthermore, it provides an interface to the
LAMMPS package [2], enabling NEP to function in more
computing environments.
The calorine package [68] is a versatile Python li-

brary designed to construct and use NEP models, offering
ASE (Atomic Simulation Environment) [74] calculators,
input/output functions for GPUMD files, NEP model in-
spection, descriptor space analysis, structure generation
and NEP training, and can be easily used to perform vari-
ous calculations, including relaxation, phonon properties,
elastic properties, free energy calculations, thermal con-
ductivity via the Boltzmann transport equation and so
on.
GPUMD-Wizard, a material structure processing soft-

ware based on ASE, automates the calculation of various
materials properties, including lattice constants, elastic
constants, and defect formation energies, while also fa-
cilitating the execution and analysis of MD simulations
using GPUMD.
The gpyumd package is a collection of tools that gen-

erate valid input files and process the output files of
GPUMD. It leverages the functionality of ASE when ben-
eficial, but is otherwise independent to remain flexible
and best serve GPUMD directly.
The MAGUS package [69, 70] is a machine learning

and graph theory assisted crystal structure prediction
package. It has interfaces for various quantum chem-
istry packages and machine-learned potentials, including
NEP.
GPUMDkit, a shell-based toolkit for the GPUMD and

NEP, offers a user-friendly command-line interface to
streamline common scripts and workflows, simplifying
tasks such as script invocation, format conversion, struc-
ture sampling, NEP construction workflow, and various

https://github.com/brucefan1983/NEP_CPU
https://gitlab.com/materials-modeling/calorine 
https://github.com/Jonsnow-willow/GPUMD-Wizard 
https://github.com/AlexGabourie/gpyumd
https://github.com/zhyan0603/GPUMDkit
https://gitlab.com/bigd4/magus
https://github.com/mushroomfire/mdapy
https://github.com/aboys-cb/NepTrain
https://github.com/aboys-cb/NepTrainKit
https://github.com/psn417/NEP_Active
https://github.com/psn417/nep_maker
https://github.com/bigd4/PyNEP
https://github.com/Tingliangstu/pySED
https://github.com/initqp/somd
https://gitlab.com/brucefan1983/nep-data
https://github.com/brucefan1983/GPUMD-Tutorials
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analyses, aiming to improve user productivity.

The mdapy [71] Python library provides an array of
powerful, flexible, and straightforward tools to ana-
lyze atomic trajectories generated from MD simulations.
It well supports the extended XYZ format output by
GPUMD and takes advantage of the highly parallel pro-
cessing capabilities on multi-core CPUs and GPUs to pro-
vide excellent efficiency and flexibility for processing and
analyzing trajectories.

NepTrain and NepTrainKit are Python packages de-
signed to enhance the construction of NEP models, with
NepTrain integrating tools for active learning workflows,
including structural perturbations, configurational space
exploration, single-point energy calculations, and force
field training, while NepTrainKit provides user-friendly
visualization and processing of NEP training datasets,
enabling detailed analysis of dataset composition and
model performance.

NEP_Active and nep_maker also focus on NEP model
construction, with NEP_Active employing active learn-
ing strategies to automate training set construction, and
nep_maker extending this by incorporating a comprehen-
sive workflow to automate active learning by submitting
and monitoring jobs.

PyNEP serves as a Python interface for NEP, providing
ASE calculators, descriptor calculations for atoms, and
phonon calculations, but is particularly noted for its im-
plementation of the farthest point sampling method to
select representative structures.

pySED [72] is a Python-based package built upon the
spectral energy density method, designed to analyze
specific phonon-mode information from large-scale MD
trajectories, enabling convenient calculation of kinetic-
energy-weighted phonon dispersions and derivation of
phonon lifetimes. It was developed to work with NEP-
driven MD simulations.

The somd package includes a simple wrapper for the
nep executable, enabling automatic construction of NEP
models through active learning strategies.

Finally, we note that numerous training and test
datasets related to NEP have been compiled in the
nep-data repository, although the collection is not ex-
haustive. Additionally, the GPUMD-Tutorials repository
offers a wide range of valuable tutorials and examples,
covering various practical aspects of the GPUMD pack-
age.

V. APPLICATIONS OF GPUMD TO
MATERIALS CALCULATIONS

To date, GPUMD has been utilized in approximately
two hundred publications. Table V provides a compre-
hensive list of these publications, highlighting the first
authors and the primary materials investigated.

A. Applications in Early Years

Prior to 2022, GPUMD applications focused predom-
inantly on covalently bonded systems, which have tra-
ditionally been described using the Tersoff potential.
Consequently, the range of materials studied during
this period was quite limited, primarily comprising two-
dimensional materials such as graphene, hexagonal BN,
and MoS2. Thermal transport was the main theme of
these early investigations.
Building on these materials, significant advancements

were made in computational methods for heat transport.
These include the unambiguous definition of heat current
for general many-body potentials [12], the demonstrated
equivalence between equilibrium and non-equilibrium
MD methods [82], the development of a general formula-
tion for the homogeneous nonequilibrium MD method
along with related spectral decomposition techniques
[17], the examination of impact of thermostatting meth-
ods on the nonequilibrium MD method [51], and the in-
terpretation of apparent thermal conductivity using the
equilibrium MD method [101].
Beyond methodological progress, GPUMD has also

been employed to uncover the physical mechanisms un-
derlying phonon thermal transport in various materials.
A particularly noteworthy application involved studying
heat transport in multi-layer MoS2, successfully repro-
ducing the experimentally observed highly anisotropic
thermal transport [103].

B. Applications with NEP

Since 2022, GPUMD has been employed to study a
wider range of materials, thanks to the development of
the NEP approach in 2021 [22] and its improvements in
2022 [7, 23] and 2024 [24]. Heat transport remained a ma-
jor application area for GPUMD, as reviewed by Dong
et al. [178] up to March 2024. Nevertheless, numerous
other application fields have also emerged, as summa-
rized by Ying et al. [25] up to January 2025. Below,
we briefly outline the various research fields, emphasiz-
ing key publications that pioneered the use of GPUMD
in combination of NEP in these areas.

1. Mechanical Properties

Ying et al. [161] were the first to apply GPUMD and
NEP to investigate mechanical properties in their study
of a C60-based quasi-two-dimensional network. Their
work demonstrated consistent results for quasi-static
deformation processes when compared with quantum-
mechanical calculations. Moreover, they extended the
scope of their study to larger spatial and temporal scales,
approaching strain rates that are almost experimentally
attainable.
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TABLE V. Applications of the GPUMD package in various materials. The table includes publications (including preprints) up
to April 30th, 2025.

Year Publications (Major materials)

2013 Fan [11] (Ar, PbTe)
2015 Fan [12] (Si, C)
2016 Hirvonen [75] (C); Mortazavi [76] (C)
2017 Azizi [77] (C); Fan [6] (C); Fan [18] (C); Fan [78] (C) ; Fan [79] (C); Hirvonen [80] (C); Mortazavi [81] (C)
2018 Dong [82] (Si, C); Dong [83] (BN); Fan [84] (C); Hirvonen [85] (C); Mortazavi [86] (CN); Rajabpour [87] (C);

Xu [88] (P)
2019 Fan [17] (C, Si); Fan [20] (Si); Gu [89] (C); Isaeva [90] (Si); Li [51] (C); Xu [91] (MoS2)
2020 Bea [92] (Si); Dong [93] (C); Fu [94] (Si); Gabourie [95] (MoS2); Wu [96] (C); Wu [97] (BN)
2021 Barbalinardo [98] (C); Chen [99] (CFs); Dong [100] (C/BN); Dong [101] (Si, C); Du [102] (C/BN);

Fan [22] (PbTe, Si); Gabourie [19] (HfO2, SiO2); Kim [103] (MoS2); Lundgren [104] (SiGe); So [105] (C);
Wang [106] (C); Wu [107] (C/BN); Wu [108] (C/BN); Zhang [109] (C)

2022 Cheng [110] (Si-Ge); Dong [111] (Si); Fan [23] (PbTe); Fan [7] (PbTe, C); Feng [112] (C); Gabourie [113] (MoS2);
Jin [114] (Si, Ge); Li [115] (Al-Mg); Li [116] (Si); Li [117] (Si); Liang [118] (C); Sha [119] (C/BN); Sha [120] (CN);
Wang [121] (Li6Al); Wu [122] (C, BN) Wu [123] (C); Wu [124] (C); Xu [125] (C); Ying [126] (C); Zhou [127] (Si)

2023 Bea [128] (Si); Cheng [129] (PbTe); Cheng [130] (C); DeVries [131] (MX2 (M = Mo, W; X = S, Se)); Dong [132] (C);
Du [133] (PH4AlBr4); Eriksson [134] (C, BN, MoS2); Fransson [135] (CsPbBr3, MAPbI3); Fransson [136] (CsPbBr3);
Fransson [137] (CsPbX3 (X = Cl, Br, I)); Li [138] (C); Liang [139] (SiO2); Liu [39] (W); Liu [140] (Si/Ge);
Lu [141] (C); Lu [142] (C); Ouyang [143] (AgX (X=Cl, Br, I)); Pan [144] (MgOH); Rosander [145] (BaZrO3);
Sha [146] (PbTe); Shi [147] (C); Shi [148] (InGeX3 (X=S, Se, Te)); Shi [149] (CsPbX3 (X=Cl, Br, I));
Su [150] (Cs2BiAgBr6, Cs2BiAgCl6); Sun [151] (Ga2O3); Wang [152] (Si); Wang [153] (SrTiO3); Wei [154] (C);
Wiktor [155] (CsMX3 (M = Sn, Pb and X = Cl, Br, I)); Wu [156] (C, BN); Wu [157] (C, C3N); Xiong [158] (C);
Xu [159] (H2O); Yang [160] (GaN/C); Ying [161] (C); Ying [40] (MOF); Ying [162] (P); Ying [163] (MOF);
Zhang [164] (HfO2); Zhao [165] (Pd-Cu-Ni-P); Zhou [166] (Ge-Si, Ge)

2024 Berger [167] (MoS2, BAs); Berger [168] (Amino acids); Berrens [169] (H2O); Cao [170] (PC); Chen [171] (C, BN);
Chen [172] (GeSn); Chen [173] (H2O); Cheng [174] (A2SnBr6 (A=Rb, Cs)); Cheng [175] (SiGe); Oliveira [176] (Si);
Deng [177] (Si); Dong [178] (Si); Dong [179] (ScAlN); Fan [180] (MOF); Fan [73] (C); Fang [181] (CH);
Feng [182] (C); Fine [183] (Ca3CrN3H); Folkner [184] (Si); Fransson [185] (MAPbI3); Fransson [186] (BaZrO3);
Gabourie [187] (Si, SiO2, HfO2); Huang [188] (C); Huang [189] (Mg3(Sb, Bi)2); Li [190] (Gr);
Li [191] (C); Li [192] (Sb-Te); Li [193] (Si); Li [194] (C9H4BO2); Li [195] (C); Liu [196] (HECs); Lyu [197] (PbSe);
Muhammed [198] (Perovskites); Pan [56] (SiO2); Pegolo [199] (LixSi1−x); Qi [200] (AlN, C); Ru [201] (PdSe2);
Schäfer [202] (PTA); Shi [203] (BN); So [204] (Ga2O3, BN); So [205] (C); Song [24] (16 metals);
Sonti [206] (Zeolite-Confined Gold); Sun [207] (Co, Mo, Fe, Ni, Cu); Sun [208] (AlN, C);
Sun [209] (Ga2O3/C); Tang [210] (BN); Tang [211] (ScF3); Tian [212] (NaCl-CaCl2); Tian [213] (H2O);
Timalsina [214] (MgNiCoCuZnO5); Wan [215] (C6N7); Wang [216] (COFs); Wang [217] (H2O); Wang [218] (Si);
Wang [219] (Ga2O3); Wei [220] (high-entropy rare-earth monosilicates); Wu [221] (C); Wu [222] (C);
Wu [223] (Si, GaAs, C, PbTe); Wu [224] (C); Wu [225] (C, BN); Xu [226] (Perovskite); Xu [227] (Perovskite);
Yan [228] (Li7La3Zr2O12); Yang [229] (C); Ying [230] (C); Yu [231] (C); Yu [232] (BN); Yue [233] (Si/C);
Zeraati [234] (La2Zr2O7); Zhang [235] (BiI3); Zhang [236] (C); Zhang [237] (GeTe);
Zhang [238] (Alanine dipeptide and acetyl chloride); Zhang [239] (Li-Be); Zhao [240] (Ti-Al-Nb); Zhou [241] (LiH)

2025 Berger [242] (Ni3Al); Bro-Jørgensen [243] (Au); Bu [29] (C/MoS2/BN); Cao [244] (LiTFSI/G3); Chen [245] (Si:H);
Chen [246] (Al-Cu-Li); Chen [247] (GaN); Donadio [248] (C); Feng [249] (SiO2); Hainer [250] (MA1−xFAxPbI3);
Hu [251] (CL-20); Hu [252] (MoS2/WSe2); Jia [253] (Zr); Jiang [36] (C/BN);
Jiang [30] (MX2 (M = Mo, W; X = S, Se)); Jiang [254] (MX2 (M = Mo, W; X = S, Se, Te)); Kayastha [255] (BaZrS3);
Li [256] (Ga2O3); Li [257] (BeGeN2); Liang [258] (C/BN); Lindgren [259] (Si, C6H6, Perovskite); Li [256] (COF);
Li [260] (KTa1−xNbxO3); Liu [261] (BN); Liu [262] (Ti); Liu [263] (Mg); Liu [264] (Cu7PS6); Liu [265] (HEDs);
Lu [266] (C); Luo [267] (N-Ga-Al); Pegolo [268] (Li3PS4); Rosander [269] (BaZrO3); Seifi [270] (GaAs@InAs);
Sun [271] (GaN/C); Tan [272] (C/BN); Tuchinda [273] (Alloys); Wang [274] (C); Wang [275] ((AlAs)n/(InAs)n);
Wang [276] (Ne); Wang [277] (C/BN); Wang [278] (BaTiS3); Wang [279] (GeTe/Sb2Te3); Wu [280] (MoSe2/WSe2);
Xiao [281] (C); Xiao [282] (AgSnSbTe3); Xu [283] (LiF); Yan [284] (Li7La3Zr2O12); Yang [285] (Si);
Yuan [286] (MgO, LiH); Yue [287] (Si/Ge); Zeng [288] (Cs3Bi2I6Cl3); Zeraati [289] (TBCCOs); Zhang [290] (MoSi2N4);
Zhang [291] (Al2O3); Zhang [292] (C); Zhang [293] (C/polydimethylsiloxane); Zhang [294] (W-La); Zhou [295] (C);
Zhou [296] (NbTaZr); Zhou [297] (BAs); Zhou [298] (Ga2O3/BAs); Zhou [299] (In2Se3)
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2. Radiation Damage

Liu et al. [39] expanded the NEP approach by in-
corporating the Ziegler-Biersack-Littmark potential [42],
applying it for the first time to investigate primary ra-
diation damage in tungsten. They conducted large-scale
MD simulations involving up to 8.1 million atoms over
240 ps using a single 40-GB A100 GPU, achieving com-
putational efficiency comparable to that of embedded-
atom-method potentials. Their study also highlighted
the superior accuracy of the NEP model over embedded-
atom-method potentials in capturing radiation damage
in foils.

3. Phase Transition

The accuracy and efficiency offered by NEP models
have also facilitated in-depth studies of phase transi-
tions. Fransson et al. [137] were the first to investigate
temperature-induced structural phase transitions in inor-
ganic halide perovskites using GPUMD and NEP. Their
work revealed the impact of simulation size, temperature
variation rate, and the choice of exchange-correlation
functionals in quantum-mechanical calculations for train-
ing data.

4. Shock Simulation

Shi et al. [147] initiated the study of shock compression
using GPUMD and NEP. They developed a NEP model
for carbon at high pressures, which demonstrated excep-
tional capabilities in modeling both the melting behavior
and the Hugoniot line. They designed a thermodynamic
pathway suitable for double shock compression experi-
ments, facilitating the discovery of the long-sought BC8
phase of carbon.

5. Short-Range Order

Chen et al. [172] initiated the study of short-range or-
der in GeSn alloys using GPUMD and NEP. A compact
yet representative dataset was constructed via farthest-
point sampling to improve training efficiency and pre-
dictive accuracy. Through extensive statistical sampling,
they uncovered intricate short-range order features that
strongly impact the electronic band structure. Large-
scale simulations revealed the coexistence of nanoscale
short-range order domains, which is promising for opto-
electronic applications.

6. Ion Transport

Yan et al. [228] initiated research on ion transport
in solid-state electrolytes, a critical area for advanc-

ing all-solid-state battery technology. They developed
a NEP model to explore the effects of lithium nonsto-
ichiometry on ionic conductivity and phase stability in
Li7La3Zr2O12. Their findings revealed that even mi-
nor deviations from stoichiometry, particularly lithium
deficiency, significantly lower the activation energy for
Li+ diffusion in tetragonal Li7La3Zr2O12. This leads to
a remarkable ten-orders-of-magnitude increase in room-
temperature ionic conductivity.

7. Electronic Transport

Electronic and transport properties can be studied
effectively using linear scaling quantum transport ap-
proaches [300]. Fan et al. [73] combined these tech-
niques with MD simulations, showcasing their feasibility
in modeling the electronic and thermoelectric transport
properties of complex materials at finite temperatures.

8. Tensorial Properties

The NEP approach has also been successfully extended
to modeling tensorial properties, such as electric dipole
moments and polarizability, by Xu et al. [227]. They
demonstrated the effectiveness of this method in predict-
ing infrared and Raman spectra for various systems, in-
cluding liquid water, single molecules, and a prototypical
perovskite exhibiting strong anharmonicity.

9. Large NEP Models

Song et al. [24] pioneered the development of large
NEP models for multiple species, emphasizing the im-
portance of focusing on elemental and binary systems
during data construction. They successfully created a
general-purpose NEP model for 16 metals and their arbi-
trary alloys, demonstrating substantially higher accuracy
compared to the conventional embedded-atom method.
This NEP model also achieved a computational milestone
by simulating 100 million atoms using only eight 80-GB
A100 GPUs.

10. Hybrid Monte Carlo and Molecular Dynamics

Song et al. [63] were the first to apply NEP in con-
junction with hybrid Monte Carlo and MD simulations.
The Monte Carlo sampling with NEP is highly efficient,
as it leverages the locality of the potential function. This
approach holds significant promise for investigating the
effects of chemical order in multi-component systems.
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11. Nuclear Quantum Effects

Path-integral MD simulations are essential for accu-
rately capturing nuclear quantum effects in materials.
A highly efficient GPU implementation of these simula-
tions has recently been integrated into GPUMD. Ying et
al. [59] demonstrated the effectiveness of this approach
by investigating thermal properties for several materials,
including lithium hydride, porous metal-organic frame-
works, liquid water as well as elemental aluminum.

12. Melting in Confined Systems

Wang et al. [276] have recently used GPUMD and
NEP to study the melting transition in atomistically
confined layered materials. They developed NEP mod-
els for noble gases and aluminum confined between
two graphene sheets at different pressures and tem-
peratures. While noble gases and aluminum typically
form only close-packed structures, even under the ex-
treme conditions of white dwarf stars, they discovered
tetragonal-packed configurations in the confined systems.
Upon heating, they found that confined two-dimensional
monolayers melt according to the two-step continu-
ous Kosterlitz-Thouless-Halperin-Nelson-Young theory.
However, multilayer solids transition continuously into
an intermediate layered-hexatic phase before melting dis-
continuously into an isotropic liquid. This change could
be qualitatively explained based on a crossover from two-
dimensional topological defects to three-dimensional ones
during melting as the number of layers increases.

13. Hybrid NEP and Anisotropic Interlayer Potential

Bu et al. [29] developed a hybrid computational
framework that integrates a machine-learned potential,
based on the NEP formalism, for intralayer interactions,
with physics-based registry-dependent interlayer poten-
tial that captures anisotropic van-der-Waals interactions.
This framework achieves near ab initio accuracy with a
computational efficiency at the level of empirical poten-
tials, enabling large-scale MD simulations of twisted van-
der-Waals heterostructures.

VI. SUMMARY AND FUTURE DIRECTIONS

In summary, we have provided a comprehensive
overview of the GPUMD package, covering its devel-
opment history, theoretical foundations, functionalities,
and applications. Although GPUMD is a relatively
young MD package, it has been developing at a fast pace.
Its robust theoretical foundation, based on an elegant for-
mulation of many-body interatomic potentials, coupled
with a well-designed GPU parallelism scheme and a ver-
satile general-purpose machine-learned potential frame-

work, has attracted increasing attention from researchers
interested in exploring its capabilities.
Beyond its user base, the GPUMD package has also

attracted numerous developers from around the globe.
These contributors are working collaboratively to en-
hance its feature set, versatility, reliability, and efficiency,
making the package increasingly robust and adaptable.
In the coming years, our efforts will focus on advanc-

ing GPUMD by further expanding its capabilities and
enhancing its versatility. Building on the NEP approach,
we will prioritize the incorporation of the charge degrees
of freedom. This will pave the way for tackling a broader
range of problems, such as those related to batteries and
corrosion, further broadening the scope of applications
for GPUMD.
Additionally, we will work on building coarse-grained

models based on the NEP approach. These models will
significantly extend both the spatial and temporal scales
achievable in MD simulations with GPUMD, opening up
new possibilities for studying large systems and long-time
phenomena.
To push the boundaries of efficiency and accuracy,

we plan to develop Monte Carlo sampling methods, en-
hanced sampling methods and other time-acceleration
techniques. These advancements will enable GPUMD
to overcome the limitations of conventional MD simula-
tions, allowing for a more comprehensive exploration of
complex systems.
A direction that is seemingly unrelated to MD simula-

tions is the development of general-purpose tight-binding
models for electrons. These models will be an exten-
sion of the NEP framework, bridging the strengths of
quantum transport methodologies [300] and MD to en-
able more accurate and efficient simulations of electronic
properties in spatially complex materials.
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