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Abstract. We introduce atomicrex, an open-source code for constructing

interatomic potentials as well as more general types of atomic-scale models. Such

effective models are required to simulate extended materials structures comprising

many thousands of atoms or more, because electronic structure methods become

computationally too expensive at this scale. atomicrex covers a wide range of

interatomic potential types and fulfills many needs in atomistic model development.

As inputs, it supports experimental property values as well as ab initio energies and

forces, to which models can be fitted using various optimization algorithms. The

open architecture of atomicrex allows it to be used in custom model development

scenarios beyond classical interatomic potentials while thanks to its Python interface

it can be readily integrated e.g., with electronic structure calculations or machine

learning algorithms.
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1. Introduction

Atomic-scale modeling plays an important role in analyzing, understanding, and

predicting materials behavior. Many phenomena and processes of interest in this

context involve length scales that require simulations of tens of thousands to several

millions of atoms over time scales that span nanoseconds or more. The application of

electronic structure methods for this purpose –commonly referred to as ab initio models–

is not only prohibitively expensive from a computational standpoint but many times

even unnecessary as the relevant interactions do not require an explicit description of

the electronic structure. This is the realm of semi-empirical methods, most notably

interatomic potentials, for which the computation of interatomic forces is not only

several orders of magnitude faster than with popular electronic structure methods such

as density functional theory [1] (DFT) but also exhibits a much more favorable scaling

with system size.

In contrast to e.g., DFT, where generic exchange-correlation functionals are

available that can be applied to materials of almost arbitrary composition, interatomic

potentials are typically constructed for specific elements and compounds, and often

with particular applications in mind. Since the development of interatomic potentials is

frequently a tedious and time consuming process, it requires tools that are both efficient

and flexible. While various potential development tools have been developed for internal

use by research groups, relatively few have been made widely available including e.g.,

potfit [2], GARFfield [3], MEAMfit [4], the “EAM Alloy Potential Generator”

[5], and the aenet package for artificial neural network (ANN) potentials [6]. Several

of these codes target specific potential types and/or functional forms; also they can be

difficult to extend and/or integrate with other processing pipelines, in particular the

popular Python scripting language.

The complexity of systems targeted by atomic scale modeling continues to increase

while the possibilities for machine learning and systematic model construction multiply.

Thus there is a need for efficient and flexible potential construction tools that are

extensible and can be integrated in more complex model development setups. In

response to this need we have developed the atomicrex code, the main features of

which are

• support for a variety of interatomic potential forms,

• the possibility for the user to define arbitrary functional forms via a built-in math

expression parser,

• very high computational efficiency enabling large training and validation sets,

• a range of predefined properties that can be combined to generate more complex

properties, in particular energy differences, defect energies, etc., which can be

included in both training and validation stages,

• an interface to the popular Python programming language, which enables

interfacing with various third-party libraries, and
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Figure 1. Schematic overview of the different objects handled by atomicrex and

their connections.

• an object-oriented code framework that readily allows addition of new potential

models, structures, and properties.

The models created using atomirex can be used for e.g., in simulation codes such

as lammps [7] or atomistica [8] but can also be made available to the scientific

community e.g., via the Knowledgebase for Interatomic Potentials [9, 10].

In the following we first provide a rough outline of the atomicrex workflow from

a user perspective (Sect. 2) and introduce some key concepts (Sect. 3). We continue

by summarizing the optimization algorithms (Sect. 3.3) and potential formats (Sect. 4)

that are currently supported as well as the specification of atomic structures (Sect. 5)

and user-defined properties (Sect. 6). We close with an outlook indicating directions of

possible future developments (Sect. 8).

atomicrex is available under the GNU General Public License and is hosted in

a public Git repository on GitLab, where its source code is available for download and

which can be accessed via http://atomicrex.org. Most of the code base is written

in C++, with Python bindings enabling integration with third-party libraries and

custom model fitting schemes. An extensive user guide that contains a comprehensive

description of features, input file parameters, and the Python interface along with

various examples is available online. A separate documentation of the C++ and Python

application programming interfaces (APIs) are available as well.

2. Workflow

From a technical viewpoint, atomicrex processes a user-supplied input file in extended

markup language (XML) format that describes the job to be performed. Here, we will

http://atomicrex.org
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not discuss the specific format of this file or any of the parameters it contains, as a very

extensive user guide including various examples is available online. In the following,

we rather emphasize key steps and concepts of the program. A general overview of the

objects and entities that play a role in the architecture of atomicrex is provided in

Fig. 1.

Generally, a job can be divided into two parts, the training phase and the output

phase. During the training phase selected degrees of freedom (parameters) of the model

(usually an interatomic potential) are varied such that the predicted properties (energies,

forces, elastic constants, etc., see Sect. 3.2) most closely match the target data.

The training phase is followed by the validation phase. Here, additional properties

of interest can be calculated that were not included in the fitting. This allows a

convenient separation of the available data into training and validation sets, where

the latter serve to assess the predictive capability of a model.

Once the training process has been completed, the resulting model can be exported

in various forms adequate for the use with popular atomistic simulation codes such as

lammps [7].

3. Key concepts

atomicrex operates with two principal types of entities: potentials (models) and

structures.

• A potential consists of a parameter set and a specific routine that calculates the

total energy and the forces given an atomic structure.

• A structure consists of a simulation cell with or without periodic boundary

conditions and a list of atoms.

Potentials and structures each possess a set of degrees of freedom and a set of properties,

which will be discussed next.

3.1. Degrees of freedom

A degree of freedom (DOF) describes an aspect of a model or structure that can be

continuously varied. The DOFs of a potential are varied during the training process

to minimize the objective function and optimize the model with respect to the desired

properties whereas the DOFs of an atomic structure may be varied during structure

relaxation, i.e. commonly in order to minimize the potential energy of a configuration.

The calculation of properties for a given set of model parameters may involve relaxation

of atomic structures; DOFs of an atomic structure are therefore varied in an inner

optimization loop. The DOFs of the model are varied in an outer optimization loop as

part of the fitting process.

There exist different classes of DOFs: In the most simple case, a DOF is a scalar

variable that describes a single parameter, e.g., the parameters of a Lennard-Jones

potential or the lattice parameter of a cubic lattice. Furthermore, multi-dimensional
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DOFs exist that control more complex aspects, e.g., the atomic positions of a structure

or the coefficients of a spline potential function.

Each type of potential or structure in atomicrex exposes a certain set of such

DOFs. The user has to specify an initial value in the input file for each DOF. While by

default every DOF is static, i.e., its value does not change during a job, the user can

mark selected DOFs to be included in the fitting process.

3.2. Properties

Properties are quantities that can be calculated from the DOFs of a structure or model,

i.e., they are functionals of the DOFs. The calculation of properties of a structure, e.g.,

its elastic constants, can be rather complex and involve the evaluation of energy and

forces — possibly multiple times and including an inner relaxation loop. By contrast,

properties of potentials can be directly derived from the current values of the DOFs of

the model. This complexity is handled efficiently and transparently by the framework

of atomicrex.

Each type of structure and potential is associated with a specific set of properties.

By default only very few of them are calculated, such as the potential energy

and the volume of a structure. However, the user can enable the calculation of

additional properties (e.g., elastic constants, energy differences, lattice parameters, etc.)

independently for the training and/or the final validation stage. When including a

property in the training phase, one has to specify a target value for that property. The

target value is a scalar in the case of simple properties, e.g., the energy of a structure,

or it can be multi-dimensional (vector) data such as the forces acting on the atoms of

a structure. As discussed below, each property included in the training set contributes

according to its weight to the objective function, which is minimized during the fitting

process.

Note that properties are calculated after the DOFs of a structure have been relaxed.

This implies that, if relaxation is enabled for certain DOFs, the fitting process consists

of two nested minimization loops: Each time the objective function for the potential

fitting is evaluated in the outer optimization loop, the energy of all structures is first

minimized with respect to the structural DOFs. A third level of variation may exist if the

relaxation of the atomic positions has been enabled. In that case, the atomic positions

must be relaxed each time the total energy is calculated for a given trial configuration

of the DOFs for which relaxation is enabled.

3.3. Objective function

The objective (or cost) function is the main quantity being computed by atomicrex in

order to optimize the model toward the target values. It can be written in the general
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form

f =
∑
G

w̄G

∑
S

w̄GS

∑
P

w̄GSP rGSP︸ ︷︷ ︸
properties︸ ︷︷ ︸

structures︸ ︷︷ ︸
structure groups

(1)

with the relative weight factors

w̄GSP = wGSP

/ properties∑
P ′

wGSP ′ (2)

w̄GS = wGS

/ structures∑
S′

wGS′ (3)

w̄G = wG

/ structure groups∑
G′

wG′ , (4)

which can be assigned by the user at the level of structure groups, structures, and

individual properties providing fine-grained control over the importance of different

targets during the fitting process.

The residual rGSP is calculated for each property from the predicted, Apredicted, and

the target value, Atarget, according to the selected residual style, which can be specified

by the user. For example, the squared residual style implies

rGSP =
[(
Apredicted

i − Atarget
i

)/
δGSP

]2
. (5)

Here, δGSP is the tolerance that has been specified for the property as explained below.

The rationale behind this nested weight model described by Eq. (1) is as follows.

When fitting potentials, certain structures are usually more important than others.

For example, in the case of silicon the diamond structure should naturally be given

a higher weight than, say, the face-centered cubic structure, whereas the opposite

applies to e.g., aluminum or gold. To achieve this balance one can set the weights

of individual structures (wGS) as well as structure groups (wG). Note that these weights

are normalized on each individual hierarchy level such that the ratio between structures

remains the same when the weights of individual properties are changed.

Similarly, it is advantageous to use “intuitive” weights to express for example the

notion that the cohesive energy of a certain structure is “three times more important”

than the bulk modulus. These properties, however, have very different units and thus

the differences between predicted and target values, Apredicted − Atarget, can be of very

different magnitudes. It is usually inconvenient to adjust the property weights manually

to correct for this discrepancy. One can partially remedy the situation by normalizing

the residual by the target value of the property, essentially making it unitless:

rGSP =
[(
Apredicted − Atarget

) /
Atarget

]2
. (6)
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However, this approach obviously has problems when the target value is zero.

A more refined approach is to use the tolerance parameter δ, introduced in Eq. (5),

that enables one to specify the acceptable range of deviation for each property. It

naturally carries the same unit as the property such that all residuals are unitless. This

allows one to use this parameter rather sensibly. For example, it is often reasonable to

aim for a cohesive energy to agree within, say, δ = 0.1 eV with the target value, whereas

for an elastic constant δ = 5 GPa could be an acceptable deviation. For convenience

atomicrex provides several presets, which assign default tolerance factors based on

the unit of each property.

sectionOptimization algorithms

At present atomicrex directly supports the following local and global optimization

algorithms, which are selected in the input file:

• the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) minimizer,

which is a popular quasi-Newton method with support for bound constraints,

• the “simply poking around” (SPA) minimizer, which randomly samples the

parameter space, and

• all algorithms provided by the NLopt library [11], which includes methods for

global optimization, local derivative-free optimization, and local gradient-based

methods.

In addition an even larger number of optimization algorithms are accessible via

the Python interface (Sect. 7) in combination with third-party libraries such as scipy

[12] and scikit-learn [13]. In other words, atomicrex provides an efficient compute

engine that can be used as a kernel in optimization algorithms implemented in the

Python language.

4. Potentials

atomicrex supports a number of different potential types that at present include e.g,

• the embedded atom method (EAM) [14],

• the modified embedded atom method (MEAM) [15],

• Tersoff-Abell style potentials [16, 17],

• analytic bond-order potentials in the generalized Brenner format [18, 19, 20, 21, 22],

• the concentration dependent embedded-atom method (CD-EAM) format [23, 24,

25],

• the angular dependent potential (ADP) format [26], and

• Stillinger-Weber style potentials [27],

where the latter two are examples for potential formats that can be generated using the

math parser functionality described below. These types can be combined to develop

potentials for complex multi-component systems that cannot be described by a single

model.
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Within the spectrum of potential types listed above, atomicrex enables the user

to choose functional forms with considerable freedom. This functionality is implemented

by integrating the muparser math parsing library [28]. For example, a general, single-

element EAM potential consists of three functionals, each of which can be specified freely

by the user in terms of the mathematical form and the number of parameters (degrees

of freedoms) it contains. For multi-element potentials, functionals can be defined once

and shared between several (pair-wise or other) interactions. And it is possible to

link parameters that occur in more than one functional in order to reduce the effective

number of degrees of freedom to be fitted. The user guide contains a number of examples

that demonstrate this functionality in practice and exhibit its flexibility.

5. Structures

Structures are one of the principal entities in atomicrex. They are specified in the main

input file and can be compiled into groups, which is particularly convenient when dealing

with large sets of structures. Each structure exhibits a set of computable properties that

can be included in the cost function during training or solely in the validation phase,

e.g., in order to assess the predictive power of a model.

For structure specification, the user can resort to a large database of predefined

structures, which includes practically all important crystalline as well as some non-

periodic structures for single and two component systems as well as a number of

ternary structures. These procedural structures are all parametrized in terms of lattice

parameter, axial ratio, internal degrees of freedom, etc. This enables to efficiently

relax structures with respect to these structural parameters, e.g. for directly fitting to

properties such as the cohesive energy or both clamped and relaxed-ion elastic constants.

In addition, it is possible to include custom structures, which can be either specified

directly in the XML input file or imported from external files in standard data formats

used by DFT and MD simulation codes. Structure databases can be kept in separate

files to reference and re-use them from more than one fitting job.

6. Derived properties

When training potential models it is often key to include information that pertains

to (energy) differences between structures. This concerns for example point defects

(vacancies, interstitials, substitutional atoms), line defects (dislocations), and planar

defects (e.g., surfaces, interfaces, antiphase boundaries, or stacking faults) but also

structural energy differences (e.g., hexagonal close-packed vs. face-centered cubic or

face-centered cubic vs. body-centered cubic).

To this end, atomicrex provides a mechanism that enables the user to define

a defective structure (including e.g., a vacancy or an interstitial atom) based on a

reference structure, typically represented by a primitive unit cell. The computation of

defect formation or binding energies is then accomplished by defining a so-called derived
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property, which links several other properties, often from more than one structure. For

example, it is possible for the user to define a defect formation energy by subtracting the

reference energy, computed from an ideal unit cell, from the total energy of a supercell

containing the defect. atomicrex takes care of computing all input properties that

enter into the user-defined formula for the derived property, making it possible to readily

fit a model to defect formation energies, energy differences between phases, surface

energies, or specific phonon frequencies.

7. Python interface

atomicrex can be used as a standalone tool and, via its Python interface, also from

scripts and other programs. In standalone mode, the program simply processes the XML

input file, which completely specifies all inputs to the fitting problem, the optimization

method to use, and the output to generate.

The Python interface has been developed to give additional flexibility for

customized model development setups and to provide a direct interface with, for

example, first-principles codes via the Atomic Simulation Environment (ASE) [29].

To this end, the Python interface provides full access to the current model parameters,

atomic structures, properties, and weights. atomicrex natively supports the ASE

atomic structure format for exchange with other frameworks and simulation codes.

Furthermore, the code exposes the current model parametrization as a linear state

vector and allows to evaluate the objective function in order to enable the rapid

implementation of new optimization schemes and to leverage the wide spectrum of

powerful optimization algorithms that are readily available in the Python ecosystem.

8. Conclusions and outlook

In this paper we have described the atomicrex code, which provides a flexible,

extensible, and efficient framework for the construction of atomic scale models suitable

for e.g., molecular dynamics and Monte Carlo simulations. atomicrex supports a

variety of interatomic potential types, and their functional form can be freely determined

by the user via a built-in math parser. The code has been optimized for computational

efficiency, enabling larger training and validation sets. While it already includes an

extensive database of predefined structures and properties, it also allows the inclusion

of custom structures and the definition of complex “derived” properties that are based on

the combination of several individual properties and/or structures. Finally, atomicrex

provides an interface to the Python scripting environment for integration with many

advanced scientific libraries available in the Python ecosystem. The code is provided

under an open-source license and available via http://atomicrex.org. We also provide

an extensive user guide with many examples and a comprehensive description of features.

atomicrex continues to be developed with an emphasis on code extensibility

and speed. In fact, while it already provides an excellent platform not only for the

http://atomicrex.org
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development of potentials using “classic” functional forms (EAM, ABOP, MEAM etc.),

it can be extended to include e.g., artificial neural network (ANN) potentials [30, 31, 6],

tight binding models [32], or Gaussian approximation potentials [33]. In this context,

we provide a full documentation of the application programming interface (available as

part of the Git repository) to enable other researchers to contribute to the development

e.g., via new models (potentials) or optimization schemes.

As pointed out above, the Python interface allows easy and seamless integration

with various existing libraries for scientific computing and machine learning like scipy

[12], scikit-learn [13], or TensorFlow [34]. This opens up the possibility to employ

variable training and validation sets for e.g., Bayesian error estimation (see e.g., [35]),

or manipulate the parameter vector using genetic algorithms. Finally, via its ase

interface, atomicrex can be readily integrated in a dynamic workflow that spans from

the generation of reference data using first-principles codes via training and validation

of an atomistic model all the way to deployment of the model in molecular dynamics

or Monte Carlo simulations. Hence, it can be employed in, for example, on-the-fly

scale-bridging simulations [36].
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