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Machine-learned potentials (MLPs) trained against quantum-mechanical reference data have
demonstrated remarkable accuracy, surpassing empirical potentials. However, the absence of readily
available general-purpose MLPs encompassing a broad spectrum of elements and their alloys ham-
pers the applications of MLPs in materials science. In this study, we present a feasible approach for
constructing a unified general-purpose MLP for numerous elements and showcase its capability by
developing a model (UNEP-v1) for 16 elemental metals (Ag, Al, Au, Cr, Cu, Mg, Mo, Ni, Pb, Pd,
Pt, Ta, Ti, V, W, Zr) and their diverse alloys. To achieve a complete representation of the chemical
space, we demonstrate that employing 16 one-component and 120 two-component systems suffices,
thereby avoiding the enumeration of all 65 535 possible combinations for training data generation.
Furthermore, we illustrate that systems with more components can be adequately represented as
interpolation points in the descriptor space. Our unified MLP exhibits superior performance across
various physical properties as compared to the embedded-atom method potential, while maintaining
computational efficiency. It achieves a remarkable computational speed of 1.5 × 108 atom step/s in
molecular dynamics simulations using eight 80-gigabyte A100 graphics cards, enabling simulations
up to 100 million atoms. We demonstrate the generality and high efficiency of the MLP in studying
plasticity and primary radiation damage in the MoTaVW refractory high-entropy alloys, showcas-
ing its potential in unraveling complex materials behavior. This work represents a significant leap
towards the construction of a unified general-purpose MLP encompassing the periodic table, with
profound implications for materials research and computational science.

Atomistic simulations of elemental metals and their al-
loys play a crucial role in understanding and engineering
materials properties. While quantum-mechanical meth-
ods such as density-functional theory (DFT) calculations
can be directly used for small simulation cells and short
sampling times, their feasibility quickly diminishes with
increasing spatial and temporal scales. For large-scale
classical atomistic simulations, both molecular dynamics

(MD) and Monte Carlo (MC) simulations crucially de-
pend on interatomic potentials. For metallic systems in
particular, embedded-atom method (EAM)-type poten-
tials [1, 2] have proven to be useful and been extensively
applied over the past decades, especially for elemental
metals and their alloys. However, these existing classi-
cal interatomic potentials often lack the required level
of accuracy for numerous applications. This deficiency
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primarily stems from constrained functional forms. Re-
cently, a novel paradigm for developing interatomic po-
tentials has emerged based on machine learning (ML)
techniques [3–8]. In a machine-learned potential (MLP),
the interatomic potential is modeled using ML methods,
allowing for a significantly greater number of fitting pa-
rameters and providing versatility as compared to tra-
ditional many-body potentials. The functional forms of
these MLPs are remarkably flexible, free from the limita-
tions of a small number of analytical functions suggested
by physical and chemical intuition or fitting to ground
state properties only. The combination of flexible func-
tional forms and a large number of fitting parameters
empowers MLPs to achieve a level of accuracy that can
be well beyond that of the traditional many-body poten-
tials.

The basic theory behind MLPs is rather mature now.
There are two main ingredients of a MLP: the regres-
sion model and the descriptors as inputs to the regression
model. For the construction of input descriptors, linearly
complete basis functions for the atom-environments have
been proposed [9, 10]. For the regression model, linear re-
gression [9, 11], artificial neural network (NN) regression
[12], and kernel-based regression [13] are all proven to be
feasible approaches. The combination of equivariant (as
opposed to invariant) constructions and message passing
or graph NN [14, 15] has also shown great potential in
enhancing the regression accuracy of MLPs, albeit at the
cost of reduced computational efficiency and challenges
in maintaining parallelism.

Despite the higher accuracy offered by MLPs, they are
still not as widely used in materials modeling. There are
two main reasons for this, namely the relatively higher
computational cost of the MLPs as compared to most of
conventional many-body potentials, and the absence of
a readily usable database of MLPs that covers a large
number of elements and their compounds. In some cases
where an extensive database is available, one can use an
available MLP to study a specific problem, but in many
cases, one has to train a new one or improve existing
MLPs before being able to study the problem at hand.
In particular, there is no simple way to combine MLPs
for different elements to build MLPs for their compounds.
This can lead to repeated efforts in the community and
the case-by-case approach of developing MLPs is neither
optimal nor sustainable in the long run. Regarding the
computational cost of MLPs, the neuroevolution poten-
tial (NEP) approach [16–18] developed recently has been
shown to yield excellent computational efficiency com-
pared to other state-of-the-art methods, thanks to an
optimization of the theoretical formalism and an efficient
implementation in the gpumd package [19]. The NEP
approach can reach computational speeds unprecedented
for MLPs on par with empirical potentials, paving the
way for the application of MLPs to large-scale atomistic
simulations.

In this paper, we introduce a sustainable approach
for the construction of MLPs. Although our approach
can be utilized to construct a comprehensive MLP cov-
ering the entire periodic table, we have chosen a more
focused task as a proof of concept. Our objective is to
develop a general-purpose NEP model encompassing 16
elemental metals and their alloys. Previous attempts to
create general-purpose MLPs for numerous elements, or
even the entire periodic table, have been initiated by re-
searchers such as Takamoto et al. [20, 21] and Chen
and Ong [22]. These studies have introduced “univer-
sal” MLPs, covering up to 45 elements [21] and 89 el-
ements [22], respectively. Despite being termed univer-
sal, these MLPs have a rather limited application range
and are orders of magnitude slower than EAM poten-
tials. General-purpose MLPs have only been conclusively
demonstrated for elemental matter such as Si [23], C [24],
Fe [25], and Pb [26]. Here, our goal is to construct a
genuinely general-purpose MLP for a diverse range of el-
ements that matches the speed of EAM potentials and
surpasses it in various physical properties.

Apart from achieving high accuracy and efficiency for
the unified NEP model, which we term version 1 of uni-
fied NEP (UNEP-v1), we also propose an efficient ap-
proach to construct the training dataset. Constructing
a training dataset with all the possible chemical compo-
sitions is a formidable task. Fortunately, the NEP de-
scriptor parameters depend only on pairs of elements.
We will demonstrate that considering unaries and bina-
ries alone for the training dataset is sufficient, yielding
a NEP model that is transferable to systems with more
components. Using this route, we achieve a transferable
NEP model for 16 elements using only about 70 000 ref-
erence structures. This accomplishment is demonstrated
in large-scale MD simulations for mechanical deformation
and primary radiation damage of high-entropy alloys.

RESULTS

A neural-network architecture for many-
component systems. Our starting point is the
NEP approach as described in Ref. 18, called NEP3. In
this work, we introduce two crucial extensions to NEP3
designed specifically for many-component systems. This
extended approach will be called NEP4, which has been
implemented in version 3.8 of gpumd during the course
of this work.

We first briefly introduce NEP3 [18], which is a NN
potential [12] that maps a descriptor vector qi (with Ndes

components) of a central atom i to its site energy Ui. The
total energy of a system of N atoms is expressed as the
sum of the site energies U =

∑N
i=1 U

i. The ML model
is a fully connected feedforward NN with a single hidden
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layer with Nneu neurons:

U i =

Nneu∑
µ=1

w(1)
µ tanh

(
Ndes∑
ν=1

w(0)
µν q

i
ν − b(0)µ

)
− b(1), (1)

where tanh(x) is the activation function in the hidden
layer, w(0) is the connection weight matrix from the input
layer (descriptor vector) to the hidden layer, w(1) is the
connection weight vector from the hidden layer to the
output layer, b(0) is the bias vector in the hidden layer,
and b(1) is the bias in the output layer. Denoting the
weight and bias parameters in the NN collectively as w,
we can formally express the site energy as

U i = N
(
w;qi

)
. (2)

The descriptor vector consists of a number of radial and
angular components. For illustration, we here discuss
the three-body angular components. Interested readers
are referred to Ref. 18 for the description of higher-order
terms. A three-body angular descriptor component can
be expressed as

qinl =
∑
j ̸=i

∑
k ̸=i

gn(rij)gn(rik)Pl(θijk), (3)

where n and l represent the orders of radial and angular
expansions, respectively. Here, the summation runs over
all neighbors of atom i within a certain cutoff distance,
rij represents the distance between atoms i and j, θijk
is the angle for the triplet (ijk) with i being the central
atom, and Pl(x) is the Legendre polynomial of order l.
The functions gn(rij) depend solely on the distance rij
and are therefore referred to as radial functions. These
radial functions are defined as a linear combination of a
number of basis functions:

gn(rij) =
∑
k

cIJnkfk(rij). (4)

The basis functions fk are constructed based on Cheby-
shev polynomials and a cutoff function, ensuring both
formal completeness and smoothness. Explicit expres-
sions for these functions can be found in Ref. 18. The
expansion coefficients cIJnk depend on n and k and also on
the types (denoted as capitals I and J) of atoms i and
j. Due to the summation over neighbors, the descriptor
components defined above are invariant with respect to
permutation of atoms of the same type. More impor-
tantly, these coefficients are treated as trainable param-
eters [17], which is crucial for efficiently differentiating
different atom pairs contributing to the descriptor.

While the descriptor parameters {cIJ} depend on the
atom types (species), the NN parameters w in NEP3 are
the same for all the atom types. Therefore, as the number
of atom types increases, the regression capacity of the NN
model for each atom type decreases. To keep a constant

FIG. 1. (a) Schematic illustration of the architecture of the
NEP4 model with distinct sets of NN parameters for differ-
ent atom types. For a central atom of type A, the descriptor
involves the cAJ parameters (J can be of any type), and the
weight and bias parameters wA are specific for type A. Sim-
ilar rules apply to central atoms of other types. The total
energy U is the sum of the site energies for all the atoms in
a given structure. By contrast, in NEP3 all atom types share
a common set of NN parameters w, which restricts the re-
gression capacity. (b) Schematic illustration of the multi-loss
evolutionary training algorithm. For a 3-component system,
the optimization of the parameters related to atom type A (in-
cluding wA, cAB , and cAC) is only driven by a loss function
defined using the structures with the chemical compositions
of A, AB, and AC. In the conventional evolutionary algo-
rithm, which is used in NEP3, a single loss function is used
to optimize all parameters, which is less effective for training
general-purpose models for many-component systems.

regression capacity per atom type, in the present work,
we employ different sets of NN parameters wI for each
atom type I. While this increases the total number of
trainable parameters, it does not significantly increase
the computational cost during MD simulations with the
trained model, because it only involves a selection of the
correct set of NN parameters for a given atom. With the
extension, the site energy can be expressed as

U i = N
(
wI ;qi({cIJ})

)
, (5)

which constitutes the NEP4 model introduced in this pa-
per (Fig. 1a).

A multiple-loss evolutionary training algorithm
for many-component systems. While the increase in
the number of trainable parameters does not significantly
affect the inference speed, it does increase the number of
iterations for training. It turns out that the training al-
gorithm must be modified to achieve better performance
for many-element systems. For training NEP models we
use the separable natural evolution strategy (SNES) ap-
proach [27], which is a powerful black-box optimization
algorithm that is particularly suitable for problems with
many possible solutions [28]. It maintains a mean value
and a variance for each trainable parameter that are up-
dated according to the rank of a population of solutions.
The rank is determined according to the loss function
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to be minimized. The loss function L is constructed us-
ing calculated and reference data for energies, forces, and
virials, and is a function of the trainable parameters, i.e.,

L = L
(
{wI}; {cIJ}

)
. (6)

The rank (or “fitness”) is of crucial importance in evo-
lutionary algorithms, as it determines the relative weight
of a solution in the population. However, using a single
loss function can lead to ambiguity in rank assignment:
Even if the total loss of solution X is smaller than that
of solution Y, it does not guarantee that solution X is
more accurate for all the subsystems in a many-element
system. For example, solution X might offer higher accu-
racy for Au systems but lower accuracy for Ag systems.
To account for this observation we define multiple loss
functions for many-element systems. Since we are con-
cerned with alloys, we cannot define a set of loss functions
that have no common terms at all, but we can make a
definition that minimizes the common parts. Naturally,
we define the loss function for element I as the parts in
Eq. (6) that are contributed by structures containing el-
ement I. For illustration, consider an explicit example
with three elements, denoted A, B, and C, respectively.
The loss function for element A can be calculated by
considering the chemical compositions A, AB, and AC
only, excluding B, C, and BC. This loss function is
used when training the parameters related to element A,
which are wA, cAB , and cAC (Fig. 1b). Using this multi-
loss evolutionary algorithm, the training converges much
faster than using a single-loss function. The efficiency
improvement in training becomes more significant with
an increasing number of elements, and is crucial for being
able to develop models such as UNEP-v1.

Construction of training data for many-
component systems based on chemical gen-
eralizability. The chemical space for 16 elements
consists of 216 − 1 = 65 535 chemical combinations,
including 16 unaries, 120 binaries, 560 ternaries, etc.
It is formidable to construct a training dataset by
enumerating all the possible chemical combinations.
Fortunately, leveraging the construction of the radial
functions in terms of linear combinations of basis
functions provides a solution. The descriptor values
for a given configuration of n-component (n > 2)
systems fall within the range spanned by those of the
1-component and 2-component systems derived from
the same configuration by element substitution. Given
the interpolation capabilities of NN, a NEP model
trained using 1-component and 2-component structures
is expected to predict reasonably well the behavior of
n-component (n > 2) systems. Therefore, our training
dataset focused only on unary and binary systems.

For each unary or binary system, we constructed
an initial training dataset with a few hundred struc-

tures. These structures included small cells with posi-
tion and/or cell perturbations, cells with one to a few
vacancies, cells with surfaces and various defects (such
as grain boundaries) taken from the Materials Project
[29] and the Open Quantum Materials Database [30],
cells sampled from MD simulations based on an EAM
potential [31] at various temperature (up to 5000K) and
pressure conditions including highly deformed structures
(see Methods for details). There are about 60 000 struc-
tures in total for the 16 metals and their binary alloys. In
spite of its seemingly modest size, this training dataset is
remarkably diverse in the configuration space. Reference
data (energy, force, and virial) for the structures were
generated via DFT calculations using the VASP package
(see Methods for details).

The diversity of the initial training dataset ensured
a robust initial NEP model that could be used to run
MD simulations at various thermodynamic conditions.
From diverse MD trajectories generated by the initial
NEP model, structures (still unary and binary only) were
sampled and labeled using DFT calculations. Those with
relatively large errors (NEP versus DFT) were identified
and incorporated into the training set. This iterative
process was repeated a few times until no large errors
could be detected. This active-learning scheme, while
simple, proved to be highly effective. The final training
dataset contains 71 902 structures and 5 200 861 atoms in
total. The DFT calculations for these structures required
about five million CPU hours.

Training and testing results. Using the refined train-
ing dataset, we trained a NEP model (see Method for
details on the hyperparameters) using the NEP4 ap-
proach as described above. We refer to this NEP model
as UNEP-v1, which represents the first attempt at con-
structing a unified NEP model for many elements.

The parity plots for energy, force, and stress affirm
the high accuracy of this UNEP-v1 model (Fig. 2a-c).
Despite the large ranges of the three quantities, their
root-mean-square errors (RMSEs) are relatively small, at
13.6meV/atom, 167meV/Å, and 0.98GPa, respectively.

To validate our UNEP-v1 model we consider here three
public datasets. Although the public datasets were not
computed using exactly the same DFT settings as used
for generating the UNEP-v1 training data, the result-
ing differences in force values are marginal (of the order
of a few meV/Å) and are much smaller than the force
RMSE achieved by UNEP-v1 (Fig. 2c). The comparison
moreover shows that the UNEP-v1 model trained against
1-component and 2-component structures also performs
very well for 3-component [34], 4-component [33], and 13-
component [32] structures extracted from the datasets in
the previous studies [32–34]. The testing RMSEs of the
UNEP-v1 model for these three datasets are respectively
57meV/Å, 196meV/Å, and 258meV/Å, which are com-
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FIG. 2. (a-c) Parity plots for energy, stress, and force com-
paring DFT reference data and NEP predictions for the whole
training dataset. In (c), there are three test sets containing
n-component (n ≥ 3) structures, including one up to 13 com-
ponents (Ag, Au, Cr, Cu, Mo, Ni, Pd, Pt, Ta, Ti, V, W, Zr)
taken from Lopanitsyna et al. [32] (labeled Test-1), one up
to 4 components (W, V, Ta, Mo) from Byggmästar et al. [33]
(labeled Test-2), and one up to 3 components (Cu, Pd, Ni)
from Zhao et al. [34] (labeled Test-3). (d) Distribution of the
training and test structures shown in (c) in the 2D principal
component space of the descriptor.

parable to those reported as training RMSEs in the orig-
inal publications [32–34].

As a further test, we trained a NEP model by includ-
ing relevant n-component (n ≥ 3) structures from the
Open Quantum Materials Database database [30]. The
RMSEs for the three public datasets obtained using this
NEP model are only marginally improved compared to
UNEP-v1, which demonstrates that our training dataset
with n-component (n ≤ 2) structures is already sufficient
for training a general-purpose NEP model for all the con-
sidered elements and their alloys.

As mentioned earlier, our approach to training data
generation relies on the chemical generalizability embed-
ded in the radial functions Eq. (4). This feature is il-
lustrated by a principal component analysis of the de-
scriptor space (Fig. 2d), which shows that the various
n-component (n ≥ 3) structures fall comfortably within
the space spanned by the 1-component and 2-component
training structures.

Evaluation of basic physical properties for the 16

metal elements. After having confirmed the high train-
ing accuracy of the UNEP-v1 model for 1-component and
2-component systems, and its high testing accuracy for
systems with multiple components, we conducted an ex-
tensive evaluation of the UNEP-v1 model beyond RM-
SEs, focusing on various physical properties (see Meth-
ods for details on the calculations). Elastic constants,
surface formation energies, mono-vacancy formation en-
ergies, melting point, and phonon dispersion relations
were calculated for all 16 elements, using both the UNEP-
v1 model and an EAM potential [31]. Detailed results
for phonon dispersion relations are presented in Fig. S1,
Fig. S2, and Fig. S3, while other physical properties are
listed in Table S1, Table S2, Table S3, and Table S4.
Fig. 3a-d show the parity plots comparing predictions of
various basic properties from EAM and UNEP-v1 against
DFT or experimental values. The EAM predictions have
some outliers, especially concerning surface formation en-
ergy, while the UNEP-v1 predictions do not show any
noticeable discrepancies.

The mean absolute errors for all the evaluated quan-
tities calculated by averaging the absolute error between
predicted (EAM or UNEP-v1) values and reference (DFT
or experimental) values over all 16 elements are presented
in Fig. 3e. UNEP-v1 consistently outperforms the EAM
potential for all physical properties, and demonstrates a
significant advantage in predicting surface formation en-
ergies, elastic constants, and vacancy formation energies.

We have additionally trained an ensemble of five NEP
models using K-fold cross validation with K = 5, and
compared the predictions for bulk and shear moduli as
well as volume-per-atom for the ensemble to DFT refer-
ence data to estimate the uncertainty in the model pre-
dictions (Fig. 4a-c). Generally, the deviations in the pre-
dictions across the ensemble are very small, and agree
well with the reference data. As a further illustration,
we estimated the uncertainty in the phonon dispersion
for Ag (Fig. 4d), illustrating the very small uncertainty
throughout the entire Brillouin zone.

Computational performance. The computational ef-
ficiency of a MLP is crucial for its effective applica-
tions in large-scale MD simulations. Here, the UNEP-
v1 model as implemented in gpumd exhibits excellent
computational performance (Table I). Using a single
Nvidia A100 GPU, UNEP-v1 can reach a simulation size
of about 14 million atoms and a computational speed
of 2.4× 107 atom step/s, which is only a few times lower
than that for the EAM potential (11×107 atom step/s) as
implemented in lammps [35] using the same hardware.
To reach even larger simulation sizes, we implemented
a multi-GPU version for UNEP-v1 that can effectively
use the computational power of all the GPUs available
on a computational node. With only 8 A100 GPUs, we
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FIG. 3. (a-d) Elastic constants Cij , formation energies for
{111}, {110}, and {100} surfaces γ, mono-vacancy formation
energies Ev as well as melting points Tm as predicted by the
EAM potential [31] and the UNEP-v1 model compared to
DFT or experimental values for the 16 elements. (e) Mean
absolute errors for the above four quantities as well as the
phonon frequency ω for EAM and UNEP-v1 against reference
values.

can reach a simulation size of 100 million atoms, achiev-
ing much higher computational efficiency than either the
deep potential (DP) (thousands of Nvidia V100 GPUs)
[36, 37] or Allegro (128 A100 GPUs) approaches [38].

With 8 A100 GPUs, the overall computational speed of
UNEP-v1 is about 1.5×108 atom step/s. The parallel effi-
ciency for UNEP-v1 with 8 A100 GPUs is 80%, while it is
only about 50% for EAM with 4 A100 GPUs. The speed
per GPU achieved by UNEP-v1 is significantly higher
than those for the DP [36, 37] and Allegro approaches
[38]. The excellent computational speed of UNEP-v1 al-
lows us to tackle challenging problems in multi-principal-
element alloys (MPEAs) as discussed below.

Application to plasticity of multi-principal ele-

FIG. 4. (a-c) Parity plots for NEP model versus DFT data
for bulk modulus, shear modulus, and volume per atom for
the 16 elements, with error bars computed as the standard
deviation in the predicted properties over an ensemble of five
NEP models. The error bars correspond to 2σ in the case
of (a-b) and 4σ for (c). The structures and reference DFT
data were taken from the Materials Project [29]. (d) Phonon
dispersion relations for Ag calculated using each model in the
ensemble.

ment alloys. Refractory MPEAs have emerged as
high-temperature materials, crystallizing typically in the
body-centered cubic (BCC) solid solution phase. These
alloys exhibit exceptional properties such as high duc-
tility and mechanical strength at ultra-high tempera-
ture [39–42] as well as impressive irradiation resistance
[43, 44]. However, their ductility at room temperature
is limited [45, 46]. Recent experimental observations in
alloys such as HfNbTaTiZr have revealed the presence
of numerous straight screw dislocations and a substan-
tial amount of dislocation debris [46, 47], consistent with
known behavior in BCC metals [48]. Recent MD sim-
ulations have also indicated the possible crucial role of
dislocation in the plastic flow of MPEAs [49–51]. De-
spite these insights, the complex structural and mechan-
ical properties of MPEAs remain incompletely under-
stood. Here, atomistic simulations employing accurate
and efficient MLPs can provide further insights into the
intricate behavior of these materials. Although there are
a few available MLPs limited to specific alloys [49–51],
a comprehensive general-purpose potential model capa-
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FIG. 5. (a) Mono-vacancy formation energy from UNEP-v1 and EAM compared to DFT data for an equimolar MoTaVW alloy
with 128 atoms sampled from MC-MD simulations. (b) Peierls barrier for 1/2⟨111⟩ screw dislocation migration in elemental W
(see Fig. S4 for the other three species). (c) Comparisons of UNEP-v1, EAM, and DFT results for equimolar MoTaVW alloys
sampled from various MD simulations using 256-atom supercells, including a melting process from 10 to 5000 K during 10 ns
and deformation processes up to 25% compression and stretching at 300 K.

TABLE I. Computational performance of UNEP-v1 in com-
parison with DP [36, 37], Allegro [38], and EAM (using
the GPU package of lammps [35]) for large-scale MD sim-
ulations of typical metals. The speed is given in units of
1 × 104 atom step/s/GPU. The DP results were obtained on
V100 GPUs. All other data were generated using A100 GPUs,
which offer approximately twice the computational perfor-
mance of a V100 GPU.

Model-Element # atoms # GPUs Speed
DP-Cu [36] 127 × 106 27 300 4.5
DP-Cu [37] 3400 × 106 27 300 33

Allegro-Ag [38] 100 × 106 128 260

EAM-Cu 23 × 106 1 11 000
EAM-Cu 100 × 106 4 4930

UNEP-v1-Cu 14 × 106 1 2350
UNEP-v1-Cu 100 × 106 8 1880
UNEP-v1-Ag 100 × 106 8 1720

ble of encompassing a wide range of elements and their
alloys, providing both high efficiency and accuracy and
enabling large-scale (up to millions of atoms) MD simu-
lations of BCC MPEAs, is still lacking.

In this study, our UNEP-v1 model emerges as a
promising solution, enabling large-scale MD simulations
of MPEAs with superior accuracy and efficiency. To
demonstrate its effectiveness in this context, we inves-
tigated the mechanism of plastic deformation of a Mo-
TaVW alloy under compression. Our evaluation of the
UNEP-v1 model involved comprehensive tests, includ-
ing checking the vacancy formation energies (Fig. 5a)
in equimolar MoTaVW alloys, Peierls barriers for the
1/2⟨111⟩ screw dislocation (Fig. 5b) in elemental sys-
tems, and atomic forces in melting, compressive and ten-
sile processes of equimolar MoTaVW alloys (Fig. 5c).
The results illustrate the superior performance of UNEP-
v1 compared to EAM potentials and its reliability for

studying structural and mechanical properties in large-
scale MD simulations.

After having confirmed the accuracy, efficiency and
reliability of our NEP model, we modeled an equimo-
lar BCC polycrystalline MoTaVW system containing
100 205 176 atoms and conducted MD simulations to in-
vestigate changes in dislocation density under compres-
sion. These simulations involved compressive deforma-
tion at a strain rate of 4.2×108/s (see Methods for simu-
lation details). The dislocation density decreases during
the elastic stage, reaches a minimum at the yield strain
ϵ = 6%, and gradually returns to the original level due
to enhanced densification (Fig. 6a). The dislocation den-
sity plateaus for large strains (ϵ ≥ 16%), consistent with
the behavior observed in BCC Ta [52]. It is noteworthy
that stress-strain response and dislocation density exhibit
contrasting trends under compression.

To gain deeper insight into the plastic deformation
mechanisms, we extracted the distribution of dislocation
density in snapshots of the polycrystalline MoTaVW sys-
tem at selected strains (Fig. 6b-e). Notably, all disloca-
tions are confined to grain boundaries of the polycrys-
talline system under compression, and this pattern re-
mains unchanged throughout the linear response (“elas-
tic”) region of the stress-strain curve (Fig. 6b-c). It
is worth noting that dislocations transform from other
types (labeled 1 and 2 in Fig. 6b) to 1/2⟨111⟩ ones
(Fig. 6c) in the elastic region (0–2.5%), and recover back
at the yield strain of 6% (Fig. 6d). Subsequently, during
the plastic stage (Fig. 6d-e), some of the grain boundaries
begin to emit, slip, and pin dislocations into the grains
along with boundary movement. This finding demon-
strates the significant impacts of boundary stability on
the hardness of MPEAs, as previously observed in the
study of a NiMo alloy [53].

The application of our UNEP-v1 model to the plastic-
ity of MPEAs, exemplified by MoTaVW alloy, is an im-
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FIG. 6. Dislocation density as a function of compressive
strain for equimolar polycrystalline MoTaVW alloys contain-
ing 12 grains with 100 million atoms at 300 K. (a) Strain-
induced dislocation density and stress. (b-e) Distributions of
dislocation in 20 nm thick slices at strains of (b) ϵ = 0%, (c)
ϵ = 2.5%, (d) ϵ = 6%, and (e) ϵ = 20%, respectively. Grain
boundaries are labeled by numbers for reference. The com-
pressed direction is perpendicular to the plane of view. The
1/2⟨111⟩ dislocations are depicted in green, while other dislo-
cations are shown in red.

portant demonstration for the generality and high com-
putational efficiency of our approach. Through 100-
million-atom large-scale MD simulations, we have illumi-
nated the intricate details of plastic deformation, shed-
ding light on dislocation behavior in grain boundaries.

Application to primary radiation damage in
MPEAs. Next, we demonstrate the versatility of the
UNEP-v1 model through large-scale MD simulations of
primary radiation damage in MPEAs, using again the
MoTaVW alloy system for illustration (see Methods for
details). Notably, these simulations set a new benchmark
with a record-breaking size of 16 million atoms for MLPs
in this specific type of simulations. Here, in order to accu-
rately describe interactions at extremely short distances
where large forces are at play, we incorporated a two-
body Ziegler-Biersack-Littmark (ZBL) potential [54].

FIG. 7. Defect snapshots of a cascade in a MoTaVW alloy at
(a) the peak damage state (at about 0.6 ps) and (b) the final
damage state (at 140 ps). The red and blue dots represent
interstitial atoms and vacancies, respectively.

Fig. 7a shows the defect snapshot of the peak-damage
state formed at about 0.6 ps with a primary knock-on
atom energy of 100 keV. The defect distribution stabi-
lizes after a few tens of ps. Fig. 7b shows the stable
defect distribution at 140 ps, revealing 121 residual point
defects, including vacancies and interstitial atoms. The
maximum cluster sizes for vacancies and interstitials are
15 and 11, respectively. In comparison, a previous study
[55] on elemental W at similar simulation conditions re-
ported 183 residual point defects with a maximum defect-
cluster size exceeding 200 atoms. The MPEA thus fea-
tures fewer defects and smaller defect clusters. Our simu-
lation results are consistent with the experimental study
of a similar tungsten-based refractory MPEA, which ex-
hibits exceptional radiation resistance, negligible radia-
tion hardening, and no evidence of radiation-induced dis-
location loops even at a high dose level [43].
The enhanced radiation resistance of the tungsten-

based refractory MPEAs could be attributed to the in-
creased chemical complexity, leading to cascade split-
ting, as depicted in Fig. 7a. Cascade splitting results in
the formation of smaller defect clusters and a more dis-
persed distribution of isolated (non-clustered) point de-
fects. This specific application of our UNEP-v1 model to
study primary radiation damage, through extensive MD
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simulations involving 16 million atoms, provides further
evidence for the generality and high efficiency of our ap-
proach. However, more detailed investigations are neces-
sary to comprehensively characterize and understand the
role of alloying in influencing radiation resistance.

DISCUSSION

In summary, we have developed an advanced NEP
approach capable of constructing accurate and efficient
general-purpose MLPs for numerous elements and their
alloys. Two crucial extensions have been made compared
to previous NEP versions. Firstly, we employed distinct
NNs for each species, ensuring consistent regression ca-
pacity even as the number of species grows. Secondly,
we introduced multiple loss functions to optimize differ-
ent subsets of the parameters, crucially accelerating the
training process when using evolutionary algorithms with
a large number of trainable parameters. We expect that
this concept can boost more generally the application of
evolutionary algorithms in solving complex optimization
problems.

A pivotal insight driving the success of this approach
is the recognition that chemical (species) information
can be embedded in the trainable expansion coefficients
of radial functions, dependent only on atom pairs and
basis functions. As a result, the 1-component and 2-
component structures delineate an outer boundary in de-
scriptor space, while n-component structures with n ≥ 3
represent interpolation points in this space. Leverag-
ing the exceptional interpolation capabilities of NNs,
a NEP model trained solely with 1-component and 2-
component structures performs very effectively for n-
component structures with n ≥ 3, provided the configu-
ration space has been sufficiently explored.

While the current study focuses on 16 elements, our
approach is scalable and adaptable for constructing NEP
models across the entire periodic table. The primary
challenge resides in the generation of the reference data,
typically via DFT calculations, rather than the regression
capabilities of the NEP model. Notably, our approach is
also sustainable. Starting from our existing training set
for 16 elements, one merely needs to include structures in-
volving 17 chemical compositions (one 1-component and
16 2-component systems) to form a comprehensive train-
ing set for 17 elements. This method is far more eco-
nomical than building an entirely new training set from
scratch. Beyond extending the chemical space, one can
also broaden the configuration space for existing chemi-
cal compositions, through established active-learning ap-
proaches, especially with the aid of structure searching
methods [56].

The successful applications of UNEP-v1 model in
studying plasticity and primary radiation damage in the
MoTaVW refractory MPEAs demonstrate the versatility

and robustness of the NEP4 approach in general and the
UNEP-v1 model in particular, establishing its significant
potential for in-depth explorations and insights into the
intricate behavior of complex materials such as MPEAs.
In conclusion, our study demonstrates the promise of

our approach in constructing a unified general-purpose
MLP for the periodic table with remarkable computa-
tional efficiency, taking full advantage of the embedded
chemical generalizability, the outstanding interpolation
capabilities of NNs and an advanced multiple-loss evo-
lutionary training algorithm for multiple-component sys-
tems. By successfully developing a highly accurate and
efficient MLP for a diverse range of elemental metals and
alloys, our study showcases the versatility and applica-
bility of our approach across various materials. These
advancements mark a significant leap forward in enhanc-
ing the practical applications of MLPs in materials mod-
eling, offering new opportunities for more accurate, effi-
cient and even predictive computer simulations in mate-
rials science research.

METHODS

Molecular dynamics simulations for training
structure generation. To create the initial training
structures, we used the lammps package (23 Jun 2022)
[35] to run MD simulations with cells ranging from 32 to
108 atoms. For each 1-component or 2-component sys-
tem, we ran MD simulations in the isothermal-isobaric
ensemble (zero target pressure) using the EAM potential
[31] at 9 temperatures (50, 300, 800, 1300, 1700, 2300,
3000, 4000, and 5000K), each for 2 ns. For each MD run,
we sampled 5 structures. For each structure, we made
three copies, one with a subsequent box scaling of 95%,
one with 105%, and one with 5% (random) box perturba-
tion. We also ran MD simulations at 300K with tensile
or compressing loading with a strain rate of 2×108/s for
1 to 2 ns and uniformly sampled 35 structures.

DFT calculations for reference data generation.
After preparing the initial training structures, we per-
formed quantum-mechanical calculations to obtain refer-
ence data, including the energy and virial for each struc-
ture and the force on each atom in each structure. DFT
calculations as implemented in vasp [57] were performed
to generate reference data. The INCAR file for vasp is
presented in Supplementary Note S1.
We used the projector augmented wave method [58,

59], the PBE functional [60], an energy cutoff of 600 eV ,
a Γ-centered k-point mesh with a spacing of 0.2/Å, and a
threshold of 1× 10−6 eV for the electronic self-consistent
loop. We used the blocked Davidson iteration scheme for
electronic minimization. The PREC tag in the vasp in-
put file was set to Accurate to ensure accurate forces. A
Gaussian smearing with a smearing width of 0.02 eV was
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used. The Gaussian smearing is not the best choice for el-
emental metals and their alloys but we chose this in view
of possible future extension of our approach to the whole
periodic table. Our settings can ensure a convergence of
the energy to 1meV/atom for all the materials.

The NEP training hyperparameters. We used
gpumd v3.8 to train the UNEP-v1 model, which is a
NEP4 model as introduced in this paper. The details of
the nep.in input file we used can be found in Supple-
mentary Note S2.

The cutoff radii for radial and angular descriptor parts
are 6 Å and 4 Å, respectively. For the radial descrip-
tor components, we used 7 radial functions constructed
from a linear combination of 13 basis functions. For the
angular descriptor components, we used 5 radial func-
tions constructed from a linear combination of 9 basis
functions. The descriptor vector for one element thus
has 7 + 5 × 5 = 32 components. There are 80 neu-
rons used in the hidden layer and the NN architecture
for each element can be written as 32-80-1, correspond-
ing to 2720 trainable parameters. For each pair of el-
ements, there are 7 × 13 + 5 × 9 = 136 trainable de-
scriptor parameters. The total number of trainable pa-
rameters in the UNEP-v1 model for 16 elements is thus
2720 × 16 + 136 × 162 + 1 = 78 337, where a global bias
(shifting) parameter is included. The training was per-
formed with a batch size of 5000 structures for 3 mil-
lion generations (steps), which took about ten days using
eight A100 GPUs.

Calculations of basic physical properties. To eval-
uate the reliability of the UNEP-v1 model in molecular
statics and MD simulations, we calculated a set of rele-
vant static and dynamic material properties, with a close
comparison with EAM [31], DFT (if affordable), and ex-
periments (if available). Energetics, elastic properties,
and phonon dispersion relations were calculated with the
help of gpumd-wizard, ase [61], pynep [18], calorine
[18], and phonopy [62] packages. Melting points were
calculated using the two-phase method as implemented
in gpumd [18] for UNEP-v1 and lammps [35] for EAM,
and are compared to experimental values [63]. Vacancy
formation energies were evaluated using 4 × 5 × 6 su-
percells. The formation energies of free surfaces were
evaluated with 2 × 2 × 10 supercells (taking a surface
perpendicular to z as an example here). Training of the
ensemble models with cross validation was performed us-
ing calorine. The uncertainties were estimated as the
standard deviation in the predictions over the ensemble
for the bulk and shear moduli and volume per atom.

MD simulations for plasticity of MPEAs. We
used the UNEP-v1 model to drive MD calculations of
the plasticity of MPEAs under compression using the

gpumd package [18, 19]. First, we used the Voronoi al-
gorithm implemented in atomsk [64] to build our ini-
tial MoTaVW polycrystalline MPEA model by removing
overlapping atoms at boundaries. The model is com-
posed of 12 grains with sizes ranging from 96 nm3 to
195 nm3, and contains 100 205 176 atoms which randomly
occupy a BCC lattice at equimolar ratios. The initial Mo-
TaVW model was further relaxed by MD simulations for
500 ps in the isothermal-isobaric ensemble at 300K and
0GPa using the Bernetti-Bussi barostat [65] and Bussi-
Donadio-Parrinello thermostat [66]. Finally we simulated
uniaxial compressive deformation with a constant engi-
neering strain rate of 4.2 × 108/s. The time step was
kept fixed at 1 fs. The 2D visualization of dislocations
perpendicular to the compressive axis was rendered us-
ing the ovito package [67].

MD simulations for primary radiation damage.
The MD simulations of the displacement cascade in Mo-
TaVW were performed using the gpumd package [18, 19]
with the UNEP-v1 model and a repulsive two-body ZBL-
like potential [54]. A periodic cubic simulation cell with
16 000 000 atoms was constructed by creating a random
mixture of the Mo, Ta, V, and W atoms with equimolar
ratio in a BCC crystal. We equilibrated this system in
the isothermal-isobaric ensemble for 30 ps, with a target
temperature of 300K and a target pressure of 0GPa. A
primary knock-on atom with an energy of 100 keV mov-
ing in the high-index direction ⟨135⟩ (to avoid channeling
effects) was then created at the center of the simulation
cell. Atoms within a thickness of three lattice constants
of the boundaries were maintained at 300K. The integra-
tion time step had an upper limit of 1 fs and was dynam-
ically determined so that the fastest atom could move
at most 0.015 Å (less than 0.5% of the lattice constant)
within one step. The total number of steps is 200 000,
corresponding to 140 ps. Electronic stopping [68] was
applied as a frictional force on atoms with a kinetic en-
ergy over 10 eV. We used the ovito package [67] for
defect analysis and visualization. The interstitials and
vacancies were identified by using the Wigner-Seitz cell
method. The defects were grouped into clusters: two va-
cancies were considered to be in the same cluster if the
distance between them was within the second-nearest-
neighbor distance, while the third-nearest-neighbor dis-
tance was used to identify self-interstitial clusters.

DATA AVAILABILITY

The training data and trained NEP models are
freely available at the Zenodo repository https://doi.

org/10.5281/zenodo.10081677. The high-throughput-
calculation inputs/outputs for the basic physical prop-

https://doi.org/10.5281/zenodo.10081677
https://doi.org/10.5281/zenodo.10081677
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erties are freely available at https://github.com/

Jonsnow-willow/GPUMD-Wizard.

CODE AVAILABILITY

The source code and documentation for
calorine are available at https://gitlab.

com/materials-modeling/calorine and https:

//calorine.materialsmodeling.org/, respectively.
The source code and documentation for gpumd are
available at https://github.com/brucefan1983/GPUMD
and https://gpumd.org, respectively. The source code
and documentation for gpumd-wizard are available at
https://github.com/Jonsnow-willow/GPUMD-Wizard.
The source code and documentation for pynep are
available at https://github.com/bigd4/PyNEP and
https://pynep.readthedocs.io/en/latest/, respec-
tively.
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Doak, M. Aykol, S. Rühl, and C. Wolverton, The Open
Quantum Materials Database (OQMD): assessing the ac-
curacy of DFT formation energies, npj Computational
Materials 1, 15010 (2015).

[31] X. W. Zhou, R. A. Johnson, and H. N. G. Wadley,
Misfit-energy-increasing dislocations in vapor-deposited
CoFe/NiFe multilayers, Phys. Rev. B 69, 144113 (2004).

[32] N. Lopanitsyna, G. Fraux, M. A. Springer, S. De, and
M. Ceriotti, Modeling high-entropy transition metal al-
loys with alchemical compression, Phys. Rev. Mater. 7,
045802 (2023).
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