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Local vibrational modes of Si vacancy spin qubits in SiC
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Silicon carbide is a very promising platform for quantum applications because of the extraordinary spin
and optical properties of point defects in this technologically friendly material. These properties are strongly
influenced by crystal vibrations, but the exact relationship between them and the behavior of spin qubits is not
fully investigated. We uncover the local vibrational modes of the Si vacancy spin qubits in as-grown 4H-SiC.
We apply microwave-assisted spectroscopy to isolate the contribution from one particular type of defects, the
so-called V2 center, and observe the zero-phonon line together with seven equally separated phonon replicas.
Furthermore, we present first-principles calculations of the photoluminescence line shape, which are in excellent
agreement with our experimental data. To boost up the calculation accuracy and decrease the computation time,
we extract the force constants using machine-learning algorithms. This allows us to identify the dominant modes
in the lattice vibrations coupled to an excited electron during optical emission in the Si vacancy. A resonance
phonon energy of 36 meV and a Debye-Waller factor of about 6% are obtained. We establish experimentally
that the activation energy of the optically induced spin polarization is given by the local vibrational energy.
Our findings give insight into the coupling of electronic states to vibrational modes in SiC spin qubits, which
is essential to predict their spin, optical, mechanical, and thermal properties. The approach described can be
applied to a large variety of spin defects with spectrally overlapped contributions in SiC as well as in other three-

and two-dimensional materials.

DOLI: 10.1103/PhysRevB.101.144109

I. INTRODUCTION

Since the demonstration of promising quantum properties
of intrinsic point defects in silicon carbide (SiC) [1-4], they
have been used to implement room-temperature quantum
emitters [5-9] as well as to realize quantum sensing of
magnetic fields [10-16], electric fields [17], and temperature
[10,18,19]. Particularly, silicon vacancies (Vs;) and silicon-
carbon divacancies (VV) in SiC reveal extremely long spin
coherence time [7,8,16,20-25] and hold promise to implement
quantum repeaters due to inherent spin-photon interface and
high spectral stability [26-30]. Existing device fabrication
protocols on the wafer scale in combination with three-
dimensional (3D) defect engineering [31-33] allow manu-
facturing integrated quantum devices [34—37] with electrical
[38-40] and mechanical [39,41,42] control of defect spin
qubits. SiC nanocrystals with color centers are also sug-
gested as fluorescence biomarkers in biomedical applications
[43,44].

Vacancies can be imagined as artificial atoms incorporated
into the SiC lattice. The communication with them is usually
realized through optical excitation and photoluminescence
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(PL) detection. A fingerprint of each defect at cryogenic
temperatures is the spectrally narrow emission at a certain
wavelength, the so-called zero-phonon line (ZPL) [1,9,45,46].
Unlike atoms, radiative recombination in point defects is
accompanied by phonon emission due to the interaction with
lattice vibrations. This process results in the phonon side band
(PSB), which is spectrally shifted towards longer wavelength
relative to the ZPL [47,48]. A high ratio of the emitted light
from the ZPL to the all emitted light, the Debye-Waller
(DW) factor, is necessary for the implementation of quantum
repeaters. The local vibrational energy also contributes to the
spin-lattice relaxation time 77 [24].

Although the understanding of the PSB is important for
quantum applications, it has not been investigated systemat-
ically in SiC. The previous works [49,50] are limited to the
report of the upper limit for the DW factor in a single Vg;
defect, which is below 30%—-40% depending on the crystallo-
graphic site and polytype. Most of the theoretical works are
concentrated on the spin-optical properties [51-53].

In this work, we present the measurement of the Vg; PL
spectrum in polytype 4H-SiC, consisting of the ZPL and seven
increasingly broadened phonon replicas. There are two Vg;
defects in 4H-SiC associated with different crystallographic
environments, V1 and V2 [45,54]. Here, we concentrate
on the V2 Vg; defect. We use microwave (MW)-assisted
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FIG. 1. Room-temperature and low-temperature PL from Vg; in
pristine 4H-SiC. At T = 300K, the shadow area around 970 nm
indicates the spectral resolution AA = 5.5 nm. At T = 15K, the
zero-phonon lines of two distinct V; centers, V1 (ZPL at 863 nm)
and V2 (ZPL at 918 nm), are clearly observed. The spectral resolu-
tionis AA = 1.2 nm (= 2meV).

spectroscopy and optically detected magnetic resonance
(ODMR) to clearly separate spectrally overlapped contribu-
tions from other Vg; and VV defects. This approach allows us
to unambiguously determine the V2 local vibrational energy.
To shed more light on the microscopic nature of the PSB,
we calculate the line shape using density functional theory
(DFT). The experimental line shape is very well reproduced
and concurrently also leads to close values for the DW factor
and the local vibrational energy.

II. EXPERIMENT

The samples are excited with an 808-nm laser, which is
modulated by a chopper at 20 Hz. An InGaAs detector con-
verts the PL intensity into a photovoltage, which is amplified
and read out by a lock-in amplifier. For the ODMR mea-
surements, the chopper is removed and a commercial signal
generator provides MW modulated at 20 Hz. The MW field
guided into a coplanar waveguide induces spin transitions in
the sample placed on the top of the waveguide. The modulated
APL signal is read out by a lock-in amplifier and hence
presented in meV.

The sample under study is a piece diced from a pristine
high-purity semi-insulating (HPSI) 4H-SiC wafer purchased
from Cree. It is not irradiated and contains native Vg; and
VV defects. The sample is mounted on the cold finger of a
closed-cycle cryostat and the experiments are performed in the
temperature range from 7 = 300K down to T = 15 K. To in-
crease the PL intensity at 7 = 300 K, we use a relatively wide
monochromator entrance slit of 2 mm with a corresponding
spectral resolution of 5.5 nm. At T = 15K, the entrance slit
size is reduced to 0.5 mm to improve the spectral resolution to
1.2 nm.

Typical PL spectra of the sample under study are presented
in Fig. 1. A wide emission band with the maximum at around
1.28 eV (970 nm), associated with the Vg; defects [45], is
clearly observed at 7 = 300 K. The emission band transfers
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FIG. 2. (a) Schematic representation of the V1 and V2 Vg
defects associated with different crystallographic sites in 4H-SiC,
according to [45]. (b) A scheme of the V2 spin pumping process.
The red line presents the V2 spin center excited by an 808-nm laser. It
relaxes to the ground state by two processes: radiative recombination
(solid lines) and spin-dependent relaxation through the metastable
states (MS) (dashed lines). The double arrow shows spin manipu-
lation by the MW field at 70 MHz. (c) The V2 ODMR spectrum
at room temperature and low temperature. The arrow indicates the
resonance frequency of 70 MHz at zero magnetic field. (d) The V2
ODMR contrast at 70 MHz as a function of detection energy over the
PL spectrum at room temperature.

to a series of ZPLs when the sample is cooled down to T =
15K. Two ZPLs at 1.44 eV (863 nm) and 1.35 eV (918 nm)
correspond to the V1 and V2 Vg; defects, respectively [9,45].
Several other ZPLs (labeled as PL2—-PL4) are observed in the
spectral range 1.1-1.2 eV and related to the silicon-carbon VV
defects [46].

We concentrate on the V2 Vg; defect, associated with
one of the two possible crystallographic sites in 4H-SiC
[Fig. 2(a)]. The mechanism of the zero-field ODMR as-
sociated with the Vg; defects is qualitatively explained in
Fig. 2(b). The Vg; has spin S = 3/2 in the ground state (GS)
and the excited state (ES) [5]. Optical excitation of the V2
Vs defect into the ES is followed by two processes, radia-
tive recombination to the ground state GS (solid lines) and
nonradiative spin-dependent relaxation (dashed lines) through
the metastable state (MS). Application of the resonant MW
field at 70 MHz, which is equal to the zero-field splitting
between the mg = £1/2 and mg = £3/2 states, changes the
population of these spin sublevels. It breaks the equilib-
rium between the relaxation processes resulting in nonzero
APL [10].

Figure 2(c) presents the ODMR contrast (APL/PL) as a
function of MW frequency. The PL is detected at 970 nm at
T = 300K (shaded area in Fig. 1) and at the V2 ZPL at T =
15 K. To ensure that ODMR experiments are performed under
optimum conditions, we investigate the laser power and MW
power dependencies at different temperatures. The ODMR
contrast saturates in both cases [25] and we obtain Cy,x =
0.80 £0.02% and Cyax = 0.21 £0.05% for T = 15K and
T = 300K, respectively [Fig. 2(c)]. Remarkably, the ODMR
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FIG. 3. (a) Evolution of the APL spectrum with temperature
under applied MW field at 70 MHz. (b) Temperature dependence of
the spectrally integrated V2 APL and the DW factor. The solid line is
a fit to Eq. (1) with the activation energy E4 = 39 £ 4 meV. (c) Tem-
perature dependence of the ODMR contrast APL/PL detected at the
V2 ZPL and the integrated PL. The solid line is a fit to Eq. (1) with
the activation energy E4, = 39 £ 3 meV and APL(0) replaced with
APL/PL(0).

contrast only marginally depends on the detection energy over
the PL band (1.1-1.35 eV) at room temperature [Fig. 2(d)].
This is an indication that both spin states couple to phonons
in the same way. A possible explanation is weak spin-orbit
coupling [55], but a theoretical consideration of the spin
polarization through intersystem crossing [56] involving local
vibronic states is necessary to confirm this.

Next, we analyze how the change in the V2 APL emission
induced by the MW depends on the detection wavelength.
We set the MW frequency to 70 MHz [Fig. 2(c)], and the
APL spectrum at 7 = 300K is presented in Fig. 3(a). With
decreasing temperature, the APL spectrum transfers to the
ZPL and the PSB consisting of seven equally separated
phonon replicas (Ph1 — Ph7). These spectra differ from the PL
spectrum presented in Fig. 1, which is composed of overlap-
ping contributions from different defects. Especially, the V1
and V2 PSBs are merged together, making their separation
difficult. In the APL measurements, the MW frequency of
70 MHz is in the V2 spin resonance and, therefore, only the
V2 PSB appears.

The spectrally integrated V2 APL as a function of temper-
ature is presented in Fig. 3(b). The experimental data can be
well reproduced using a single activation energy [57]:

APL(0)
1 + Cexp(—E4/kgT) "

We obtain from the best fit [solid line in Fig. 3(b)] the
activation energy E4 = 39 £ 4meV, which is equal within
the experimental uncertainty to the local vibrational energy
AEep, =37+ 4meV, as discussed hereafter. The unitless
coefficient C = 9 £ 2 is determined by the ratio of different
relaxation rates [57]. The APL is contributed by the spin
polarization and the PL intensity. In order to separate these
contributions, we plot in Fig. 3(c) APL/PL detected at the

APL(T) =

ey

ZPL and the spectrally integrated PL. The experimental data
for APL/PL can be also well fitted to Eq. (1) with the acti-
vation energy E4 = 39 &+ 3meV and APL(0) replaced with
APL/PL(0) = 0.7%. This indicates that the integrated PL
intensity of the V2 Vy; is nearly temperature independent up
to 300 K. Indeed, this is in agreement with the integrated PL of
Fig. 3(c), where a small decrease with rising temperature can
be attributed to the contribution of other defects with stronger
temperature dependence.

Figure 3(a) clearly shows the PSB extends below 1.1 eV
(above 1150 nm). Thus, the DW above 30% found in earlier
experiments [50] is definitely overestimated. Spectral integra-
tion of the experimental data in Fig. 3(a) [Fig. 4(b) shows a
zoom-in of the V2 ZPL] results in the DW factor of about
6% for T < 60K. This value should be corrected by the
spectrally dependent readout contrast. Given the APL/PL
spectral dependence of Fig. 2(d), the expected value for the
DW factor falls between 6% and 9%. The DW decreases with
temperature as shown in Fig. 3(b). As the DW factor gives the
fraction of elastic scattering, the temperature reduction can be
attributed to the thermal motion effect [58] and multiphonon
contributions.

We determine the local vibrational energy as the separation
between two adjacent phonon peaks in AEe, = 37meV as
presented in Fig. 4(a). The PSB formation is schematically
presented in Fig. 4(c). The radiative recombination between
the ES and the GS is accompanied by phonon emission.
The energy dispersion of these phonons differs from the
bulk phonon dispersion because of the broken translation
symmetry in the vicinity of the Vg; defect. In the next section,
we present detailed theoretical analysis of the local vibrational
modes.

III. THEORY

We carried out DFT calculations as implemented in VASP
[59] code to determine defect properties, configurational coor-
dinate diagrams, and vibrational modes which finally allowed
us to evaluate the PL line shape. A plane wave basis with
a cutoff energy of 450 eV was employed to represent the
electronic wave functions. All structural relaxations and the
vibrational properties were calculated using the PBEsol [60]
exchange-correlation functional. The geometry optimization
continues until the energy differences and ionic forces are
converged to less than 107°eV and 0.01 eV/A, respectively.
The PL line shape is calculated using the approach described
in Ref. [48] and described in more detail below, which
requires evaluation of the phonon spectra of the defective
systems, but obtaining converged spectra requires large super-
cells that are computationally very demanding. Here, to speed
up phonon calculations, the HIPHIVE [61] package was used
to extract interatomic force constants (IFCs). Second-order
IFCs were constructed using the recursive feature elimination
optimizer by including pairs and triplets up to 4.2 and 3.6 A,
respectively. The modeled IFCs result in the validation root-
mean-squared error of 13 meV/A. The phonon frequencies
and eigenvectors were finally assessed using PHONOPY soft-
ware [62]. To adjust the energy scales, i.e., the band gap and
the position of the defect levels within, we additionally used
HSEOQ6 [63] to calculate total energies and Kohn-Sham levels.
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FIG. 4. (a) Low-temperature (T = 15K) APL of V2 as a function of the detection wavelength at the MW frequency of 70 MHz. The
vertical axis for PL is the lock-in voltage of the modulated photodiode signal. The V2 ZPL (at 1.35 eV) and PSB are clearly resolved. The local
vibrational energy read from two adjacent peaks is AE.,, = 37 meV. The dashed line represents the calculation of the V2 PSB as described in
the text. (b) Zoom-in of the V2 ZPL. (c) A configuration coordinate diagram for the V2 phonon modes. The blue arrows show transitions from

the ES to different vibrational levels of the GS.

The HSE functional has been shown to reproduce intradefect
transition energies very well [64]. The calculated band gap of
3.25 eV is in excellent agreement with the experimental gap
of 3.2 eV [65].

Theoretically, the determination of the average numbers of
active phonons during the optical transition for mode A with
frequency w; is given by the unitless partial Huang-Rhys (HR)
factor S, defined as [48,66]

5. =~ AQ? 2
A= ﬁ(}))L Q}L, ( )

where
AQ =) VMl Rew —Ryo) - wil. 3)

Here, u, indicates the normalized displacement vector cor-
responding to mode A, and m, is the mass of atom a. R,
and R, are the atomic coordinates in the ground and excited
states. Thus, AQ, describes whether the vibrational mode is
parallel to the change in the atomic coordinates. The funda-
mental spectral density of electron-phonon coupling can be
determined as

Sy _ Go—iw,?

e @)

S(hw) ~ ;Gﬁ

where a broadening parameter o = 5meV is considered. It is
worth mentioning that we assume the vibrational modes in the
ground state and the excited state to be identical, and we use
in Eq. (3) the u evaluated in the ground state. Once S(fiw) is
calculated, we make use of the method of generating function
[48,67] to derive the optical absorption spectrum

A 3 400 )
L(hw) = % / g(t)e dt, (5)

where the prefactor A is the normalization constant and

g() = &OSO (©)

is the generating function, where S(¢) is defined by
1 A
S@t) = 3 / d(hw)e ' S (hw). @)

We modeled the Vyg; defect in a large 400-atom supercell
using 2 x 2 x 2 meshes for k-point sampling. The V2 defect
is considered as Vg; at the £ site [45], in the —1 charge state,
and with spin S = 3/2 [5]. The HSEO6-calculated Kohn-

1y o
V2§ °
i c
_e_ W 35y 1.28 eV
ot - 4 i
2 e
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VVWVWVW
@Qq @Q.

Configuration coordinate

FIG. 5. (a) The arrangement of electronic states before (Q,) and
after (Q,) excitations calculated using HSEQ6 functional. The states
(dark lines) filled by electrons represented by arrows for spin-up and
-down. The hollow circle denotes hole. (b) A schematic configuration
coordinate diagram for the GS and ES showing the energy scale for
different transitions.
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Sham levels are shown in Fig. 5(a), indicating that the V2
defect introduces several electronic states deep in the band
gap. The lowest energy electron configuration has the high-
spin state with three unpaired electrons (S = 3/2). We model
the excitation by moving spin-down electrons from the highest
occupied to the first unoccupied electronic state, which is
achieved by fixing the occupations of the relevant states in the
DFT calculations. In the excited state, the two states related
to the excitation become closer while others remain the same.
From the DFT-calculated total energies we can readily extract
the configuration coordinate diagram, as shown in Fig. 5(b).

We note that the potential energy curve is calculated using
PBEsol, but the ZPL energy difference [E(Q,) — E(Q.)] is
obtained using HSE06. The emission energy of 1.28 eV and
the ZPL of 1.35 eV are in excellent agreement with the
experimental values (the former corresponding to the PSB
maximum). Introduction of the V2 defect also leads to expan-
sion of the lattice by Aa = 0.083% and Ac = 0.077%.

The defects can induce new vibrational modes, which are
either resonant or antiresonant with vibrational modes of
the host crystal. To map the vibrational modes on the same
Brillouin zone as for the pristine SiC, the unfolded phonon
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FIG. 6. (a) Pristine SiC phonon dispersion curves and the unfolded phonon curves of defective SiC along high-symmetry directions.
(b) Electron-phonon spectral function accompanied by partial Huang-Rhys factors. (c) The calculated partial PSB in the energy range of
1.0-1.35 eV. (d) Schematic representations of atomic displacements of E;, TA(M), D;, and D, modes. Blue and green balls denote silicon and
carbon atoms, respectively. Arrows are proportional to the displacements and come from the real part of the eigenvectors at the I point. The

defect site is shown by a red circle.
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dispersion curve is illustrated in Fig. 6(a). We find that (i) the
phonons between 20—40 meV and 90-110 meV are disturbed
by the defects, but still follow the dispersion of the bands
seen in the pristine system, and (ii) four localized vibrational
modes (flat bands) appear at energies 73.45, 74.4, 111.47,
and 112.8 meV. To find active phonons during the emission
process, the electron-phonon spectral function is calculated
as shown in Fig. 6(b). Our calculation predicts that the PSB
can be produced by a mix of about four phonon replicas:
the double-degenerate Raman-active E; mode with energy
31.3 meV, the M-point transverse acoustic phonon active
at 35.3 meV, and two defect modes appearing at energies
73.45 and 74.4 meV, denoted as D; and D, respectively.
As illustrated in Fig 6(d), in D; defect mode atoms up to
second-nearest silicon neighbors from the vacancy center
move, while for the D, case, vibration is more intense and
partially includes third-nearest silicon atoms.

The partial HR factor (S;) is the average number of phonon
A emitted during an optical transition. We predict the total HR
factor § = 2.785, which corresponds to the average number
of phonons emitted during an optical transition. As a result,
the weight of the ZPL (DW factor) defined by wzp; = e™5
is 6.17%, which is close to our measured value. As was
illustrated in Fig. 4(a), our prediction for the PL line shape is
in full agreement with the experiments. The PSB with seven
peaks falls off at around 1.1 eV.

Following the analysis of vibrational modes, both bulk
and defect phonons should contribute to the PSB. To get
more insight into line shape, we calculate the partial PSB
line shape. To do this, we include phonons up to a specific
energy in S(/iw). The phonon energy (E,y) is chosen based on
the values of partial HR factors. In this way, we can assess
the contribution of different phonons to the total line shape.
As seen in Fig. 6(c), the first peak shape is completed by
adding phonons up to 50 meV, but it quickly vanishes at lower
energies. At this range of energy we have bulk phonons. The
position of the first peak is at 36 meV lower than the ZPL,
which is in agreement with the experiments. The comparison
of the Ey, < 66meV and full PL curves indicates that a
little more than half of the second phonon peak intensity at
1.275 eV (75 meV below the ZPL) arises from two-phonon
or higher-order processes, while a little less than half of the
peak intensity comes from one-phonon processes with Epy.
Furthermore, the defect-induced phonons at around 74 meV
are crucial in shaping the second and higher phonon peaks of
the optical emission spectrum at low temperature.

IV. DISCUSSION AND CONCLUSIONS

Though the DW factor of 40% and 30% was reported
for the V1 and V2 Vyg; defects, respectively [49,50], the
actual value is smaller due to the low detection efficiency
at longer wavelengths of the PSB. We experimentally esti-
mated the lower bound for the DW factor of 6%—-9%. On
the other hand, the calculations also yielded the DW factor

of about 6%, which suggests that the real value is indeed
in this range. Though this value is at least by a factor of 2
larger than that of the nitrogen vacancy defect in diamond
[48], coupling to an optical resonator is necessary to realize
quantum repeaters [68]. The vibrational energies of 37 and
36 meV from experiments and calculations, respectively, are
also in close agreement. This is an important parameter, which
determines at which temperature the phonon-assisted spin-
lattice relaxation mechanism associated with local vibrational
modes is activated [24].

To summarize, we have investigated the local vibrational
structure of the V2 Vg; defect in a HPSI 4H-SiC wafer. The
MW-assisted spectroscopy has enabled us to clearly separate
the spectrally overlapped contribution from other intrinsic
defects. We have found the resonant vibrational energy to
be 36 meV and have estimated the lower bound for the DW
factor to be 6%. We have applied DFT-based methodology to
calculate and analyze the PL line shape. Besides that, we have
established that the contribution to the optical emission pro-
cess is narrowed down to dominant bulk and defect-induced
phonons. All together, the perfect agreement between the ex-
perimental data and the theoretical calculations shows that our
approach can be applied to a large number of highly promising
optically addressable spin qubits in all stable SiC polytypes,
including vacancies [3], divacancies [69], and transition metal
color centers [70,71]. It is especially important when the
spectral contribution from different defects is overlapped and
cannot be separated otherwise. The interaction of local vi-
brational modes with point defects allows us to understand
the spin, optical, mechanical, and thermal properties of these
defects. This is crucial for designing defect spins for quantum
technologies. We believe that our results present considerable
interest for the experimental research of defect-related spin-
vibrational properties, while the developed techniques should
become an important tool to study a large variety of defects
in wide-band-gap semiconducting bulk and two-dimensional
materials [72].

Note added. Recently, we became aware of similar research
into the vibronic states of the silicon vacancy qubits in SiC
[73]. This work applies other experimental and theoretical
methods to arrive at an estimate of the DW factor very similar
to the estimate in this paper, which speaks in favor of the
validity of both approaches.
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