
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Lawrence Livermore National Laboratory]
On: 3 January 2010
Access details: Access Details: [subscription number 917170118]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Philosophical Magazine
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713695589

Composition-dependent interatomic potentials: A systematic approach to
modelling multicomponent alloys
B. Sadigh a; P. Erhart a; A. Stukowski b; A. Caro a

a Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA
b Institut für Materialwissenschaft, Technische Universität Darmstadt, Germany

Online publication date: 01 December 2009

To cite this Article Sadigh, B., Erhart, P., Stukowski, A. and Caro, A.(2009) 'Composition-dependent interatomic potentials:
A systematic approach to modelling multicomponent alloys', Philosophical Magazine, 89: 34, 3371 — 3391
To link to this Article: DOI: 10.1080/14786430903292373
URL: http://dx.doi.org/10.1080/14786430903292373

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713695589
http://dx.doi.org/10.1080/14786430903292373
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Philosophical Magazine
Vol. 89, Nos. 34–36, 1–21 December 2009, 3371–3391

Composition-dependent interatomic potentials: A systematic

approach to modelling multicomponent alloys

B. Sadigha, P. Erharta, A. Stukowskib and A. Caroa*

aCondensed Matter and Materials Division, Lawrence Livermore
National Laboratory, Livermore, CA; bInstitut für Materialwissenschaft,

Technische Universität Darmstadt, Germany

(Received 15 July 2009; final version received 27 August 2009)

We propose a simple scheme to construct composition-dependent
interatomic potentials for multicomponent systems that, when superposed
onto the potentials for the pure elements, can reproduce not only the heat
of mixing of the solid solution in the entire concentration range but also the
energetics of a wider range of configurations including intermetallic phases.
We show that an expansion in cluster interactions provides a way to
systematically increase the accuracy of the model, and that it is straight-
forward to generalise this procedure to multicomponent systems.
Concentration-dependent interatomic potentials can be built upon almost
any type of potential for the pure elements including embedded atom
method (EAM), modified EAM, bond-order, and Stillinger–Weber type
potentials. In general, composition-dependent N-body terms in the total
energy lead to explicit (Nþ 1)-body forces, which potentially render them
computationally expensive. We present an algorithm that overcomes this
problem and that can speed up the calculation of the forces for
composition-dependent pair potentials in such a way as to make them
computationally comparable in efficiency and scaling behaviour to
standard EAM potentials. We also discuss the implementation in Monte
Carlo simulations. Finally, we exemplarily review the composition-
dependent EAM model for the Fe–Cr system.

Keywords: empirical potentials; multicomponent alloys; concentrated
alloys; computer simulations; molecular dynamics; Monte Carlo; composi-
tion dependent interatomic potentials; cluster interactions

1. Introduction

Twenty-five years ago, the Finnis–Sinclair many body potential [1], the embedded
atom model of Daw and Baskes [2], the glue model of Ercolessi and Parrinello [3],
and the effective medium theory due to Puska, Nieminen and Norskov [4,5] marked
the birthday of modern atomic scale computational materials science, enabling
computer simulations at the multimillion atom scale to become routine in modern
materials science research. This family of many body potentials shares in common
the fact that the expression for the total energy has nonlinear contributions of pair
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functions, removing in this way the limitations of the pair potential formulation to
describe realistic elastic properties.

Alloys and compounds, where the thermodynamic information is of relevance, is
one of the main fields in which these potentials have been applied. In the early days
of many body potentials, the main alloy property fitted was the heat of solution of a
single impurity [6], i.e. the dilute limit of the heat of formation (HOF) of the alloy.
However, when these potentials are applied to concentrated alloys, the predictions
are usually uncontrolled; they work well for systems with a mixing enthalpy that is
positive over the entire concentration range and is not too skewed, as for example in
the cases of Fe–Cu [7,8], or Au–Ni [6,9,10].

Alloys which show a strong asymmetry or even a sign inversion in the HOF such
as Fe–Cr or Pd–Ni are beyond the scope of standard many body potential models,
and there is not yet a unique methodology suitable for their description. Similar
limitations apply with respect to systems with a negative HOF, which feature
intermetallic phases. Frequently, such systems require different parametrisations for
different phases, as in the case of Ni–Al with the B2 phase on one hand [11], and the
� and � 0 phases on the other [12].

Two schemes have been developed to deal with these shortcomings in the case of
Fe–Cr which displays an inversion in the HOF as a function of concentration,
namely the composition-dependent embedded atom method (CD-EAM) [13] and the
two-band model (2BM) [14]. For neither one of these schemes, is it obvious how it
can be extended to more than two components.

The objective of this paper is to develop a framework for constructing interatomic
potential models for multicomponent alloys based on an expansion in clusters of
increasing size that can be practically implemented and systematically improved.
Our methodology allows us to describe systems with arbitrary heat of mixing curves
and includes intermetallic phases in a systematic and physically meaningful fashion.
Thereby, we overcome the most important disadvantages of current alloy potential
schemes and provide a framework for systems of arbitrary complexity.

In our methodology, the interatomic interactions are modified by composition-
dependent functions. This introduces a dependence on the environment which is
somewhat reminiscent of the bond-order potential (BOP) scheme developed by Abell
and Tersoff [15–17]. In this formalism, the attractive pair potential is scaled by a
(usually) angular dependent function (the ‘bond-order’) which describes the local
structure. Thereby, it is possible to distinguish different lattice structures (face-centred
cubic, body-centred cubic, cubic diamond, etc.) and also to stabilise structures with
low packing density such as diamond or zincblende lattices. (In fact, the BOP
formalism has been successfully applied to model alloys such as Fe–Pt that feature
intermetallic phases with different lattice structures [18].) The composition-dependent
interatomic potential (CDIP) scheme introduced in the present work and the BOP
formalism thus both include explicit environment-dependent terms. However, in the
CDIP approach this environment-dependence is used to distinguish different chemical
motifs, while in the BOP scheme it is used to identify different structural motifs.

This paper is organised as follows: In Section 2.1 we introduce the basic
terminology and present a systematic approach to fitting potentials for binary
systems. Section 2.2 describes how, by including higher order terms, it is possible to
fit, e.g. intermetallic phases. In Section 3.1 a series expansion is developed which
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generalises the concepts introduced in the previous sections and which is used in
Section 3.2 to obtain explicit expressions for a ternary system. The efficient
computation of forces is discussed in Section 4 and an optimal implementation in
Monte Carlo simulations is the subject of Section 5. Finally, as an example,
the composition-dependent embedded atom method potential for Fe–Cr is reviewed
in Section 6.

2. Binary systems

2.1. Pair potentials

For the sake of clarity of the following exposition, we assume EAM models
throughout this paper. It is important to stress that the formalism to be developed
hereafter can be applied to any potential model for the pure elements including
modified embedded atom method (MEAM) [19,20], bond-order [15–17], and
Stillinger–Weber type [21] potentials.

Consider a single-component system of atoms A, whose interactions are
described by the EAM model,

EA ¼
X
i

UA �ið Þ þ
1

2

X
i

X
j

�A rij
� �

with �i ¼
X
j6¼i

�ðrijÞ: ð1Þ

The first term in Equation (1) contains the embedding function UAð�iÞ, which is a
nonlinear function of the local electron density �i around atom i. It accounts for
cohesion due to band formation in the solid state and is constructed to reproduce the
equation of state of system A. The second term represents the remainder of the
interaction energy. It can be interpreted as the effective screened Coulomb
interaction between pairs of ions in A. The EAM formalism can capture the
energetics associated with density fluctuations in the lattice and has been successfully
applied for modelling the formation of crystal defects such as vacancies, interstitials
and their clusters.

Consider now a binary system, where the pure phases are described by EAM
potentials. It can be shown that the total energy expression for this type of potential
is invariant under certain scaling operations [22]. This ‘effective pair format’ can be
used to rescale the two EAM potentials, e.g. such that at the equilibrium volume for
a certain lattice the electron density is 1, to ensure their compatibility. One part of the
total energy of the two-component system can be written as the superposition of the
respective embedding terms and effective pair interactions:

E0 ¼
X
i2A

UA �
A
i þ �AðBÞ�

B
i

� �
þ
1

2

X
i2A

X
j2A

�A rij
� �

þ
X
i2B

UB �
B
i þ �BðAÞ�

A
i

� �
þ
1

2

X
i2B

X
j2B

�B rij
� �

, ð2Þ

where

�Si ¼
X

j2S, j6¼i

�SðrijÞ: ð3Þ
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Note that above we have not yet added any explicit A�B interactions. Equation (2)
is a strict superposition of the interatomic potentials for the pure elements with the
only caveat that the electron density of the A(B) species in the embedding function of
a B(A) particle is scaled with a parameter �B(A) in order to account for the different
local electron densities. Thereby, two EAM models can be calibrated with respect to
each other. More elaborate schemes are possible, e.g. one can treat �A and �B as free
parameters. Here for the sake of simplicity, we restrict ourselves to normalised
electron densities.

Starting from a parametrisation for E0, we now devise a practical scheme for
systematically improving the interaction model. Let us denote the true many-body
energy functional of the binary system by Et. Our goal is to construct an interatomic
potential model for the difference energy functional DE (0)

¼Et�E0. We begin with
the two dilute limits. Consider a lattice of A particles and substitute the atom residing
in the i-th site with a B atom. Let us now assume that DE (0) for this configuration can
be satisfactorily represented by a pair potential between the A�B pairs. In this limit,
DE (0) can thus be written as

DE ð0ÞðA� richÞ ¼
X
j2A

VA
ABðrijÞ: ð4Þ

(There is only one sum in this expression since we are dealing with a configuration
that contains only one B atom.) A similar expression is obtained for the B-rich limit

DE ð0ÞðB� richÞ ¼
X
j2B

VB
ABðrijÞ: ð5Þ

Since we do not require the pair potential models for the two dilute limits to coincide
with each other, an interpolation is needed which preserves the energetics of the
impurities. The main objective of the present paper is to devise such an interpolation
scheme. The simplest ansatz for such an expression is

DE ð0Þ ¼
X
i2A

X
j2B

xAij V
A
ABðrijÞ þ

X
i2A

X
j2B

xBijV
B
ABðrijÞ: ð6Þ

Above, xSij denotes the concentration of species S in the neighbourhood of an A�B
pair residing on the i and j sites. Ideally, we require this quantity to be easy to
calculate and to be insensitive to the local density and topology, in other words it
should separate chemistry from structure. In any case, xSij has to represent an average
over the neighbourhood of both centres i and j. Before we derive the expression for
xSij , it is instructive to discuss the corresponding one-centre quantity xSi . It describes
the local concentration of species S around atom i. A simple way to determine xSi is
to choose a local density function �(rij) and then to evaluate the following expression:

xSi ¼

P
ð j2S, j6¼iÞ �ðrijÞP

j 6¼i �ðrijÞ
¼
� Si
�i

, ð7Þ

which is indeed rather insensitive to the local geometry. This is most obvious in the
dilute limits. The local concentration xSi at the site of an impurity atom i is either zero
(if S is theminority species) or one (if S is themajority species) independent of the local
structure. This is, however, strictly true only for the impurity atom. For the other
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atoms in the system, xSj varies between zero and one depending on the distance to the
impurity atom. Also for these particles, atomic displacements may change the value of
xSj . A total decoupling of chemistry and structure is therefore not possible. The
optimal choice for �(rij) is the function that minimises the effect of local geometry
on xSi . Although it is possible to choose different �-functions for the different species,
we do not expect the quality of the final potential to depend crucially on the choice
of �(rij). In fact, we expect the best choice for �(rij) to be the simplest one.

It is now straightforward to extend Equation (7) to define the concentration xSij
in the neighbourhood of a pair of atoms residing on sites i and j. To this end, we first
define a quantity xSið j Þ to represent the concentration of the species S in the
neighbourhood of atom i, excluding atom j:

xSið j Þ ¼

P
ðk2S, k6¼i, k6¼j Þ �ðrikÞP
ðk 6¼i,k6¼j Þ �ðrikÞ

¼
� Si � �ðS, tj Þ�ðrijÞ

�i � �ðrijÞ

¼ xSi

1� �ðrijÞ=�
S
i

1� �ðrijÞ=�i
tj ¼ S

1

1� �ðrijÞ=�i
tj 6¼ S,

8>><
>>: ð8Þ

where ti denotes the type of atom i, and �(ti, tj) is 1 if ti¼ tj and zero otherwise. Using
this quantity, the two-centre concentration xSij can be defined as follows:

xSij ¼
1

2

�
xSið j Þ þ xSj ðiÞ

�
: ð9Þ

Hence, the two-centre concentration of the species S about the atom pair (i, j) is the
average concentration in the two separate neighbourhoods of sites i and j excluding
both of these atoms. This definition, which is illustrated in Figure 1, has the
important advantage that the interpolation scheme introduced in Equation (6) does
not modify the interactions in the dilute limits, since xSij is strictly zero or one in the
two limits, irrespective of the local structure. Furthermore, it is straightforward to
generalise Equation (9) to multicentre concentrations. For example, in the next
section, we will explicitly discuss the construction of interatomic potentials using
three-centre concentrations.

=x 1
5
8

x =2
7
8

x =1
3
8

x =
1
82

5
7

1
7

6
7

2
7

x 1(2)

x 2(1)

x 1(2)

x 2(1)

=

=

=

=

1

2

Cutoff for atom 2 

Cutoff for atom 1 

x 12 =
1
2 ( x 1(2)+ x 2(1) )

x 12 =
1
2 ( + )x 2(1)x 1(2)

=
3
14

=
11
14

= 0.214

= 0.786

Figure 1. Schematic illustration of the connection between xSi and two-centre concentrations
xSij and their computation in a binary alloy according to Equations (7) and (8). Here, the cutoff
function �(r) which appears in Equation (7) is assumed to be a step function, which is one for
r5rc and zero otherwise.

Philosophical Magazine 3375

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
a
w
r
e
n
c
e
 
L
i
v
e
r
m
o
r
e
 
N
a
t
i
o
n
a
l
 
L
a
b
o
r
a
t
o
r
y
]
 
A
t
:
 
1
9
:
1
6
 
3
 
J
a
n
u
a
r
y
 
2
0
1
0



Let us now revisit Equation (6). As mentioned earlier this is the simplest ansatz

for DE (0) that can reproduce the energetics of both dilute limits. A more general

expression is

DE ð0Þ ¼
X
i2A

X
j2B

hAABðx
A
ij ÞV

A
ABðrijÞ þ

X
i2A

X
j2B

hBABðx
B
ij ÞV

B
ABðrijÞ, ð10Þ

where hBAðxÞ and hAB are nonlinear functions with the property hBAð0Þ ¼ hABð0Þ ¼ 0 and

hBAð1Þ ¼ hABð1Þ ¼ 1. By fitting these functions to the energetics of the concentrated

alloys, the quality of the interatomic potential model for the binary can be improved

dramatically.
In principle, one can stop here and have an interatomic potential model,

E0þDE (0), that can reproduce the energetics of the dilute limits as well as the solid

solution of the binary. It is, however, also possible to further refine the above model.

For this purpose, let us again define a difference energy functional

DE ð1Þ ¼ Et � E0 � DE ð0Þ, ð11Þ

and construct an interatomic potential model for the energy functional DE (1).

Consider a lattice of A particles and substitute two atoms, say i and j, with B

particles. Assume that DE (1) for this configuration can be well represented by a

potential model describing the interaction of the B–B pair with a lattice of A

particles. In this limit, we can express DE (1) as

DE ð1ÞðA� richÞ ¼ VA
BBðrijÞ þ

X
k

VA
BBAðrijkÞ, ð12Þ

where rijk is shorthand for the three sets of positions of the i, j and k atoms, i.e.

{ri, rj, rk}. In the same way, we obtain for the B-rich limit

DE ð1ÞðB� richÞ ¼ VB
AAðrijÞ þ

X
k

VB
AABðrijkÞ: ð13Þ

Note that DE (1) has both a two-body and a three-body component and thus can be

decomposed as follows:

DE ð1Þ ¼ DE ð1Þpair þ DE ð1Þtriplet: ð14Þ

In the next section, we discuss how to incorporate the three-body contribution into

the interatomic potential model. For now, we only consider DE ð1Þpair. Following the

same line of arguments that lead to Equation (10), we obtain the expression

DE ð1Þpair ¼
X
i2B

X
j2B

hABBðx
A
ij ÞV

A
BBðrijÞ þ

X
i2A

X
j2A

hBAAðx
B
ij ÞV

B
AAðrijÞ, ð15Þ

which reproduces the contributions of the pair terms in the two limits given by

Equations (12) and (13). The two nonlinear functions have to fulfil the conditions

hBAAð0Þ ¼ hABBð0Þ ¼ 0 ð16Þ

hBAAð1Þ ¼ hABBð1Þ ¼ 1: ð17Þ

By fitting the functions hBAA and hABB in the intermediate concentration range to the

energetics of the concentrated alloy, one can obtain a further improvement for the

interaction model for the binary system.
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2.2. Beyond pair potentials

In this section, we show that the formalism introduced in the previous section can be

extended to multibody interaction potentials, which enables us to capture the

energetics of a wider range of phases including ordered compounds. In the previous

section, we outlined a scheme to construct composition-dependent pair potentials for

the potential energy landscape E0þDE (0)
þDE (1). It was also observed that a proper

formulation of DE (1) requires incorporation of explicit three-body terms. In this

section, we describe how to construct such composition-dependent multibody

potentials.
First, we require an interpolation scheme to connect the two limits of the three-

body term DE ð1Þtriplet in Equation (14). The simplest ansatz for such an expression is

DE ð1Þtriplet ¼
X
i2B

X
j2B

X
k2A

xAijkV
A
BBAðrijkÞ þ

X
i2A

X
j2A

X
k2B

xBijkV
B
AABðrijkÞ, ð18Þ

where xSijk denotes the concentration of species S in the neighbourhood of the triplet

residing on sites i, j and k. In analogy with the derivation of the two-centre

concentration (Equation 9), we start from the one-centre concentration xSi and

define the intermediate quantity xSi ð jkÞ that represents the concentration centred

around atom i, excluding atoms j and k

xSið jkÞ ¼

P
ðl2S,l6¼i,l 6¼j,l6¼kÞ �ðrilÞP
ðl6¼i,l 6¼j,l6¼kÞ �ðrilÞ

¼
� Si � �ðS, tj Þ�ðrijÞ � �ðS, tkÞ�ðrikÞ

�i � �ðrijÞ � �ðrikÞ
ð19Þ

¼ xSi
1� �ðS, tj Þ�ðrijÞ þ �ðS, tkÞ�ðrikÞ

� �
=� Si

1� �ðrijÞ þ �ðrikÞ
� �

=�i
, ð20Þ

and now following the same line of arguments leading to Equation (9) we define the

three-centre concentration xSijk as follows:

xSijk ¼
1

3
xSið jkÞ þ xSj ðikÞ þ xSkðij Þ

� �
: ð21Þ

A graphical illustration of the computation of this quantity is given in Figure 2. The

three-centre concentration of the species S about the triplet (i, j, k) is the average

concentration (excluding the triplet) in three separate neighbourhoods, each of which

is centred at one of the atoms in the triplet. Thanks to this definition, xSijk is strictly

zero or one in the two dilute limits described in Equations (12) and (13), irrespective

of the local structure. Hence, the interpolation scheme in Equation (18) does not

alter the interactions in Equations (12) and (13). Again, as in Equation (10), we can

improve the simple interpolation scheme in Equation (18)

DE ð1Þtriplet ¼
X
i2B

X
j2B

X
k2A

hABBAðx
A
ijkÞV

A
BBAðrijkÞ þ

X
i2A

X
j2A

X
k2B

hBAABðx
B
ijkÞV

B
AABðrijkÞ, ð22Þ

where hABBA and hBAAB are nonlinear functions that can be fitted to the energetics of

the concentrated alloys with the boundary conditions

hABBAð0Þ ¼ hBAABð0Þ ¼ 0 and hABBAð1Þ ¼ hBAABð1Þ ¼ 1: ð23Þ
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Following this scheme, composition-dependent cluster interactions of arbitrary order
can be included in the interatomic potential model. To summarise, to incorporate
cluster interactions of order n, two cluster potentials are constructed, one for the
configuration where the cluster is embedded in the A lattice and one for the
configuration where the cluster is embedded in the B lattice. Subsequently, these
limits are interpolated using the n-centre concentrations. In the next section, we
review this strategy in detail to show that a systematic series expansion in
composition-dependent cluster interactions is possible for general multicomponent
systems.

3. Multicomponent systems

3.1. Series expansion in embedded cluster interactions

In the first sections of this paper, we have shown how to practically construct
interatomic potentials for binary systems. First, mixed interatomic pair and triplet
potentials are generated for the dilute limits which are subsequently extended to
arbitrary concentrations by fitting interpolation functions that depend on the local
concentration about the atomic pairs and triplets. The choice of specific potentials
and dilute configurations was mainly driven by physical intuition. In this section, we
show that this procedure can be formalised and generalised to arbitrarily complex
systems with more than two components.

Consider an n-component mixture of N particles that are distinguishable only
through their species. Assign a unique colour to each of the species: {C1, . . . , Cn}.
We define a colour cluster of order m to be a set of m particles with a specific colour
combination. We use the occupation number formalism to identify colour schemes,
i.e. ðCk11 , . . . , Cknn Þ, where ki is the number of particles in the cluster with colour Ci, andP

iki¼m. For example, a cluster of order 3 consisting of one particle with the colour
C1 and two particles with the colour C3, is denoted by ðC1, C

2
3Þ. Furthermore,

we define an S-embedded colour cluster of order m to be a set of m coloured particles
embedded in a pure matrix of species S. Three examples of such S-embedded
coloured clusters are shown in Figure 3. The key idea is that the potential energy

x =1

x = 0
83

x = 1
82

3
8

x =3

x =2

= 5
8
7
8
8
8

x1

=

=

=

=

=

=

x1(23)

x3(12)

x2(13)

x3(12)

x2(13)

x1(23)

0
7

1
7

1
6

7
7

6
7

5
6

= 0.10313
126

113
126 = 0.897

1

2

Cutoff for atom 2 

3

Cutoff for atom 3 

x123 = 1
3 (x1(23)+x2(13) =)+x3(12)

x123 = 1
3 (x1(23)+x2(13) =)+x3(12)

Figure 2. Schematic illustration of the computation of three-centre concentrations in a
binary alloy using Equations (7) and (21). Here, the cutoff function �(r) which appears in
Equation (7) is assumed to be a step function, which is one for r5rc and zero otherwise.
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landscape of an alloy can be expanded in the basis set of elementary interaction

potentials, each of which is constructed to reproduce the energetics of a particular

embedded colour cluster. The order of an interaction element in the series is

determined by the order of the corresponding colour cluster. By progressively

including higher order colour cluster interactions, one can systematically increase the

accuracy of the model.
To recapitulate, we expand the potential energy landscape of multicomponent

systems in the basis set of colour cluster interatomic potential functions VS
C
k1
1

...Cknn
ðfrgÞ,

where {r} is the real-space configuration of the respective cluster. The expansion

coefficient for each basis function is the interpolation function hS
C
k1
1

...Cknn
ðxSÞ, where

xS is the local concentration of the species S in the neighbourhood of the cluster.

One of the innovations in this work is a simple and computationally expeditious way

to determine xS, which is illustrated for the case of a ternary alloy in Figure 4.

Formally, the total energy expression for an alloy of n components and N particles

can be written as

E ¼ E0 þ
X
m

X
k1

. . .
X
kn|fflfflfflfflfflffl{zfflfflfflfflfflffl}Pn

i¼1
ki¼m

X
S

hS
C
k1
1

...Cknn
ðxSÞVS

C
k1
1

...Cknn
ðfrgÞ,

ð24Þ

where the first sum is over the order of the cluster potentials and the subsequent sums

are over all distinguishable colour combinations of m-size clusters. Each term in the

above expansion can be evaluated as follows:

hS
C
k1
1

...Cknn
ðxSÞVS

C
k1
1

...Cknn
ðfrgÞ ¼

XN
i1¼1

. . .
XN
im¼1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

fi1...img2fC
k1
1

...Cknn g

hS
C
k1
1

...Cknn
ðxSi1...imÞV

S

C
k1
1

...Cknn
ðri1...imÞ:

ð25Þ

The sums in Equation (25) are over all possible m-size atom clusters {i1 . . . im} in the

system with the colour scheme ðCk11 , . . . , Cknn Þ.

Figure 3. Schematic illustration of S-embedded coloured clusters of orders 2, 3, and 4 in a
ternary alloy. The shaded region indicates the cutoff range around the central atom marked by
an asterisk.
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The main advantage of this scheme is that the basis functions can be constructed

sequentially and independently of the interpolation functions. The lower order terms

can be constructed with no knowledge of the higher order terms and therefore need

not be reparametrised when higher order cluster potentials are constructed. The

higher order terms in the expansion become progressively smaller. Furthermore,

addition of new terms in the series expansion is not likely to introduce unphysical

behaviour, a problem that plagues most fitting schemes for interatomic potentials.

3.2. Explicit expressions for ternary alloys

In this section, we illustrate the formal discussion in the previous section by

constructing an expansion in embedded pair and triplet potentials for a ternary

system. For simplicity, we assume the pure elements are described by EAM models.

The extension to larger numbers of components and higher order cluster potentials

will be obvious. We consider a system of three components A, B and C, and assume

that three composition-dependent pair potentials for the binary systems A�B,

A�C and B�C have already been constructed. Explicitly, the A�B interaction is

given by the following expression:

E pair
A�B ¼

X
i2A

UA �
A
i þ �AðBÞ�

B
i

� �
þ
1

2

X
i2A

X
j2A

hAAAðx
A
ij Þ�AðrijÞ þ hBAAðx

B
ij ÞV

B
AAðrijÞ

� �

þ
X
i2B

UB �
B
i þ �BðAÞ�

A
i

� �
þ
1

2

X
i2B

X
j2B

hBBBðx
B
ij Þ�BðrijÞ þ hABBðx

A
ij ÞV

A
BBðrijÞ

� �
þ
X
i2A

X
j2B

hAABðx
A
ij ÞV

A
ABðrijÞ þ hBABðx

B
ij ÞV

B
ABðrijÞ

� �
: ð26Þ

By now the notation above should be familiar. The interaction potentials for the two

other pairs can be written in analogous fashion.

1

2

Cutoff for atom 2 

Cutoff for atom 1 2
7

7
x 12 =

1
2 ( x 1(2)+ x 2(1)) =

4
14 = 0.286

x =1
2
8

x =
2
82 x 2(1)

x 1(2)

=

=

1
7

2
7

x 12 =
1
2 ( x 1(2)+ x 2(1)) =

3
14

x =1
3
8

x =
1
82 x 2(1)

x 1(2)

=

=

= 0.500x 12 =
1
2 ( + )x 2(1)x 1(2) =

7
14

=x 1

x =2
5
8

x 1(2)

x 2(1)

=

=

3
7

4
7

3
8

2

= 0.214

Figure 4. Schematic illustration of the connection between xSi and two-centre concentrations
xSij and their computation in a ternary alloy according to Equations (7) and (8). Here,
the cutoff function �(r) which appears in Equation (7) is assumed to be a step function, which
is one for r5rc and zero otherwise.
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Now, we can spell out the expansion in embedded pair potentials for the ternary

A�B�C

E pair
A�B�C ¼

X
i2A

UA �
A
i þ �AðBÞ�

B
i þ �AðCÞ�

C
i

� �
þ
X
i2B

UB �
B
i þ �BðAÞ�

A
i þ �BðCÞ�

C
i

� �
þ
X
i2C

UC �
C
i þ �CðAÞ�

A
i þ �CðBÞ�

B
i

� �
þ
1

2

X
i2A

X
j2A

hAAAðx
A
ij Þ�AðrijÞ þ hBAAðx

B
ij ÞV

B
AAðrijÞ þ hCAAðx

C
ij ÞV

C
AAðrijÞ

h i

þ
1

2

X
i2B

X
j2B

hBBBðx
B
ij Þ�BðrijÞ þ hABBðx

A
ij ÞV

A
BBðrijÞ þ hCBBðx

C
ij ÞV

C
BBðrijÞ

h i

þ
1

2

X
i2C

X
j2C

hCCCðx
C
ij Þ�CðrijÞ þ hACCðx

A
ij ÞV

A
CCðrijÞ þ hBCCðx

B
ij ÞV

B
CCðrijÞ

h i
þ
X
i2A

X
j2B

hAABðx
A
ij ÞV

A
ABðrijÞ þ hBABðx

B
ij ÞV

B
ABðrijÞ þ hCABðx

C
ij ÞV

C
ABðrijÞ

h i
þ
X
i2A

X
j2C

hAACðx
A
ij ÞV

A
ACðrijÞ þ hBACðx

B
ij ÞV

B
ACðrijÞ þ hCACðx

C
ij ÞV

C
ACðrijÞ

h i
þ
X
i2B

X
j2C

hABCðx
A
ij ÞV

A
BCðrijÞ þ hBBCðx

B
ij ÞV

B
BCðrijÞ þ hCBCðx

C
ij ÞV

C
BCðrijÞ

h i
: ð27Þ

The only unknowns in the above equation are VC
ABðrijÞ, V

B
ACðrijÞ, V

A
BCðrijÞ, h

C
ABðx

C
ij Þ,

hBACðx
B
ij Þ and hABCðx

A
ij Þ. The potentials VC

ABðrijÞ, VB
ACðrijÞ and VA

BCðrijÞ describe the

interaction between pairs of unlike species embedded in pure lattices of the third

species of the ternary. In analogy with the previous section, it is reasonable to expect

that we can construct these potentials separately in their respective dilute limits and

subsequently fit the interpolation functions hCABðx
C
ij Þ, hBACðx

B
ij Þ, hABCðx

A
ij Þ to the

energetics of the concentrated ternary alloys. However, when the number of species

increases, certain complications can arise that are not present in the binaries.

This is well illustrated in the situation above. We now show that it is in fact not

possible to separately construct the three pair potentials VC
ABðrijÞ, VB

ACðrijÞ and

VA
BCðrijÞ described above.
To this end, consider a pure lattice of N particles of, e.g. C species. Substitute two

nearest neighbour particles in this lattice with an A particle and a B particle,

respectively. The ternary energy equation (27) for a C-rich configuration containing

one A�B pair on the sites i and j, respectively, becomes

Epair
A�B�CðC� richÞ ¼ ~E0

þ
1

2

X
k2C

X
l2C

hCCCðx
C
klÞ�CðrklÞ þ hACCðx

A
klÞV

A
CCðrklÞ þ hBCCðx

B
klÞV

B
CCðrklÞ

� �
þVC

ABðrijÞ þ
X
k2C

hBACðx
B
ikÞV

B
ACðrikÞ þ hCACðx

C
ikÞV

C
ACðrikÞ

� �
:

þ
X
k2C

hABCðx
A
jkÞV

A
BCðrjkÞ þ hCBCðx

C
jkÞV

C
BCðrjkÞ

� �
,

where for the sake of clarity we have replaced the three embedding terms in

Equation (27) by ~E0. Observe that all three unknown potentials, VC
ABðrijÞ, V

B
ACðrikÞ
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and VA
BCðrjkÞ, as well as their corresponding interpolation functions, appear in

Equation (28). This is in contrast to the binary case, e.g. Equations (4), (5), (12) and
(13), where the potentials for the two dilute limits can be constructed independently
of each other. This is because the two-centre concentrations in the dilute limit in a
binary alloy are either one or zero. In contrast, in the case of a ternary alloy the two-
centre concentrations in the same limit can be non-zero (see Figure 5).

A straightforward solution to the above problem is to fit all three pair potentials
simultaneously. A closer look at Equation (28), however, suggests a simpler solution.
Let us examine the interpolation functions hBACðx

B
ikÞ and hABCðx

A
jkÞ. Note that since we

are dealing here with an A�B cluster in a C-rich system, xBik and xAjk are close to zero.
Remembering the boundary conditions on the interpolation functions, i.e. h(1)¼ 1
and h(0)¼ 0, we conclude that the contributions of the VB

ACðrijÞ and VA
BCðrijÞ

potentials to the energetics of an A�B pair embedded in a C lattice are small. In
fact, we can diminish the contribution of these potentials to Equation (28) by
enforcing the interpolation functions to be 0 for x5xth, where xth is the largest
concentration of B or A particles found about any pair in the system. In this way, one
can generally separate the construction of cluster potentials when they overlap in the
dilute configurations.

The problem of potential overlap in the dilute limit discussed above should not be
neglected. On the other hand it is quite benign and — as shown above — can be
handled easily. Furthermore, more often than not, even for complex clusters and
many components, there is no overlap. We illustrate this point by considering the
simplest expansion in triplet cluster potentials for the ternary above:

Etriplet
A�B�C ¼

X
i2A

X
j2B

X
k2C

hAABCðx
A
ijkÞV

A
ABCðrijkÞ

þ hBABCðx
B
ijkÞV

B
ABCðrijkÞ þ hCABCðx

C
ijkÞV

C
ABCðrijkÞ: ð28Þ

Now consider again the same C lattice as above, where an A�B pair has been
embedded at the sites i and j. The triplet energy becomes

Etriplet
A�B�CðC� richÞ ¼

X
k2C

VC
ABCðrijkÞ: ð29Þ

Since we only have contributions from VC
ABCðrijkÞ for the these configurations, we can

construct these potentials separately from each other and independent of the

1

2

3

x

x

x

> 0

= 1

> 01 3

32

1 2

x

x

x

= 0

= 0

= 1

1 2 3

1 2 3

1 2 3

Figure 5. Schematic illustration of two and three-centre concentrations for a ternary alloy in
the dilute limit. Note that the two-centre concentrations xij in the dilute limit in a binary alloy
are either one or zero. In contrast, in the case of a ternary alloy the two-centre concentrations
in the same limit can be non-zero. The three-centre concentrations, however, are again either
one or zero.
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interpolation functions. This is because, in the dilute limit, the three-centre concen-
trations are again either one or zero (see Figure 5).

4. Implementation of forces in molecular dynamics

Next to accuracy, the most important quality of an interatomic potential model is its
computational efficiency when implemented into atomistic simulation codes. Due to
the unconventional form of the interatomic potentials described in this work, it is
important to discuss the efficient implementation of forces for molecular-dynamics
simulations. We will see below that the straightforward derivation of the forces for
composition-dependent pair potentials leads to explicit three-body forces. In fact,
in general, composition-dependent N-body potentials lead to explicit (Nþ 1)-body
forces. Below we present an algorithm that considerably speeds up the calculation of
forces for composition-dependent N-body potentials, making them comparable in
efficiency to the corresponding N-body regular potentials. In the following, for the
sake of clarity we limit our discussion to pair potentials. The extension to cluster
potentials of higher order is straightforward.

For reference, let us first consider a conventional mixed pair potential energy
expression for a binary system,

Epp ¼
X
i2A

X
j2B

VðrijÞ: ð30Þ

Within this model, the force on a particle k of type A is calculated as follows:

@Epp

@rAk
¼
X
j2B

V 0ðrkjÞ
rkj
rkj
: ð31Þ

Let us now consider a typical composition-dependent pair potential model for the
same binary system,

Ecdpp ¼
X
i2A

X
j2B

hðxAij ÞVðrijÞ, ð32Þ

where xAij is the two-centre concentration of the species A about the (i, j) pair. Now
the force on particle k of type A can be written

@Ecdpp

@rAk
¼
X
j2B

V 0ðrkjÞhðx
A
kjÞ þ

X
i2A

X
j2B

VðrijÞh
0ðxAij Þ

1

2

@xAið j Þ
@rAk
þ
@xAj ðiÞ
@rAk

 !
, ð33Þ

for which, after some algebra, we obtain

@xAið j Þ
@rAk
¼
�Bi � �ðS, tj Þ�ðrijÞ

�ið Þ
2
��ðrijÞ

�0ðrikÞ
rki
rki
: ð34Þ

All the quantities above have already been defined in Equations (8) and (9). The
second term in Equation (33) contains contributions from two particles i and j to the
forces on particle k. Hence, composition-dependent pair potentials lead to explicit
three-body forces, which usually implies significantly more expensive calculations.
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However, we will now show that in the case of expressions such as Equation (33) one

can regroup the terms in such a way as to speed up the calculation of forces

dramatically. To this end, let us introduce a per-atom quantity that, for an atom of

type A, reads

MS
i2A ¼

X
j2B

VðrijÞh
0ðxAij Þ

� Si � �ðB, tj Þ�ðrijÞ

�ið Þ
2
��ðrijÞ

, ð35Þ

and for an atom of type B

MS
i2B ¼

X
j2A

VðrijÞh
0ðxAij Þ

� Si � �ðA, tj Þ�ðrijÞ

�ið Þ
2
��ðrijÞ

: ð36Þ

Substituting MS
i into Equation (33), we obtain

@Ecdpp

@rAk
¼
X
j2B

V 0ðrkjÞhðx
A
kjÞ þ

1

2

X
i

MB
i �
0ðrkiÞ

rki
rki
: ð37Þ

Similar derivation for the force on a particle k of type B leads to the expression

@Ecdpp

@rBk
¼
X
j2A

V 0ðrkjÞhðx
A
kjÞ þ

1

2

X
i

MA
i �
0ðrkiÞ

rki
rki
: ð38Þ

Each quantity in the above force expressions can be calculated separately via

pairwise summations. This allows for a very efficient three-step algorithm for the

calculation of forces: (i) compute and store the local partial densities � Si for every

atom, (ii) compute and store the quantities MS
i for every atom, and (iii) compute the

forces according to the Equations (37) and (38). This method leads to computational

efficiency comparable to standard EAM models.

5. Linearised models for efficient Monte Carlo simulations

Molecular dynamics simulations are limited when it comes to modelling phenomena

such as precipitation, surface and grain boundary segregation, or ordering in alloys.

Monte Carlo (MC) methods, however, are ideally suited for such applications.

The most common techniques are based on so-called swap trial moves, in which the

chemical identity of a random particle is changed. The resulting change in potential

energy, DE, is used to decide whether the swap is accepted or rejected.
The main task in an MC simulation is therefore to calculate the change in

potential energy induced by swapping the type of a single atom. For short-range

potentials, this can be done very efficiently, since the type exchange only affects the

atoms in the neighbourhood of the type swap. In the framework of the standard

EAM model, the situation is as follows: changing the species of one atom directly

affects (1) its embedding energy, (2) its pairwise interactions with neighbouring

atoms, and (3) indirectly changes the electron density at neighbouring atoms and

therefore their embedding energies. All these quantities need to be recalculated by

visiting the atoms affected by the type swap.
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In the case of composition-dependent models, the situation turns out to be more
laborious. To illustrate this let us again consider a typical composition-dependent
pair potential model for a binary system:

Ecdpp ¼
X
i2A

X
j2B

hðxAij ÞVðrijÞ, ð39Þ

where xAij is the two-centre concentration of the species A about the (i, j) pair

xAij ¼
1

2
xAið j Þ þ xAj ðiÞ

� �
, ð40Þ

where the xAið j Þ is the local concentration A about the atom i, excluding atom j. From
Equation (9) we observed that to a good approximation xi( j)� xi. Therefore, for the
qualitative discussion below we replace xi( j) by xi. In the energy expression
Equation (39), the site energy Ei of an atom i does not only depend on the local
concentration xi, but also on the concentrations xj of all its neighbours j. This has a
dreadful impact on the efficiency of the energy calculation. Changing the chemical
identity of some atom i alters the local concentrations xj of all its direct neighbours j,
which in turn affects the mixed interaction of all atoms j with all of their respective
neighbour atoms k. All of these have to be re-evaluated to compute the total change
in energy induced by the single swap operation. The interaction radius that has to be
considered is therefore twice as large as the cutoff radius of the underlying EAM
potential, which increases the computational costs by at least one order of
magnitude.

This issue can be resolved quite effectively if we linearise the interpolation
function hðxAij Þ as follows:

hðxAij Þ ¼
1

2
hðxAið j ÞÞ þ hðxAj ðiÞÞ
� �

: ð41Þ

Within the new linearised formulation, although a single pair interaction between
two atoms j and k still depends on the concentration at both sites, the site energy can
be recast in a form that is independent of the concentrations on the neighbouring
sites. As a result, the site energy of atom k is no longer affected by changing the type
of an atom i that is farther away than one cutoff radius. Note that linearisation can
be done for interpolation functions of any n-centre concentrations. All composition-
dependent models independent of cluster size can therefore be linearised. We have
discussed the linearised model and its implementation for MD and MC at length in a
recent publication [23].

6. A practical example

To provide a practical illustration of the concepts developed in this paper, we now
revisit the composition-dependent EAM potential for Fe–Cr [13], which has already
been successfully applied in a number of cases [24,25].

6.1. Application of the composition-dependent embedded atom method to Fe–Cr

Iron alloys are materials with numerous technological applications. In particular,
Fe–Cr alloys are at the basis of ferritic stainless steels. It has been recently shown [26]
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that the Fe–Cr alloy in the ferromagnetic phase has an anomaly in the heat of
formation which shows a change in sign going from negative to positive at about
10% Cr and leads to the coexistence of intermetallic phase [27] and segregation in the
same alloy. This complexity results from a ‘magnetic frustration’ of the Cr atoms in
the Fe matrix [28] which leads to an effectively repulsive Cr–Cr interaction.
Capturing this complexity with an empirical potential model has been an active
subject of research in recent years.

To model this system, Caro and coworkers used the following ansatz:

EFe�Cr ¼
X
i2Fe

UFe �
Fe
i þ �

Cr
i

� �
þ
1

2

X
i2Fe

X
j2Fe

�Fe rij
� �

þ
X
i2Cr

UCr �
Cr
i þ �

Fe
i

� �
þ
1

2

X
i2Cr

X
j2Cr

�Cr rij
� �

,

þ
X
i2Fe

X
j2Cr

h
xi þ xj

2

� �
VmixðrijÞ, ð42Þ

where we used the same notation as in the earlier sections. The partial electron
densities �Si follow the same definition as in Equation (3). Furthermore, the local
concentration variable xi in Equation (42) is defined as

xi ¼
�Cri

�Cri þ �
Fe
i

: ð43Þ

The two densities �Fe(rij) and �Cr(rij) are normalised such that at the equilibrium
lattice constant of each pure lattice, the respective partial electron density is 1. In this
way the two EAM models for the pure elements are made compatible with each
other.

Equation (42) looks quite similar to the composition-dependent pair potential
energy expressions discussed in Section 2.1. There are, however, three essential
differences: (i) there is only one mixed pair potential Vmixed(rij) as opposed to two in
Section 2.1 (one for each limit); (ii) there is no boundary conditions on the
interpolation function h(x) at x¼ 0 and x¼ 1; (iii) the local concentration about the
(i, j) pair is just the average of the one-centre concentrations about the two sites, and
not the two-centre concentration as defined in Equation (9). Of course, at no extra
cost the more rigorous definition in Equation (9) is a better choice for the measure of
local concentration about a pair of atoms. On the other hand, Equation (8) shows
that the one-centre concentration above is only a perturbation away from the more
accurate quantity.

The Fe–Cr CD-EAM model was the pioneering work that has inspired the
current paper. Here, we have tried to give a more rigorous foundation to the CD-
EAM model. In fact, we can strictly argue that CD-EAM is a simplified version of
the current formalism. It works very well for the Fe–Cr system since the two elements
are similar in size and chemical nature. It is therefore reasonable to make the
approximation that functional forms of the mixed pair potentials describing the two
dilute limits are the same.

Let us illustrate the last statement with the example of Lennard-Jones (LJ)
potentials. These potentials are determined by two parameters: � and �; the first
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parameter specifies the position of the minimum of the potential or in other words

the particle size, and the second parameter specifies the interaction strength. A

mixture of two types of LJ particles with no size mismatch (same �) but different
cohesive energies can be described by the same potential that is merely scaled

differently for the two particles. Extending this analogy to the case of the Fe–Cr

system we can see why only one mixed potential can be enough. However, it is

important to realise now that when only one potential is used, the functions h(x)

provide the interaction strength, which in the case of Fe–Cr is positive in one dilute

limit and negative in the other. Hence, no boundary conditions exist at the two

concentrations x¼ 0 and x¼ 1.
In the original CD-EAM model, there was a further simplification. The mixed

potentials Vmix(rij) was never fitted. In fact it was taken as the average of the effective

EAM pairwise interactions of the pure elements at their respective equilibrium

volumes

VmixðrijÞ ¼
1

2
�FeðrijÞ þ 2UFeð�

Fe
0 Þ�

FeðrijÞ þ �CrðrijÞ þ 2UCrð�
Cr
0 Þ�

CrðrijÞ
� �

, ð44Þ

where �S0 is the electron density at the equilibrium lattice constant for the species S.

Only the function h(x) was fitted to the heat of mixing of the solid solution.

The success of this model in spite of all the simplifications is a telltale sign of the

power of this methodology.

6.2. Molecular dynamics and Monte Carlo performance

In Section 4, we presented an algorithm for calculating forces within the composition-

dependent interatomic potential models which brings their efficiency on par with the

standard EAM scheme. This was first discussed in a recent publication by the present

authors [23], where this algorithm was implemented for the Fe–Cr CD-EAMmodel in

the popular massively-parallel MD code LAMMPS [29]. To benchmark its

performance, we carried out MD simulations of a body-centred cubic (BCC) crystal

at 300K using periodic boundary conditions. For the CD-EAM case we considered a

random alloy with 50% Cr. For the standard EAM case, the sample contained only

Fe. Simulations were run on 1, 8, 27, 64, and 512 processors with 16,000 atoms

per processor (weak scaling). The results for the CD-EAM routines and the

LAMMPS standard EAM routine are displayed in Figure 6. In this figure, the

original CD-EAM model as well as its linearised version are displayed. We see that

the two versions are between 60% (linearised model) and 70% (original model)

slower than the standard EAM. This is a small price to pay considering the fact that

the CD-EAM expression actually contains explicit three-body forces.
In our recent publication [23], we also studied the Monte Carlo performance of

composition-dependent interatomic potentials focussing on the comparison of the

original and the linearised CD-EAM model. The performance gain due to

the linearised formulation is illustrated in Figure 7, which compares the timing of

the linearised and original CD-EAM models in a serial MC simulation for a random

Fe–Cr alloy at 50% composition. We find that the linearised CD-EAM model is
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12 times faster than the original formulation. This is an impressive performance gain,
which clearly advocates linearised composition-dependent interatomic potentials.

7. Conclusions

The present work has come about in response to a need for a practical scheme for
fitting interatomic potential models for multicomponent alloys. At this point in time,
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when faced with the task of modelling the chemistry of, e.g. a ternary alloy, one is
overwhelmed by the complexity of the problem. In this paper, we have presented a
systematic methodology for the construction of alloy potentials, starting from pre-
existing potentials for the constituent elements. The formalism represents a
generalisation of the approach employed by one of the authors for the Fe–Cr
system [13]. We have shown that this formalism naturally extends to treating
multicomponent systems. The main idea of the approach is to describe the energetics
of dilute concentrations of solute atoms in the pure host in terms of pair and higher-
order cluster interactions (see Figures 3 and 8). These interaction functions are then
used as a basis set for expanding the potential energy of the alloy in the entire
concentration range. To describe the energetics of the concentrated alloys, the
contributions of the basis functions are weighted by interpolation functions
expressed in terms of local concentration variables. One of the innovations in this
work is a novel measure of local composition around individual atoms in the system.
This introduces an explicit dependence on the chemical environment. In this sense,
the composition-dependent interatomic potential scheme is reminiscent of the bond-
order potential scheme developed by Abell and Tersoff [15–17], which employs a
measure of the bond-order to distinguish between different structural motifs.

The main advantage of the framework presented here is that the basis functions
can be constructed sequentially and independently of the interpolation functions,
leading to a scheme that can be practically implemented and systematically improved
upon. The lower order terms can be constructed with no knowledge of the higher
order terms and therefore need not be reparametrised when higher order cluster
potentials are constructed. The higher order terms in the expansion become
progressively smaller. In this way the model can be made step by step, starting from
the lowest order cluster potentials. Furthermore, addition of new terms in the series
expansion is not likely to introduce unphysical behaviour, a problem that plagues
most fitting schemes for interatomic potentials.

The practical determination of the basis functions and the interpolation functions
proceeds by fitting to first-principles data. The expansion in cluster interactions may
be reminiscent of the celebrated ‘cluster expansion’ technique [30] that has been used
extensively during the past few decades to model the thermodynamics of
multicomponent alloys from first principles. But it is important to note here that
the methodology presented in this paper has no relation to the cluster expansion
technique. The latter reduces the continuous phase space of, e.g. a binary alloy onto

Figure 8. Several examples for clusters used to construct higher-order interaction terms which
can be extracted from the configuration shown at the left.
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the discrete configuration space of the corresponding Ising model. There is only one
number associated with each cluster configuration, namely the free energy of that
cluster. The so-called ‘effective cluster interactions’ (ECIs) are usually obtained via
an optimisation process from all the cluster free energies. A procedure of the sort
proposed in this paper is not possible, since there is no direct link between any single
cluster free energy and an ECI. In contrast, when fitting, e.g. a VAB(rij) interaction
potential, a solute inclusion not only changes the total energy of the system, it causes
forces in the system and modifies the force constants of the host, all of which can be
used to construct a continuous pair potential.

Composition-dependent interatomic potentials are constructed by incorporating
pair, triplet and higher-order cluster interactions that describe the energetics of
clusters embedded in a pure host with a specific underlying lattice. One may now
wonder, with this approach, could a potential be expected to handle systems which
change lattice type as a function of concentration? For instance, the Ni–Al phase
diagram contains phases with BCC-based crystal structures, while the pure metals
are face-centred cubic (FCC). Following the approach described above, the basis
functions are parametrised in terms of solute cluster energies in the constituent FCC
structures. How can one then expect to provide a reasonable model for the BCC-
based NiAl phase? The answer lies in the interpolation functions. They are fitted to
the energetics of the ordered and disordered compounds along the concentration
range with arbitrary crystal structures.
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