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We describe a technique for constraining macroscopic fluctuations in thermodynamic variables well-suited
for Monte Carlo (MC) simulations of multiphase equilibria. In particular for multicomponent systems this
amounts to a statistical ensemble that implements constraints on both the average composition as well as its
fluctuations. The variance-constrained semi-grand-canonical (VC-SGC) ensemble allows for MC simulations,
in which single-phase systems can be reversibly switched into multiphase equilibria allowing the calculation of
excess free energies of precipitates of complex shapes by thermodynamic integration. The basic features as well
as the scaling and convergence properties of this technique are demonstrated by an application to an Ising model.
Finally, the VC-SGC MC simulation technique is used to calculate α/α′ interface free energies in Fe-Cr alloys as
a function of orientation and temperature taking into account configurational, vibrational, and structural degrees
of freedom.
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I. INTRODUCTION

Multiphase systems are ubiquitous in nature. Since their
properties are crucially dependent on the interfaces between
the phases involved, interface free energies constitute crucial
input to kinetic and phase field models.1 Their calculation,
however, often constitutes a complicated task.2–6 Here, an
extension of conventional thermostatistical ensembles is de-
scribed that enables calculation of excess free energies via ther-
modynamic integration across phase boundaries. The approach
presented in this paper can be viewed as a generalization of
the extended Gaussian ensemble technique to multicomponent
systems.7,8

An equilibrium ensemble in statistical mechanics is a
collection of macroscopic systems that have been prepared
in the same thermodynamic state. This can be accomplished
by constraining one of each pair of conjugate thermody-
namic variables that represent generalized displacements
and forces, e.g., volume-pressure, entropy-temperature, or
particle-number–chemical-potential. In single-phase regions
of the phase diagram, there is a one-to-one correspondence
between generalized displacements and forces. This allows
for straightforward computation of free energy differences by
thermodynamic integration. In contrast, in two-phase regions
of the phase diagram, the mapping from generalized forces to
generalized displacements becomes multivalued. For instance
the melting temperature maps to two distinct entropies,
namely, those of the solid Ss and the liquid Sl , respectively.
Multiphase equilibria can be obtained by constraining the
entropy to values of Ss < S < Sl . If the conjugate forces
are observables of the ensemble, this enables thermodynamic
integration across phase boundaries. Conveniently, two impor-
tant conjugate forces, namely, temperature and pressure, are
readily available in the microcanonical ensemble. In contrast
the chemical potential is not an observable of ensembles that
control the number of particles or chemical composition in
multicomponent systems.

In this paper a technique is described for construct-
ing ensembles, which constrain fluctuations of generalized

displacements, that can be viewed as an extension and
generalization of the Gaussian ensemble technique.7,8 Such
variance-constrained (VC) ensembles provide direct access
to multiphase regions of the phase diagram while allowing
for observation of both generalized forces and displacements.
Thereby they enable thermodynamic integration across phase
boundaries and computation of free energies for compositions
inside miscibility gaps. In this paper this technique is em-
ployed to study precipitation in an Ising model system and
a binary Fe-Cr alloy. Through Monte Carlo simulations in
the VC-semi-grand-canonical (VC-SGC) ensemble, chemical-
potential concentration isotherms in the shape of the van der
Waals loop are obtained. In this fashion, one can extract
interface free energies as a function of temperature and
orientation. It is also demonstrated that interface free energies
can be calculated by monitoring the growth and/or shrinkage
of compact precipitates.

The paper is organized as follows. After recapitulating key
features of the related canonical and semi-grand-canonical
ensembles, the next section introduces the VC-SGC ensemble
and discusses strategies for sampling this ensemble using
Monte Carlo (MC) simulations. The computation of interface
free energies is demonstrated using a simple first-neighbor
Ising model in Sec. III A, followed by an analysis of conver-
gence and scaling properties in Sec. III B. Finally, in Sec. IV
the VC-SGC MC approach is applied to extract interface free
energies in Fe-Cr alloys as a function of temperature and
orientation while taking into account both configurational and
vibrational degrees of freedom. The paper is concluded in
Sec. V.

II. ENSEMBLES FOR MULTICOMPONENT SYSTEMS

We start this section with a review of the canonical
and semi-grand-canonical ensembles before deriving the VC-
SGC ensemble. We conclude by discussing practical aspects
pertaining to sampling the VC-SGC ensemble using Monte
Carlo simulations.
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A. Canonical and semi-grand-canonical ensembles

Let us start by a brief discussion of multiphase equilibria
in multicomponent systems. For the sake of simplicity and
clarity, we restrict ourselves to an immiscible binary alloy. The
generalization to systems with an arbitrary number of species
is straightforward. Consider a system of N particles confined
in a box of volume V where each particle carries a spin of
value 0 or 1. An arbitrary configuration is specified by (x,σ ),
where x is a 3N -dimensional vector describing the position
of every particle in the box, and σ is an N -dimensional spin
vector. The number of spin 1 particles is n = ∑N

i=1 σi , and
their concentration is c = n/N . We denote the energy of a
configuration by Û (x,σ ). The canonical partition function for
this system at temperature T reads

ZC (c,N ) = 1

n!(N − n)!

∫
exp[−βÛ (x,σ )]dx, (1)

where β = 1/kBT and N = {N,V,T } is the set of indepen-
dent thermodynamic variables. Using the identity

1

n!(N − n)!
= 1

N !

∑
σ1···σN

δ

(
N∑

i=1

σi − n

)
, (2)

we can rewrite the partition function in terms of an effective
potential where the compositional degrees of freedom have
been integrated out:

ZC (c,N ) = 1

N !

∫
exp [−βFC (x; c,N )] dx. (3)

FC (x; c,N ) = −kBT ln
∑

σ1···σN

δ

(
N∑

i=1

σi − n

)

× exp[−βÛ (x,σ )]. (4)

FC (x; c,N ) is the effective potential energy landscape for the
structural degrees of freedom of the multicomponent system at
temperature T . In this way, we separate the compositional and
topological degrees of freedom. In the following, we focus our
discussion on the contribution of the compositional degrees of
freedom to the free energy.

We thus consider a frozen lattice of particles residing at x.
For brevity we drop all references to x and denote the potential
energy of a particular spin configuration as Û (σ ). The SGC
ensemble represents a set of configurations that sample the spin
degrees of freedom according to the Boltzmann distribution
while also allowing the total concentration to vary. To tune
the average concentration, an external chemical potential is
applied to the system, which corresponds to modifying the
potential energy function as follows:

ÛS(σ ; �μ) = Û (σ ) + �μNĉ(σ ), (5)

ĉ(σ ) =
N∑

i=1

σi/N, (6)

where �μ is the relative chemical potential that controls the
average concentration and the free energy is given by

FS (�μ,N ) = −kBT ln
∑

σ1···σN

exp[−βÛS(σ ; �μ)]. (7)

Inserting Eq. (5) into the above equation, the SGC partition
function defined as ZS = exp (−FS/kBT ) can be expressed in
terms of the canonical free energy as

ZS(�μ,N ) =
∫ 1

0
exp {−β [FC(c,N ) + �μNc]} dc. (8)

The integrand in the above equation can be used to define a
concentration distribution function that is peaked around the
average concentration 〈ĉ〉S. The condition of zero derivative at
〈ĉ〉S yields the well-known thermodynamic relation

�μ = − 1

N

∂FC

∂c
(〈ĉ〉S,N ) . (9)

B. The variance constrained semi-grand-canonical ensemble

Since for immiscible systems, one value of �μ maps
to several compositions inside the miscibility gap, stable
multiphase coexistence cannot be established in the SGC
ensemble. To overcome this restriction we modify the SGC
ensemble in such a way as to control concentration fluctuations
inside the miscibility gap. This is most easily accomplished by
adding a constraint that fixes the ensemble-averaged squared
concentration 〈ĉ2〉. We call this the VC-SGC ensemble.

This approach is analogous to umbrella sampling when
calculating free energy barriers for reactions in molecular
systems.9,10 In this method, given a particular reaction coordi-
nate ξ , a harmonic external potential ub(ξ ; ξ ) = K/2(ξ − ξ )2

is applied to bias the system toward positions ξ while at the
same time the fluctuations are restrained by the force constant
K . In the same spirit we can write the potential energy function
of the VC-SGC ensemble as

ÛV(σ ; φ,κ) = Û (σ ) + κ [Nĉ(σ ) + φ/2κ]2 , (10)

where φ and κ are now thermodynamic variables that control
the average concentration as well as its fluctuations. The
harmonic external potential is parametrized such that ÛV →
ÛS except for a constant shift whenever κ → 0 and φ → �μ.
κ can be given a physical interpretation as the generalized force
that controls concentration fluctuations. This can be realized
by putting the system in contact with a finite reservoir.7,8

Hence the VC-SGC ensemble, like the closely related extended
Gaussian ensemble, is only applicable to finite systems. As all
fluctuations vanish in the thermodynamic limit, so does κ . It
should thus diminish as the system size grows. This poses no
difficulty in our study of interfacial free energies since they
also tend to zero in the thermodynamic limit.

Analogously to the SGC ensemble [see Eqs. (7) and (8)]
we can express the VC-SGC partition function in terms of the
canonical free energy as

ZV(φ,κ,N ) =
∫ 1

0
exp

{−β
[
FC(c,N ) + �Ub

V

]}
dc, (11)

�Ub
V = κ (Nc + φ/2κ)2 , (12)

where �Ub
V corresponds to the harmonic bias potential of

the umbrella sampling approach. The integrand in Eq. (11)
describes the probability distribution of the global concen-
tration in the VC-SGC ensemble. It is a peaked function
around the average concentration 〈ĉ〉V. The condition of zero
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derivative at 〈ĉ〉V yields the following relation between φ and
κ and the canonical free energy for the VC-SGC ensemble:

φ + 2Nκ〈ĉ〉V = −N−1∂FC/∂c (〈ĉ〉V,N ) . (13)

It is important to note that the right-hand side of Eq. (13)
is the concentration derivative of the canonical free energy
at 〈ĉ〉V, which is a simulation observable. Hence no more
unbiasing is necessary when employing the above technique
for free energy integration. However, for very small system
sizes where the condition of zero derivative at 〈ĉ〉V may not
hold, the simple procedure outlined above must be modified.
The standard approach in such cases is to extract the probability
distribution of the system as a function of the concentration via
histogram methods,11–13 and sampling bias must be corrected
for as in the usual implementations of umbrella sampling.9,10,14

Notwithstanding, the key advantage of the VC-SGC en-
semble is that while the chemical driving force [right-hand
side of Eq. (13)] is an ensemble observable, the constraint on
concentration fluctuations simultaneously allows multiphase
equilibria to be stabilized. This is simpler and more efficient
than the state-of-the-art methods for calculating concentra-
tion derivatives of the free energy within the canonical
ensemble, which measure the work required to perform a
gradual/instantaneous transmutation of one species into the
other while keeping the particle number fixed. While quite
clever path-sampling algorithms with optimized estimators for
calculating this work have been devised,15 for the particular
application discussed in this paper, the variance-constrained
ensemble presents a simpler and more efficient route, since
the free energy derivative can be obtained as an observable
of the equilibrium ensemble, and no calculation of external
work is required. Furthermore as discussed in detail in a
previous publication,16 the VC-SGC MC method allows for
faster convergence to equilibrium in multiphase regions of
the phase diagram than the canonical ensemble. Finally the
VC-SGC ensemble is also very well suited for efficient parallel
MC algorithms16 that enable simulations of very large systems
containing millions of particles.

C. Efficient sampling of the VC-SGC ensemble

When carrying out MC simulations in the SGC ensemble
according to Eq. (9), the parameter �μ is directly proportional
to the free energy derivative ∂F/∂c, which renders choosing
suitable parameters straightforward. We will now demonstrate
that choosing the relevant range of values for VC-SGC
simulations is just as simple as in the case of the SGC
ensemble.

In the previous section the VC-SGC ensemble was derived
in terms of the parameters φ and κ , which led to expressions
that very much resembled the SGC ensemble. In practice it
turns out that it is more convenient to use the substitutions
κ = κ̄/N and φ = κ̄φ̄. The VC-SGC potential defined above
in Eq. (10) then reads

ÛV(σ ; φ̄,κ̄) = Û (σ ) + κ̄N (c + φ̄/2), (14)

and the associated expression for the first derivative of the free
energy [compare Eq. (13)] is

κ̄(φ̄ + 2〈ĉ〉V) = −N−1∂FC/∂c (〈ĉ〉V,N ) . (15)

The above transformations effectively decouple the average
constraint from the variance constraint parameter, which
simplifies parameter selection for VC-SGC MC simulations
as will be seen in the following.

It is instructive to first consider a symmetric free energy
profile, in which case ∂F/∂c = 0 at the solubility limits
where F is minimal as well as around 50% where F is
maximal. From Eq. (15) it follows that for nonzero κ̄ , one
can thus install a concentration of 50% by choosing φ̄ = −1.
Furthermore one obtains 〈ĉ〉V → 1 for φ̄ ≈ −2 and 〈ĉ〉V → 0
for φ̄ ≈ 0. These observations suggest a simple protocol for
an efficient sampling of the full concentration range: First
choose a constant value for κ̄ and then vary φ̄ in the range
−2.2 � φ̄ � 0.2. In our experience this approach is very
transferable, and we have used it successfully in exactly this
fashion for various systems including, for example, the (very
asymmetric) Fe-Cr system as described in Sec. IV.

In the following section it will be shown among over things
that the results for the free energy derivative are insensitive
to the variance constraint parameter κ̄ over a wide range of
values. This provides for a lot of freedom in choosing κ̂ .

It is straightforward to formulate a Monte Carlo algorithm16

for sampling the VC-SGC ensemble, where transmutation trial
moves comprise

(1) selecting a particle at random,
(2) flipping its spin (type), and
(3) computing the energy change �E and the concentration

change �c.
These trial moves are then accepted with probability

AV = min{1, exp[−β(�E + κ̄Nc(φ̄ + �c + 2c))]}, (16)

which satisfies detailed balance.

III. BASIC FEATURES OF THE VC-SGC MC TECHNIQUE

A. Interface free energies from direct
thermodynamic integration

In this section we illustrate the utility of the VC-SGC
ensemble by studying phase segregation in a simple Ising
model. We will calculate excess free energies of interfaces
between two coexisting phases by direct thermodynamic
integration from the single-phase region of the phase diagram
into the miscibility gap. The Ising model is defined on
a body-centered cubic (BCC) lattice with its Hamiltonian
parametrized as follows:

H = −1

2

∑
ij

SiSj , (17)

where the summation runs over first-nearest neighbor pairs
and Si ∈ {−1,1}. The phase diagram of this system is shown
in the inset of Fig. 1(a).

Our first goal in this section is to show that the VC-SGC
ensemble, unlike the SGC ensemble, allows for the calculation
of free energy derivatives in both single and multiphase regions
of the phase diagram. To this end, simulations were carried out
using cells with basis vectors oriented along [100], [010], and
[001]. In the VC-SGC simulations the constraint φ̄ (controlling
average concentration) was varied from −2.05 to 0.05 in steps
of 0.01 at a constant variance constraint of κ̄ = 100. In the case
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FIG. 1. (Color online) (a) Derivative of free energy with respect
to concentration at T = 1.5 kB for system size 8 × 8 × 12. The gray
areas indicate composition regions, in which spherical precipitates
and flat interfaces are formed. The bold dash-dotted green lines
indicate fits to Eq. (18). The inset shows the phase diagram for the
Ising model described in the text, where the temperature is measured
in units of kB . (b) Free energy profile obtained by integration of data
in (a).

of SGC simulations the chemical potential difference �μ was
changed between −3 and +3. At each value of φ̄ (or �μ) the
system was equilibrated for 5 × 103 MC sweeps, after which
statistics were gathered for 15 × 103 MC sweeps.

The thus obtained relations between free energy derivative
∂F/∂c and concentration c are shown in Fig. 1(a) for a
temperature of 1.5 kB . The gap in the blue line in Fig. 1(a)
corresponds to the miscibility gap. This reflects the inability
of the SGC ensemble in stabilizing multiphase equilibria. The
two concentrations delineating the boundary of the miscibility
gap, i.e., 1% and 99% in Fig. 1, are commonly referred to as
binodals.

Using the VC-SGC MC method, F ′(c) can be calculated
for all concentrations as shown by the yellow line in Fig. 1(a).
Three regimes can be distinguished: At concentrations be-
tween the pure phases and the binodals (regime I), single-
phase equilibria are obtained and the SGC-MC results are
reproduced. In this regime, F ′(c) has a positive slope. This
behavior is preserved for compositions between binodal and
critical nucleation [extrema in ∂F/∂c in Fig. 1(a)], which only
support the formation of subcritical minority-phase clusters
(regime II). In this regime there is a finite thermodynamic
driving force for phase segregation, but due to small sizes of the
minority-phase clusters the interfacial free energy dominates
and leads to their overall formation free energies being
positive. Finally at concentrations beyond critical nucleation
(regime III), supercritical clusters are formed and F ′(c) is a
monotonically decreasing function. In this regime the excess
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FIG. 2. (Color online) Interface free energies as a function of
temperature and orientation for the Ising model described in the text.
The inset shows a snapshot of a {100} interface from a VC-SGC
MC simulation close to 50% composition (picture rendered with
OVITO, Ref. 17).

free energy increases due to the increase in the interface area
of the cluster. Note that the van der Waals loop obtained
in Fig. 1(a) is the equilibrium solution under the constraint
of finite system size. In particular, the concentration range
spanned by regime II diminishes as the simulation cell
increases, and eventually vanishes in the thermodynamic
limit.

Studying the shapes of the supercritical clusters in
regime III, we find several subregimes corresponding to
different types of precipitates. For concentrations immediately
beyond critical nucleation, minority-phase clusters are com-
pact. The excess free energy (proportional to the interface area)
as a function of concentration can thus be written as

�Fxc(c) = ξ [Vcell(c − c0)]2/3 γprec. (18)

Here, ξ is a shape factor, which equals (36π )
1
3 for spherical

precipitates, and Vcell denotes the volume of the simulation
cell. The bold dashed green lines in Fig. 1 indicate fits to
Eq. (18) and its concentration derivative. The effective inter-
face free energies calculated in this way are shown as a function
of temperature in Fig. 2.

At still higher concentrations, the precipitates become so
large that spherical clusters can no longer be contained inside
the finite-sized simulation cell and a transition to a cylindrical
shape induced by periodic boundary conditions is observed.
While the free energy profile recorded in this region is of
limited physical interest per se, it provides the continuous
derivative needed for integration of the full excess free
energy.

Finally in the concentration range around 50% in Fig. 1(a),
the excess free energy assumes a constant value due to
formation of superlattices consisting of alternating slabs of the
two phases, which follow the periodicity of the simulation cell.
The excess free energy at these concentrations corresponds to
the free energy cost associated with two flat interfaces with the
free energy density given by

γflat = �Fxc/A, (19)

where A is the cross-sectional area of the computational cell.
By changing the geometry of the simulation cell, it is possible
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FIG. 3. (Color online) Scaling of the maximum of excess free
energy [compare with Fig. 1(b)] with the inverse linear dimension
for the Ising model described in the text. Simulation cell vectors
are oriented along 〈100〉 directions inducing the formation of {100}
interfaces.

to change A and thereby interface orientation. To see this,
remember that during the course of a simulation the system
will establish the interface configuration that minimizes �Fxc,
not γflat. Since the cross section A for different orientations can
be changed by varying the shape and size of the simulation
cell, it is possible to stabilize different interface orientations
as exemplified in Fig. 2. To obtain, for example, the free
energy density of {111} interfaces, we used an orthorhombic
simulation cell with lattice vectors oriented along [11̄0], [1̄1̄2],
and [111] and 2 × 3 × 8 unit cells. In this configuration the
excess free energy �Fc for {100} and {110} interfaces is larger
than for {111} interfaces. Similarly shortening the dimensions
perpendicular to [11̄0] and extending the cell parallel to this
direction stabilizes a {110} interface. In this fashion it is
possible to not only extract the temperature but also the
orientation dependence of the interface free energy, which
leads to the data displayed in Fig. 2.

To verify the reliability of the thus computed interfacial
free energies using the VC-SGC MC technique, we have also
studied the dependence of the excess free energies of the two-
phase equilibria inside the miscibility gap on the size of the
simulation cell. Since the excess free energy is dominated by
the interfacial free energy, it should scale inversely with the
longest linear dimension of the simulation cell. This behavior
is indeed observed as shown in Fig. 3.

B. Convergence and parameter sensitivity

In this section we study the convergence properties of VC-
SGC MC simulations and the sensitivity of the calculated free
energies to the choice of the variance constraint parameter.
Figure 4 shows the dependence of the standard deviation of
concentration on the (a) variance constraint parameter and
(b) system size. In both cases the standard deviation scales
inversely with the square root of the respective parameter. To
understand this behavior, consider again Eq. (11). The standard
deviation of concentration in the VC-SGC ensemble can be
expressed as the second moment of its probability distribution
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FIG. 4. (Color online) Standard deviation of concentration at a
temperature of T = 2 kB as a function of the (a) variance constraint
parameter and (b) system size. Data in (b) measured at 50%
composition. The black dashed line indicates scaling with 1/

√
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as follows:

s2
V = 1

ZV

∫ 1

0
c2 exp

{−β
[
FC(c,N ) + �Ub

V

]}
dc − 〈ĉ〉2

V .

(20)

For large enough system sizes, the ensemble probabil-
ity distribution becomes a normal distribution

√
A/π exp

(− A(c − B)2), with its mean B = 〈ĉ〉V , and its width A

inversely proportional to the standard deviation: s2
V = 1/2A.

Now the Gaussian width A is related to the second derivative
of the distribution taken at the average concentration. We thus
obtain the following relation for s2

V :

1

βs2
V

= ∂2FC (〈ĉ〉V ,N )

∂c2
+ 2κ̄N (21)

This is a very important relation that clearly predicts the
dependence of the standard deviation of concentration in the
VC-SGC ensemble on the variance constraint parameter κ̄ as
well as on the system size N as observed in Figs. 4(a) and
4(b). It also provides a clear picture of why and under which
conditions the VC-SGC ensemble can stabilize multiphase
equilibria. Equation (21) illustrates that whenever κ̄ → 0 as in
the SGC ensemble, sV diverges for values of 〈ĉ〉V , for which
the second derivative of the free energy function FC (c,N )
becomes negative. For these compositions, stable single-phase
equilibria cannot be achieved. Introducing a nonzero variance
constraint κ̄ leads to finite sV . However, in order for κ̄ to
stabilize compositions inside the miscibility, it has to be chosen
large enough to make the right-hand side of Eq. (21) positive.
Hence for practical calculations, the best choice for κ̄ is a value
slightly larger than the maximum of 1

2N

∣∣F ′′
C (c,N )

∣∣ inside the
miscibility gap. According to Fig. 4(a) this threshold is about
κ̄ = 20 for a system with 4 × 4 × 8 unit cells and close to 10
for a size of 8 × 8 × 8 unit cells.

For κ → 0 the VC-SGC ensemble approaches the SGC
ensemble, for which the standard deviation should diverge
for concentrations inside the miscibility gap, a behavior that
is in fact clearly visible in Fig. 4. The figure also explicitly
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FIG. 5. (Color online) Effect of the variance constraint parameter
κ̄ on the (a) free energy derivative and (b) standard deviation of
concentration at T = 2 kB for system size 4 × 4 × 8.

demonstrates that in the limits κ̄ → ∞ and/or N → ∞,
concentration fluctuations go to zero and thus approach the
canonical ensemble.

Figure 5(a) illustrates the important fact that the free energy
derivative obtained via Eq. (13) is indeed unaffected by the
strength of the variance constraint over a wide range of
parameter values. The lower limit of the acceptable parameter
range is set by the divergence of the standard deviation that
was described in the previous paragraph and that is shown
as a function of concentration in Fig. 5(b). The upper limit,
however, is due to decreasing acceptance probability of the
MC trial moves, which as illustrated in Fig. 6 diminishes
only slightly with κ̄ over several orders of magnitude before
dropping more rapidly. As a result for large values of κ̄ , one can
no longer gather sufficient statistics to compute meaningful
thermodynamic averages. The range within which κ̄ can be
selected nonetheless extends at least over two to three orders
of magnitude depending on the system size. Since large κ̄

values lead to a reduction of the acceptance probability, it
is, however, recommended to choose κ̄ as small as possible
while maintaining an acceptable standard deviation. Figure 4
suggests that a reasonable value is about 1%.

IV. INTERFACE FREE ENERGIES
IN THE Fe-Cr ALLOY SYSTEM

Up until now we have considered a simple Ising model.
It can be considered as the most simple representative of
alloy cluster expansions,18,19 which are widely used to study
complex multicomponent alloys. The VC-SGC MC technique
is, however, equally applicable to empirical potential models
and then enables computation of excess free energies taking
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FIG. 6. (Color online) (a) Acceptance probability as a function of
concentration for different values of the variance constraint parameter
at a system size of 4 × 4 × 8. (b) Acceptance probability at 50% as a
function of variance constraint parameter for different system sizes.

into account not only configurational but also structural and
vibrational degrees of freedom.20 To illustrate this point, we
now consider the calculation of excess free energies in the
Fe-Cr binary alloy system as described by the concentration-
dependent embedded atom method.21,22 The latter reproduces
the phase diagram below the Curie temperature featuring both
substantial solubility of Cr in Fe (α phase) and a pronounced
miscibility gap as shown in the inset of Fig. 7(a).

Simulations were carried out using orthorhombic cells
containing between 384 and 480 atoms depending on the
sample orientation. The variance constraint parameter was set
to κ̄ = 100 eV/atom and φ̄ was varied between −2.1 and 0.1
(see Sec. II C). Structural relaxations and thermal vibrations
were sampled using displacement MC trial moves, while
volume trial moves were employed to sample zero pressure
conditions. The system was evolved for 6000 MC steps at each
value of φ̄. Statistics were gathered over the last 5000 steps.

First we mapped out ∂F/∂c using SGC MC simulations
as shown for a temperature of 1000 K by the bold blue lines
in Fig. 7(a). The gap in the blue lines corresponds to the
miscibility gap, which again reflects the inability of the SGC
ensemble to stabilize multiphase equilibria. Using the VC-
SGC MC method we then calculated ∂F/∂c over the entire
concentration range as shown by the yellow line in Fig. 7(a).
The free energy profile obtained in this fashion again coincides
with the SGC results in the single phase regions, and inside the
miscibility gap shows the same features that were discussed in
Sec. III A for the Ising model.

Once again it is possible to extract free energy densities
corresponding to spherical and flat interfaces from the excess

134204-6



CALCULATION OF EXCESS FREE ENERGIES OF . . . PHYSICAL REVIEW B 86, 134204 (2012)
∂F

 / 
∂c

  (
m

eV
/a

to
m

)

fit of γprec

∂F/∂c (SGC)

∂F/∂c (VC−SGC)

−300

0

 300 flat

interface

(a)
α’−precipitate

α−precipitate

F
 (

m
eV

/a
to

m
)

0

  30

  60

excess free energy

(b)

ΔF
xc

 (
m

eV
/a

to
m

)

Cr concentration (%)

0

  10

  20

  30

0 20 40 60 80 100

ΔFxc ∝ γflat
(c)

ΔFxc
∝ γprec c2/3

ΔFxc
∝ γprec c2/3

T
em

pe
ra

tu
re

 (
K

)

 500

1000

1500

0 50 100

α+α’

FIG. 7. (Color online) (a) Derivative of free energy with respect
to concentration obtained from MC simulations in the SGC and
VC-SGC ensembles at 1000 K. The inset shows the calculated
phase diagram, which is in excellent agreement with the published
phase diagram of the potential used in the present work.23 (b) Free
energy profile obtained by integration of the data in (a), and (c) the
corresponding excess free energy. The central dark gray area indicates
the region within which flat interfaces are obtained while the dark
gray areas to the left and right show the regions in which compact
precipitates are obtained.

free energy curves, as shown in Fig. 7(c). The results of this
analysis are summarized in Fig. 8. Note that in this case
the computation of zero-K interface energies is significantly
more complicated than in the case of the Ising model. The
asymmetric phase diagram features a large solubility of Cr in
α-Fe that remains finite as the temperature goes to zero and
is accompanied by short-range ordering.24 We have therefore
not attempted to construct a zero-K α/α′ interface.

Two features in Fig. 8 are particularly noteworthy in com-
parison with Fig. 2. The ordering of the interface orientations
is different with {100} interfaces now being lowest in energy,
and the anisotropy is much smaller.

It is furthermore instructive to separate the different
contributions to the interface free energy. First, by repeating the
calculations for {100} interfaces without displacement trials
moves25 it is possible to separate vibrational and configura-
tional degrees of freedom. The result of this analysis is shown
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FIG. 8. (Color online) Interface free energies for Fe-Cr model
alloy for different interface orientations as well as spherical precipi-
tates.

in Fig. 9(a), which illustrates the magnitude of the vibrational
contribution to the interface free energy. Since the simulations
also provide average internal energies, one can furthermore
separate explicitly the interface internal energies and entropies.
As shown in Figs. 9(b) and 9(c) the internal energies are
hardly affected if vibrations and atomic relaxations (other than
volume changes) are suppressed. Instead their contributions
show up as a practically temperature independent contribution
to the entropy. Figures 9(a) and 9(b) finally show that interface
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free and internal energies extrapolate to a value of about
372 ± 2 mJ/m2 at zero K.

V. CONCLUSIONS

In this paper we have introduced a free energy integration
technique along compositional degrees of freedom that allows
for efficient calculations of free energies of multiphase systems
with various degrees of heterogeneity. The construction of the
underlying VC-SGC ensemble represents a generalization of
the extended Gaussian ensemble technique to multicomponent
systems.7,8

To illustrate the basic features of the VC-SGC MC
technique as well as aspects, such as scaling and convergence,
an extensive characterization of a first-nearest neighbor Ising
model was carried out. In this way it was shown that
the VC-SGC MC technique allows (i) stabilizing arbitrary
concentrations inside (and outside) the miscibility gap and
(ii) simultaneously computing derivatives of the free energy
with respect to concentration. Efficient sampling of the entire
concentration range is straightforward since in essence it
merely requires setting the variance parameter κ̄ , which can
be chosen rather deliberately.

Since VC-SGC MC simulations provide free energy deriva-
tives as a continuous function of composition, thermodynamic
integration can be carried out along the concentration axis,
which allows determination of interface free energy densities.
Specifically by monitoring the free energy derivative as
precipitate size and shape evolve, it is possible to extract
the excess free energies of compact precipitates. By pushing
the system close to 50-50 phase composition while varying

simulation cell shape and size, one can also derive the interface
free energies of flat interfaces as a function of orientation.

To demonstrate the applicability of the VC-SGC approach
in more general cases, we finally considered Fe-Cr alloys as
described by an empirical potential scheme. The interface free
energies for this system were determined taking into account
not only the configurational but also vibrational and structural
degrees of freedom. Our results indicate a strong temperature
but weak orientation dependence of the interface free energies,
suggesting that both α and α′ precipitates should adopt a
spherical shape at practically all relevant temperatures.

As described in Ref. 16, the VC-SGC MC ensemble
leans itself to efficient parallelization, enabling simulations of
precipitation in multimillion atom samples.26 It should finally
be stressed that our approach is also directly applicable for
obtaining interface free energies and nucleation barriers from
cluster expansions,18,19 which are widely applied to study
complex multicomponent alloys.
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