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Untangling the Raman spectra of cubic and tetragonal BaZrO3
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Raman spectroscopy is a widely used experimental technique to study the vibrational properties of solids.
Atomic scale simulations can be used to predict such spectra, but reliable studies at finite temperatures are
challenging, mainly due to the requirement of accurate and computationally efficient models for the dielectric
susceptibility. Here, we have used molecular dynamics simulations together with a density functional theory-
based model for the dielectric susceptibility to determine the Raman spectrum of barium zirconate, BaZrO3

(BZO), a well-studied oxide perovskite. At ambient conditions, where the system is cubic, we find excellent
agreement with experimentally measured Raman spectra. Our study establishes that the relatively sharp spectra
seen experimentally are due to second-order scattering. At higher pressures, where BZO is tetragonal, all first-
order Raman active modes are identified. Additionally, slightly below the phase transition, in the cubic phase,
a broad central Raman peak appears. The origin of this type of peak is controversial and extensively debated
in connection with the dynamics of the halide perovskites. Here, we show that it is also present in a hard oxide
perovskite, and it originates from the highly overdamped R-tilt mode in the cubic structure.

DOI: 10.1103/PhysRevB.111.064107

I. INTRODUCTION

Raman spectroscopy is a widely used nondestructive ex-
perimental technique to study the vibrational dynamics of
molecules and condensed-phase systems [1–3]. Typically,
first-principles calculations of the Raman spectrum are carried
out via a first-order expansion of the dielectric susceptibility
in terms of harmonic phonons [4–6]. In order for the mode to
have a nonzero (first-order) contribution to the Raman spec-
trum, it is necessary for the dielectric susceptibility to have
a nonzero first-order derivative with respect to displacements
along the phonon mode. Which and how many phonon modes
that have a nonzero contribution can be deduced from the
symmetry of the crystal [7].

If symmetry forbids first-order scattering, inclusion of
higher-order terms in the susceptibility expansion becomes
a necessity. Contributions from second-order terms were
explored computationally early using a shell polarizability
model [8] and more recently through a direct expansion of
the dielectric susceptibility fitted to density functional theory
(DFT) data [9].

Alternatively, the molecular dynamics (MD) simulation
technique can be used to obtain the Raman spectrum [10,11].
The time-correlation function of the dielectric susceptibility
of the system is then evaluated and the Raman spectrum
is obtained by a Fourier transform [12–16]. The benefit of
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this approach is that it captures all anharmonicity as well as
higher-order scattering of the Raman spectrum. However, for
the technique to be accurate and numerically efficient, both the
force evaluation in the MD simulation and the computation of
the dielectric susceptibility tensor must be done efficiently and
accurately [16,17].

Perovskite oxides (ABO3) constitute a broad and im-
portant class of multifunctional materials, known for their
wide variety of chemical compositions and different struc-
tural distortions. Raman scattering has been extensively used
to study the structural dynamics in these materials; see,
e.g., Refs. [18–22]. At ambient pressure and high tempera-
tures, many perovskite oxides are cubic, but upon cooling
they undergo one or several phase transitions to structures
with lower symmetries. A rare exception is barium zirconate
BaZrO3 (BZO), which is claimed to remain cubic down to
0 K [22–25]. However, its Raman spectrum is intense and
shows sharp, well-defined features reminiscent of first-order
scattering [22,26–33]. This is unexpected, since first-order
Raman peaks are not allowed by symmetry in a simple cubic
perovskite as BZO.

It has been suggested that the rich Raman spectrum of BZO
is due to nanodomains [26,27] or locally distorted regions
[28,29]. When increasing the pressure at room temperature,
Chemarin et al. [26] found that the intense Raman spec-
trum decreased in amplitude and tended to disappear when
approaching 9 GPa. They argued that this was because the
nanodomains were being forced to interact more strongly
with increasing pressure, which eventually led to a continuous
structure with long-range order. Above 9 GPa, a clear spectral
change was observed, which they associated with a phase
transition.

Another reason for the presence of sharp and well-defined
features in the Raman spectrum at ambient pressure could
be second-order Raman processes [30]. These processes are
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allowed by symmetry, but they are generally weaker in inten-
sity compared with first-order scattering. Two recent Raman
studies on BZO single crystals [22,32] concluded that the
Raman spectrum of BZO at room temperature could be ex-
plained by second-order scattering. Furthermore, it was also
stated that local disorder could still play a role in the general
intensity of the Raman spectrum [22].

The pressure-dependent Raman scattering at room tem-
perature was studied by Chemarin et al. [26] using a
polycrystalline sample. They found two structural phase tran-
sitions, one at 9 GPa and one at 23 GPa. Recently, Gim et al.
[32] and Toulouse et al. [33] also investigated the pressure
dependence, now using single-crystal samples. Gim et al. [32]
found two transitions, from cubic to a rhombohedral phase at
8.4 GPa and then from the rhombohedral to a tetragonal phase
at 19.2 GPa. On the other hand, Toulouse et al. [33] found a
single phase transition, from the cubic to a tetragonal phase
at 10 GPa. They also discussed why a second phase transition
is not expected for this system, at least for pressures below
45 GPa.

In a previous paper [34] we developed a neuroevolution
potential (NEP) model for the potential energy surface of
BZO. It was used to study BZO at ambient conditions, but
also its pressure dependence at room temperature, including
the phase transition from the cubic to the tetragonal phase.

Here, we compute the Raman spectrum for BZO via MD
simulations. We use the same model for the potential energy
surface as in Ref. [34] and for the dielectric susceptibility
we employ a DFT-based model, recently developed using the
tensorial neuroevolution potential (TNEP) framework [16].

We consider the cubic phase of BZO at ambient condi-
tions, as well as under pressure including the transition to a
tetragonal phase. After correcting for the classical statistics
in our MD approach we obtain excellent agreement with re-
cent experimental Raman studies of single crystals of BZO
at ambient conditions. The results are compared with the
corresponding results from an expansion of the dielectric sus-
ceptibility to second order in terms of harmonic phonons. This
allows us to assign features and peaks in the Raman spectra to
specific q points in reciprocal space. Above the phase tran-
sition pressure, in the tetragonal phase, all first-order Raman
peaks are identified and compared with available experimental
data. Finally, the phase transition is scrutinized, including a
study of the central peak in the Raman response.

II. THEORY

Raman spectrum

We consider off-resonance Raman spectroscopy [8,35].
The frequency of the incoming ωin (and outgoing ωout) light is
assumed to be much larger compared to the phonon frequen-
cies of the crystal and it is also assumed to be smaller than
any electronic excitations in the material. The dielectric sus-
ceptibility tensor χαβ can then be determined in the so-called
static ion-clamped limit [36,37]. Under these conditions the
measured Raman intensity I (ω) is proportional to

I (ω) ∝
∑
αβγ δ

n̂out
α n̂out

β Lαγβδ (ω)n̂in
γ n̂in

δ . (1)

Here, ω ≡ ωin − ωout is the Raman shift, and n̂in and n̂out

are the polarization of the incoming and outgoing light, re-
spectively, where α, β, γ , as well as δ are Cartesian indices.
Furthermore, L(ω) is the Raman line shape, given by

Lαγβδ (ω) = 1

2π

∫ ∞

−∞
dt〈χαγ (t )χβδ (0)〉e−iωt , (2)

where the time-dependence of the dielectric susceptibility
originates from the motion of the atoms in the crystal. We note
that the incoming and outgoing polarization of the light picks
out the elements of the dielectric susceptibility, as indicated in
Eq. (1).

The Raman scattering is usually discussed in terms of the
order of the scattering. The contribution of different orders
can be analyzed by Taylor expanding the dielectric suscepti-
bility in terms of the displacements of the atoms from their
equilibrium positions,

χαγ = (χ0)αγ +
∑

iε

(
Rε

i

)
αγ

uε
i

+ 1

2

∑
i jεη

(
Rεη

i j

)
αγ

uε
i uη

j + · · · , (3)

where (Rε
i )αγ , (Rεη

i j )αγ and so on denote derivatives of the
dielectric susceptibility with respect to atomic displacements
u. The indices i and j enumerate the atoms, while ε and η

denote Cartesian directions. The order is then defined by how
many atomic displacements that are involved in the correlation
function for the Raman line shape in Eq. (2). The first-order
scattering contribution is obtained from the second term in
the expansion of the dielectric susceptibility in Eq. (3), the
second-order contribution from the third term and so on (see
Appendix A for more details). We note that in a cubic system
the first-order derivative is always zero due to the symmetry
of the crystal, and there is thus no first-order scattering.

Most of our results for the Raman spectrum will be based
on a direct evaluation of the time-correlation function in
Eq. (2), based on machine learning-accelerated MD simu-
lations using the NEP [34] and TNEP models [16]. These
results are denoted as MD. We will also show some results
based on the expansion of Eq. (3) to second order. We use
the same TNEP model to evaluate the derivatives, and the
corresponding results will be denoted as DSE, the dielectric
susceptibility expansion.

III. RESULTS

A. Room-temperature spectrum

Consider first the system at room temperature (300 K) and
ambient pressure (0 GPa). The system is then cubic [34]. We
assume that the incoming and outgoing light are polarized
along the same axis and that a crystal axis is aligned with the
polarization of the light. In Porto notation [38], this is denoted
as Z(XX)Z. In Fig. 1 we show the resulting Raman spectrum
and its convergence as function of supercell size. It is clear
that a size of at least 10 × 10 × 10 cubic primitive cells is
required to obtain well-converged numerical results.

Next, we compare with the experimental data from
Toulouse et al. [22]. Those data were obtained for a single
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FIG. 1. Molecular dynamics (MD) simulation of the Raman
spectrum at 300 K and 0 GPa. Test of convergence with respect to the
size of the supercell, which is given by (n × n × n) cubic primitive
cells. The total number of atoms is 5n3.

crystal and the geometric setup was Z(XX)Z. In Fig. 2 we
show our MD results at 300 K for the same geometric setup
was a dashed line (denoted MD-cl). It is known that classi-
cal MD simulations underestimate the intensity of the true
spectrum due to quantum effects present in the real system.
Those effects can be estimated by taking quantum statistics
into account [7]. In the present case, first-order contributions
to the intensity are absent due to the cubic symmetry of
the system. Second-order contributions can be either due to
overtones or to the combination of two modes. It has been
stated that in solids, combination modes always dominate over
overtones [7]. Therefore, we restrict ourselves to combination
modes and, in addition, we assume a combination mode that
consists of the sum of two different modes but with the same
frequency (i.e., ω1 = ω2 with ω = ω1 + ω2). The correction

FIG. 2. Molecular dynamics (MD) simulation of the Raman
spectrum at 300 K and 0 GPa (MD-cl), with quantum corrections
due to combination modes (MD-qm), compared with experiments
at 300 K (Exp.) from Ref. [22]. The experimental data are scaled
such that the height of the peak around 700 cm−1 coincides between
theory and experiments.

for the classical treatment can then be written as

Iqm(ω) =
(

β h̄ω/2

1 − exp (−β h̄ω/2)

)2

Icl(ω). (4)

The result for Iqm(ω) is shown as a solid line (denoted
MD-qm) in Fig. 2. For further details, see Sec. S1.3 in the
Supplemental Material [39].

In the same figure we show the results from Toulouse et al.
[22], also at 300 K. The absolute intensity is unknown, and
we have therefore scaled the experimental data such that the
height of the peak around 700 cm−1 coincides between theory
and experiments. Our simulation agree very well with the ex-
periments. Taking the quantum statistics into account through
the rescaling factor in Eq. (4) is important to obtain a qualita-
tive agreement with experiments. A slight red shift is present
in our data compared to experiments, which we attribute to
the underlying exchange-correlation functional (the van der
Waals density functional with consistent exchange [40,41]),
which is known to give slightly red-shifted vibrational fre-
quencies for the present system (see Supporting Information
in Ref. [34]). For a similar comparison for the geometric setup
Z(XY)Z, see Fig. S1b [39].

B. Mode decomposition at room temperature

The spectrum at 300 K and 0 GPa originates from higher-
order Raman scattering processes and is likely dominated by
second-order contributions. It is therefore tempting to try to
identify the various peaks in the intensity with certain over-
tones and/or combination modes. This can be done by making
use of the dielectric susceptibility expansion (DSE) in Eq. (3),
with the atomic displacements transformed to normal mode
coordinates, see Appendix A.

To reduce the computational effort, we restrict the com-
putations to a 4 × 4 × 4 supercell (320 atoms). The result
in Fig. 1 shows that the intensity of this smaller supercell is
not fully converged. Nevertheless, the result from the smaller
supercell contains sharp well-defined peaks, roughly with the
correct positions and intensities. Therefore, we conclude that
the smaller supercell is sufficient for identifying possible over-
tones and/or combination modes in the spectrum.

In Fig. 3 we show the result for the Raman spectrum using
the DSE to second order. The only term in the mode expansion
that then contributes to the intensity in a cubic system is the
one denoted by LII

αγβδ (ω) in Appendix A. In Fig. 3 we also
show the result using the MD method for the small 4 × 4 × 4
supercell. The result is nearly identical to the result using the
expansion of the dielectric susceptibility. The small difference
may be due to the neglect of higher-order terms in the expan-
sion or simply due to numerical/statistical noise. In any case,
this demonstrates that the Raman spectrum is dominated by
second-order scattering.

The DSE result can then be decomposed into the contri-
bution from different q points in the Brillouin zone, in total
64 points. We set k = q in Eq. (A9) and show the results
for the intensities from the four high-symmetry points �, X,
M, and R in Fig. 3. These different contributions are shown
cumulatively, i.e., they are added up. It is clear that the high
symmetry points do not capture the full intensity of the Raman
spectrum. In fact, most of the intensity comes from other parts
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FIG. 3. Raman spectrum based on the dielectric susceptibility
expansion (DSE) to second order, compared with MD; both using
a 4 × 4 × 4 supercell. Contributions from different high symmetry q
points to the total Raman spectrum are also shown. These contribu-
tions are shown cumulatively, i.e., they are added up. The degeneracy
of the high symmetry q points is included in plotted intensity.

of the Brillouin zone. An integration over the whole Brillouin
zone becomes necessary to obtain accurate features of the
Raman spectrum. A similar conclusion was made in Ref. [9]
for NaCl.

Nevertheless, there are significant contributions to specific
peaks stemming from the high symmetry points, yet not sig-
nificant enough to warrant an assignment. It is clear that the
R point gives a substantial contribution to the spectrum below
200 cm−1. The peak at 620 cm−1 gets a contribution from both
the M and X points, while the � and X points contribute to the
peak at 700 cm−1. For the frequencies between 200 cm−1 and
500 cm−1 the individual contribution from the high symmetry
points is less clear.

C. Pressure dependence at room temperature

Next, we consider the pressure dependence of the Raman
spectrum at room temperature (300 K). Our system exhibits a
phase transition from the cubic phase (Pm3̄m) to the tetragonal
phase (I4/mcm) at about 16.2 GPa [34]. In our setup, the
elongated axis for the tetragonal system is oriented in the z
direction.

In Fig. 4 we present our result for the pressure dependence
from 0 GPa–24 GPa. In the figure, we show the result for the

FIG. 4. MD simulation of the Raman spectrum at 300 K as func-
tion of pressure, from 0 GPa (bottom, blue) to 24 GPa (top, red) with
3 GPa increments. At 15 GPa a pronounced central peak is visible.
The phase transition to the tetragonal phase occurs at about 16.2 GPa.

setup Z(XX)Z and Z(XY)Z. As we increase the pressure from
0 GPa, the intensities of all peaks in the Raman spectrum are
decreasing prior to the phase transition. Hence, our results
are fully in line with the experimentally measured spectra by
Chemarin et al. [26] and by Toulouse et al. [33].

As we further increase the pressure beyond the tetragonal
phase transition, three distinct first-order peaks appear in the
spectrum. We denote these by A, B, and C (see Fig. 4 and
Table I). These modes have previously been identified experi-
mentally by Toulouse et al. [33].

Close to, but below, the phase transition the quasielastic
line broadens and increases substantially in intensity to a
broad central Raman peak, which is clearly seen in Fig. 4 at
15 GPa (see also Fig. S2a [39]). This behavior is reminiscent
of the overdamped tilt mode visible in the dynamical structure
factor of BZO close to the phase transition [34].

The high-frequency A mode corresponds to Jahn-Teller-
like distortions of oxygen octahedra [33]. Its pressure depen-
dence is significant with a slope of about 4.7 cm−1 G−1 Pa and
it is only present in the polarization setup Z(XY)Z. The inten-
sity is initially quite small compared to mode B and C, but its

TABLE I. Frequency, damping and slope for the first-order active Raman modes in the tetragonal phase at 300 K and 21 GPa. The frequency
ω0 and damping � are obtained by fitting to a damped harmonic oscillator model I (ω) ∝ 2�ω2

0/[(ω2 − ω2
0 )2 + (�ω)2] [42]. The pressure

dependence of the peak position, i.e., the slope, is then determined by a finite difference approximation. For each mode the corresponding
Porto notation is given as well as the indices αγβδ for the Raman line shape.

A B1 B2 C1 C2 D E

Frequency ω0 (cm−1) 677 378 369 139 136 103 64
Damping � (cm−1) 9.1 10.2 12.0 5.4 5.8 27.8 20.5
Slope (cm−1/GPa) 4.7 1.8 0.8 1.6 1.2 7.0 2.8
Visibility Z(XY)Z Z(XX)Z Y(XZ)Y Z(XX)Z Y(XZ)Y Z(XX)Z Y(XZ)Y

Z(YY)Z X(YZ)X
Y(ZZ)Y

Raman line shape xyxy xxxx xzxz xxxx xzxz xxxx,yyyy xzxz,yzyz,zzzz
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FIG. 5. Results from MD simulations of the Raman spectra at
300 K and at three different pressure in the tetragonal phase, show-
casing under which experimental setups the first order active phonon
modes are visible.

intensity increases more with increasing pressure compared to
mode B and C. This mode, A, is clearly visible in Chemarin
et al. [26] and also in Gim et al. [32], albeit less pronounced.
The pressure dependence of the peak position is similar in
these two experimental studies and in line with what we find
here. In Ref. [33] the mode is very faint and the authors state
that this is most likely a consequence of the experimental
setup and related to the orientation of the single crystal.

The other two peaks, B and C, both consist of two closely
overlapping bands and stem from the lifting of degenerate
modes in the cubic cell (see Fig. 5). A large peak is visible
in Z(XX)Z and a smaller peak is visible in Y(XZ)Y, and
where the smaller peak has a slightly lower frequency. The
B mode is due to oxygen octahedra shearing modes and the C
mode to antiparallel barium motion [33]. The splitting of the
B mode is visible in spectra of Chemarin et al. [26] and Gim
et al. [32], but only at considerably higher pressures than the
phase transition pressure. Therefore, they both concluded that
a second phase transition occurs. Here we show that the split-
ting is present already at the phase transition to the tetragonal
phase and no further phase transition occurs. Toulouse et al.
[33] could not resolve any splitting for the B mode but noted
that the C mode has an asymmetric profile at higher pressure,
which may indicate the presence of two closely overlapping
bands.

The Raman spectrum also contains two soft modes, here
denoted D and E, which are visible in the setup Z(XX)Z
and Y(XZ)Y, respectively. They are due to the tilt mode
of the octahedra, and, in particular, the position of the D
mode shows a strong dependence on the pressure. Both Gim
et al. [32] and Toulouse et al. [33] detected these two modes.
They also found that the mode with higher frequency (the D
mode) shows a stronger pressure dependence. In the study by
Toulouse et al. [33] the soft mode with lower frequency (the
E mode) is lost in the quasielastic line at low pressures.

D. Phase transition

The phase transition from the cubic to the tetragonal phase
is driven by tilting of the ZrO6 octahedra [34,43–46]. The
corresponding phonon mode is located at the R point in

FIG. 6. Mode coordinate in time, Q(t ), of the R mode at 300 K
and at five different pressures; 12.0, 15.5, 16.0, 16.5, and 17.0 GPa.

the phonon dispersion relation for the cubic structure. It is
therefore instructive to consider the dynamical behavior of
the phonon mode coordinate Q(t ) for the R-tilt mode. The
latter can be obtained from MD simulations by projecting the
atomic displacements u(t ) onto the supercell eigenvector eλ,

Q(t ) = 〈eλ|u(t )〉, (5)

where λ = R (see Ref. [34]). In the cubic phase, the mode
exhibits threefold degeneracy along the Cartesian directions,
whereas in the tetragonal phase, this degeneracy is broken,
making one direction symmetrically distinct from the other
two. We denote these directions by z and xy, respectively.

In Fig. 6 we show the time evolution of the phonon mode
coordinates Q(t ) at five different pressures, three below the
phase transition and two above. (For the time evolution at
some other pressures, see Fig. S4 [39].) At 12.0 GPa the mode
coordinate shows quite small and regular oscillations. When
the pressure is increased and is approaching the phase transi-
tion, the oscillations become larger, much more irregular, and
the timescale of the motion is slowing down. Above the phase
transition the oscillations again become smaller, faster, and
more regular and the degeneracy is broken.

Consider next the spectral properties of the phonon mode
coordinate Q. Its power spectrum can be obtained from the
Fourier transform of the autocorrelation function of Q(t ),
according to

P(ω) =
∫

dt e−iωt 〈Q(t + t ′)Q(t ′)〉. (6)

This is shown in Fig. 7 and for some further pressures in
Fig. S6 [39]. At 12.0 GPa the spectrum shows a broad peak
located around 35 cm−1. When the pressure is increased, the
frequency softens, the motion becomes overdamped, and the
spectrum instead develops a central peak, which increases
in height when approaching the phase transition. Above the
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FIG. 7. Power spectrum, P(ω), of the phonon mode coordinate
of the R mode at 300 K and at five different pressures; 12.0, 15.5,
16.0, 16.5, and 17.0 GPa. The results from the MD simulation are
compared with the corresponding results using the damped harmonic
oscillator (DHO) model.

phase transition, where the system is tetragonal, the spectra
comprise two broad peaks. These correspond to the modes
here denoted D and E in the Raman spectra (Fig. 5). In
addition, an intensity is present at low frequencies for the
z component, which is slightly decreasing with increasing
pressure.

The corresponding autocorrelation function in time,
C(t ) = 〈Q(t + t ′)Q(t ′)〉, is shown in Fig. S5 [39]. When
approaching the phase transition from below, C(t ) decays
exponentially, with a decay time that approaches infinity.

It is instructive to fit our results for the power spectrum to
a damped harmonic oscillator (DHO) model (see Sec. S3 [39]
and Refs. [42,47]). That model is defined by two parameters,
the natural frequency ω0 and the damping �. In Fig. 7 we
show the fitted result as dashed lines. The obtained frequen-
cies, ω0, and damping �/2, are shown in Fig. 8. The DHO
model describes the spectra in Fig. 7 very well, except for the
central peak observed in the tetragonal phase, mainly in the z
direction. The obtained pressure dependence on the frequency
ω0 in Fig. 8 indicates a continuous phase transition. However,
we note that close to a continuous phase transition, both the
length and timescale of the tilt mode diverges, rendering it
difficult to converge the power spectra and thus leading to
larger uncertainties close to the phase transition [47].

In the tetragonal phase, the power spectrum in the z di-
rection shows both a broad peak at a finite frequency, an
oscillatory peak, and an increased intensity at low frequencies,
a central peak. A central peak appears in the spectrum when
the damping is large, �/2 > ω0, while an oscillatory peak ap-
pears when the damping is small, �/2 < ω0. From symmetry,
we expect the potential energy function for the phonon mode
coordinate in the z direction to be asymmetric. The damping
could also vary as function of distance. In Sec. S3.2 [39] we

FIG. 8. Frequency, ω0, and damping, �/2, for the R mode, ob-
tained by fitting to the damped harmonic oscillator (DHO) model, as
a function of pressure at 300 K. For comparison, the results from the
MD simulation (Raman) are shown as black symbols.

show that a harmonic well with distance-dependent damping
can show a power spectrum with both an oscillatory peak
and a central peak. The same qualitative behavior can also
be obtained using an asymmetric Morse potential together a
constant, distance-independent damping. For further details,
see Sec. S3.3 [39].

Let us now consider the Raman spectra in Fig. 4. As
already stated, close to, but below the phase transition the
quasielastic line broadens and increases substantially in
intensity to a broad central Raman peak (see Fig. 4 and
Fig. S2a [39]). At 15 GPa the intensity increases rapidly
for frequencies below ∼80 cm−1. This is the most apparent
signature of the onset of the phase transition. The emergence
of such a central Raman peak has been discussed for other
perovskite materials [17,48–52]. In the case of BZO, we find
here that the emergence of the central Raman peak is due to
the overdamped behavior of the tilt mode close to, but below,
the phase transition.

In Fig. 9 we show the behavior of the Raman intensity
around the phase transition temperature in more detail (see

FIG. 9. Raman spectra at 300 K as a function of pressure, at 12.0,
15.5, 16.0, 16.5, and 17.0 GPa. The phase transition to the tetragonal
phase occurs at about 16.2 GPa
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also Fig. S2b [39]). In the cubic phase the peak grows substan-
tially close to the phase transition, similar to the overdamped
power spectra in Fig. 7, despite that first-order scattering is
forbidden in a cubic crystal. However, second-order scattering
can be obtained with Eq. (A6) together with Wick’s theorem
in Eq. (A12), where the overtone of the tilt mode is given as a
convolution of its own power spectral density. Notably, there
is an asymmetry in the phase transition, i.e., the pronounced
central peak is only present in the cubic phase. This is due to
the tilt mode quickly stiffening with pressure, and the mode
becomes underdamped.

It is interesting to compare the low-frequency dynamics of
BZO, an oxide perovskite, with the halide perovskites, which
often exhibit a low-frequency Raman response, and thus a
central Raman peak. While the origin of this peak has been
discussed extensively [17,48–55], no consensus has yet been
reached. Also for the halide perovskites the central Raman
peak can be understood from heavily overdamped tilt modes
that give rise to correlations on a very long timescale and
hence a narrow central Raman peak in the spectrum [47].
However, in the halide perovskites, both the R-point and M-
point modes can become overdamped, not only the R-point
mode, which indicates two-dimensional octahedral fluctua-
tions [47,53]. Furthermore, halide perovskites are often softer
compared to the oxide perovskites and the effect is therefore
more pronounced in the halide perovskites, but here we show
that a central Raman peak can also appear in a hard oxide
perovskite close to a phase transition.

IV. CONCLUSIONS

We have computationally determined the Raman spectrum
for BZO by directly evaluating the dynamic autocorrelation
function of the dielectric susceptibility tensor of the system
using classical MD simulations. To this end, we have used
machine-learned models from the literature for the potential
energy surface [34] as well as for the dielectric susceptibility
tensor [16].

It has been established that at room temperature and
ambient pressure BZO is cubic, indicating that the Raman
spectrum should lack sharp features. Nevertheless, sharp fea-
tures reminiscent of first-order scattering have been observed
experimentally. We also observe such features in our simu-
lations and when correcting for the classical sampling in our
approach, the simulated and experimental spectra are in ex-
cellent agreement. The slight red shift of our spectrum can be
attributed to the exchange-correlation functional used for the
construction of the potential energy model, which is known to
yield a slightly too soft response. We can therefore conclude
that the sharp features present in the experimental spectrum
are due to higher-order scattering processes.

We have also determined the Raman spectrum by expand-
ing the dielectric susceptibility tensor in terms of the phonon
mode coordinates. As we find that an expansion to second or-
der gives almost indistinguishable results compared to the full
model, we can conclude that the scattering is dominated by
second-order effects. The DSE then allows us to disentangle
the contributions from different points in the Brillouin zone.
There are significant contributions to specific peaks stemming

from the high symmetry points, but not significant enough to
warrant any assignment. Therefore, it becomes important to
account for all points in the Brillouin zone to correctly capture
the full Raman spectrum.

When the pressure is increased, the intensity of the peaks
in the cubic structure is reduced, which is in line with experi-
ments. In light of this finding and based on our previous study
[34], we find no evidence of nanodomains as suggested by
Chemarin et al. [26].

Additionally, slightly below the phase transition pressure, a
broad central peak appears, which is reminiscent of the behav-
ior of the overdamped tilt mode, which is a strong indication
of the phase transition [34,47]. Such a broad central Raman
peak has been extensively discussed in connection to halide
perovskites [52]. Here, we show that it can also be present
in a hard oxide perovskite and it originates from the highly
overdamped R-tilt mode in the cubic structure.

Above the phase transition pressure, in the tetragonal
phase, all first-order Raman active peaks are identified. Fur-
thermore, we note that the splitting of the peaks at higher
pressure seen experimentally [26,32,33], is not due to a
second phase transition. Instead, this splitting is caused by
the slightly different pressure dependence of the underlying
phonon modes, and thus, the difference in frequency between
the two modes increases as we increase the pressure. Our
simulation consolidates the analysis of Toulouse et al. [33]
of the Raman spectrum in the tetragonal cell; there is only one
phase transition for BZO, at least up to 45 GPa.

The present study shows that Raman spectra computed by
MD simulations with machine-learned models for the poten-
tial energy surface and for the dielectric susceptibility can
provide detailed and crucial information about the dynam-
ics of the lattice vibrations and their impact on the Raman
spectrum.
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APPENDIX A: MODE DECOMPOSITION

1. Dielectric susceptibility expansion (DSE)

Start by expressing the displacements uε
i ≡ u(i, ε) in

Eq. (3) in terms of phonon operators Qqν according to

u(i, ε) =
∑
qν

cqν (i, ε)Qqν (A1)
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with,

cqν (i, ε) = eiq·r(i)

√
Nmi

Wqν (i, ε), (A2)

Qqν =
√

h̄

2ωqν

(aqν + a†
−qν ), (A3)

where mi is the mass of atom i, r(i) its equilibrium position
in the supercell, and N is the number of unit cells. Latin
letters denote atoms in the supercell and Greek letters indicate
a Cartesian direction. Further, ωqν is the phonon frequency,
Wqν the phonon eigenvector, and aqν and a†

−qν are the cre-
ation and annihilation operators. q is used to denote a point
in the first Brillouin zone and ν the corresponding branch
index.

The reformulation of the atomic displacements in terms
of phonon mode coordinates allows us to rewrite the Taylor
expansion of the dielectric susceptibility in Eq. (3) in terms of
phonon mode coordinates [7,35,56],

χ = χ0+
∑
qν

R̃ν
qQqνδq,� + 1

2

∑
qν
kμ

R̃ν;μ
q;k QqνQkμδq,k + · · · ,

(A4)

where R̃ is the Raman tensor for the respective order. The
restriction imposed by the two δ functions in Eq. (A4) is a
consequence of the invariance of the crystal against a rigid
body translation.

The Raman tensor for the first and second order is then
given by,

(
R̃ν

q

)
αγ

=
∑
i,ε

∂χαγ

∂u(i, ε)
cqν (i, ε)Wqν (i, ε),

(
R̃ν;μ

q;k

)
αγ

=
∑
i,ε
j,ζ

∂2χαγ

∂u(i, ε)∂u( j, ζ )
cqν (i, ε)ckμ( j, ζ )

× Wqν (i, ε)Wkμ(i, ζ ).

As we note in Sec. II A, the first-order derivative with respect
to atomic displacements is zero for a cubic system, therefore,
the first order Raman intensities expressed in phonon coordi-
nates will consequentially also be zero.

Inserting the expansion of the dielectric susceptibility,
Eq. (A4), into the quantum mechanical expression for the
Raman line shape [cf. Eq. (2)],

Lαγβδ (ω) = 1

2π

∫ ∞

−∞
dt〈χαγ (t )χ†

βδ (0)〉e−iωt ,

leads to an expansion of the line shape in terms of
Fourier transformed phonon Green’s functions and Raman
intensities.

LI
αγβδ (ω) = 1

4π

∑
νμ

(
R̃ν

�

)
αγ

(
R̃μ

�

)†

βδ
G̃ν;μ

� (ω), (A5)

LII
αγβδ (ω) = 1

8π

∑
qk

νμν ′μ′

(
R̃ν;μ

q;−q

)
αγ

(
R̃ν ′;μ′

k;−k

)†

βδ
G̃νμ;ν ′μ′

q;k (ω), (A6)

LIII
αγβδ (ω) = 1

4π

∑
k

νμν ′μ′

(
R̃ν

�

)
αγ

(
R̃ν ′;μ′

k;−k

)†

βδ
G̃ν;ν ′μ′

�;k (ω)

+ (
R̃ν;μ

k;−k

)
αγ

(
R̃ν ′

�

)†

βδ
G̃νμ;ν ′

k;� (ω). (A7)

The phonon Green’s functions in the time domain are defined
as,

Gν;μ
� (t ) = 〈Q�ν (t )Q†

�μ(0)〉 ∝ 〈A�ν (t )A†
�μ(0)〉 (A8)

Gνμ;ν ′μ′
q;k (t ) ∝ 〈Aqν (t )A−qμ(t )A†

kν ′ (0)A†
−kμ′ (0)〉. (A9)

Gν;ν ′μ′
�;q (t ) ∝ 〈A�ν (t )A†

qν ′ (0)A†
−qμ′ (0)〉 (A10)

Gνμ;μ′
q;� (t ) ∝ 〈Aqν (t )A−qμ(t )A†

�μ′ (0)〉, (A11)

where Aqν (t ) = exp(tH/h̄)Aqνexp(−tH/h̄) and Aqν = aqν +
a†

−qν , i.e., this is the phonon displacement operator in the
Heisenberg picture.

For harmonic systems, the modes do not mix, this means
that only Gν;μ

� (t ) with ν = μ and Gνν ′;μμ′
q;k (t ) with q = k,

ν = ν ′ and μ = μ′ is nonzero. The first term would then
correspond to first order Raman scattering and the second
term would be second-order Raman scattering. For the second
order, ν = μ is referred to as overtones whereas, ν 
= μ is
referred to as combination modes. For anharmonic systems,
the other terms do not necessarily vanish, instead they will
contribute to the one-phonon peaks but they decay rapidly
away from these peaks [9].

We make a classical approximation and obtain these
Green’s functions by projecting the atomic displacements on
the mode coordinates during the MD simulation, see, e.g.,
Refs. [15,57–59]. We refer to this method as DSE.

2. Wick’s theorem

Gνν ′;μμ′
q;k (t ) can be decomposed using Wick’s approximation

[60],

〈Aqν (t )A−qμ(t )A†
kν ′ (0)A†

−kμ′ (0)〉
≈ 〈Aqν (t )A−qμ(t )〉〈A†

kν ′ (0)A†
−kμ′ (0)〉

+ 〈Aqν (t )A†
kν ′ (0)〉〈A−qμ(t )A†

−kμ′ (0)〉
+ 〈Aqν (t )A†

−kμ′ (0)〉〈A−qμ(t )A†
kν ′ (0)〉. (A12)

This allows us to express higher-order scattering in terms of
convolutions of second-order scattering. Notably, the same
theorem can be applied to all even orders.

APPENDIX B: MODELING DETAILS

1. Potential energy surface

A machine-learned potential energy surface (PES) for BZO
was developed in Ref. [34] using the NEP approach. It was
trained from DFT data using the van der Waals density
functional with consistent exchange (vdW-DF-cx) [40,41]
for the exchange-correlation effects, here denoted CX. This
functional gives a good balance between accuracy and com-
putational speed. However, it consistently underestimates the
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vibrational frequencies at the � point with about 5% [34].
For more details and comparisons with other functionals, see
Refs [24,34]. CX was used in Ref. [34] to study the struc-
ture and dynamics of BZO as function of temperature and
pressure. Additionally, a phase transition from the cubic to
the tetragonal structure was obtained at 16.2 GPa at ambient
temperature.

2. Dielectric susceptibility

To obtain the Raman spectrum in Eq. (2) a model for the
dielectric susceptibility is also required. That was developed
in Ref. [16] by generalizing the NEP scheme to enable pre-
dictions of tensorial properties, the TNEP approach. It was
based on DFT data for the relative susceptibility using the CX
functional. The training structures were generated by running
MD with different temperatures and pressures with the same
NEP model as used in Ref. [34]. Various sizes of the supercell

were used, with the total number of atoms ranging from 5–40
atoms. For more details, see Ref. [16].

3. Molecular dynamics

In the present study, the MD simulations are done using
the GPUMD package [61] together with the NEP in Ref. [34]
and the TNEP in Ref. [16] to obtain the correlation function in
Eq. (2). In all simulations, we employ a time step of 1 fs. The
system is equilibrated during a period of 100 ps in the NVT
ensemble. The time-correlation functions are then sampled
over 500 ps in the NVE ensemble, and averaged over 20 iden-
tical simulations. Lattice parameters are obtained from NPT
simulations, as done in Ref. [34]. For the Raman simulation
at ambient pressure (Fig. 2) we have used a 14 × 14 × 14
supercell (13720 atoms), while for the pressure-dependent
calculations (Figs. 4, 5 and 9) a 12 × 12 × 12 supercell is
used (8640 atoms). For the R-mode calculations (Figs. 6–8)
we used a 24 × 24 × 24 supercell (69120 atoms).
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S1 Raman spectra
S1.1 Parallel and crossed spectra
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Figure S1: a) Parallel and b) crossed Raman spectra of BaZrO3 at 300K and 0GPa. In the crossed
Raman spectra there is a peak at 750 cm−1 in the experimental data, which is not present in the
theoretical data. The origin may be due to that in the experimental setup the crystal is not perfectly
aligned and in that way some signal from the parallel configuration (which has a peak around 750 cm−1)
shows up in the crossed experimental data.

S1.2 Central Raman peak
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Figure S2: Parallel Raman spectra of BaZrO3 at 300K and at different pressures. a) Spectra at 0-
24GPa with 3GPa increments. At 15GPa a pronounced central peak is visible. b) Spectra at 12.0,
15.5, 16.0, 16.5 and 17.0GPa. The phase transition to the tetragonal phase occurs at about 16.2GPa.
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S1.3 Quantum corrections
Our calculation of the Raman spectra is based on MD simulations, i.e. on classical dynamics. Quantum
dynamics will influence the results, renormalize phonons, and change the occupancy of phonon modes.
The most important thing is to take the quantum statistics, the occupancy of the modes, into account.
Even at room temperature, this effect can be large.

For a system described by a harmonic Hamiltonian, this can be done exactly. Following Cardona [1]
the Raman intensity for first-order Stokes-Raman scattering in a harmonic crystal can be written as

Iqm(ω) =
V

(4π)2
ω4
s

c4
| es ·

dχ

dξ
· eL |2 Sqm (S1)

where the statistical factor Sqm is given by

Sqm = ⟨ξξ†⟩ =
∑
k

⟨n|ξ|k⟩ ⟨k|ξ†|n⟩ = | ⟨n+ 1|ξ†|n⟩ |2 =
ℏ
2ω

[n(ω) + 1] (S2)

and where ξ† and ξ are the phonon creation and annihilation operators, respectively, and

n(ω) =
1

exp (βℏω)− 1
(S3)

is the Bose-Einstein occupation factor. It is the statistical factor Sqm that incorporates the proper
quantum fluctuations in the system. In the classical limit it reduces to

Scl =
1

2βω2
(S4)

A computed Raman intensity based on classical mechanics Icl(ω) can then be used to obtain the true
Raman intensity based on quantum mechanics according to

Iqm(ω) =
Sqm
Scl

Icl(ω) =
βℏω

1− exp (−βℏω)
Icl(ω) (S5)

Consider now second-order Stokes-Raman scattering. Then we can distinguish between scattering
by two of the same phonons (overtones) and by two different phonons (combinations). In the latter
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Figure S3: Rescaling factor Sqm/Scl at T = 300 K as function of frequency ω. Black curve: first order
scattering (see Eq. S5); Blue curve: second order scattering, overtone (see Eq. S7); Red curve: second
order scattering, combination mode with ω1 = ω2 (see Eq. S10).
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case, differences are also possible. For overtones with frequency ω1 we have that [1]

Sqm =
ℏ

2ω1
[n(ω1) + 1]

ℏ
2ω1

[n(ω1) + 2] (S6)

with ω1 = ω/2. The quantum mechanical intensity can then be obtain as

Iqm(ω) =

(
βℏω/2

1− exp (−βℏω/2)

)2

[2− exp (−βℏω/2)] Icl(ω) (S7)

using a computed classical intensity Icl(ω).
For a combination mode with frequencies ω1 and ω2 we have that [1]

Sqm =
ℏ

2ω1
[n(ω1) + 1]

ℏ
2ω2

[n(ω2) + 1] (S8)

with ω1 + ω2 = ω. The quantum mechanical intensity can then be obtain as

Iqm(ω) =
βℏω1

1− exp (−βℏω1)

βℏω2

1− exp (−βℏω2)
Icl(ω) (S9)

using a computed classical intensity Icl(ω). The largest quantum correction for a combination mode
is obtained assuming ω1 = ω2, i.e.

Iqm(ω) =

(
βℏω/2

1− exp (−βℏω/2)

)2

Icl(ω) . (S10)

while the smallest quantum correction for a combination mode is obtained assuming ω1 = ω (and
hence ω2 = 0) or ω2 = ω (and hence ω1 = 0). The result is then given by Eq. S5. For an arbitrary
combination mode, the result will be between the black and red curves in Fig. S3.
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S2 Phonon mode projections
S2.1 Mode coordinate
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Figure S4: Time dependence of the phonon mode coordinate Q(t) = ⟨ eλ | u(t) ⟩ for the R-mode.
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S2.2 Time correlation function
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Figure S5: The phonon mode time correlation function C(t) = ⟨Q(t+ t′)Q(t′)⟩.
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S2.3 Power spectrum
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Figure S6: Power spectrum of the phonon mode coordinate P (ω) =
∫

dt e−iωtC(t).
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S3 Brownian dynamics
S3.1 Damped harmonic oscillator
The time evolution of the phonon mode coordinate Q(t) can be modelled as the motion of a damped
harmonic oscillator (DHO) with the natural frequency ω0 and damping Γ according to

Q̈(t) + ω2
0 Q(t) = −Γ Q̇(t) + ξst(t) , (S11)

where ξst(t) is a fluctuating force with white noise spectrum

⟨ξst(t)ξst(t′)⟩ = 2ΓkBTδ(t− t′). (S12)

and where ⟨. . .⟩ denotes a time average. The auto-correlation function for the phonon mode coordinate,
C(t) ≡ ⟨Q(t+ t′)Q(t′)⟩, is then given by the equation

C̈(t) + Γ Ċ(t) + ω2
0 C(t) = 0 (S13)

with C(0) = kBT/ω
2
0 and Ċ(0) = 0. The solution to Eq. S13 in time splits into an underdamped

regime (ω0 > Γ/2) with a damped oscillatory motion and an overdamped regime (ω0 < Γ/2) with an
exponential decay in time [2]. The corresponding power spectrum is given by

P (ω) = kBT
2Γ

(ω2 − ω2
0)

2 + (Γω)2
. (S14)

For frequencies ω0 > Γ/
√
2 the spectrum exhibits a peak with peak position ωp =

√
ω2
0 − Γ2/2 , while

for ω0 < Γ/
√
2 the spectrum only shows a central peak, which approaches a Lorentzian with the half

width at half maximum equal to ω2
0/Γ when ω0/Γ decreases.

Example

Consider now a harmonic oscillator with the natural frequency ω0 = 1.2 ps−1 (ω0 = 40 cm−1)
at temperature T = 300K. We consider two different values of the damping: Γ = 0.2 ps−1 and
Γ = 2.6 ps−1. The former corresponds to low damping Γ/2 < ω0, while the latter corresponds to high
damping Γ/2 > ω0. As seen in Fig. S7, the distribution of the phonon mode coordinate is the same in
the two different cases while the power spectra differ. At low damping an oscillatory peak is visible,
whereas at high damping only a central peak appears in the spectrum.
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Figure S7: Results for the DHO potential with low damping Γ/2 < ω0 (blue curve) and high damping
Γ/2 > ω0 (red curve). a) The distribution of the oscillator. b) The power spectrum of the solution.

8



S3.2 Position dependent damping
The extra peak in the spectrum for the Qz-phonon mode coordinate in the tetragonal phase may be
due to some asymmetry in the damping. If the damping is small in some region and large in some
other region, the motion may contain both damped and overdamped oscillatory motion. Therefore,
we extend the simple damped harmonic oscillator model in Eq. S11 by adding an asymmetric position
dependent damping Γ(Q), according to

Q̈(t) + ω2
0 Q(t) = −Γ(Q) Q̇(t) + ξst(t,Q) , (S15)

The fluctuating force also then become position dependent. This equation has to be solved numerically.
We use the integrator for the Langevin equation introduced by Bussi and Parrinello [3]. For Γ(Q) we
assume the asymmetric form

Γ(Q) = Γ0 +A Θ(Q) Q2.

where Θ(Q) is the Heaviside step function. The model then contains three parameters, the natural
frequency ω0, the base damping Γ0, and the damping strength parameter A.

Example

Consider a system defined by the parameters ω0 = 1.2 ps−1, Γ0 = 0.2 ps−1, and A = 200 eV−1ps−3

at temperature T = 300K. In Fig. S8a we show the obtained distribution for the phonon mode
coordinate, which is symmetric, together with the damping function Γ(Q). The power spectrum in
Fig. S8b consists of a central peak and a damped oscillatory peak around 40 cm−1. This corresponds
to 1.2 ps−1 in nice agreement with ω0.
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Figure S8: Results for the damped oscillator potential with a position dependent damping. a) The
distribution of the oscillator together with the position dependent damping. b) Power spectrum of the
solution.
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S3.3 Damped Morse oscillator
The harmonic potential is symmetric. Another possibility to obtain an asymmetry is to change the
potential. Therefore, we consider the asymmetric Morse potential, defined as,

V (Q) = D(1− e−αQ)2.

The force on the particle is then given by,

F (Q) = −2αD
(
1− e−αQ

)
e−αQ

and at small displacements, the oscillation frequency is equal to ωmin = α
√
2D. The equation of

motion is then given by

Q̈(t) + 2αD
(
1− e−αQ(t)

)
e−αQ(t) = −ΓQ̇(t) + ξst(t)

and is solved using the integrator introduced by Bussi and Parrinello [3]. The model contains three
parameters, the damping Γ, and the two potential parameters D and α.

Example

Consider a system defined by the parameters D = 0.258 eV, a = 4.2 eV−1/2ps−1, and Γ = 0.08 ps−1

and the temperature T = 300K. In Fig. S9a we show the obtained distribution for the phonon mode
coordinate, together with the Morse potential. The distribution is asymmetric with a tail towards
large values for Q. Ihe power spectrum in Fig. S9b consist of a large central peak and a damped
oscillatory peak around 92 cm−1. This can be compared with the frequency at the minimum, ωmin,
which is slightly higher, equal to 101 cm−1. This is expected on the basis of the anharmonicity of the
Morse potential.
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Figure S9: Results for the damped Morse oscillator. a) The distribution of the oscillator together with
the Morse potential. b) Power spectrum of the solution.
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