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Raman spectroscopy is a widely used experimental technique to study the vibrational properties
of solids. Atomic scale simulations can be used to predict such spectra, but trustworthy studies at
finite temperatures are challenging, mainly due to the requirement of accurate and computationally
efficient models for the dielectric susceptibility. Here, we have made use of molecular dynamics
(MD) simulations together with a density functional theory (DFT) based model for the dielectric
susceptibility to determine the Raman spectrum of barium zirconate, BaZrO3 (BZO), a well-studied
oxide perovskite. At ambient conditions, where the system is cubic, we find excellent agreement
with experimentally measured Raman spectra. Our study establishes that the relatively sharp
spectra seen experimentally are due to second-order scattering. At higher pressures, where BZO
is tetragonal, all first-order Raman active modes are identified. Additionally, slightly below the
phase transition, in the cubic phase, a broad “central Raman peak” appears. The origin of this
type of peak is controversial and extensively debated in connection to the dynamics of the halide
perovskites. Here, we show that it is also present in a “hard” oxide perovskite, and it originates
from the highly overdamped R-tilt mode in the cubic structure.

I. INTRODUCTION

Raman spectroscopy is a widely used non-destructive
experimental technique to study the vibrational dy-
namics of molecules and condensed-phase systems [1–
3]. Commonly, first-principles calculations of the Ra-
man spectrum are carried out via a first-order expan-
sion of the dielectric susceptibility in terms of harmonic
phonons [4–6]. In order for the mode to have a non-zero
(first-order) contribution to the Raman spectrum, it is
necessary for the dielectric susceptibility to have a non-
zero first-order derivative with respect to displacements
along the phonon mode. Which and how many phonon
modes that have a non-zero contribution, can be deduced
from the symmetry of the crystal [7].
If symmetry forbids first-order scattering, such as in

cubic crystals, inclusion of higher-order terms in the sus-
ceptibility expansion becomes a necessity. Contributions
from second-order terms were early on explored compu-
tationally using a shell polarizability model [8] and more
recently through a direct expansion of the dielectric sus-
ceptibility fitted to DFT data [9]. In these studies the an-
harmonicity and temperature dependence of the phonon
coordinates were included by a diagrammatic approach.
Alternatively, the MD simulation technique can be

used to obtain the Raman spectrum [10, 11]. The time-
correlation function of the dielectric susceptibility for the
system is then evaluated and the Raman spectrum is ob-
tained by a Fourier transform [12–16]. The benefit of this
approach is that it captures all anharmonicity as well as
higher-order scattering of the Raman spectrum. How-
ever, for the technique to be accurate and numerically
efficient both the force evaluation in the MD simulation
and the computation of the dielectric susceptibility ten-
sor have to be done efficiently and accurately [16, 17].
Perovskite oxides (ABO3) constitute a broad and im-

portant class of multifunctional materials, known for
their large variety in chemical composition and of differ-

ent structural distortions. Raman scattering has been ex-
tensively used to study the structural dynamics in these
materials, see, e.g., Refs. [18–22]. At ambient pressure
and high temperatures, many perovskite oxides are cu-
bic but upon cooling they undergo one or several phase
transitions to structures with lower symmetries. A rare
exception is barium zirconate, BaZrO3 (BZO), which is
claimed to remain cubic down to 0K [22–25]. How-
ever, its Raman spectrum is intense and shows sharp,
well-defined features reminiscent of first-order scattering
[22, 26–33]. This is unexpected, as first-order Raman
peaks are not allowed by symmetry in a cubic system.

It has been suggested that the rich Raman spectrum of
BZO is due to nanodomains [26, 27] or locally distorted
regions [28, 29]. When increasing the pressure at room
temperature, Chemarin et al. [26] found that the intense
Raman spectrum decreased in amplitude and tended to
disappear when approaching 9GPa. They argued that
this was due to the nanodomains being forced to interact
more strongly with increasing pressure, which finally led
to a continuous structure with long-range order. Above
9GPa, a clear spectral change was observed, which they
associated with a phase transition.

Another reason for the presence of sharp and well-
defined features in the Raman spectrum at ambient pres-
sure could be second-order Raman processes [30]. These
processes are allowed by symmetry but they are gener-
ally weaker in intensity compared with first-order scat-
tering. Two recent Raman studies on BZO single crys-
tals [22, 32] concluded that the Raman spectrum of BZO
at room temperature could be explained by second-order
scattering. Furthermore, it was also stated that local dis-
order could still play a role in the general intensity of the
Raman spectrum [22].

The pressure-dependent Raman scattering at room
temperature was studied by Chemarin et al. [26] us-
ing a polycrystalline sample. They found two structural
phase transitions, one at 9GPa and one at 23GPa. Re-
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cently, Gim et al. [32] and Toulouse et al. [33] also
investigated the pressure dependence, now using single
crystal samples. Gim et al. [32] found two transitions,
from cubic to a rhombohedral phase at 8.4GPa and then
from the rhombohedral to a tetragonal phase at 19.2GPa.
On the other hand, Toulouse et al. [33] found a single
phase transition, from the cubic to a tetragonal phase at
10GPa. They also discussed why a second phase transi-
tion is not expected for this system, at least for pressures
below 45GPa.
Here, we compute the Raman spectrum for BZO via

MD simulations. For the potential energy surface we use
the neuroevolution potential (NEP) model from Ref. 34
and for the dielectric susceptibility we employ a DFT
based model, recently developed using the tensorial neu-
roevolution potential (TNEP) framework [16].
We consider the cubic phase of BZO at ambient condi-

tions, as well as under pressure including the transition
to a tetragonal phase. After correcting for the classi-
cal statistics in our MD approach we obtain excellent
agreement with recent experimental Raman studies of
single crystals of BZO at ambient conditions. The re-
sults are compared with the corresponding results from
an expansion of the dielectric susceptibility to second or-
der in terms of harmonic phonons. This allows us to
assign features and peaks in the Raman spectra to spe-
cific phonon modes. Above the phase transition pressure,
in the tetragonal phase, all first order Raman peaks are
identified. Finally, the phase transition is scrutinized,
including a study of the “central peak” in the Raman
response.

II. THEORY

A. Raman spectrum

We consider off-resonance Raman spectroscopy [8, 35].
The frequency of the incoming ωin (and outgoing ωout)
light is assumed to be much larger compared to the
phonon frequencies of the crystal and it is also assumed
to be smaller than any electronic excitations in the ma-
terial. The dielectric susceptibility tensor χαβ can then
be determined in the so-called static ion-clamped limit
[36, 37]. Under these conditions the measured Raman
intensity I(ω) is proportional to

I(ω) ∝
∑
αβγδ

n̂out
α n̂out

β Lαγβδ(ω)n̂
in
γ n̂in

δ . (1)

Here, ω ≡ ωin − ωout is the Raman shift, and n̂in and
n̂out are the polarization of the incoming and outgoing
light, respectively, where α, β, γ, as well as δ are Carte-
sian indices. Furthermore, L(ω) is the Raman lineshape,
given by

Lαγβδ(ω) =
1

2π

∫ ∞

−∞
dt ⟨χαγ(t)χβδ(0)⟩ e−iωt, (2)

where the time-dependence of the dielectric susceptibility
originates from the motion of the atoms in the crystal.
We note that the incoming and outgoing polarization of
the light picks out the elements of the dielectric suscep-
tibility, as indicated in Eq. 1.

The Raman scattering is usually discussed in terms of
the order of the scattering. The contribution of different
orders can be analyzed by Taylor expanding the dielectric
susceptibility in terms of the displacements of the atoms
from their equilibrium positions,

χαγ = (χ0)αγ +
∑
iε

(Rε
i )αγ u

ε
i+

1

2

∑
ijεη

(
Rεη

ij

)
αγ

uε
iu

η
j + . . . ,

(3)

where (Rε
i )αγ ,

(
Rεη

ij

)
αγ

and so on denote derivatives of

the dielectric susceptibility with respect to atomic dis-
placements u. The indices i and j enumerate the atoms,
while ε and η denote Cartesian directions. The order is
then defined by how many atomic displacements that are
involved in the correlation function for the Raman line-
shape in Eq. 2. The first-order scattering contribution is
obtained from the second term in the expansion of the
dielectric susceptibility in Eq. 3, the second-order con-
tribution from the third term and so on (see Sect. A for
more details). We note that in a cubic system the first
order derivative is always zero due to the symmetry of
the crystal, and there is thus no first-order scattering.

Most of our results for the Raman spectrum will be
based on a direct evaluation of the time-correlation func-
tion in Eq. 2, based on machine learning-accelerated
MD simulations using NEP [34] and TNEP models [16].
These results are denoted asMD. We will also show some
results based on the expansion of Eq. 3 to second order.
We use the same TNEP model to evaluate the deriva-
tives, and the corresponding results will be denoted as
DSE, the dielectric susceptibility expansion.

III. RESULTS

A. Room temperature spectrum

Consider first the system at room temperature (300K)
and ambient pressure (0GPa). The system is then cubic
[34]. We assume that the incoming and outgoing light
is polarized along the same axis and that a crystal axis
is aligned with the polarization of the light. In Porto
notation [38], this is denoted as Z(XX)Z. In Fig. 1 we
show the resulting Raman spectrum and its convergence
as function of supercell size. It is clear that a size of
at least 10 × 10 × 10 cubic primitive cells is required to
obtain well converged numerical results.

Next, we compare with the experimental data from
Toulouse et al. [22]. Those data were obtained for a
single crystal and the geometric setup was Z(XX)Z. In
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FIG. 1. Molecular dynamics (MD) simulation of the Raman
spectrum at 300K and 0GPa. Test of convergence with re-
spect to the size of the supercell, which is given by (n×n×n)
cubic primitive cells. The total number of atoms is 5n3.

Fig. 2 we show our MD results at 300K for the same
geometric setup as a dashed line (denoted MD-cl). It is
known that classical MD simulations underestimate the
intensity of the true spectrum due to quantum effects
present in the real system. Those effects can be esti-
mated by taking quantum statistics into account [7]. (For
further details, see Sect. S1.3). In the present case, first-
order contributions to the intensity are absent due to the
cubic symmetry of the system. Second-order contribu-
tions can either be due to overtones or the combination
of two modes. It has been stated that in solids, combina-
tion modes always dominate over overtones [7]. There-
fore, we restrict ourselves to combination modes and in
addition we assume a combination mode that consists of
the sum of two different modes but with the same fre-
quency (i.e., ω1 = ω2 with ω = ω1 + ω2). The correction
for the classical treatment can then be written as

Iqm(ω) =

(
βℏω/2

1− exp (−βℏω/2)

)2

Icl(ω) . (4)

The result for Iqm(ω) is shown as a solid line (denoted
MD-qm) in Fig. 2.
In the same figure we show the results from Toulouse

et al. [22], also at 300K. The absolute intensity is un-
known, and we have therefore scaled the experimental
data such that the height of the peak around 700 cm−1

coincides between theory and experiments. Our simu-
lation agree very well with the experiments. Taking the
quantum statistics into account through the rescaling fac-
tor in Eq. 4 is important to obtain a qualitative agree-
ment with experiments. A slight red shift is present in
our data compared to experiments, which we attribute to
the underlying exchange-correlation functional (the van-
der-Waals density functional with consistent exchange
[39, 40]), which is known to give slightly red-shifted vi-
brational frequencies for the present system (see Supp.

Inf. in Ref. 34). For a similar comparison for the geo-
metric setup Z(XY)Z, see Fig. S1b.
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FIG. 2. Molecular dynamics (MD) simulation of the Raman
spectrum at 300K and 0GPa (MD-cl), with quantum cor-
rections due to combination modes (MD-qm), compared with
experiments at 300K (Exp.) from Ref. 22. The experimen-
tal data are scaled such that the height of the peak around
700 cm−1 coincides between theory and experiments.

B. Mode decomposition at room temperature

The spectrum at 300K and 0GPa originates from
higher-order Raman scattering processes and is likely
dominated by second-order contributions. It is therefore
tempting to try to identify the various peaks in the inten-
sity with certain overtones and/or combination modes.
This can be done by making use of the dielectric sus-
ceptibility expansion (DSE) in Eq. 3, with the atomic
displacements transformed to normal mode coordinates,
see App. A.

To reduce the computational effort, we restrict the
computations to a 4 × 4 × 4 supercell (320 atoms). The
result in Fig. 1 shows that the intensity for this smaller
supercell is not fully converged. Nevertheless, the result
from the smaller supercell contains sharp well-defined
peaks, roughly with the correct positions and intensi-
ties. Therefore, we conclude that the smaller supercell is
sufficient for identifying possible overtones and/or com-
bination modes in the spectrum.

In Fig. 3 we show the result for the Raman spectrum
using the DSE to second order. The only term in the
mode expansion that then contributes to the intensity in
a cubic system is the one denoted by LII

αγβδ(ω) in App. A.
In Fig. 3 we also show the result using the MD method
for the small 4 × 4 × 4 supercell. The result is nearly
identical to the result using the expansion of the dielectric
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susceptibility. The small difference may be due to the
neglect of higher-order terms in the expansion as well
as simply numerical/statistical noise. In any case, this
demonstrates that the Raman spectrum is dominated by
second-order scattering.
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FIG. 3. Raman spectrum based on the dielectric suscepti-
bility expansion (DSE) to second order, compared with MD;
both using a 4 × 4 × 4 supercell. Contributions from differ-
ent high symmetry q-points to the total Raman spectrum are
also shown. The degeneracy of the high symmetry q-points
is included in plotted intensity.

The DSE result can then be decomposed into the con-
tribution from different q-points in the Brillouin zone, in
total 64 points. We set k = q in Eq. A9 and show the
results for the intensities from the four high-symmetry
points Γ, X, M, and R in Fig. 3. It is clear that the high
symmetry points do not capture the full intensity of the
Raman peaks. An integration over the whole Brillouin
zone is necessary to obtain the features of the Raman
spectrum. A similar conclusion was made in Ref. 9 for
NaCl.
Nevertheless, there are significant contributions to spe-

cific peaks stemming from the high symmetry points, yet
not significant enough to warrant an assignment. It is
clear that the R-point gives a substantial contribution
to the spectrum below 200 cm−1. The peak at 620 cm−1

gets contribution from both the M and X points, while
the Γ and X points contribute to the peak at 700 cm−1.
For the frequencies between 200 cm−1 and 500 cm−1 the
individual contribution from the high symmetry points
is less clear.

C. Pressure dependence at room temperature

Next, we consider the pressure dependence of the Ra-
man spectrum at room temperature (300K). Our system
exhibits a phase transition from the cubic to the tetrag-
onal phase at about 16.2GPa [34]. In our setup, the
elongated axis for the tetragonal system is oriented in
the z-direction.
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FIG. 4. MD simulation of the Raman spectrum at 300K as
function of pressure, from 0-24GPa with 3GPa increments.
At 15GPa a pronounced central peak is visible. The phase
transition to the tetragonal phase occurs at about 16.2GPa.

In Fig. 4 we present our result for the pressure depen-
dence from 0GPa to 24GPa. In the figure, we show the
result for the setup Z(XX)Z and Z(XY)Z. As we increase
the pressure from 0GPa, the intensities of all peaks in
the Raman spectrum are decreasing prior to the phase
transition. Hence, our results are fully in line with the
experimentally measured spectra by Chemarin et al. [26]
and by Toulouse et al. [33].
As we further increase the pressure beyond the tetrag-

onal phase transition, three distinct first order peaks ap-
pear in the spectrum. We denote these as A, B, and C
(see Fig. 4 and Table I). These modes have previously
been identified experimentally by Toulouse et al. [33].
Close to, but below, the phase transition the quasi-

elastic line broadens and increases substantially in inten-
sity to a broad “central Raman peak”, which is clearly
seen in Fig. 4 at 15GPa (see also Fig. S2a). This behav-
ior is reminiscent of the over-damped tilt-mode visible in
the dynamical structure factor of BZO close to the phase
transition [34].

The high frequency A mode corresponds to Jahn-
Teller-like distortions of oxygen octahedra [33]. Its pres-
sure dependence is significant with a slope of about
4.7 cm−1 GPa−1 and it is only present in the polariza-
tion setup Z(XY)Z. The intensity is initially quite small,
compared with mode B and C, but its intensity increases
more with increasing pressure compared with B and C.
This mode, A, is clearly visible in Chemarin et al. [26]
and also in Gim et al. [32], albeit less pronounced. The
pressure dependence of the peak position is similar in
these two experimental studies and in line with what we
find here. In Ref. 33 the mode is very faint and the au-
thors state that this is most likely a consequence of the
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A B1 B2 C1 C2 D E

Frequency ω0 (cm−1) 677 378 369 139 136 103 64
Damping Γ (cm−1) 9.1 10.2 12.0 5.4 5.8 27.8 20.5
Slope (cm−1/GPa) 4.7 1.8 0.8 1.6 1.2 7.0 2.8

Visibility
Z(XY)Z Z(XX)Z Y(XZ)Y Z(XX)Z Y(XZ)Y Z(XX)Z Y(XZ)Y

Z(YY)Z X(YZ)X
Y(ZZ)Y

Raman lineshape xyxy xxxx xzxz xxxx xzxz xxxx,yyyy xzxz,yzyz,zzzz

TABLE I. Frequency, damping and slope for the first-order active Raman modes in the tetragonal phase at 300K and 21GPa.
The frequency ω0 and damping Γ are obtained by fitting to a damped harmonic oscillator model I(ω) ∝ 2Γω2

0/[(ω
2−ω2

0)
2+(Γω)2]

[41]. The pressure dependence of the peak position, i.e., the slope, is then determined by a finite difference approximation. For
each mode the corresponding Porto notation is given as well as the indices αγβδ for the Raman lineshape.
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FIG. 5. Results from MD simulations of the Raman spec-
tra at 300K and at three different pressure in the tetragonal
phase, showcasing under which experimental setups the first
order active phonon modes are visible.

experimental setup and related to the orientation of the
single crystal.
The two other peaks, B and C, both consist of two

closely overlapping bands stemming from the lifting of
degenerate modes in the cubic cell (see Fig. 5). A large
peak is visible in Z(XX)Z and a smaller peak is visible
in Y(XZ)Y, and where the smaller peak has a slightly
lower frequency. The B mode is due to oxygen octahedra
shearing modes and the C mode to antiparallel barium
motion [33]. The splitting of the B mode is visible in
spectra of Chemarin et al. [26] and Gim et al. [32],
but only at considerably higher pressures than the phase
transition pressure. Therefore, they both concluded that
a second phase transition occurs. Here we show that the
splitting is present already at the phase transition to the
tetragonal phase and no further phase transition occurs.
Toulouse et al. [33] could not resolve any splitting for
the B mode but noted that the C mode has an asym-
metric profile at higher pressure, which may indicate the
presence of two closely overlapping bands.
The Raman spectrum also contains two soft modes,

here denoted D and E, and visible in the setup Z(XX)Z

and Y(XZ)Y, respectively. They are due to the tilt mode
of the octahedra and, in particular, the position of the D
mode shows a strong dependence on the pressure. Both
Gim et al. [32] and Toulouse et al. [33] detected these
two modes. They also found that the mode with higher
frequency (the D-mode) shows a stronger pressure de-
pendence. In the study by Toulouse et al. [33] the soft
mode with lower frequency (the E-mode) is lost in the
quasi-elastic line at low pressures.

D. Phase transition

The phase transition from the cubic to the tetragonal
phase is driven by tilting of the ZrO6 octahedra [34, 42–
45]. The corresponding phonon mode is located at the
R-point in the phonon dispersion relation for the cubic
structure. It is therefore instructive to consider the dy-
namical behavior of the phonon mode coordinate Q(t)
for the R-tilt mode. The latter can be obtained from
MD simulations by projecting the atomic displacements
u(t) on the supercell eigenvector, as done in Ref. [34],

Qλ(t) = u(t) · eλ , (5)

where eλ is the supercell eigenvector for a given mode λ.
In the cubic phase, the mode exhibits threefold degener-
acy along the Cartesian directions, while in the tetrag-
onal phase, this degeneracy is broken, making the z-
direction symmetrically distinct from the other two. We
denote these directions as z and xy, respectively.

In Fig. 6 we show the time evolution of the phonon
mode coordinates Q(t) at five different pressures, three
below the phase transition and two above. (For the time
evolution at other pressures, see Fig. S4.) At 12.0GPa
the mode coordinate shows quite small and regular os-
cillations. When the pressure is increased and approach-
ing the phase transition, the oscillations become larger,
much more irregular and the timescales of the motion
slow down. Above the phase transition the oscillations
again become smaller, faster and more regular and the
degeneracy is broken.

Consider next the spectral properties of Qλ. Its power
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FIG. 6. Mode coordinate in time, Q(t), of the R-mode at
300K and at five different pressures; 12.0, 15.5, 16.0, 16.5 and
17.0GPa.

spectrum

Pλ(ω) =| Qλ(ω) |2 (6)

can be determined by Fourier transforming the time-
dependence of the phonon mode coordinate Qλ(t). This
is shown in Fig. 7 and for some further pressures in
Fig. S5. At 12.0GPa the spectrum shows a broad peak
located around 35 cm−1. When increasing the pressure
the frequency softens, the motion becomes overdamped
and the spectrum instead develops a central peak, which
increases in height when approaching the phase transi-
tion. Above the phase transition, where the system is
tetragonal, the spectra comprise two broad peaks. These
correspond to the modes here denoted D and E in the
Raman spectra (Fig. 5). In addition, an intensity at low
frequencies for the z-component is present, decreasing
slightly when increasing the pressure. The corresponding
auto-correlation function in time C(t) = ⟨Q(t+ t′)Q(t′)⟩
is shown in Fig. S6. When approaching the phase transi-
tion from below, C(t) decays exponentially, with a decay
time that approaches infinity.
It is instructive to fit our results for the power spec-

trum to a damped harmonic oscillator (DHO) model (see
Sect. S3 and Refs.[46] and [41]). That model is defined
by two parameters, the natural frequency ω0 and the
damping Γ. In Fig. 7 we show the fitted result as dashed
lines. The obtained frequencies, ω0, and damping Γ/2,
are shown in Fig. 8. The DHO model describes the spec-
tra in Fig. 7 very well, except for the central peak ob-
served in the tetragonal phase, mainly in the z-direction.
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FIG. 7. Power spectrum of the mode coordinate of the R-
mode at 300K and at five different pressures; 12.0, 15.5, 16.0,
16.5 and 17.0GPa. The results from the MD simulation are
compared with the corresponding results using the damped
harmonic oscillator (DHO) model.
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The obtained pressure dependence on the frequency ω0

in Fig. 8 indicates a continuous phase transition. How-
ever, we note that close to a continuous phase transition,
both the length and timescale of the tilt mode diverges,
rendering it difficult to converge the power spectra and
thus leading to larger uncertainties close to the phase
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transition [46].

In the tetragonal phase, the power spectrum in the z-
direction shows both a broad peak at a finite frequency,
an oscillatory peak, and an increased intensity at low fre-
quencies, a central peak. A central peak appears in the
spectrum when the damping is large, Γ/2 > ω0, while
an oscillatory peak appears when the damping is small,
Γ/2 < ω0. From symmetry, we expect the potential en-
ergy function for the phonon mode coordinate in the z-
direction to be asymmetric. The damping could also vary
as function of distance. In Sect. S3 we show that a har-
monic well with distance dependent damping can show a
power spectrum with both an oscillatory peak and a cen-
tral peak. The same qualitative behaviour can also be
obtained using an asymmetric Morse potential together
a constant, distance-independent damping. For further
details, see Sect. S3.

Let us now consider the Raman spectra in Fig. 4. As
already stated, close to, but below the phase transition
the quasi-elastic line broadens and increases substantially
in intensity to a broad “central Raman peak” (see Fig. 4
and Fig. S2a). At 15GPa the intensity increases rapidly
for frequencies below ∼ 80 cm−1. This is the most ap-
parent signature of the onset of the phase transition. The
emergence of such a “central Raman peak” has been dis-
cussed for other perovskite materials [17, 47–51]. In the
case of BZO, we find here that the emergence of the “cen-
tral Raman peak” is due to the overdamped behavior of
the tilt mode close to, but below, the phase transition.

In Fig. 9 we show the behavior of the Raman intensity
around the phase transition temperature in more detail
(see also Fig. S2b). In the cubic phase the peak grows
substantially close to the phase transition, similar to the
overdamped power spectra in Fig. 7, despite that first-
order scattering is forbidden in a cubic crystal. However,
second order scattering can be obtained with Eq. A6 to-
gether with Wick’s theorem in Eq. A12, where the over-
tone of the tilt mode is given as a convolution of its own
power spectral density. Notably, there is an asymmetry
in the phase transition, i.e., the pronounced central peak
is only present in the cubic phase. This is due to that
the tilt mode quickly stiffens with pressure, and the mode
becomes underdamped.

It is interesting to compare the low frequency dynamics
of BZO, an oxide perovskite, with the halide perovskites,
which often exhibit a low-frequency Raman response, and
thus a central Raman peak. While the origin of this peak
has been discussed extensively [17, 47–51], no consensus
has yet been reached. However, also for the halide per-
ovskites the central Raman peak can be understood from
heavily overdamped tilt-modes that give rise to correla-
tions on a very long time-scale and hence a narrow central
Raman peak in the spectrum [46]. Halide perovskites
are often softer compared to the oxide perovskites and
the effect is therefore more pronounced in the halide per-
ovskites, but here we show that a central Raman peak
can also appear in a “hard” oxide perovskite close to a
phase transition.
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FIG. 9. Raman spectra at 300K as a function of pressure,
at 12.0, 15.5, 16.0, 16.5 and 17.0GPa. The phase transition
to the tetragonal phase occurs at about 16.2GPa

IV. CONCLUSIONS

We have computationally determined the Raman spec-
trum for BZO by directly evaluating the dynamic auto-
correlation function of the dielectric susceptibility tensor
of the system using classical MD simulations. To this
end, we have used machine-learned models from the lit-
erature for the potential energy surface [34] as well as for
the dielectric susceptibility tensor [16].

It has been established that at room temperature and
ambient pressure BZO is cubic, indicating that the Ra-
man spectrum should lack sharp features. Nevertheless,
sharp features reminiscent of first-order scattering have
been observed experimentally. We also observe such fea-
tures in our simulations and when correcting for the
classical sampling in our approach, the simulated and
experimental spectra are in excellent agreement. The
slight redshift of our spectrum can be attributed to the
exchange-correlation functional used for the construction
of the potential energy model, which is known to yield a
slightly to soft response. We can therefore conclude that
the sharp features present in the experimental spectrum
are due to higher-order scattering processes.

We have also determined the Raman spectrum by ex-
panding the dielectric susceptibility tensor in terms of
the phonon mode coordinates. As we find that an ex-
pansion to second order gives almost indistinguishable
results compared to the full model, we can conclude that
the scattering is dominated by second-order effects. The
DSE then allows one to disentangle the contributions
from different points in the Brillouin zone. There are
significant contributions to specific peaks stemming from
the high symmetry points, but not significant enough to
warrant any assignment. Therefore, it becomes impor-
tant to account for all points in the Brillouin zone to
correctly capture the full Raman spectrum.

When the pressure is increased, the intensity of the



8

peaks in the cubic structure is reduced, which is in line
with experiments. In light of this finding and based on
our previous study [34], we find no evidence of nano-
domains as suggested by Chemarin et al. [26].

Additionally, slightly below the phase transition pres-
sure, a broad central peak appears which is reminiscent
of the behavior of the overdamped tilt-mode, which is a
strong indication of the phase transition [34, 46]. Such
a broad “central Raman peak” has been extensively dis-
cussed in connection to halide perovskites [51]. Here, we
show that it can also be present in a “hard” oxide per-
ovskite, and it originates from the highly overdamped
R-tilt mode in the cubic structure.

Above the phase transition pressure, in the tetragonal
phase, all first order Raman active peaks are identified.
Furthermore, we note that the splitting of the peaks at
higher pressure seen experimentally [26, 32, 33], is not
due to a second phase transition. Instead, this splitting
is caused by the slightly different pressure dependence
of the underlying phonon modes, and thus, the differ-
ence in frequency between the two modes increases as we
increase the pressure. Our simulation solidifies the anal-
ysis of Toulouse et al. [33] of the Raman spectrum in
the tetragonal cell; there is only one phase transition for
BZO, at least up to 45GPa.

The present study shows that Raman spectra com-
puted by MD simulations with machine-learned models
for potential energy and dielectric susceptibility can pro-
vide detailed and crucial information about the dynamics
of the lattice vibrations and their impact on the Raman
spectrum.
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Appendix A: Mode decomposition

1. Dielectric susceptibility expansion (DSE)

Start by expressing the displacements uε
i ≡ u(i, ε) in

Eq. 3 in terms of phonon operators Qqν according to

u(i, ε) =
∑
qν

cqν(i, ε)Qqν (A1)

with,

cqν(i, ε) =
eiq·r(i)√
Nmi

Wqν(i, ε), (A2)

Qqν =

√
ℏ

2ωqν
(aqν + a†−qν) (A3)

where mi is the mass of atom i, r(i) its equilibrium po-
sition in the supercell and N is the number of unit cells.
Latin letters denote atoms in the supercell and Greek let-
ters indicate a Cartesian direction. Further, ωqν is the
phonon frequency, Wqν the phonon eigenvector, and aqν
and a†−qν are the creation and annihilation operators. q
is used to denote a point in the first Brillouin zone and
ν the corresponding branch index.

The reformulation of the atomic displacements in
terms of phonon mode coordinates allows us to rewrite
the Taylor expansion of the dielectric susceptibility in
Eq. 3 in terms of phonon mode coordinates [7, 35, 52],

χ = χ0+
∑
qν

R̃ν
qQqνδq,Γ

+
1

2

∑
qν
kµ

R̃ν;µ
q;kQqνQkµδq,k + . . . ,

(A4)

where R̃ is the Raman tensor for the respective order.
The restriction imposed by the two δ-functions in Eq. A4
is a consequence of the invariance of the crystal against
a rigid body translation.

The Raman tensor for the first and second order is
then given by,(

R̃ν
q

)
αγ

=
∑
i,ε

∂χαγ

∂u(i, ε)
cqν(i, ε)Wqν(i, ε),

(
R̃ν;µ

q;k

)
αγ

=
∑
i,ε
j,ζ

∂2χαγ

∂u(i, ε)∂u(j, ζ)
cqν(i, ε)ckµ(j, ζ)

Wqν(i, ε)Wkµ(i, ζ),

As we note in Sect. II A, the first order derivative with re-
spect to atomic displacements is zero for a cubic system,
therefore, the first order Raman intensities expressed in
phonon coordinates will consequentially also be zero.
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Inserting the expansion of the dielectric susceptibility,
Eq. A4, into the quantum mechanical expression for the
Raman lineshape (cf. Eq. 2),

Lαγβδ(ω) =
1

2π

∫ ∞

−∞
dt ⟨χαγ(t)χ

†
βδ(0)⟩ e

−iωt,

leads to an expansion of the lineshape in terms of Fourier
transformed phonon Green’s functions and Raman inten-
sities.

LI
αγβδ(ω) =

1

4π

∑
νµ

(R̃ν
Γ)αγ(R̃

µ
Γ)

†
βδG̃

ν;µ
Γ (ω), (A5)

LII
αγβδ(ω) =

1

8π

∑
qk

νµν′µ′

(R̃ν;µ
q;−q)αγ(R̃

ν′;µ′

k;−k)
†
βδG̃

νµ;ν′µ′

q;k (ω),

(A6)

LIII
αγβδ(ω) =

1

4π

∑
k

νµν′µ′

(R̃ν
Γ)αγ(R̃

ν′;µ′

k;−k)
†
βδG̃

ν;ν′µ′

Γ;k (ω)+

(R̃ν;µ
k;−k)αγ(R̃

ν′

Γ )†βδG̃
νµ;ν′

k;Γ (ω)

(A7)

The phonon Green’s functions in the time domain are
defined as,

Gν;µ
Γ (t) = ⟨QΓν(t)Q

†
Γµ(0)⟩ ∝ ⟨AΓν(t)A

†
Γµ(0)⟩ (A8)

Gνµ;ν′µ′

q;k (t) ∝ ⟨Aqν(t)A−qµ(t)A
†
kν′(0)A

†
−kµ′(0)⟩ . (A9)

Gν;ν′µ′

Γ;q (t) ∝ ⟨AΓν(t)A
†
qν′(0)A

†
−qµ′(0)⟩ (A10)

Gνµ;µ′

q;Γ (t) ∝ ⟨Aqν(t)A−qµ(t)A
†
Γµ′(0)⟩ (A11)

where Aqν(t) = exp(tH/ℏ)Aqνexp(−tH/ℏ) and Aqν =

aqν+a†−qν , i.e., this is the phonon displacement operator
in the Heisenberg picture.

For harmonic systems, the modes don’t mix, this

means that only Gν;µ
Γ (t) with ν = µ and Gνν′;µµ′

q;k (t) with

q = k, ν = ν′ and µ = µ′ is non-zero. The first term
would then correspond to first order Raman scattering
and the second term would be second order Raman scat-
tering. For the second order, ν = µ is referred to as over-
tones whereas, ν ̸= µ is referred to as combination modes.
For anharmonic systems, the other terms do not necessar-
ily vanish, instead they will contribute to the one-phonon
peaks but decay rapidly away from these peaks [9].

We make a classical approximation and obtain these
Greens functions by projecting the atomic displacements
on the mode coordinates during the MD simulation, see,
e.g., [15, 53–55]. We refer to this method as DSE.

2. Wick’s theorem

Gνν′;µµ′

q;k (t) can be decomposed using Wick’s approxi-

mation [56],

⟨Aqν(t)A−qµ(t)A
†
kν′(0)A

†
−kµ′(0)⟩

≈ ⟨Aqν(t)A−qµ(t)⟩ ⟨A†
kν′(0)A

†
−kµ′(0)⟩

+ ⟨Aqν(t)A
†
kν′(0)⟩ ⟨A−qµ(t)A

†
−kµ′(0)⟩

+ ⟨Aqν(t)A
†
−kµ′(0)⟩ ⟨A−qµ(t)A

†
kν′(0)⟩ .

(A12)

This allows us to express higher order scattering in terms
of convolutions of second order scattering. Notably, the
same theorem can be applied to all even orders.

Appendix B: Modeling details

1. Potential energy surface

A machine-learned potential energy surface (PES) for
BZO was developed in Ref [34] using the NEP approach.
It was trained from DFT data using the van der Waals
density functional with consistent exchange (vdW-DF-
cx) [39, 40] for the exchange-correlation effects, denoted
CX. This functional gives a good balance between accu-
racy and computational speed. However, it consistently
underestimates the vibrational frequencies at the Γ-point
with about 5% [34]. For more details and comparisons
with other functionals, see Refs [24, 34]. CX was used
in Ref [34] to study the structure and dynamics of BZO
as function of temperature and pressure. Additionally, a
phase transition from the cubic to the tetragonal struc-
ture was obtained at 16.2GPa at ambient temperature.

2. Dielectric susceptibility

To obtain the Raman spectrum in Eq. 2 a model for
the dielectric susceptibility is also required. That was
developed in Ref [16] by generalizing the NEP scheme to
enable predictions of tensorial properties, the TNEP ap-
proach. It was based on DFT data for the relative suscep-
tibility using the CX functional. The training structures
were generated by running MD with different tempera-
tures and pressures with the same NEP model as used
in Ref [34]. Various size of the supercell were used, with
the total number of atoms ranging from 5 to 40 atoms.
For more details, see Ref [16].

3. Molecular dynamics

In the present study, MD simulations are done using
the gpumd package [57] together with the NEP in Ref
[34] and the TNEP in Ref [16] to obtain the correlation
function in Eq. 2. In all simulations, we employ a time
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step of 1 fs. The system is equilibrated during a period of
100 ps in the NVT ensemble. The time-correlation func-
tions are then sampled over 500 ps in the NVE ensemble,
and averaged over 20 identical simulations. Lattice pa-
rameters are obtained from NPT simulations, as done in

Ref. [34]. For the Raman simulation at ambient pres-
sure (Fig. 2) we have used a 14 × 14 × 14 supercell (13
720 atoms), while for the pressure dependent calculations
(Fig. 4, 5 and 9) a 12 × 12 × 12 supercell is used (8 640
atoms). For the R-mode calculations (Fig. 6, 7 and 8)
we used a 24× 24× 24 supercell (69120 atoms).
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S1 Raman spectra

S1.1 Parallel and crossed spectra
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Figure S1: a) Parallel and b) crossed Raman spectra of BaZrO3 at 300K and 0GPa.

S1.2 Central Raman peak
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Figure S2: Parallel Raman spectra of BaZrO3 at 300K and at different pressures. a) Spectra at 0-
24GPa with 3GPa increments. At 15GPa a pronounced central peak is visible. b) Spectra at 12.0,
15.5, 16.0, 16.5 and 17.0GPa. The phase transition to the tetragonal phase occurs at about 16.2GPa.
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S1.3 Quantum corrections

Our calculation of the Raman spectra is based on MD simulations, i.e. on classical dynamics. Quantum
dynamics will influence the results, renormalize the phonons and change the occupancy of phonon
modes. The most important is to take the quantumn statistics, the occupancy of the modes, into
account. Even at room temperature this effect can be large.

For a system described by a harmonic Hamiltonian this can be done exactly. Following Cardona [1]
the Raman intensity for first-order Stokes-Raman scattering in a harmonic crystal can be written as

Iqm(ω) =
V

(4π)2
ω4
s

c4
| es ·

dχ

dξ
· eL |2 Sqm (S1)

where the statistical factor Sqm is given by

Sqm = ⟨ξξ†⟩ =
∑
k

⟨n|ξ|k⟩ ⟨k|ξ†|n⟩ = | ⟨n+ 1|ξ†|n⟩ |2 =
ℏ
2ω

[n(ω) + 1] (S2)

and where ξ† and ξ are the phonon creation and annihilation operators, respectively, and

n(ω) =
1

exp (βℏω)− 1
(S3)

is the Bose-Einstein occupation factor. It is the statistical factor Sqm that incorporates the proper
quantum fluctuations in the system. In the classical limit it reduces to

Scl =
1

2βω2
(S4)

A computed Raman intensity based on classical mechanics Icl(ω) can then be used to obtain the true
Raman intensity based on quantum mechanics according to

Iqm(ω) =
Sqm

Scl
Icl(ω) =

βℏω
1− exp (−βℏω)

Icl(ω) (S5)

Consider now second-order Stokes-Raman scattering. One can then distiguish between scattering
by two of the same phonons (overtones) and by two different phonons (combinations). In the latter
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Figure S3: Rescaling factor Sqm/Scl at T = 300 K as function of frequency ω. Black curve: first order
scattering (see Eq. S5); Blue curve: second order scattering, overtone (see Eq. S7); Red curve: second
order scattering, combination mode with ω1 = ω2 (see Eq. S10).
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case differences are also possible. For overtones with frequency ω1 we have that [1]

Sqm =
ℏ

2ω1
[n(ω1) + 1]

ℏ
2ω1

[n(ω1) + 2] (S6)

with ω1 = ω/2. The quantum mechanical intensity can then be obtain as

Iqm(ω) =

(
βℏω/2

1− exp (−βℏω/2)

)2

[2− exp (−βℏω/2)] Icl(ω) (S7)

using a computed classical intensity Icl(ω). For a combination mode with frequencies ω1 and ω2 we
have that [1]

Sqm =
ℏ

2ω1
[n(ω1) + 1]

ℏ
2ω2

[n(ω2) + 1] (S8)

with ω1 + ω2 = ω. The quantum mechanical intensity can then be obtain as

Iqm(ω) =
βℏω1

1− exp (−βℏω1)

βℏω2

1− exp (−βℏω2)
Icl(ω) (S9)

using a computed classical intensity Icl(ω). If we further assume that ω1 = ω2 we obtain

Iqm(ω) =

(
βℏω/2

1− exp (−βℏω/2)

)2

Icl(ω) . (S10)
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S2 Phonon mode projections

S2.1 Mode coordinate
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Figure S4: Time dependence of the phonon mode coordinate Q(t).
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S2.2 Power spectrum
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Figure S5: Power spectrum for the phonon mode coordinate.
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S2.3 Auto-correlation function
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Figure S6: Time dependence of the phonon mode auto-correlation function C(t) = ⟨Q(t+ t′)Q(t′)⟩.
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S3 Brownian dynamics

S3.1 Damped harmonic oscillator

The time evolution of the phonon mode coordinate Q(t) can be modelled as the motion of a damped
harmonic oscillator (DHO) with the natural frequency ω0 and damping Γ according to

Q̈(t) + ω2
0 Q(t) = −Γ Q̇(t) + ξst(t) , (S11)

where ξst(t) is a fluctuating force with white noise spectrum

⟨ξst(t)ξst(t′)⟩ = 2ΓkBTδ(t− t′). (S12)

and where ⟨. . .⟩ denotes a time average. The auto-correlation function for the phonon mode coordinate,
C(t) ≡ ⟨Q(t+ t′)Q(t′)⟩, is then given by the equation

C̈(t) + Γ Ċ(t) + ω2
0 C(t) = 0 (S13)

with C(0) = kBT/ω
2
0 and Ċ(0) = 0. The solution to Eq. S13 in time splits into an underdamped

regime (ω0 > Γ/2) with a damped oscillatory motion and an overdamped regime (ω0 < Γ/2) with an
exponential decay in time [2]. The corresponding power spectrum is given by

P (ω) =
2Γ kBT

(ω2 − ω2
0)

2 + (Γω)2
. (S14)

For frequencies ω0 > Γ/
√
2 the spectrum exhibits a peak with peak position ωp =

√
ω2
0 − Γ2/2 , while

for ω0 < Γ/
√
2 the spectrum only shows a central peak, which approaches a Lorentzian with the half

width at half maximum equal to ω2
0/Γ when ω0/Γ decreases.

Example

Consider now a harmonic oscillator with the natural frequency ω0 = 1.2 ps−1 (ω0 = 40 cm−1) at
the temperature T = 300K. We consider two different values of the damping: Γ = 0.2 ps−1 and
Γ = 2.6 ps−1. The former corresponds to low damping Γ/2 < ω0, while the latter corresponds to high
damping Γ/2 > ω0. As seen in Fig. S7, the distribution of the phonon mode coordinate is the same
in the two different cases while the power spectra differ. At low damping an oscillatory peak is visible
while at high damping only a central peak appears in the spectrum.
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Figure S7: Results for the DHO potential with low damping Γ/2 < ω0 (blue curve) and high damping
Γ/2 > ω0 (red curve). a) The distribution of the oscillator. b) The power spectrum of the solution.
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S3.2 Position dependent damping

The extra peak in the spectrum for the Qz-phonon mode coordinate in the tetragonal phase may be
due to some asymmetry in the damping. If the damping is small in some region and large in some
other region the motion may contain both damped and overdamped oscillatory motion. Therefore, we
extend the simple damped harmonic oscillator model in Eq. S11 by adding an asymmetric position
dependent damping Γ(Q), according to

Q̈(t) + ω2
0 Q(t) = −Γ(Q) Q̇(t) + ξst(t, Q) , (S15)

The fluctuating force also then become position dependent. This equation has to be solved numerically.
We use the integrator for the Langevin’s equation introduced by Bussi and Parrinello [3]. For Γ(Q)
we assume the asymmetric form

Γ(Q) = Γ0 +A Θ(Q) Q2.

where Θ(Q) is the Heaviside step function. The model then contains three parameters, the natural
frequency ω0, the base damping Γ0, and the damping strength parameter A.

Example

Consider a system defined by the parameters ω0 = 1.2 ps−1, Γ0 = 0.2 ps−1, and A = 200 eV−1ps−3

at the temperature T = 300K. In Fig. S8a we show the obtained distribution for the phonon mode
coordinate, which is symmetric, together with the damping function Γ(Q). The power spectrum in
Fig. S8b consists of a central peak and a damped oscillatory peak around 40 cm−1. This corresponds
to 1.2 ps−1 in nice agreement with ω0.
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Figure S8: Results for the damped oscillator potential with a position dependent damping. a) The
distribution of the oscillator together with the position dependent damping. b) Power spectrum of the
solution.

9



S3.3 Damped Morse oscillator

The harmonic potential is symmetric. Another possibility to obtain an asymmetry is to change the
potential. Therefore, we consider the asymmetric Morse potential, defined as,

V (Q) = D(1− e−αQ)2.

The force on the particle is then given by,

F (Q) = −2αD
(
1− e−αQ

)
e−αQ

and at small displacements, the oscillation frequency is equal to ωmin = α
√
2D. The equation of

motion is then given by

Q̈(t) + 2αD
(
1− e−αQ(t)

)
e−αQ(t) = −ΓQ̇(t) + ξst(t)

and is solved using the integrator introduced by Bussi and Parrinello [3]. The model contains three
parameters, the damping Γ, and the two potential parameters D and α.

Example

Consider a system defined by the parameters D = 0.258 eV, a = 4.2 eV−1/2ps−1, and Γ = 0.08 ps−1

and the temperature T = 300K. In Fig. S9a we show the obtained distribution for the phonon mode
coordinate, together with the Morse potential. The distribution is asymmetric with a tail towards
large values for Q. Ihe power spectrum in Fig. S9b consist of a large central peak and a damped
oscillatory peak around 92 cm−1. This can be compared with the frequency at the minimum, ωmin,
which is slightly larger, equal to 101 cm−1. This is expected based on the anharmonicity of the Morse
potential.
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Figure S9: Results for the damped Morse oscillator. a) The distribution of the oscillator together with
the Morse potential. b) Power spectrum of the solution.
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