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ABSTRACT: Metal nanoparticles are attractive for plasmon-enhanced
generation of hot carriers, which may be harnessed in photochemical
reactions. In this work, we analyze the coherent femtosecond dynamics of
photon absorption, plasmon formation, and subsequent hot-carrier
generation through plasmon dephasing using first-principles simulations.
We predict the energetic and spatial hot-carrier distributions in small metal
nanoparticles and show that the distribution of hot electrons is very
sensitive to the local structure. Our results show that surface sites exhibit
enhanced hot-electron generation in comparison to the bulk of the
nanoparticle. Although the details of the distribution depend on particle size and shape, as a general trend, lower-coordinated
surface sites such as corners, edges, and {100} facets exhibit a higher proportion of hot electrons than higher-coordinated
surface sites such as {111} facets or the core sites. The present results thereby demonstrate how hot carriers could be tailored
by careful design of atomic-scale structures in nanoscale systems.
KEYWORDS: localized surface plasmon, plasmon decay, plasmon dephasing, time-dependent density functional theory, hot electrons,
hot carriers, atomic scale

Plasmon-enhanced technologies enabled by metal nano-
particles (NPs) provide promising avenues for harvesting
and converting sunlight to chemical energy1 and driving

photochemical reactions.2 The underlying processes rely on the
decay of plasmonic excitations and the subsequent generation of
high-energy non-equilibrium electrons and holes.3 These
electrons and holes are often collectively referred to as hot
carriers (HCs), but their distributions can vary substantially with
time after excitation.4,5 HCs generated by plasmon decay can, in
principle, be transferred to a chemically attached acceptor such
as a semiconductor or a molecule, a process that is potentially
useful for technologies such as photovoltaics,6 photodetec-
tion,7,8 photon up-conversion,9 and photocatalysis2,10−13 and
possibly relevant for NP growth processes.14

It can be challenging to develop comprehensive under-
standing of plasmon-generated hot carriers via purely exper-
imental approaches both due to time constraints and the
difficulty associated with disentangling different contribu-
tions.15−17 In this context, complementary theoretical and
computational approaches can provide highly valuable insight as
they enable scrutinizing the relevant microscopic processes. The
present theoretical understanding of plasmonic HC generation
is mostly based on flat metal surfaces18,19 or jellium NPs
neglecting the underlying atomic structure.4,5,20−26 Whereas
atomic-scale effects in nanoplasmonics, in general, have been

increasingly addressed in recent years,27−32 atomic-scale
modeling of plasmonic HC generation is only emerging.33−35

In particular, detailed atomic-scale distributions of plasmon-
generated HCs, to our knowledge, have not yet been scrutinized.
In the context of photocatalysis detailed understanding of
plasmonic HC generation at the atomic scale is, however, of
paramount importance as chemical reactions take place at this
size scale.
In this work, we analyze the effect of local atomic-scale

structure on plasmonic HC generation and demonstrate that the
distribution of HCs after plasmon decay is sensitive to the
atomic-scale details. Using a series of NPs, we analyze
quantitatively the spatial distribution of plasmon-generated
HCs at the atomic scale with respect to surface orientation as
well as for edge and corner sites. As the trends are consistent
across NPs of different size and shape, the trends obtained here
are expected to be transferable to more general nanoscale
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structures. For this study, we have developed a fully atomistic,
parameter-free, and generally applicable description of plas-
monic HC generation based on Kohn−Sham (KS) density
functional theory (DFT)36,37 and time-dependent density
functional theory (TDDFT).38

RESULTS AND DISCUSSION
Real-Time Dynamics of Localized Surface Plasmon. To

introduce our approach for modeling plasmonic HC generation,
we start with a comprehensive characterization of plasmon
formation and subsequent dephasing. We consider an
icosahedral Ag561 silver NP as an example system with a clear
plasmon resonance in the photoabsorption spectrum (Figure
1a).39 The ground-state electronic structure of the NP is
calculated with DFT using the Gritsenko−van Leeuwen−van
Lenthe−Baerends−solid-correlation (GLLB-sc) exchange-cor-
relation (XC) potential40,41 for an improved d-band descrip-
tion.28,42 The time-dependent response is then calculated with
TDDFT using either the random-phase approximation (RPA)
or the adiabatic GLLB-sc28 (see Methods for details).
To excite the localized surface plasmon resonance (LSPR) in

the NP, we use a monochromatic ultrafast Gaussian light pulse

ω τ= − − −t t t t t( ) cos( ( ))exp( ( ) / )0 0 0 0
2

0
2

(1)

that induces real-time dynamics of electrons in the system. The
pulse frequency ω0 = 3.6 eV is tuned to the plasmon resonance,
the pulse duration is determined by τ0 = 3 fs, and the pulse is
centered at t0 = 10 fs (Figure 1b). The pulse strength is weak,

= μ51 V/Å0 , putting the response in the linear-response
regime. In the frequency space, the pulse is wide enough to cover
the whole plasmon resonance (Figure 1a).
The interaction between electrons and light is described in the

dipole approximation, within which the light pulse creates a
time-dependent external potential, =v t z t( ) ( )pulse , that causes
the time evolution of the KS states |ψn(t)⟩ and excitation of the
LSPR. The light pulse induces a strong dipole-moment response
[Figure 1c(1−3)]. The corresponding electron density
oscillations [Figure 1d(1−3)] are composed of a surface-to-
surface component associated with delocalized valence electrons
near the Fermi energy and atom-localized contributions that

correspond to screening due to virtual excitations from the d-
band.39 As time proceeds to t ≈ 17 fs, the excited electrons start
to lose their collective plasmonic motion via a dephasing process
commonly referred to as Landau damping.43 As the plasmon
dephases, the dipole moment decays [Figure 1c(4,5)]
corresponding to vanishing surface-to-surface density oscillation
[Figure 1d(4,5)].33 Whereas the density oscillations and dipole
moment response gives an illustrative picture of the plasmon
formation and decay, they seem not to provide a tractable way
for scrutinizing HC contributions to the response. To this end,
we consider the time-dependent energy contributions of
different KS transitions.

Time-Dependent Energy Contributions. As the pulse is
tuned to the LSPR, the electronic system absorbs energy from
the incident light and remains in an excited state after the pulse
has vanished. To analyze the distribution of this energy, we first
consider the total time-dependent energy of the system given by

= + Δ +E t E E t E t( ) ( ) ( )tot tot
(0)

pulse (2)

where Etot
(0) is the ground-state energy, ΔE(t) is the time-

dependent energy stored in the excited state (Figure 1e, black
line), and μ= −E t t t( ) ( ) ( )pulse is the potential energy of the
system under the external electric field.
The incident light pulse pumps energy into the system; that is,

it does work on the system as δμΔ ̇ = ̇E t t t( ) ( ) ( ), where dots
indicate time derivatives and δμ(t) = μ(t) − μ(0) is the induced
dipole moment. Thus, the total accumulated electronic energy
can be written as

∫ δμ τ τ τΔ = ̇E t( ) ( ) ( )d
t

0 (3)

The electronic energy increases through absorption in a stepwise
manner following the pulse intensity (Figure 1e, t ≈ 5...15 fs).
After the pulse has ended (t ≳ 15 fs), the absorbed energy
remains in the system and the total energy has attained a new
constant value given by the photoabsorption cross section
(Figure 1a and eq 11 in Methods).
Although the total energy remains constant, the electronic

energy does not stay equally distributed among the electron−
hole transitions i→ a excited by the light pulse. To quantify this

Figure 1. Real-time dynamics of a localized surface plasmon in a silver nanoparticle. (a) Photoabsorption spectrum of the Ag561 NP (shaded)
and the intensity profile of an impacting electric field pulse (green). Photoabsorption is determined by the imaginary part of the polarizability,
α, and the corresponding real part, Re[α], is shown as a dotted line. (b) Electric field pulse impacting the plasmon resonance of the NP. (c)
Time-dependent dipole moment response of the NP. (d) Electron density oscillations in the NP at selected time instances (red and blue
isosurfaces denote density increase and decrease, respectively). (e) Time evolution of the energy stored in the excited electronic system. The
total energy (black) is divided into the energy of nonresonant electron−hole transition contributions constituting screened plasmon excitation
(purple) and that of resonant transition contributions constituting mainly hot carriers (orange). A part of the plasmon energy is in the form of
Coulomb energy (gray).
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effect, we consider the decomposition of the energy in electron−
hole transition contributions. This decomposition is based on
the linear response of the KS density matrix, δρia(t), expressed in
the basis of the eigenstates (ϵn, ψn

(0)) of the ground-state
Hamiltonian. The electron−hole decomposition of energy is
(see Supplementary Note S1 for derivation)

∑ ωΔ = +
>

E t P t E t( ) ( ) ( )
ia

f f

ia ia ia
C

i a

(4)

where the sum is restricted by ground-state occupation numbers
f n so that the indices i and a correspond to the created hole and
electron states, respectively. Here, ωia = ϵa − ϵi is the electron−
hole transition energy (the KS eigenvalue difference), Pia(t) is
the transition probability defined as

δρ
=

−
P t

t

f f
( )

( )
ia

ia

i a

2

(5)

and Eia
C(t) is the Coulomb energy as obtained from the Hartree−

XC kernel (defined in Supplementary Note S1).
Plasmon formation and dephasing can be scrutinized by

considering the energy stored in the electronic system in terms
of the electron−hole transition energy, ωia, with respect to the
pulse frequency ω0 (Supplementary Figure S1). The plasmon is
formed by constructive coupling of low-energy transitions [ωia
≲ 2 eV; see Figure 2a and time instances (1−3) in Figure
2b].39,43,44 Simultaneously, high-energy virtual d-electron
transitions (ωia≳ 4 eV) screen the plasmonic density oscillation,
decreasing the total induced field. The energy stored in the
screening is similar to the energy stored in the polarization of a
dielectric in general; that is, as the total field strength decreases,
energy is instead stored in the polarization of the d-electron
states as in ωiaPia(t) in eq 4. The nonresonant low- and high-
energy transitions carry most of the energy during plasmon
excitation (Figure 1e, purple line). As the plasmon dephases, the
absorbed energy is redistributed to electron−hole transitions
that are resonant with the pulse [Figure 1e, orange line;
corresponding to the diagonal in the transition contribution
maps in Figure 2b; see time instances (4,5)]. After dephasing,

the energy remains almost exclusively stored in these transitions
constituting the plasmon-generated HCs. The transitions
comprising the plasmon are active in photoabsorption (Figure
2a), and hot holes and electrons are generated through plasmon
decay, instead of the HC transitions absorbing the light directly
(shown in detail in Supplementary Figure S2).
At longer time scales, the electronic system would dissipate

the absorbed energy to the environment via radiation, atomic
motion, or other processes, but such decay pathways are not
included within the description used here. Thus, in the present
picture, there appears no significant dynamics in Ag561 at time
scales beyond t ≳ 30 fs after the fast dephasing of the LSPR
through Landau damping, which takes place due to the presence
of multiple excitation eigenstates forming the broadened
plasmon peak in the photoabsorption spectrum43 (Supplemen-
tary Figure S3). However, the dynamics can be very different in
small clusters with a discrete excitation spectrum. In contrast to a
single broad plasmon peak in Ag561, for example, in the Ag55
cluster, individual electron−hole transitions couple strongly to
the plasmon,39 a process that is referred to as plasmon
fragmentation.45,46 Correspondingly, the time-domain response
exhibits Rabi oscillations and energy transfer back from the
resonant transitions to the plasmon33,47 (Supplementary Figure
S4).
As the coupling of transitions via Coulomb interaction is

recognized as an essential characteristic of plasmonic
excitations,39,43,44,48 it is instructive to consider the Coulomb
energy, = ∑E t E t( ) ( )ia iaC

C . This energy exhibits strong
oscillations (Figure 1e, gray line) analogous to the dipole
moment (Figure 1c) as only the electron density oscillation
contributes to the Coulomb energy. At the maxima of the
surface-to-surface density oscillation [time instances (1) and (3)
in Figure 1d,e], the Coulomb contribution is a significant part of
the plasmon energy, but at the minima between [e.g., time
instance (2)], the Coulomb energy is vanishing as the electronic
energy is stored in the electron current flowing through the
particle (Supplementary Figure S5).

Temporal Evolution of Hot-Carrier Distributions.
Having established a real-time picture of plasmon formation
and decay, we are in the position to analyze the distributions of

Figure 2. Electron−hole transition contributions to plasmon formation and decay. (a) Electron−hole contributions to the photoabsorption at
the resonance energy visualized as a transition contribution map (TCM). Density of states is also shown along the energy axes. (b) Electron−
hole contributions to the time-dependent electronic energy visualized as TCMon a logarithmic color scale. The solid diagonal line corresponds
to the transition energies matching with the pulse frequencyω0 and the dotted diagonal lines are drawn atω0 ± 2σ to indicate the pulse width
σ τ= 2 / 0, defining the boundaries for resonant and nonresonant transitions for Figure 1e. (c) Occupation probabilities of hole and electron
states. Solid blue and red lines denote state occupations from resonant transitions, and dashed lines denote occupations from all transitions
(resonant and nonresonant). The figure columns (1−5) show panels (b) and (c) for the time instances labeled in Figure 1. The color scale and
axis limits are the same in all of the columns.
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electrons and holes during the process. The probabilities for
creating a hole in an initially occupied state i or an electron in an
initially unoccupied state a are given directly by the transition
probability of eq 5 as

∑ ∑= =
> >

P t P t P t P t( ) ( ) and ( ) ( )i
a

f f

ia a
i

f f

ia
h e

i a i a

(6)

respectively. Pi
h and Pa

e determine exactly the diagonal elements
of the second-order response of the density matrix (Supple-
mentary Note S1); in other words, they correspond to the
increase of the occupation of the initially unoccupied state a and
the decrease of the occupation of the initially occupied state i.
The occupation probabilities given by eq 6 show strong

oscillations during the time evolution [Figure 2c(1−3), dashed
lines]. These oscillations are explained by the oscillation of the
Coulomb energy. As the Coulomb energy contribution is carried
mainly by nonresonant transitions (Supplementary Figure S6),
the occupation probabilities of the electron and hole states
contributing to these nonresonant transitions oscillate analo-
gously to the Coulomb energy. The oscillations are especially
visible in the occupations of electron and hole states that form
the plasmon,35 that is, the states near the Fermi energy, often
referred to as Drude carriers.49 The oscillatory population and
depopulation of these states indicate that they would not likely
be individually separable while they are a part of the plasmon as
the Coulomb interaction is an essential part of the excitation
itself.50

The contributions of the resonant transitions to the Coulomb
energy are relatively small (Supplementary Figure S6), and the
occupations of the corresponding electron and hole states grow
steadily as the plasmon decays (Figure 2c, solid lines). At the end
of the dynamic evolution studied here [Figure 2c(5)], electrons
and holes are still coupled in the form of electron−hole
transitions, and the distributions at t = 30 fs can be considered as
the initial nonthermal HC distributions. After their generation,
these carriers would separate and interact via electron−electron
and electron−phonon scattering processes3,5,19,51 that are not
captured in the present description. The slight asymmetry
between the hole and electron distributions is caused by a
nonzero width of the pulse in the frequency space (Figure 1a).
Energetic and Atomic-Scale Spatial Distributions of

Hot Carriers. We now analyze the distribution of plasmon-
generated hot carriers and the impact of local atomic-scale
structure. We start by considering the series of icosahedral silver

NPs Ag147, Ag309, and Ag561, the photoabsorption properties of
which we have described in detail in previous work28,39 (see
Supplementary Figure S7 for photoabsorption spectra and
densities of states). The light pulse is tuned to the plasmon
resonance of the NPs, and the initial HC distributions are
analyzed after the plasmon has dephased at a time t = 30 fs. The
HC distributions show a pronounced dependence on NP size
(Figure 3a) and local structure (Figure 3b,c) as discussed in the
following.
As particle size increases, the HC distributions are

increasingly dominated by interband d-electron transitions26

(hole ∼ −4 eV → electron ∼0 eV) converging toward the
distributions obtained for flat surfaces.18,19 In contrast to
extended systems, geometry confinement effects are significant
for plasmonic HC generation in nanoscale systems.52 Due to the
broken crystal symmetry, additional “intraband” transitions are
available for plasmonic HC generation in NPs, which results in
the population of higher-energy electron and hole states (Figure
3a; electron states of >0.5 eV, hole states of >−3.5 eV). The
relative contribution of these sp-states is most pronounced in the
smallest NPs26 (Ag147, Ag309), but they are non-negligible also in
Ag561. Similar size-dependent trends are also present in silver
NPs of other shapes, whereas the detailed relative contributions
of different transitions vary (Supplementary Figure S8).
The calculated probability distributions of plasmon-generated

electrons and holes (see Methods) exhibit strong spatial
variance (shown for the icosahedral Ag561 NP in Figure 3b,c):
Holes are localized at atomic sites throughout the particle, which
is expected as the majority of holes originates from the atom-
localized d-states. As a result, their energy distribution is very
similar for core and surface sites. Hot electrons, on the other
hand, are more delocalized and reside to larger extent in the
surface region. The surface contribution is even more
pronounced for higher-energy hot electrons (>1 eV electrons
in Figure 3c). The probability density of these hot electrons is
strongly enhanced especially at low-coordinated edge and
corner sites compared to sites in the core and on flat surfaces
(Figure 3b). The energetic distributions of plasmon-generated
holes and electrons are not necessarily symmetric when
projected onto a particular site (Figure 3b and Supplementary
Figure S8). This asymmetry is especially pronounced for the
corner site in Ag561, which reflects the fact that the hot-electron
density at corner sites originates likely from throughout the
particle due to the uniformity of the hole density.

Figure 3. Hot-carrier distributions after plasmon decay. (a) Occupation probabilities of hole and electron states in icosahedral silver NPs of
147−561 atoms. (b) Occupation probabilities at different atomic sites of Ag561. All the panels use the same axis limits (normalized by the
number of atoms). (c) Spatial density profiles of all induced holes and electrons and induced electrons with energy of more than 1 eV in Ag561.
Plots show isosurfaces corresponding to 10 and 20% of maximum value, and slices are taken through the center of the NP.
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A more quantitative view is obtained by considering the total
per-atom occupation probability of hot electrons at a particular
atomic site in comparison to the total per-atom occupation
probability throughout the system (Figure 4). These data
suggest that in the icosahedral Ag561 NP, hot electrons withmore
than 1 eV are almost three times more likely to be found in the
vicinity of a corner site than a uniform spatial distribution would
correspond to. We emphasize that these are per-atom
considerations; that is, as the 12 corner atoms constitute only
around 2% of the atoms in the particle, it is expected that about
6% of the electrons with more than 1 eV would be generated in
the vicinity of the corner atoms. Overall, hot electrons with more
than 1 eV constitute 30−60% of all hot electrons depending on
system (Supplementary Figure S8). The absolute total number
of HCs generated depends on the light energy that is absorbed,
which is in turn determined by the photoabsorption cross
section and light intensity.
Similarly to icosahedral shapes, hot electrons in the

cuboctahedral and regularly truncated octahedral NPs are
more likely to be generated at a surface site than at a core site
(Figure 4). The preference for surface sites is even more
pronounced for hot electrons with more than 1 eV. The corner
sites of the cuboctahedral and regularly truncated octahedral
NPs, however, do not show as enhanced distribution of hot
electrons as those sites of the icosahedral Ag561 particle. This
further underlines the sensitivity of HC generation to atomic-
scale details and the exact electronic structure of the NP and
site(s) in question.
As a general trend, lower-coordinated sites seems to exhibit an

enhancement of hot electrons compared to higher-coordinated
sites. This trend is observed for corner and edge sites, but the
data for cuboctahedral and regularly truncated octahedral NPs
suggest also that more hot electrons are generated on the lower-
coordinated {100} surface than on the {111} surface. In contrast
to strong spatial variation of hot electrons, plasmon-generated
holes do not show strong spatial dependence in the considered
NPs (Supplementary Figure S9).
For practical utilization, HCs need to be transferred to the

environment. The HC distributions obtained in the present
work can be considered as the initial nonthermal HC

distributions before any electron−electron scattering19,51 has
taken place. Thus, these HC distributions could serve as an
initial condition for subsequent dynamics3,5 that is not included
in the present approach. In general, HC transfer to environment
can occur indirectly (i.e., carriers are first produced in the metal
and subsequently transferred to the acceptor) or directly (i.e.,
plasmon dephasing leads directly to the injection of HCs in
empty acceptor, or occupied donor, states).2,53−62 However,
both experiments63−65 and calculations51,52,65,66 indicate that
HCs generated in the metal can quickly relax through electron−
electron scattering, which renders the indirect pathway
inefficient. The direct-transfer process, on the other hand,
presents an opportunity to obtain more efficient plasmonic HC
devices.54,56,62 The prevalence of hot electrons on lower-
coordinated surface sites described in the present work seems
favorable for their utility through the direct transfer processes. It
is, however, crucial to also consider the hybridization of the
surface electronic states with acceptor states, where the latter can
originate, for example, from an adsorbed molecule67 or a
semiconductor.68,69 To maximize the efficiency for direct
excitation transfer, the emitting and receiving states should be
energetically aligned and spatially overlapping. In addition, hot-
electron generation can be affected by the dielectric environ-
ment, for example, by red-shifting the plasmon resonance so that
d-band electrons are not excited. The framework presented here
enables analysis and quantification of these aspects at the atomic
scale with material specificity and without resorting to empirical
parameters.

CONCLUSIONS
In conclusion, we presented a comprehensive first-principles
account of the real-time dynamics of plasmon formation and
dephasing into HCs and analyzed quantitatively the impact of
atomic-scale structure on the HC generation. Our results on
silver NPs indicate that lower-coordinated surface sites exhibit a
larger proportion of hot electrons, especially those with higher
energy, than the bulk of the nanoparticle or higher-coordinated
surface sites. In contrast, the distribution of hot holes is relatively
homogeneous within each consideredNP. These features can be
traced to the electronic structure as hole and electron states

Figure 4. Atomic-scale distributions of hot electrons in silver nanoparticles. Spatial distribution of hot electrons generated on different atomic
sites in icosahedral (Ih), cuboctahedral (Cub-Oh), and regularly truncated octahedral (RTO) NPs. Sites with lower coordination exhibit a
higher proportion of hot electrons than core sites. A spatially uniform distribution corresponds to a normalized probability of unity. The insets
show the atomic structures with the different atomic sites colored.
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exhibit localized d- and delocalized sp-type character,
respectively. We would therefore expect the present insight to
be qualitatively transferable to other late transition metals that
exhibit similar electronic structure. The observed trends are
present in NPs of different shapes and sizes with varying
prevalence. We therefore envision that the obtained atomic-
scale insights could be applicable to nanoscale structures in
general. First-principles predictions of plasmonic HC gener-
ation, as presented here, can thereby facilitate tuning and
optimizing photocatalytic systems down to the atomic scale, for
example, by enabling identification of promising surface-
acceptor combinations.

METHODS
Computational Details. The ground-state electronic structures

were calculated with KS-DFT36,37 using the GLLB-sc exchange-
correlation potential.40,41 The time-domain responses were calculated
with TDDFT38 starting from the ground state. The dynamical response
was described with RPA for the data in Figures 1 and 2 and in
Supplementary Figures S1−S6, whereas all the other data were
calculated with the adiabatic GLLB-sc.28 The two response kernels
yield very similar results (Supplementary Figure S10), but the GLLB-sc
potential is not suitable for obtaining the total energies.
All of the calculations were carried out with the open-source GPAW

code package70 using localized basis sets71 and the real-time
propagation TDDFT implementation.28 We used 11-electron projec-
tor-augmented wave72 setups for Ag, treating the remaining electrons as
a frozen core. We used an extended “p-valence” basis set that includes
diffuse 5p functions, which are important for describing plasmon
resonances.73 The basis set is similar to the ones used in refs 28 and 39.
The photoabsorption spectra were calculated using the δ-kick

technique,74 yielding linear impulse response. The photoabsorption of
icosahedral particles is isotropic, and the electric field was aligned along
the x direction. The resulting HCs do not exhibit a strong variation
between different sites (Figure 3c). For the time propagation, we used a
time step of 10 as and total propagation time of at least 30 fs. The
spectra were broadened using Gaussian damping with σ = 0.07 eV
corresponding to a full width at half-maximum of 0.16 eV. The real-time
response to a pulse was calculated as a postprocessing step through
convolution as described below in detail. In the convolution Fourier
transforms or time-domain response, there is no artificial damping.
A grid spacing parameter of h = 0.3 Å was chosen to represent

densities and potentials, and the nanoparticles were surrounded by a
vacuum region of at least 6 Å. The Hartree potential was evaluated with
a Poisson solver using the monopole and dipole corrections for the
potential. Fermi−Dirac smearing was applied to the occupation
numbers to facilitate convergence. The KS electron−hole basis
included electron−hole pairs with occupation number difference f i −
fa ≥ 10−3.
Before the response calculations, all geometries were relaxed using

the BFGS optimizer in the open-source ASE package.75 The relaxation
calculations used the Perdew−Burke−Ernzerhof (PBE)76 functional,
double-ζ polarized (dzp) basis sets, and h = 0.2 Å.
Pulse Response from Convolution. The photoabsorption

spectrum can be efficiently calculated from real-time propagation
using the δ-kick perturbation74 as in the linear-response regime all the
frequencies are independent of each other. We utilize this property in
the present work for calculating the linear response of the density matrix
to the Gaussian pulse of eq 1 as a postprocessing step. First, the time
propagation is carried out for perturbation vkick(t) = zK0δ(t), yielding
the impulse response of the system and the corresponding time-
dependent density matrix δρia

kick(t). Then, in the linear-response regime,
the response to the pulse of eq 1 is obtained as a convolution

∫δρ δρ τ τ τ= −
∞

t
K

t( )
1

( ) ( )dia ia
0 0

kick

(7)

which can be very efficiently calculated in frequency space by employing
the convolution theorem and inverse Fourier transform

∫δρ
π

δρ ω ω ω= ω

−∞

∞
−t

K
( )

1
2

( ) ( )e dia ia
i t

0

kick

(8)

where δρia
kick(ω) and ω( ) are Fourier transforms of the respective

time-domain quantities. Here, δρia
kick(ω) can be efficiently calculated

from the impulse response by using the computational framework
developed in ref 39. The time derivatives required for calculating the
energy (Supplementary Note S4) are obtained similarly as

∫δρ
π

ωδρ ω ω ω̇ = − ω

−∞

∞
−t

i
K

( )
2

( ) ( )e dia ia
i t

0

kick

(9)

∫δρ
π

ω δρ ω ω ω̈ = − ω

−∞

∞
−t

K
( )

1
2

( ) ( )e dia ia
i t

0

2 kick

(10)

In practice, ω( ) is nonvanishing only on a finite frequency interval
(see Figure 1a), which narrows the integration limits.

It is emphasized that the time-dependent density matrix, δρia(t), is a
complex quantity in time domain, so in practical calculations, it is
convenient to carry out Fourier transform for the real Reδρia(t) and
imaginary Imδρia(t) parts separately to utilize the properties of Fourier
transform of real quantities.

We also note in passing that the impulse response δρia
kick(ω) can be

equivalently calculated from the Casida linear-response frequency-
space formalism.39,77 Hence, the linear real-time response to any pulse
can also be calculated from the Casida solutions by using the
convolution of eq 8.

Total Absorbed Energy. By invoking Fourier transform, the total
absorbed energy after the pulse has vanished is obtained as

∫ ∫δμ ω ω ω̇ = | |
∞ ∞

t t t S( ) ( )d
1
2

( ) ( ) d
0 0

2
(11)

where ω α ω= [ ]ω
π

S( ) Im ( )2 is the dipole strength function, which

equals the photoabsorption cross section safe for a constant multiplier.
Hot-Carrier Distributions. The hot-electron energy distributions

corresponding to the state occupation probabilities Pa
e of eq 6 are

obtained as (time dependence is not explicitly marked)

∑ ∑δ δϵ = ϵ − ϵ = + ϵ − ϵ
>

P P q p( ) ( )
1
2

( ) ( )
a

a a
ia

f f

ia ia ae
e 2 2

i a

(12)

where

δρ= −q t t f f( ) 2Re ( )/ 2( )ia ia i a

and

δρ= − −p t t f f( ) 2Im ( )/ 2( )ia ia i a

that is, they correspond to the real and imaginary parts of δρia (see
Supplementary Note S2 for details). For visualization purposes,
Gaussian smoothing (convolution) is applied with respect to the ϵ axis.

The spatial probability density of hot electrons is given by the full
electron−electron part of the second-order density matrix as (see
Supplementary Note S1 and note that only the real part contributes due
to the hermiticity of the density matrix)

∑ ψ ψ=
′

+
′ ′

′

′

>

=

r r rP q q p p( )
1
2

( ) ( ) ( )
iaa

f f

f f

ia ia ia ia a ae
(0) (0)

i a

a a

(13)

The diagonal and degenerate states dominate the spatial density
contributions, which allows us to define a spatio-energetic distribution

∑ ψ ψ δϵ =
′

+
′ ′

ϵ − ϵ
′

′

>

ϵ =ϵ

r r rP q q p p( , )
1
2

( ) ( ) ( ) ( )
iaa

f f

ia ia ia ia a a ae
(0) (0)

i a

a a

(14)
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which is used to calculate the spatial density of hot electrons with more

than 1 eV as ∫= ϵ ϵ> ∞
r rP P( ) ( , )de

1eV
1eV e , and the energy distribution of

hot electrons in a spatial volume V as ∫ϵ = ϵ r rP P( ) ( , )dV
Ve e . The

distribution at a specific atomic site (e.g., corner atoms) is obtained by
integration over the Voronoi cell associated with the site.
The spatial and energetic distributions of hot holes are calculated

analogously to the electrons.
Software Used. The GPAW package70,78 with linear combination

of atomic orbitals (LCAO)mode71 was used for DFT calculations. The
real-time propagation LCAO-TDDFT implementation in GPAW28 was
used for the TDDFT calculations. Density-matrix-based analysis tools
in frequency space39 and in real time (present work) were used for
analysis. The ASE library75 was used for constructing atomic structures
and geometry relaxation. The NumPy79 and Matplotlib80 Python
packages and the VMD software81,82 were used for processing and
plotting data.
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F. J. Ab Initio Nanoplasmonics: The Impact of Atomic Structure. Phys.
Rev. B: Condens. Matter Mater. Phys. 2014, 90, 161407.
(28) Kuisma, M.; Sakko, A.; Rossi, T. P.; Larsen, A. H.; Enkovaara, J.;
Lehtovaara, L.; Rantala, T. T. Localized Surface Plasmon Resonance in
Silver Nanoparticles: Atomistic First-Principles Time-Dependent
Density-Functional Theory Calculations. Phys. Rev. B: Condens. Matter
Mater. Phys. 2015, 91, 115431.
(29) Rossi, T. P.; Zugarramurdi, A.; Puska, M. J.; Nieminen, R. M.
Quantized Evolution of the Plasmonic Response in a Stretched
Nanorod. Phys. Rev. Lett. 2015, 115, 236804.
(30) Marchesin, F.; Koval, P.; Barbry, M.; Aizpurua, J.; Sańchez-
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Supplementary Figures
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Supplementary Figure S1: Distribution of the stored energy over electron-hole transition energies in
Ag561. Distribution of the stored energy Eia(t) (Supplementary Note S1) over electron-hole transition energies ωia, i.e.,
E(ω, t) =

∑
iaEia(t)δ(ω − ωia) with a Gaussian smoothing over ω is shown. The color scale is logarithmic. The pulse

is overlaid at its frequency ω0 and the pulse width σ =
√
2/τ0 is indicated as dotted lines at ω0 ± 2σ. The contribution

from resonant transitions in Fig. 1e in the main text comprises of transitions with energy ωia between ω0 ± 2σ, and that
from the non-resonant transitions comprises of the plasmonic low-energy transitions (ωia < ω0 − 2σ) and the screening
high-energy transitions (ωia > ω0 + 2σ).
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Supplementary Figure S2: Rate of change in energy stored in Ag561. Distributions of the rate of change
Ėia(t) over electron-hole transition energies ωia divided into photoabsorption and interaction components (Supplementary
Note S3). The plasmonic low-energy transitions absorb the energy from the resonant pulse (upper panel) and the energy is
subsequently redistributed to higher-energy screening transitions and resonant hot-carrier transitions (lower panel). The
screening transitions return their energy back to the field weakening the photoabsorption by plasmon (upper panel), and
after the plasmon has dephased, the absorbed energy remains in hot-carrier transitions.
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Supplementary Figure S3: Real-time dynamics in Ag561 up to 60 fs. (a) Electric field pulse impacting the
nanoparticle. (b) Time-dependent dipole moment response of the nanoparticle. (c) Time evolution of the energy stored
in the excited electronic system divided into non-resonant and resonant contributions as in Fig. 1 in the main text. The
plasmon has dephased at 30 fs and only a minor recurrence of the plasmon is visible at around 55 fs.
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Supplementary Figure S4: Real-time dynamics in Ag55 up to 120 fs. (a) Electric field pulse impacting the
nanoparticle. (c) Time-dependent dipole moment response of the nanoparticle. (e) Time evolution of the energy stored
in the excited electronic system divided into non-resonant and resonant contributions analogously to Fig. 1 in the main
text. The response of Ag55 consists of a few separate resonances instead of a single broad one, which appears in the
time-domain as Rabi oscillations and recurrence of the plasmon. At long time scales, the dynamics is expected to be
affected by electron–electron interaction and other scattering processes that lead to excitation decay but are not included
in the present description.
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Supplementary Figure S5: Energy contributions from real and imaginary parts of density matrix. The
energy stored in non-resonant and resonant transitions (Fig. 1 in main text) is further decomposed to contributions from
the real and imaginary parts of density matrix, i.e., from qia(t) and pia(t) defined in Eq. (33), respectively. Specifically,
terms with qia(t) are 1

2ωiaq
2
ia(t)+

1
2qia(t)

∑
jbKia,jbqjb(t) and terms with pia(t) are 1

2ωiap
2
ia(t), summing up to the energy

Eia(t) in Eq. (35). The upper panel illustrates that plasmon can be thought as a classical harmonic oscillator with energy
oscillating between density (qia or “position coordinate”) and current (pia or “momentum coordinate”).
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Supplementary Figure S6: Electron-hole transition contributions to Coulomb energy. The contributions are
visualized as TCM on a logarithmic color scale similarly to the total energy in Fig. 2 in the main text. Note that while the
screening high-energy transitions have negative contribution to the Coulomb energy, the total energy contribution from
every electron-hole transition is positive as depicted in Fig. 2 in the main text. See Eq. (35) and discussion therein for
the energy terms.
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Supplementary Figure S7: Photoabsorption spectra and densities of states of silver nanoparticles. (a) Pho-
toabsorption spectra and (b) densities of states (DOS) of silver nanoparticles of icosahedral (Ih), cuboctahedral (Cub-Oh),
and regularly truncated octahedral (RTO) shapes. The Fermi level is at 0 eV in panel b. The data for Ag55 has been
multiplied by 0.5. For each shape, the plasmon resonance show a redshift with increasing particle size, following the shift
in the d-band onset with respect to the Fermi level apart from the small Ag55. Ag309 Cub-Oh is an exception with broader
and more redshifted plasmon peak than expected based on Ag147 and Ag561, with a corresponding difference seen in the
d-band onset.
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Supplementary Figure S8: Hot-carrier distributions in silver nanoparticles. Occupation probabilities of hole
and electron states after plasmon decay in silver nanoparticles of icosahedral (Ih), cuboctahedral (Cub-Oh), and regularly
truncated octahedral (RTO) shapes. Occupation probabilities at different atomic sites (core, facets, edges, and corners)
are also shown. The distributions are per atom (the number of atoms in each set is indicated in parenthesis). The
percentages adjacent to the −1 eV and 1 eV dotted lines indicate the amount of holes and electrons with energy < −1 eV
and > 1 eV, respectively, in comparison to the total amount in each set. Scale is the same in each plot.
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Supplementary Figure S9: Atomic-scale distributions of hot holes in silver nanoparticles. Spatial distribution
of hot holes generated on different atomic sites in selected nanoparticles. Most distributions show relatively small variations
from spatially uniform distribution and no surface or core site appear to be systematically favored. The distribution of
hotter holes (energy ϵ < −1 eV) is similar to that of all generated holes due to the d electron states dominating the hot-hole
distribution (Supplementary Fig. S8).

2 3 4 5
Photon energy (eV)

P
ho

to
ab

so
rp

tio
n

(a)

Energy (eV)

O
cc

up
at

io
n 

pr
ob

ab
ili

ty
 / 

at
om

4 2 0 0 2 4

corners
(12 atoms)

edges
(120 atoms)

{111} facets
(120 atoms)

core
(309 atoms)

total
(561 atoms)

(b)

Supplementary Figure S10: Effect of the dynamic response kernel on the results. (a) Photoabsorption
spectra of Ag561 calculated with the adiabatic GLLB-sc exchange-correlation (XC) potential (solid shaded black line) and
random-phase approximation (RPA) (dotted black line). The pulse is tuned to the plasmon resonance (3.60 eV for the
adiabatic GLLB-sc and 3.64 eV for RPA; solid and dashed green lines, respectively). (b) Hot-carrier distributions in Ag561
calculated with the adiabatic GLLB-sc (solid shaded lines) and RPA (dotted lines). The ground state is calculated with
GLLB-sc XC potential in all the cases. The differences in the results obtained with different dynamic response kernels are
minor.
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Supplementary Notes

Supplementary Note S1: Perturbation expansions of time-dependent quantities.
Wave function. The expansion of the time-dependent wave function up to second order in perturbation is (notation:

|i(t)⟩ = ψi(t) and |i⟩ = ψ
(0)
i )

|i(t)⟩ = e−iϵit |i⟩+
∑
j

e−iϵjtC
(1)
ji (t) |j⟩+

∑
j

e−iϵjtC
(2)
ji (t) |j⟩ , (1)

which gives the projection ⟨k|i(t)⟩ = e−iϵkt
(
δik + C

(1)
ki (t) + C

(2)
ki (t)

)
. Consider the norm up to second order

⟨j(t)|i(t)⟩ =
∑
k

⟨j(t)|k⟩ ⟨k|i(t)⟩ = δji + C
(1)
ji (t) + C

(1)∗
ij (t)︸ ︷︷ ︸

=0

+C
(2)
ji (t) + C

(2)∗
ij (t) +

∑
k

C
(1)∗
kj (t)C

(1)
ki (t)︸ ︷︷ ︸

=0

, (2)

where the denoted first and second order terms are required to vanish in order to have unitary evolution, i.e., ⟨j(t)|i(t)⟩ =
δji.

Density matrix. The expansion of the time-dependent Kohn–Sham density matrix is

ρmn(t) =
∑
i

⟨n|i(t)⟩ fi ⟨i(t)|m⟩ (3)

= fnδnm + e−i(ϵn−ϵm)t

[(
fnC

(1)∗
mn (t) + fmC

(1)
nm(t)

)
+

(
fnC

(2)∗
mn (t) + fmC

(2)
nm(t) +

∑
i

fiC
(1)
ni (t)C

(1)∗
mi (t)

)]
(4)

By invoking the conditions from unitary evolution from Eq. (2), the first-order contribution simplifies to

ρ(1)mn(t) = e−i(ϵn−ϵm)t(fm − fn)C
(1)
nm(t). (5)

Note that in the first order the electron-electron and hole-hole parts of the density matrix are zero: ρ
(1)
mn(t) = 0 for

fm = fn, including the diagonal ρ(1)nn(t) = 0.
The leading second-order term of the electron-electron and hole-hole parts is obtained by setting fm = fn and using

Eqs. (2) and (5) as

ρ(2)mn(t) = e−i(ϵn−ϵm)t

[
fn

(
C(2)∗

mn (t) + C(2)
nm(t)

)
+
∑
i

fiC
(1)
ni (t)C

(1)∗
mi (t)

]
(6)

=
∑
i

e−i(ϵn−ϵm)t(fi − fn)C
(1)∗
mi (t)C

(1)
ni (t) (7)

=

fi ̸=fn∑
i

1

fi − fn
ρ
(1)
in (t)ρ

(1)∗
im (t) (8)

=

fi>fn∑
i

ρ
(1)
in (t)√
fi − fn

ρ
(1)∗
im (t)√
fi − fm

−
fi<fn∑

i

ρ
(1)
in (t)√
fn − fi

ρ
(1)∗
im (t)√
fm − fi

, (9)

the first and second terms of which constitute the electron-electron and hole-hole parts of the density matrix. In particular,
the diagonal can be simplified by noting that |ρ(1)in (t)|2 = |ρ(1)ni (t)|2 to

ρ(2)nn(t) =

fi>fn∑
i

∣∣∣∣∣ ρ
(1)
in (t)√
fi − fn

∣∣∣∣∣
2

−
fi<fn∑

i

∣∣∣∣∣ ρ
(1)
ni (t)√
fn − fi

∣∣∣∣∣
2

. (10)

By defining transition probability

Pia(t) =

∣∣∣∣ δρia(t)√
fi − fa

∣∣∣∣2 , (11)
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Eq. (10) reads

ρ(2)nn(t) =

fi>fn∑
i

Pin(t)−
fn>fa∑

a

Pna(t) = P e
n(t)− P h

n (t), (12)

where P e
n(t) and P h

n (t) corresponds to induced occupations of electrons and holes on state n, respectively.
Energy. In the Kohn–Sham density-functional theory, the total energy is composed of kinetic, Hartree, and XC

contributions, and of the external potential energy (including the potential created by nuclei vext and first-order light
pulse vpulse),

Etot(t) = T (t) + EH(t) + Exc(t) + Eext(t), (13)

respectively. In the basis of KS states, these energy terms are (assuming adiabatic XC kernel)

T (t) =
∑
n

fn

∫
drψ∗

n(r, t)

(
−1

2
∇2

)
ψn(r, t) (14)

=
∑
ij

ρij(t)tij , (15)

EH(t) =
1

2

∫
dr

∫
dr′n(r, t)

1

|r − r′|
n(r′, t) (16)

=
1

2

∑
ij,kl

ρij(t)K
H
ij,klρkl(t), (17)

Exc(t) = E(0)
xc +

∫
drvxc(r)δn(r, t) +

1

2

∫
dr

∫
dr′δn(r, t)Kxc(r, r′)δn(r′, t) + . . . (18)

= E(0)
xc +

∑
ij

δρij(t)v
xc
ij +

1

2

∑
kl

δρij(t)K
xc
ij,klδρkl(t) + . . . , (19)

and

Eext(t) =

∫
drn(r, t)

[
vext(r) + vpulse(r, t)

]
(20)

=
∑
ij

ρij(t)
[
vextij + vpulseij (t)

]
, (21)

where ρij(t) = ρ
(0)
ij + ρ

(1)
ij (t) + ρ

(2)
ij (t) + . . . and δρij(t) = ρij(t) − ρ

(0)
ij . The perturbation expansions of the energy

contributions are

T (t) = T (0)+
∑
ij

ρ
(1)
ij (t)tij +

∑
ij

ρ
(2)
ij (t)tij (22)

EH(t) = E
(0)
H +

∑
ij,kl

ρ
(1)
ij (t)KH

ij,klρ
(0)
kl +

∑
ij,kl

ρ
(2)
ij (t)KH

ij,klρ
(0)
kl +

1

2

∑
ij,kl

ρ
(1)
ij (t)KH

ij,klρ
(1)
kl (t) (23)

Exc(t) = E(0)
xc +

∑
ij

ρ
(1)
ij (t)vxcij +

∑
ij

ρ
(2)
ij (t)vxcij +

1

2

∑
ij,kl

ρ
(1)
ij (t)Kxc

ij,klρ
(1)
kl (t) (24)

Eext(t) = V
(0)
ext+

∑
ij

ρ
(1)
ij (t)vextij + ρ

(0)
ij v

pulse
ij (t) +

∑
ij

ρ
(2)
ij (t)vextij + ρ

(1)
ij (t)vpulseij (t) (25)

(note that here the summations over ij and kl run over all indices, including both the electron-hole and hole-electron
spaces and the diagonal).

The first order gives

E
(1)
tot(t) =

∑
ij

ρ
(1)
ij (t)

[
tij +

∑
kl

KH
ij,klρ

(0)
kl + vxcij + vextij

]
+ ρ

(0)
ij v

pulse
ij (t) =

∑
ij

ρ
(1)
ij (t)H

(0)
ij︸ ︷︷ ︸

=0

−µ(0)E(t), (26)
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where the first term vanishes as the ground-state Hamiltonian H
(0)
ij = ϵiδij and ρ

(1)
ii (t) = 0.

The second order gives

E
(2)
tot(t) =

∑
ij

ρ
(2)
ij (t)

[
tij +

∑
kl

KH
ij,klρ

(0)
kl + vxcij + vextij

]
+

1

2

∑
ij,kl

ρ
(1)
ij (t)

(
KH

ij,kl +Kxc
ij,kl

)
ρ
(1)
kl (t) +

∑
ij

ρ
(1)
ij (t)vpulseij (t) (27)

=
∑
i

ρ
(2)
ii (t)ϵi +

1

2

∑
ij,kl

ρ
(1)
ij (t)KHxc

ij,klρ
(1)
kl (t)− µ(1)(t)E(t). (28)

By using Eq. (12) and assuming real-valued ground-state KS wave functions and frequency-independent XC kernel,
simplifying the Hartree-XC term, [1] Eq. (28) can be written as a sum over electron-hole space only

E
(2)
tot(t) =

fi>fa∑
ia

ωiaPia(t) +
1

2
· 2ℜρ(1)ia (t)

fj>fb∑
jb

KHxc
ia,jb2ℜρ

(1)
jb (t)︸ ︷︷ ︸

=EC
ia(t)


︸ ︷︷ ︸

=Eia(t)

−µ(1)(t)E(t), (29)

where the Hartree-XC term is used to estimate the Coulomb energy EC
ia(t). In RPA, the XC is neglected and KHxc is

replaced by the Hartree kernel KH(r, r′) = |r − r′|−1.
By collecting all the terms, the energy up to the second order is

Etot(t) = E
(0)
tot +

fi>fa∑
ia

Eia(t)−
[
µ(0) + µ(1)(t)

]
E(t)︸ ︷︷ ︸

=µ(t)E(t)=−Epulse(t)

. (30)

Supplementary Note S2: Energy in terms of real and imaginary parts of density matrix.
The real and imaginary parts of the time-dependent density matrix have a well-defined connection [Eq. (4.25) of

Ref. 1]. By assuming real-valued ground-state wave functions and a frequency-independent XC kernel, the connection can
be expressed in electron-hole space in the time domain as

ℜδρ̇ia(t) = −ωiaℑδρia(t)

ℑδρ̇ia(t) = ωiaℜδρia(t) + (fi − fa)

fj>fb∑
jb

KHxc
ia,jb2ℜδρjb(t) + (fi − fa)v

pulse
ia (t)

, (31)

where dots denote time derivatives. By defining the auxiliary quantities

qia(t) =
2ℜδρia(t)√
2(fi − fa)

, pia(t) = − 2ℑδρia(t)√
2(fi − fa)

, (32)

Kia,jb =
√
2(fi − fa)K

Hxc
ia,jb

√
2(fj − fb), and via(t) =

√
2(fi − fa)v

pulse
ia (t), (33)

Eq. (31) can be written in convenient form as
q̇ia(t) = ωiapia(t)

ṗia(t) = −ωiaqia(t)−
∑
jb

Kia,jbqjb(t)− via(t)
. (34)

These equations are identical to the equations of motion of a collection of coupled classical harmonic oscillators when
qia(t) and pia(t) are identified as position and momentum coordinates. In this notation, the electron-hole decomposition
of energy of Eq. (29) is

Eia(t) =
1

2

ωiap
2
ia(t) + ωiaq

2
ia(t) + qia(t)

∑
jb

Kia,jbqjb(t)

 , (35)
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and the Coulomb energy contribution from Eq. (29) is

EC
ia(t) =

1

2
qia(t)

∑
jb

Kia,jbqjb(t). (36)

Supplementary Note S3: Rate of energy change.
By evaluating the time differential of Eq. (35) and using the equations of motion of Eq. (34), the rate of change of the

electronic energy is obtained as

Ėia(t) =
1

2

qia(t)∑
jb

Kia,jbq̇jb(t)− q̇ia(t)
∑
jb

Kia,jbqjb(t)


︸ ︷︷ ︸

interaction

−via(t)q̇ia(t)︸ ︷︷ ︸
photoabsorption

, (37)

where the terms related to the interaction between electron-hole transitions and to photoabsorption have been identified.
When summing over all transitions, the interaction term vanishes due to the symmetry of the Kia,jb matrix (see note
above), and the total rate of change is

∆Ė(t) =
∑
ia

Ėia(t) = −
∑
ia

q̇ia(t)via(t) = −
fi>fa∑

ia

2ℜδρ̇ia(t)vpulseia (t) = δµ̇(t)E(t), (38)

where δµ(t) is the induced dipole moment.

Supplementary Note S4: Practical evaluation of energy and its rate of change.
In practical calculations, Eia(t), EC

ia(t), and Ėia(t) can be evaluated without explicit knowledge of the Kia,jb matrix.
This is done by employing Eq. (34), resulting in the following practical forms of Eqs. (35), (36), and (37):

Eia(t) =
1

2

[
pia(t)q̇ia(t)− qia(t)ṗia(t)− via(t)qia(t)

]
, (39)

EC
ia(t) = −1

2

[
ωiaq

2
ia(t) + qia(t)ṗia(t) + via(t)qia(t)

]
, (40)

and

Ėia(t) =
1

2

[
pia(t)q̈ia(t)− qia(t)p̈ia(t) + via(t)q̇ia(t)− v̇ia(t)qia(t)

]
︸ ︷︷ ︸

interaction

−via(t)q̇ia(t)︸ ︷︷ ︸
photoabsorption

, (41)

respectively.
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