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Small-angle scattering tensor tomography is a technique for
studying anisotropic nanostructures of millimeter-sized samples
in a volume-resolved manner. It requires the acquisition of data
through repeated tomographic rotations about an axis which is
subjected to a series of tilts. The tilt that can be achieved with
a typical setup is geometrically constrained, which leads to lim-
its in the set of directions from which the different parts of the
reciprocal space map (RSM) can be probed. Here, we charac-
terize the impact of this limitation on reconstructions in terms
of the missing wedge problem of tomography, by treating the
problem of tensor tomography as the reconstruction of a three-
dimensional field of functions on the unit sphere, represented
by a grid of Gaussian radial basis functions. We then devise an
acquisition scheme to obtain complete data by remounting the
sample, which we apply to a sample of human trabecular bone.
Performing tensor tomographic reconstructions of limited data
sets as well as the complete data set, we further investigate and
validate the missing wedge understanding of data incomplete-
ness by investigating reconstruction errors due to data incom-
pleteness across both real and reciprocal space. Finally, we carry
out an analysis of orientations and derived scalar quantities, to
quantify the impact of this missing wedge problem on a typi-
cal tensor tomographic analysis. We conclude that the effects of
data incompleteness are consistent with the predicted impact of
the missing wedge problem, and that the impact on tensor tomo-
graphic analysis is appreciable but limited, especially if precau-
tions are taken. In particular, there is only limited impact on the
means and relative anisotropies of the reconstructed reciprocal
space maps.

1. Introduction
Small-angle X-ray Scattering Tensor Tomography

(SAXSTT) is a promising method for probing anisotropic
nanostructures of macroscopic samples in a volume-resolved

manner (Liebi et al., 2015; Schaff et al., 2015; Liebi
et al., 2018; Guizar-Sicairos et al., 2020). It has been applied
to the study of a variety of biological materials, including bone,
tendon, and myelin (Georgiadis et al., 2021; Casanova et al.,
2023; Grünewald et al., 2023; Silva Barreto et al., 2024). In the
absence of very strong real-space uniformity and reciprocal-
space symmetry constraints (Stribeck et al., 2006; Skjnsfjell
et al., 2016), SAXSTT requires a more general acquisition
scheme than traditional scalar tomography, such as rotating the
sample while subjecting the axis of rotation to a series of tilts
(Schaff et al., 2015; Liebi et al., 2015; Liebi et al., 2018), car-
rying out measurements over part of a sphere of rotation. Such
acquisition schemes are generally geometrically constrained to
a tilt of up to 45�, since the rotation stage will obstruct the beam
at greater tilt angles. In Nielsen et al. (2023) using this mea-
surement scheme with simulated data, it was observed that the
degree of correlation with the original RSMs approached lower
values than what should be theoretically attainable in terms of
the RSM representations used in the simulations and reconstruc-
tions, even at very low noise levels. This can likely be attributed
in part to the so-called missing wedge problem, a common data
incompleteness problem in tomography (e.g., Liu et al., 2018).
While a limited investigation into the effect of reduced data was
carried out in Liebi et al. (2018), a thorough examination of
the effects of data incompleteness is still outstanding. A deeper
understanding of data incompleteness in SAXSTT is a crucial
component of the development of approaches to counteract
this incompleteness, similar to those used in other tomography
methods, as in, e.g., Trampert et al. (2018), Ding et al. (2019),
and Moebel & Kervrann (2020).

Here, to investigate these effects under real experimental
conditions we present a scheme utilizing sample remounting
to yield two incomplete data sets, each measured using the
0� – 45� tilt scheme, which when combined form a complete
data set. The scheme was applied in measurements on a sample
of human trabecular bone. For the reconstruction, we employed
a RSM representation which uses local Gaussian radial basis
functions on a spherical grid to interpolate measured data.
This reconstruction is closely related to the Spherical Inte-
gral Geometric Tensor Tomography (SIGTT) approach (Nielsen
et al., 2023) but replaces the model for the RSM with local
functions, which avoids artefacts due to the spherical harmonic
Gibbs phenomenon (Gelb, 1997). Both models have in com-
mon that the only symmetry enforced is Friedel symmetry, and
thus allow for reconstruction of complex textures. In addition,
the use of local radial basis functions permits the problem of
SAXSTT to be analyzed as a set of scalar tomography prob-
lems, which allows the application of the framework of standard
tomographic analysis. By carrying out reconstructions from the
two separate data sets, as well as the combined data set, and
comparing the reconstructions, this work seeks to investigate
whether imperfect reconstructions in limited-angle SAXSTT
can indeed be attributed to missing wedges. In addition, we aim
to provide insight into the impact of this effect on SAXSTT



analysis. We conclude that the differences between complete
and partial data sets are consistent with the predicted effects
of the missing wedge problem. These effects impact typical
SAXSTT analysis in a non-trivial but manageable way, and sug-
gest strategies for mitigation. In particular, two important scalar
quantities, the means and relative anisotropies of the recon-
structed reciprocal space maps, show relatively little impact
from the missing wedges.

2. Theory

The RSM measured by Small-angle X-ray Scattering (SAXS)
in a small volume may be written as

RSM(q, r) =
ZZZ

dV
⇥
⇢̃(r0 � r) exp(�iq · (r0 � r))], (1)

where ⇢̃(r0 � r) is the auto-correlation function of the electron
density over the small volume, r is the position of the center of
the volume, r000 is the point of integration within the volume, and
q is the reciprocal space vector. For a small scattering angle,
such that the scattered intensity travels approximately the same
path as the transmitted intensity, and assuming that the total
amount of scattering is small enough to not significantly influ-
ence the transmission, we can probe the RSM by measuring the
small-angle scattering intensity with a small beam, and correct-
ing by the transmitted intensity as

Z pend

p0

d p RSM(q, j, k, p) / IS(q, j, k)
IT ( j, k)

, (2)

where IS(q, j, k) is the measured scattering intensity at recipro-
cal space coordinates (q, ✓,�) and real-space coordinates ( j, k).
Here, ( j, k) are two Cartesian coordinates which give the posi-
tion of the beam relative to the sample in the plane orthogonal
to the incident beam direction, and IT is the transmitted inten-
sity (Liebi et al., 2015). The location of the RSM is given in
the experimental system coordinates ( j, k, p), where p is the
coordinate of the direction in which the x-ray beam travels, see
Fig. 1a).

Figure 1
SAXSTT measurement setup and probed directions. a) Full setup

with detector, goniometer with sample mounted on a pin, x-ray source,
and measurement coordinate system. b) Initial sample mounting dur-
ing first measurement and initial orientation of sample coordinate sys-
tem. c) Initial sample mounting during second measurement. d) Points
on the sphere of projection probed during first measurement. e) Points
probed during second measurement. The points on the sphere of pro-
jection give the coordinates of the projection direction p in the sample
coordinate system spanned by x, y and z.

The subset of RSM(q), which is possible to measure at a
given sample orientation under the small-angle approximation,
lies on a great circle given by

C(',↵,�) = cos(')q0(↵,�) + sin(')q90(↵,�) (3)

where ' is an angle on the detector, q0(↵,�) and q90(↵,�) are
two unit vectors in the sample coordinate system aligned with
the 0� and 90� direction of the detector, respectively, (↵,�) are
two angles which give the sample orientation as a sequence of
rotations about two axes ↵̂↵↵ and �̂�� orthogonal to the direction of
the impinging beam, see Fig. 1a).

The sample is mounted on a rotation stage such that the first
rotation R� also rotates ↵̂↵↵, and a sequential rotation of the sam-
ple may therefore be described by the composite rotation R�R↵.
We choose the sample coordinate system such that it coincides
with the experimental coordinate system when ↵,� = 0, see the
initial sample mounting in Fig. 1b). To simplify this analysis
without loss of generality, we will parameterize the measured
reciprocal space vector as ↵̂↵↵ = q90(0, 0) and �̂�� = q0(0, 0).
Then, the coordinate system of the sample will be subject to
the composite rotation Rq0

(�)Rq90
(↵), and the direction of the

impinging beam in the sample coordinate system thus changes
according to

p(↵,�) = RT
q90
(↵)RT

q0
(�)p(0, 0), (4)

where p(0, 0) is the direction of the beam in the sample coordi-
nate system prior to any rotation or tilt of the sample. We can
understand the values taken by p(↵,�) as points on a sphere
of projection, which is a unit sphere consisting of all unique
measurement directions up to Friedel symmetry, see Fig. 1d).
Equation (4) also applies to q90 and q0.

A composite rotation of the projection vector about the two
axes Rq0

(�)Rq90
(↵) may be described as a single rotation around



a third axis ı̂, which lies on C(',↵,�). Consequently, this direc-
tion is a rotational invariant with respect to said composite
rotation. This means that RSM(kqkı̂, r) can be regarded as a
scalar quantity for the purpose of tomography, and standard
tomographic analysis can therefore, in principle, be applied to
the reconstruction of this component. Although carrying out
the experiment in practice requires a third rotation axis when
remounting, as it is not possible to tilt the sample by more than
45�, it is possible to specify all points on the sphere of projec-
tion using rotations about only two orthogonal axes. Any com-
ponent of the rotation that occurs about the axis of projection
can be discounted in this analysis, since it does not change the
information contained in the projection. The following line of
reasoning is therefore also valid when combining data from the
the two measurements. According to the projection-slice theo-
rem, the Fourier transform of a projection along p constitutes a
slice orthogonal to p in Fourier space (e.g., Garces et al., 2011).
Tomographic reconstruction can therefore be understood as the
problem of interpolating between slices in Fourier space. This
implies that a set of sufficiently densely placed projections
along a great semicircle on the sphere of projection must be
measured for a reconstruction of good quality of any given point
on the RSM. This leads to the so-called missing wedge problem,
where the absence of projections along any section of this great
semicircle leads to a missing wedge in the Fourier transform of
the reconstruction, and thus a blurring in that direction.

Figure 2
Illustration of the missing wedge problem in SAXSTT. a)–d) show
a projection along the y-direction of the component of reconstructions
of, a), the absorbance, and, b)–d), the RSM aligned with the the x-, y-,
and z-directions, respectively. e)–h) show the amplitudes, normalized
by the zero frequency component, of the discrete Fourier transforms of
the projections as functions of the discrete frequency !. Smearing of
b) and d) occur in the z- and x-direction respectively, but no smearing
can be seen for a) or c).

In Fig. 2, projections of reconstructions from data set 1
(Fig. 1d)) along the y-direction of the absorbance as well as the
reciprocal space map amplitude in three different directions are
shown, along with the discrete Fourier transform of each pro-

jection. The absorbance of each projection can be defined as

a( j, k) = � log
✓

IT ( j, k)
I0( j, k)

◆
,

where IT is the transmitted intensity at each point in the
raster scan, and I0 is the incident intensity, where we use the
projection-wise approximation I0( j, k) ⇡ max IT ( j, k), since
each measurement includes some air, which has a very small
absorbance. The absorbance is a scalar quantity and therefore
very accurately reconstructed without missing wedges. Hence,
it is included for comparison. This projection direction, along
the y-axis, is not part of the measurement of data set 1, as seen in
Fig. 1b), which is why it is useful in illustrating missing wedges.
The x- and z-components of the RSM shown in Fig. 2b) and
d) can be regarded as measurements which are missing from
the data; the y-component in c) would not actually be measured
along this projection direction but does not suffer from missing
wedges, because it is measured from every orthogonal direc-
tion (the measurements which lie on the line where y = 0 in
Fig. 1d)). We can observe how the amplitudes in Fig. 2b) and
d) are smeared out in the directions orthogonal to the recipro-
cal space map component compared to a) and c). Equivalently,
the discrete Fourier transforms are attenuated in the directions
of smearing, relative to the more symmetric Fourier transforms
in e) and g). The attenuated segments of the discrete Fourier
transforms correspond to missing orthogonal projections, per
the projection-slice theorem.

A set of reconstruction constraints similar to those given by
the projection-slice theorem exist for the general case of three-
dimensional projections in the form of John’s equation (e.g.,
Ma et al., 2017), which has been generalized to the case of
arbitrary-rank symmetric tensor fields, resulting in additional
smoothness constraints on the components of the tensor field
(Sharafutdinov, 2012; Nadirashvili et al., 2016). Therefore, to
treat this problem more generally, and not just for discrete, pre-
cisely measured RSM components, we need to assume that the
reciprocal space map does not change too quickly across real-
and reciprocal space dimensions. Then, given the existence of
the invariant axis ı̂, we can define a sampling quality factor on
the reciprocal space sphere based on the density of sampling on
the sphere of projection. To accomplish this, we define a Friedel
symmetric sampling density ⇢(p(↵,�)) as

⇢(p(↵,�)) =

8
><

>:

1 if the direction p(↵0,�0) of the nearest
measurement satisfies D(p(↵,�), p(↵0,�0)) < �,

0 otherwise.

with p(↵,�) being defined by Eq. (4), and where D(v,u) is the
Friedel symmetric great-circle distance, defined as

D(v,u) = arccos
✓

|v · u|
kvkkuk

◆
, (5)

where v and u are two vectors. The precise choice of the
threshold parameter � depends on assumptions about both the
real and reciprocal space continuity of the sample, the size of
the sample, as well as the chosen reconstruction method. We



chose � under the assumption that our sampling density in well-
sampled regions was sufficient to obtain a good tomographic
reconstruction. This was chosen over more quantitative thresh-
olds such as the great-circle distance implied by the Nyquist-
Shannon sampling theorem applied to tomographic reconstruc-
tion (Natterer & Wbbeling, 2001) for several reasons. First, we
carry out the reconstruction under smoothness and sparsity con-
straints, which reduce the required number of samples. Sec-
ond, John’s equation for tensor tomography complicates the
assumptions based on which standard sampling factors are cal-
culated, since they will also depend on smoothness in reciprocal
space (Nadirashvili et al., 2016), and consequently using stan-
dard measures would give a misleading impression of certainty
about the required number of samples. Therefore, to avoid over-
complicating the analysis, we prefer to use ⇢(p(↵,�)) as a rela-
tive measure of sampling density.

Figure 3
Examples of vectors defining directions on a sphere, and their

respective orthogonal great circles. The three vectors labelled v1
(blue), v2 (red), and v3 (yellow) each have a unique orthogonal great
circle C1, C2, and C3.

Because we sample points on the reciprocal space sphere
orthogonal to the respective points on the sphere of projection,
we can compute a quality factor by evaluating the Funk-Radon
transform, i.e. the normalized integral over the orthogonal great
circle (Funk, 1913), of the sampling density ⇢. In other words,
the quality factor can be computed as

F [⇢](✓,�) =
1

2⇡

Z 2⇡

0
d⌧ ⇢(C(⌧ , ✓,�)), (6)

where (✓,�) specifies a direction in reciprocal space, and
C(⌧ , ✓,�) is defined as in Eq. (3). Although we defined
C(⌧ , ✓,�) as giving the directions in reciprocal-space measured,
given a real-space direction, the symmetry of this relationship
means that we can invert it to give real-space directions to mea-
sure, given a reciprocal-space direction that we wish to probe.
The relationship between directions on a unit sphere and their
unique orthogonal great circle is shown in Fig. 3. Applying
Eq. Equation 6, the value of the quality factor at, e.g., v1 would
be defined by the integral of ⇢ over all directions in C1. Using
this quality factor, which lies in the range [0, 1], where 0 means
the lowest possible quality and 1 means the highest possible
quality, we may predict the quality of the tomographic recon-
struction at any point in reciprocal space.

In order to obtain a reconstruction suitable for the analysis of
the missing wedge problem, we want to represent the RSM on
the sphere using smooth local functions on the sphere which can
be projected into our measurement basis. The locality of the rep-
resentation is important, since non-local artefacts (such as the
spherical harmonic Gibbs phenomenon) could otherwise affect
the evaluation of the reconstructions in unpredictable fashion.
We also want to reduce the measured data into azimuthal bins
in order to keep the data size manageable, and this reduction
can be represented by integrating IS(kqkC(',↵,�), j, k) (Eq.
(2)) over segments of ' (as in, e.g., Bunk et al., 2009). Schaff
et al. (2015) utilized the existence of an invariant point in the
RSM for any given rotation, referring to this point as a “vir-
tual axis”. However, Schaff et al. (2015) employed only limited
reduction of the measured RSM, necessitating extensive sort-
ing of measurements according to their nearest virtual axis, and
processing of a large number of separate tomographic problems,
followed by subsequent composition and analysis of the sepa-
rate reconstructions. De Falco et al. (2021) also utilized rota-
tional axis invariance, and carried out a reconstruction using the
component of the SAXS measurement orthogonal to the main
axis of rotation to study a subpopulation of mineral particles
within a sample. These approaches utilize the separability of
measurements in order to simplify the tomographic reconstruc-
tion problem. However, azimuthal binning reduces this separa-
bility, unless the bins are made very small, which would work
against the purpose of reducing data size. Thus, rather than aim-
ing to carry out reconstructions at specific points in reciprocal
space and subsequently fitting a function to these points, we
define a grid of Gaussian basis functions on the unit sphere.
This basis set forms a local representation of spherical func-
tions which is used to interpolate measured data into a smooth
function on the sphere (Fornberg & Piret, 2008). Gaussian radial
basis functions have an advantage over the spherical harmonic
representation used in Nielsen et al. (2023) because they do not
suffer from the Gibbs phenomenon or other non-local artefacts
(Gelb, 1997). We define a set of projection matrices from the
spherical RSM to the detector by left-multiplication as

Gi,nm =
1

Nn'0
m

'm+1Z

'm

d⌧ exp
✓

D((1, ✓n,�n),C(⌧ ,↵i,�i))2

2�2

◆
,

(7)

where Nn is a normalization factor, ['m,'m+1) parameterizes
the mth detector segment on the unit circle, '0

m = |'m � 'm+1|,
(↵i,�i) gives the sample orientation, (1, ✓n,�n) is a unit vec-
tor expressed in spherical coordinates giving the location of the
mode of basis function n, � parameterizes the width of each
basis function, D(u, v) for any two vectors (u, v) is the great-
circle distance defined by Eq. (5), and finally C(⌧ ,↵i,�i) is
defined by Eq. (3), with ⌧ being an integration variable that
parameterizes the integration over each segment. The normal-
ization factor Nn, which evens out irregularities in the distribu-
tion of grid points, is given by the sum of all rows in an auto-
projection matrix Gnn0 , which can be expressed in a similar form



as Equation 7 but evaluated only at one point rather than inte-
grated over,

Nn =
X

n0
Gnn0 =

X

n0
exp

 
D ((1, ✓n,�n), (1, ✓n0 ,�n0))

2

2�2

!
,

where n and n0 both run the indices of all basis functions. In
this work, the basis functions have been distributed on a mod-
ified Kurihara mesh (Kurihara, 1965), with an approximately
equal distribution over the unit sphere. The modified Kurihara
mesh depends on an integer scale parameter s which determines
the number of basis functions on the hemisphere, according to
N = 2s2. The width parameter was chosen based on a simple
heuristic for smooth and non-oscillatory interpolation, � = ⇡

2·s .
We chose s = 9 as the scale parameter, thus yielding N = 162
basis functions and width parameter � = ⇡

18 . These choices
yield smoothly interpolated functions without oscillations, and
a density of basis functions greater than the density of detector
segments, but smaller than the density of projection directions.
For more details on the modified Kurihara mesh and the basis
functions, see Supplementary Note 2. Since Gaussians do not
have compact support, i.e., they do not fall off to zero, the ker-
nels are local only in a non-strict sense – the vast majority of the
amplitude of each basis function is located within a small area
around its mode, assuming the standard deviation � is at least
a few times smaller than ⇡

2 . Because of this locality property,
we expect the reliability of the coefficient of the basis function
located at (✓n,�n), considered across real space, to be related to
the value of the quality factor F [⇢](✓n,�n) given by Eq. (6).

Completing the description of the forward model requires the
definition of a John transform matrix for tensor tomography,
which is treated in greater detail in Nielsen et al. (2023). The
resulting set of matrices Pi together define a transform of a ten-
sor field in three-dimensional space into a tensor field in pro-
jection space, with each i indicating a projection direction, sim-
ilarly to how Gi (Eq. (7)) describes a transform between detector
space and spherical space. This allows us to describe the system
of equations to be solved for each projection i as

PiXGi = Di, (8)

where Di is matrix of data measured from a single projection.

3. Methods
3.1. Formalism

In order to improve the rate of convergence of the system
in Eq. (8), we compute a series of weight and preconditioning
matrices. Each weight matrix is computed as

Wi = (PiUGi)
�(�1),

where U is a matrix filled with the value 1 everywhere and
A

�(�1) denotes a relaxed element-wise multiplicative inverse of
A,

[A�(�1)]i j =

(
A�1

i j , if Ai j � ✏,

✏�1 otherwise.

for some predefined ✏ > 0. Similarly, each preconditioning
matrix is computed as

Ci = (PT
i VG

T
i )

�(�1),

where V is a matrix filled with the value 1 everywhere. We may
now write the system to be solved for each projection i as

Ci � (PT
i (Wi � (PiXGi))G

T
i ) = Ci � (PT

i (Wi � Di)G
T
i )

where � denotes the Hadamard or elementwise product. This
is analogous to the weights and preconditioner used in the
SIRT algorithm for scalar tomography (see e.g., Gregor &
Fessler, 2015), which was utilized by Schaff et al. (2015) in the
separate reconstructions about each virtual axis. This weight-
and preconditioner pair serves to normalize the gradient by
accounting for the number of voxels that contribute to each
pixel, and the number of projections that contribute to each
voxel. This normalization is done for each detector segment and
each RSM basis function, accounting also for the detector-to-
sphere mapping of Eq. (7). This system is then solved through
least-squares Nestorov-accelerated gradient descent, subject to
coefficient-wise total variation and L1 norm regularization, opti-
mized in the Huber approximation of each (Huber, 1964), using
existing implementations in the MUMOTT package (Nielsen
et al., 2023; Nielsen et al., 2024). The reconstruction of the
full data set took 630 s, and the reconstruction of each partial
data set took 380 s, on a workstation using an Nvidia RTX 3060
GPU, an 8-core AMD Ryzen 7 3700X CPU, and 64 GB DDR4
2666 MHz RAM.

3.2. Computations

The integral in Eq. (7) was computed by quadrature utiliz-
ing the adaptive Simpson’s rule (e.g., Lyness, 1969), terminat-
ing when the largest change in a matrix element, relative to the
largest element in the matrix, fell below 10�5. Analysis of the
orientation (Fig. 8), the Funk-Radon Transform (Eq. (6)), and
computation of the scalar quantities in Fig. 7 requires trans-
forming the spherical function representation from a local Gaus-
sian kernel representation to a spherical harmonic representa-
tion. This is done by Driscoll-Healy quadrature (Driscoll &
Healy, 1994), sampling the function by evaluating the represen-
tation on a dense curvilinear grid. The mean amplitude, and the
relative anisotropy, are defined as in Nielsen et al. (2023), i.e.,
as the spherical mean and the spherical standard deviation nor-
malized by the mean. These figures of merit are similar to the
“symmetric intensity” and “degree of orientation” used by, e.g.,
Bunk et al. (2009). The fiber symmetry factor is given by

S(a) =

qP
`=1
P`

m=�` F [a]m` Ŷ m
` (✓,�)

qP
`=1
P`

m=�` F [a]m`
qP

`=1
P`

m=�` Ŷ m
` (✓,�)

, (9)

where a is the spherical harmonic representation of a RSM, F [·]
is the Funk-Radon transform, Ŷm

` is a spherical harmonic basis
function, and (✓,�) is the orientation of the RSM, as given by
the minimal eigenvector of its rank-2 tensor representation. This
figure of merit evaluates how similar the RSM is to an ideal ring



function (which has all of its amplitude at a great circle consist-
ing of the points orthogonal to its orientation). Consequently,
it quantifies the extent to which a RSM exhibits the equatorial
symmetry expected from diffuse mineral scattering in bone.

The orientation error is computed as D(v,u) (Eq. (5)), where
v and u are two orientation vectors. The orientation error is thus
the angle subtended by the two orientation vectors, accounting
for the Friedel symmetry of orientation vectors.

3.3. Implementation

The version of MUMOTT used in this work can be found at
the DOI 10.5281/zenodo.10708583 (Nielsen et al., 2024). New
versions of MUMOTT are continuously made available at the
DOI 10.5281/zenodo.7919448. The John transform in MUMOTT
is implemented using a bilinear interpolation algorithm which
supports multiple channels per voxel and pixel, written using the
CUDA API of the Python package Numba (Lam et al., 2015).
The algorithm employed is based on the work of Xu et al.
(2010) and Palenstijn et al. (2011). Other computations were
carried out using the Python packages NumPy and SciPy (Har-
ris et al., 2020; Virtanen et al., 2020). Two-dimensional plots
were created using the package Matplotlib (Hunter, 2007). The
color maps used in this work are from the package ColorCET
(Kovesi, 2015; Kovesi, 2020). The experimental setup render
in Fig. 1 was created using Blender (Blender Online Commu-
nity, 2018). All other 3D renders in this work were created
using ParaView (Ahrens et al., 2005). The two data sets were
aligned using the cross-correlation algorithm of Guizar-Sicairos
et al. (2008), and rotated by modifying the set of vectors used
to define the reconstruction geometry in MUMOTT. The rota-
tions were first determined by eye and then refined by compar-
ing absorptivity reconstructions in ParaView.

4. Experiment
The sample chosen for this study was trabecular bone fixed

and embedded in polymethyl methylacrylate (PMMA). A cube
was extracted from the bulk and subsequently milled into a
cylinder of diameter 1.2 mm and height 1.2 mm using a custom-
made lathe system (Holler et al., 2020). The sample was mea-
sured at the cSAXS beamline of the Swiss Light Source (SLS) at
the Paul Scherrer Institut (PSI), Switzerland. The X-ray energy
was set to 12.4 keV using a Si (1 1 1) double crystal monochro-
mator, and the scattering patterns were recorded on a Pilatus 2M
detector placed at a sample to detector distance of 2.17 m. A
flight tube, approximately 2 m in length, was placed in between
the sample and detector to place to reduce the air scattering. A
1.5 mm steel beamstop inside the flight tube blocked the directly
transmitted beam. The fluorescence signal from the beamstop,
proportional to the intensity of the impinging x-rays (IT in
Eq. (1)), was measured by a Cyberstar (Oxford Danfysik). This
allowed the relative x-ray transmission through the sample to
be measured. The sample was measured with a beam that had
full-width half maxima of 12 ⇥ 24 m2 as measured by a knife-
edge scan. The raster scan used a step size of 25 m in both the
vertical and horizontal directions, with continuous fly-scanning
in the vertical direction. The experimental setup is illustrated in

Fig. 1 a). Two sets of SAXSTT measurements were carried out,
each consisting of 224 scanning SAXS images. The two sets of
measurements are shown on the sphere of projection in Fig. 1
d) and e), where each marker indicates the direction of the x-
ray beam (given by p(↵,�) in Eq. (4)) in the sample coordinate
system.

During the first set of SAXSTT measurements, the base of
the cylinder sample was glued to the end of a PMMA nee-
dle, using a hot water-soluble glue (Norland Blocking Adhesive
107). Before the second SAXSTT experiment, the sample was
glued with UV-glue (Norland Optical Adhesive 81) to a sec-
ond pin, before detaching the first pin by placing the sample in
hot water. The second pin was placed at approximately 90� to
the first pin, measured around the axis of the initial direction of
the beam, see Fig. 1. In total, 1 716 960 scattering images were
measured.

Figure 4
Points on hemisphere of projection and theoretical quality fac-

tors. a) Probed points on sphere of projection in first measurement. b)

Probed points in second measurement. c) Combined points from both
measurements. d) Quality factor in reciprocal space from first data set.
e) Quality factor from second data set. f) Quality factor from combined
data sets. The dotted lines show great circles at longitudes 0�, ±30�

and ±60� with the y-axis as the meridian. The dashed lines show small
circles with elevations of 0�, ±30� and ±60� with the x-axis as the
equator.

Fig. 4a–c) shows the directions of measurement on the unit
hemisphere of projection while Fig. 4d–f) shows the quality fac-
tor F defined by Eq. (6) on the reciprocal space hemisphere.
Note that Friedel symmetry is accounted for in the hemispheric
representation. The reciprocal space quality factors follow the
expected symmetry, where measurements along the entirety of a
great semicircle result in a quality factor of 1 at the point orthog-
onal to this semicircle. The lowest obtained quality factor is 0.5,
since the lowest possible coverage (for data set 1) of a great
semicircle occurs when the semicircle lies at a single longitude
and varies only in latitude. Such a semicircle is still covered by
measurements at a fixed longitude, the latitude (tilt, for data set
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1) of which span the range [�45�, 45�] — thus, in the worst-
case scenario, half of the semicircle’s total arc length of 180� is
covered.

For the reconstruction and analysis, a q-range of
0.597 – 0.607 nm�1 was used, corresponding to a d-spacing
range of 10.36 – 10.53 nm. This range was used due to artefacts
in the second measurement at lower q-ranges, possibly due to
the water-soluble glue penetrating the outer layer during the
remounting of the sample; see Supplementary Note 3, as well
as Supplementary Fig. S-4, and Supplementary Fig. S-5 for
details.

5. Results

Figure 5
Error distribution for each RSM basis function. a) Coefficient

errors for data set 1. b) Coefficient errors for data set 2. c) RSM errors
for data set 1. d) RSM errors for data set 2. The markers have been
placed over the corresponding theoretical quality factor from Fig. 4.
The errors in a) and b) were calculated by computing the overall Pear-
son correlation coefficient for each basis function coefficient when
comparing the partial and full data sets. In c) and d) the correlation
coefficients were computed for the RSM amplitude at each coordinate.
The correlation factors for the coefficients and the RSM amplitudes
are not the same, since the Gaussian radial basis functions of the basis
set overlap. The dotted lines show great circles at longitudes 0�, ±30�

and ±60� with the y-axis as the meridian. The dashed lines show small
circles with elevations of 0�, ±30� and ±60� with the x-axis as the
equator.

The results of comparing a reconstruction of the full data
set, which combines data sets 1 and 2, with reconstructions that
include, respectively, only data set 1 or 2, are shown in Fig. 5.
The location of each marker in a) and b) corresponds to the
mode of a RSM basis function, see Eq. (7), while the color of
the marker corresponds to the error computed from comparing
the coefficients of that basis function to the corresponding coef-
ficients of the full dataset reconstruction. The markers are over-
laid over the reciprocal space quality factor. In c) and d), the

error for the amplitude at each point on the reciprocal space
sphere is shown. The distribution of errors in the reciprocal
space amplitude follows the quality factor closely, with errors
above approximately 0.1 occurring exclusively in the region
where the quality factor is smaller than 1. The errors for the
basis set coefficients in a) and b) are larger than the errors of the
amplitude in c) and d), which is especially apparent when com-
paring the upper region of a) to the same region in c). This is
explained by the fact that the basis set functions are not orthog-
onal but overlap. This means that some variations in the basis set
coefficients cancel out when the amplitude of each RSM func-
tion is evaluated for the calculation of the error.

Figure 6
Spherical function glyph render of reconstructions. a) Partial data
set 1, and a reciprocal space sphere showing the error distribution com-
pared to the full data set. b) Partial data set 2, and a reciprocal space
sphere showing the error distribution compared to the full data set.
c) Full data set. d) Error distribution in reciprocal space for data set
1. e) Error distribution in reciprocal space for data set 2. The color
of each spherical function indicates the RSM amplitude, whereas the
shape indicates the orientation. The shape is computed from the Funk-
Radon transform of the RSM amplitude. The insets show two sets of
RSMs that the partial reconstructions each have difficulty reconstruct-
ing, compared to the full data.

In Fig. 6 the reconstructed RSMs can be seen in a spheri-
cal function glyph render for a) data set 1 only, b) data set 2
only, and c) the full data set. Each rendered glyph shows the
RSM reconstructed in that voxel, colored by its amplitude, and
scaled by the Funk-Radon transform of the amplitude. Because
the scattering at this q-range is dominated by diffuse equatorial
mineral scattering, deforming each glyph by the Funk-Radon
transform allows its shape to visually indicate the orientation of
the underlying nanostructure.

As illustrated in the insets d) and e), which show the error
distribution on the RSM, data set 1 has the best sampling and
therefore the most reliable reconstruction along the y-axis, i.e.,
along the main tomographic axis (Fig. 1). Data set 2 has the
smallest error along the x-axis. The effect of this on the recon-
structed 3D RSM is illustrated in the enlarged views below each
render. The respective upper enlarged views shows RSMs that
are better reconstructed by data set 1, as data set 2 has diffi-
culty reconstructing the amplitude near the y-axis, leading to
increased asymmetry in the equatorial scattering due to missing



wedges. The lower enlarged views show RSMs which are better
reconstructed by data set 2, as data set 1 has difficulty recon-
structing amplitudes near the x-axis, introducing additional tex-
ture in the equatorial scattering. Both data sets have some dif-
ficulty reconstructing amplitudes that lie along the z-axis, but
the difficulty is overall greater for data set 1, as indicated by the
distribution on the spherical inset d), compared to the spherical
inset e), which shows the amplitude error from Fig. 5, panels c)
and d), respectively, rendered on a spherical surface.

It is likely that the primary explanation for this larger error
is that the measurements close to the x-axis on the sphere of
projection which result in the large errors near the z-axis must
pass through the thickest part of the sample. This means that
the transmission is small, around 4 %, compared to values of
20 % – 50 % for thinner parts of the sample. Consequently, noise
in the transmission will have a relatively large impact on these
measurements, see Eq. (2).

Figure 7
Volume renders of scalar quantities. a) – c) Mean amplitude of

RSMs for partial data sets 1 and 2, as well as for the full data set.
d) – f) Relative anisotropy of RSMs. g) – i) Fiber symmetry factor of
RSMs.

Three scalar quantities for each of the three reconstructions
can be seen in Fig. 7: the mean RSM amplitude, the relative
anisotropy (similar to quantities often referred to as degree of
orientation), and a fiber symmetry factor. The fiber symmetry
factor quantifies the degree to which the scattering is equato-
rial, see Methods and Eq. (9) for details. These quantities are
of interest in evaluating the RSMs, and therefore their simi-
larity between partial and full data set reconstructions are of

importance in evaluating the impact of the missing wedge prob-
lem. The mean amplitude in the top row shows no large vari-
ations, except for slightly higher values at the edges of pro-
trusions in data set 2, which may be due to the leeching of
water-soluble glue into the sample during remounting, see Sup-
plementary Note 3. The mean amplitude is an important scalar
value which is used for q-resolved reconstruction and further
analysis of nanostructure information contained in the SAXS
curve (Liebi et al., 2021; Casanova et al., 2023; Silva Barreto
et al., 2024). The relative anisotropy is also very similar for all
three reconstructions, with almost no discernible differences.
Somewhat greater differences can be seen in the fiber sym-
metry factor, especially in the right-hand-side interface region
where the insets in Fig. 6 are located. The full data set has a
high fiber symmetry factor in this area except at the very center
of this interface, whereas the partial data sets appear to have a
lower factor around the edges. Thus, the fiber symmetry factor
is more sensitive to missing wedges than the ordinary relative
anisotropy. This can also be seen in Fig. 6, where additional
texture within the ring of the equatorial scattering appears as
an artefact of the missing wedge. For quantitative plots of the
distribution of the quantities, see Supplementary Note 4.

Figure 8
Orientation errors. a) Glyph render of orientations and errors of par-
tial data set 1 b) Glyph render of orientations and errors of partial data
set 2 c) Probability density plot of orientation errors of partial data set
1. d) Probability density plot of orientation errors of partial data set 2.
The color of the glyph indicates the orientation error in that voxel com-
pared to the full data set, with each glyph being scaled by the relative
anisotropy in the partial reconstruction. The insets highlight an inter-
face area where the different tendencies of the orientation errors for a)
and b) can be seen, with a) showing larger errors for orientations closer
to the y-axis, and b) showing larger errors orientations closer to the
x-axis. The density plots show the orientation errors for high (greater
than 0.6) and low (less than 0.6) relative anisotropy, showing that the
error is greater in low relative anisotropy regions.

One of the most important properties that can be retrieved
from a SAXSTT measurement is the local orientation, and it
is therefore of interest to see how much uncertainty the miss-
ing wedge problem introduces in determining this. Fig. 8 shows



glyph renders of the orientation error for each partial reconstruc-
tion. The orientation error is defined in Methods, using Eq. (5).
Most orientations are determined to within an error of no more
than 10�, as seen qualitatively for the blue and green colors in a),
b) and quantitatively in the density plots c) and d). The enlarged
areas shown in green and orange rectangles show a region in the
trabecular bone where differently oriented domains are inter-
secting. This is the region where the orientation error is the
largest in both partial data sets. Comparing with Fig. 7 d)–i),
it can be seen that the larger orientation errors lie in regions
where both the relative anisotropy and the fiber symmetry are
small. This means that the orientation is less well defined, and
may include multiple orientations within a voxel. This is con-
sistent with the region containing an interface of domains of
different orientation. The same tendency is seen in the overall
RSM error which is largely similar to the distribution of the ori-
entation errors (See Supplementary Note 1).

Figure 9
Multiple orientations in interface region. a) Data set 1, renders of

Funk-Radon transform of anisotropic part of RSM. b) Data set 2. c)

Full data set. d) Location of interface region in the sample. Maxima
in the Funk-Radon transform indicate the orientation of each RSM,
and voxels with multiple local maxima appear to have multiple orien-
tations. There are more apparent multi-orientation voxels in the par-
tial reconstructions in a) and b), which is likely due to missing-wedge
smearing of certain parts of the RSM amplitude across real space.

Fig. 9 illustrates a single slice from the enlarged region in
Fig. 8 with larger errors, as well as low values of relative
anisotropy and fibre symmetry. The Funk-Radon transform of
the RSM shows that in this interface region multiple orienta-
tions are present inside single voxels. The reconstruction with
a model which does not impose strong symmetries, such as the
grid of Gaussian radial basis functions used here, opens up the
possibility to extract multiple orientations in each voxel. How-
ever, comparing datasets 1 and 2, as well as the full data set
illustrates that the missing wedge problem influences the accu-
racy of the reconstructed RSM in the partial data set reconstruc-
tions. The partial data set reconstructions in a) and b) have more
voxels with apparent multi-orientation, and with a greater rel-
ative amplitude in the secondary orientation when compared
to the full data set reconstruction in c). This is likely due to
missing-wedge smearing of certain parts of the RSM amplitude
across real space. Thus, while multi-orientation analysis can be
used to precisely localize this interface in a full-data reconstruc-

tion, the missing wedge problem makes this localization much
more difficult in partial-data reconstructions.

6. Conclusions
In this work we have devised a scheme for complete acquisi-

tion of SAXSTT data, and applied it to the analysis of a sample
of trabecular bone. Reconstructing incomplete as well as com-
plete data sets and comparing them across both real and recip-
rocal space, we conclude that the understanding of data incom-
pleteness in terms of the missing-wedge problem, as indicated
by the computed quality factor, is consistent with the observed
errors in the reconstruction. Analyzing the orientations as well
as scalar quantities, we find that the impact of the missing-
wedge problem in a typical SAXSTT analysis is limited, but
appreciable in edge and interface areas. In particular, the impact
on mean RSM amplitude and relative anisotropy is very limited,
except for apparent artefacts in the mean. Moreover, we observe
that the impact of errors can be reduced by choosing the sample
orientation during acquisition in a way that takes into account
the missing wedge problem, i.e., by orienting the sample such
that as much scattering as possible is close to the main axis of
rotation. Prior understanding of the nanostructure and expected
RSM of a sample, such as acquired by scanning SAXS, is cru-
cial in this process.

This understanding could also be employed in various mea-
sures to reduce the impact of the missing wedge problem, e.g.,
by enforcing a particular RSM symmetry. Such symmetries can
be encoded in the SAXSTT basis set (as in Liebi et al. (2018),
which used a spherical harmonic model that enforced rotational
symmetry about an axis). One disadvantage of encoding sym-
metries in the basis set is that more complex textures (such as
the multi-orientation investigated in this work) cannot be cap-
tured. However, symmetries can also be selectively enforced
(based on a robust quantity, such as the relative anisotropy)
in a post-processing step, or encouraged through regulariza-
tion. The further exploration of these possibilities and their
impact on reconstruction quality is an interesting avenue for
future research. Finally, we remark that the complete acquisition
scheme devised in this work is likely to be useful for specialized
applications, such as the analysis of interface regions with over-
lapping domains of multiple orientations, or the reconstruction
of especially complicated RSMs.

7. Data availability
The data used in this work, along with code demonstrating the

analysis and reconstructions which can be viewed in ParaView,
is available via the DOI 10.5281/zenodo.10995088.
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