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The development of small-angle scattering tensor tomography has enabled the

study of anisotropic nanostructures in a volume-resolved manner. It is of great

value to have reconstruction methods that can handle many different

nanostructural symmetries. For such a method to be employed by researchers

from a wide range of backgrounds, it is crucial that its reliance on prior

knowledge about the system is minimized, and that it is robust under various

conditions. Here, a method is presented that employs band-limited spherical

functions to enable the reconstruction of reciprocal-space maps of a wide variety

of nanostructures. This method has been thoroughly tested and compared with

existing methods in its ability to retrieve known reciprocal-space maps, as well as

its robustness to changes in initial conditions, using both simulations and

experimental data. It has also been evaluated for its computational

performance. The anchoring of this method in a framework of integral

geometry and linear algebra highlights its possibilities and limitations.

1. Introduction

Small-angle X-ray scattering (SAXS) probes the nanometre-

scale variations in the electron density of materials averaged

over areas typically in the range of 1 � 1 mm to

1000 � 1000 mm, depending on the size of the X-ray beam.

The data from a SAXS experiment carry information about

the nanostructure of a sample, including characteristic length

scales and orientation, and have been used to study numerous

materials (Fratzl et al., 1996; Georgiadis et al., 2016; Lichte-

negger et al., 1999). Scanning SAXS can be performed across a

sample to yield a two-dimensional map, with each scanned

pixel associated with a corresponding two-dimensional cut

through the reciprocal-space map (Fratzl et al., 1997; Pabisch

et al., 2013; Paris, 2008). Since a SAXS measurement with an

area detector gives two-dimensional data, measurements must

be performed at several angles to obtain three-dimensional

data from a sample (Liu et al., 2010; Seidel et al., 2012;

Georgiadis et al., 2016). By rotating a three-dimensional

sample around a single axis, standard tomographic recon-

struction can be used in cases where the sample scattering is

isotropic or when the scattering is symmetric about the axis

of rotation (Stribeck et al., 2006, 2008; Feldkamp et al.,

2009; Schroer et al., 2006; Álvarez-Murga et al., 2012; Jensen et

al., 2011).

With the use of a tilt angle in addition to rotation, recent

works by Schaff et al. (2015), Liebi et al. (2015, 2018) and Gao

et al. (2019) present tomographic methods for the recon-

struction of the three-dimensional reciprocal-space map using
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scanning SAXS projections, or small-angle X-ray scattering

tensor tomography (SAXSTT).

Whereas Schaff et al. (2015) demonstrated a two-step

procedure of first reconstructing the reciprocal-space map

without any data-reducing assumptions and then analyzing

this reconstruction to find orientations, the approaches of

Liebi et al. (2015, 2018) (referred to as the zonal harmonics or

ZH method) and Gao et al. (2019) (referred to as the iterative

reconstruction or IR method) use reduced models of the

reciprocal-space maps. The ZH method of Liebi et al. (2015,

2018) models the reciprocal-space map of each voxel using

squared band-limited spherical functions expressed in sphe-

rical harmonics. The demonstrations of the method by Liebi et

al. (2015, 2018) used a reduced model, employing only zonal

harmonics (spherical harmonics symmetric about an axis of

rotation) and two Euler angles, with the angles parameterizing

the main nanostructural orientation. The IR method of Gao et

al. (2019) uses the symmetric rank-2 tensor as the basis for its

model. The work of Gao et al. (2019) primarily describes the

reconstruction of a proposed orientation distribution function

derived heuristically for fiber scattering. The proposed

orientation distribution function approach is not compatible

with reciprocal space map based models of SAXSTT, because

it does not yield the necessary invariance with respect to

rotation of the sample (e.g. De Falco et al., 2021). However, as

noted in a footnote by Gao et al. (2019), it is also possible to

configure the IR algorithm to reconstruct the reciprocal-space

map directly, which is the way IR was employed in this work.

The use of a complete band-limited basis of even-ordered

spherical harmonics described by Liebi et al. (2018) has to the

best of our knowledge not been implemented or tested for

SAXSTT as of the writing of this work. Moreover, the

approach of Liebi et al. (2015, 2018) requires fitting the

measured reciprocal-space map to sums of squared poly-

nomials, which is a difficult class of optimization problems to

solve (Ahmadi et al., 2017), as it results in a non-linear system

of equations. Here, we present spherical integral geometric

tensor tomography (SIGTT) as an improvement on the

complete basis approach proposed by Liebi et al. (2015, 2018).

SIGTT eliminates the squaring of the polynomial which was

used in the ZH approach, resulting in a linear system, and its

implementation does not rely on Euler angles.

2. Results

2.1. Theory

The equation for the measured reciprocal-space map

(RSM) of SAXS may be written as

RSMðqÞ ¼
R R R

dV ~��ðrÞ expð�iq � rÞ½ �; ð1Þ

where ~��ðrÞ is the auto-correlation function of the electron

density of the probed volume, r is the position and q is the

reciprocal-space vector. Consider this integral over a region of

space (a voxel) and at a fixed ||q||. Then, RSMðqÞ reduces to

RSMð�; �Þ, a function on the unit sphere, which may by

theorem be represented by an infinite series of spherical

harmonics (Kosmann-Schwarzbach & Singer, 2010). As

discussed in previous work by Liebi et al. (2018), the

summation is reduced to the even orders as a result of Friedel

symmetry. The measured reciprocal-space map at a single q

and at a particular position r in space may then be written

RSMðr; �; �Þ and expanded in spherical harmonics as

RSMðr; �; �Þ ¼
P1

‘¼0;2;...

P‘
m¼�‘

a‘mðrÞŶY
‘
mð�; �Þ; ð2Þ

where � and � are, respectively, the polar and azimuthal angles

of the reciprocal-space map, ŶY‘
mð�; �Þ is the real-valued

spherical harmonic basis function of order ‘ and degree m, and

a‘mðrÞ is the coefficient of that basis function at position r. Note

that the summation over ‘ in equation (2) only includes even

terms, as indicated by the subscript of the summation sign.

The following projection model is based on the discrete

model of Liebi et al. (2018), cast in terms of line integrals

within the sample coordinate system, which map it onto a

projection space. The projection space is spanned by four

coordinates (j, k, �, �), which can be mapped to experimental

parameters. The linear coordinates, (j, k), map to the vertical

and horizontal positioning of the sample during scanning

SAXS. The angular coordinates (�, �) map to rotations of the

sample about laboratory axes orthogonal to the beam direc-

tion during the measurement. Rotations about axes which are

not orthogonal to the beam direction can be handled by

decomposition into beam-orthogonal rotations that map to

(�, �), and beam-parallel rotations that map to transforms of

(j, k). The projection of a scalar function f(r) from three to two

dimensions at an arbitrary angle for a narrow beam is

described by the John transform, also known as the X-ray

transform, which may be expressed

P½f �ðj; k; �; �Þ ¼
R1
�1

f ½vðj; k; �; �Þ þ suð�; �Þ� ds;

where � and � are the azimuthal and polar angles, respectively,

with respect to a fixed plane in the sample coordinate system,

for a line of integration which intersects with the system’s

origin. Then, j and k give the line’s offset from the origin in the

plane of projection, which is orthogonal to the line’s direction.

In this representation, parameterized by s, v gives the position

of the beam in the plane of projection, whereas u gives its

direction. See Note 1 in the supporting information for more

details on how to map the sample coordinate system to an

experimental coordinate system.

To keep our equations compact, we will use the shorthand

notation

� � ð�1; �2; �3; �4Þ � ðj; k; �; �Þ; ð3Þ

such that � represents simultaneously a line of integration in

three-dimensional space and a measured point in projection

space. By inserting equation (2) into the John transform P½f �,

we obtain an expression for the projection of the spherical

harmonics from three to two dimensions using two projection

angles:
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P½RSM�ð�; �; �Þ ¼
P1

‘¼0;2;...

P‘
m¼�‘

ŶY‘
mð�; �ÞA

‘
mð�Þ ð4Þ

with

A‘
mð�Þ ¼

R1
�1

a‘m½vð�Þ þ suð�3; �4Þ� ds:

From equation (4) it is apparent that both the reciprocal-

space map at a particular point in space and the projection of it

may be represented using an even-ordered spherical harmonic

expansion with a one-to-one correspondence between the

representations. In other words, each order and degree in the

projected harmonic can be regarded as the projection of a

single order and degree in the harmonics distributed in space.

However, small-angle scattering does not permit us to probe

the entirety of the reciprocal-space map at a single projection

angle; instead, it probes a set of points which lie approximately

on a great circle spanned by the set of unit vectors orthogonal

to the direction of the beam. We describe this using a para-

metric curve C(’, �, �), where for fixed � and �, C(’) is a great

circle orthogonal to the direction of u.

We can then write the model (which we will denote I) for a

single measured reciprocal-space map as

Ið’; �Þ ¼
P1
‘¼0;2

P‘
m¼�‘

ŶY‘
m½Cð’; �3; �4Þ�A

‘
mð�Þ; ð5Þ

which completes the forward model of SIGTT. Anisotropic

scattering signals have previously been modeled using line

integrals of spherical polynomials by Wieczorek et al. (2016)

for dark-field tomography. The key difference of SIGTT from

the spherical harmonic model described by Liebi et al. (2018)

is the linearity of the system, which is achieved by not squaring

the spherical harmonics. Unlike the implementation demon-

strated by Liebi et al. (2015, 2018), SIGTT does not employ a

local coordinate system for the reciprocal-space map in each

voxel.

These changes result in the preservation of the orthogon-

ality of each component of the per-voxel model, and simplify

gradient calculations. See Note 2 in the supporting informa-

tion for how the SIGTT representation maps to Cartesian

tensors, as in the model used by IR. The inverse problem of

obtaining a‘mðrÞ is solved by using a regularized least-squares

approach (Section 4).

2.2. Simulations

In order to compare and evaluate the different methods, a

simulation framework was developed (Section 4). In total,

three simulations were created, labeled ‘M’, ‘T’ and

‘mammoth’; see Fig. 1 for an overview. Sample ‘M’ is intended

to provide a simulated reciprocal-space map with an intensity

distribution that possesses the zonal symmetry assumed by

ZH, meaning that the distribution has an axis of rotational

symmetry. This is done by constraining its simulated reci-

procal-space map to be approximately described by zonal

harmonics (which are defined by an expansion of spherical

harmonics with m = 0 and an axis of symmetry) up to ‘max = 12.

In the simulation of ‘T’, the reciprocal-space map is described

entirely by symmetric rank-2 tensors, which is the model

employed by IR. Finally, the simulation of ‘mammoth’

employed spherical harmonics up to ‘max = 8, with a weak ‘ = 2

component, to model reciprocal-space maps with more

complicated symmetries. The reconstructions of each method

are compared with the simulated samples by calculating the

squared Pearson correlation coefficient R2 [equation (15)] of

the simulated and reconstructed reciprocal-space maps on a

voxel-by-voxel basis.

In Fig. 2, the results from reconstructing simulated data for

sample ‘M’, which possesses an intensity distribution with

zonal symmetry, are shown. See Section 4 for details on the

box plots. SIGTT performs the best in the comparison, with a

peak correlation centered around R2 = 0.8 at the highest

signal-to-noise ratio (SNR), decaying down to about 0.75 at
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Figure 1
Superquadric glyph render of simulations. (a) Sample ‘M’ with its zonally symmetric reciprocal-space maps from one region (blue square), truncated at
‘ ¼ 2; 4; 6; 12. (b) Sample ‘T’ with its rank-2 tensor reciprocal-space maps from one region (green square). (c) Sample ‘mammoth’ with its unrestricted
‘max = 8 reciprocal-space maps from one region (orange square), truncated at ‘ ¼ 2; 4; 6; 8. The colors of the superquadric glyph renders show the largest
eigenvalue of the rank-2 tensor component of each simulated sample, and the upper and lower bounds of the color mapping are individually set to reveal
the texture of each sample. The colors of the reciprocal-space map renders show their amplitudes and are scaled to the maximum and minimum
amplitude in the selected region of each sample.



the lowest SNR, with a greater interquartile range. The best

possible performance of SIGTT in this comparison is

constrained by the fact that the chosen discretization of the

reciprocal-space map permits the fitting of harmonics only up

to ‘ = 6, whereas the sample contains harmonics up to ‘ = 12.

The reconstruction is also affected by the missing wedge

problem, a common limitation in tomography when only a

subset of projection space is sampled. The performance of ZH

is almost unaffected by the SNR, with its correlation centered

around R2 = 0.5 with a large interquartile range. In the lower

middle plot, a peak can be seen both around 0.8 and around 0,

suggesting a mixture of good and poor performance across the

sample volume. The trend in the performance of IR is more

similar to that of SIGTT in that its correlation decays and its

interquartile range increases with the decrease in SNR.

However, its maximum possible correlation to most of the

sample is bounded at around 0.5 by the fact that it can only

correlate to the ‘ = 2 component of the model, due to being

restricted to the symmetric rank-2 tensor.

Volume renders of the errors of each method for ‘M’ can be

seen in Fig. 3. It is clear from the figure that all methods have

larger errors in the middle regions of the model, but that these

are larger for ZH and IR. Moreover, outside these regions, the

error for SIGTT is closer to 0.

In Fig. 4 are virtual slices with glyphs showing the orienta-

tion of each reciprocal-space map for (a) the simulation ‘M’,

(b) SIGTT, (c) ZH and (d) IR. See Note 3 (supporting

information) for details on the orientation analysis. The

comparison shows that the orientation of the reciprocal-space

maps in the simulation is overall reasonably well followed by

all reconstructions. However, from (c) it is clear that the ZH

reconstruction contains many deviations from the simulated

orientation. In terms of the relative anisotropy [equation

(14)], indicated by the color of each glyph, it is generally well

followed by SIGTT, as seen in (b), but poorly followed by ZH,

seen in (c). It can be inferred from this that the numerous

deviations in the ZH reconstruction are the cause of the large

dispersion in R2 seen in Fig. 2(a). IR, in (d), gives a recon-

struction that follows the orientations and relative anisotropy

nearly as well as (b), with the exception of certain regions. This

is to be expected, since while the anisotropy in fiber-like

symmetry is generally dominated by the rank-2 tensor

component, this will not be the case everywhere.

In Fig. 5 the performance between the three models is

compared in reconstructing sample ‘T’, which consists of

reciprocal-space maps with ‘max = 2. SIGTT and IR perform

fairly similarly, with the performance of IR consistently being

somewhat worse. Since these models are very similar for the

special case of ‘max = 2, this difference in performance is likely

related to the fact that the IR implementation uses a less

precise projection algorithm, as well as its use of fixed step size

steepest descent gradient optimization. It is likely the case that

SIGTT performs better due to modeling the measured reci-

procal-space map as a line integral on the reciprocal-space

sphere, rather than as a point, as well as using continuity-

enforcing regularization. ZH performs very poorly regardless

of noise level in the case of ‘T’. This is likely both because it

cannot directly represent coefficients of the ‘ = 2 harmonics

due to its use of squared polynomials, and because ‘T’ does not

follow zonal symmetry, meaning it does not have an axis of

rotational symmetry, and cannot be represented by a rotated

spherical harmonic expansion with only m = 0 components.

The results from the reconstruction of the sample

‘mammoth’ are seen in Fig. 6. SIGTT has similar performance

to the case of sample ‘M’, with its correlation starting around

0.8 and decaying to about 0.65 as the SNR decreases, with an

increase in the interquartile range. ZH performs very poorly,

which is to be expected, as the ‘mammoth’ sample does not

follow zonal symmetry at all. IR performs better than ZH, but

is bounded by the fact that the reciprocal-space maps in this

simulation only have a weak rank-2 tensor component. Thus, it

does not reach a median R2 above 0.3. See Note 4 and Figs. S1

and S2 (in the supporting information) for volume renders of

the errors of ‘T’ and ‘mammoth’, as well as Fig. S3 and
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Figure 3
Volume renders of errors for reconstructions of ‘M’. (a) Errors for
SIGTT. (b) Errors for ZH. (c) Errors for IR. The error is defined as
1 � R2, where R2 is given by equation (15). Larger errors are rendered
with greater opacity and are thus visible even if they are in the interior.

Figure 2
Correlations for sample ‘M’. (a) Box plots of R2 as defined in equation
(15), with lines and symbols indicating the respective median of each box
plot. Outlier dots each represent 100 voxels. (b)–(d) Correlation
coefficient distribution for each of the three methods. The signal-to-
noise ratio goes from 37 (darkest lines) down to 4 (lightest lines). The
image inset shows a volume render of the simulated sample.



equation (S1) for a comparison of the anisotropic power

distribution of ‘mammoth’ and ‘M’.

In Fig. 7 we show timing information for the reconstructions

of (a) ‘M’, (b) ‘T’ and (c) ‘mammoth’. Note the logarithmic y

scale. In all cases, SIGTT is the fastest method, followed by IR,

with ZH being more than an order of magnitude slower than

either method. For example, one of the slowest cases for all

methods is ‘mammoth’ with SNR 30 [panel (c)] – in this case,

SIGTT requires approximately 7 min, IR requires approxi-

mately 25 min (3.5 times as long as SIGTT) and ZH requires

approximately 10 h (85 times as long as SIGTT). In the case of

‘M’ [panel (a)], IR is nearly as fast as SIGTT, although it

should be noted that in this case SIGTT is fitting 28 coeffi-

cients, whereas IR is fitting six coefficients. ZH is slower than

both methods by approximately two orders of magnitude.

While ZH also only uses six degrees of freedom in this case,

two of these degrees of freedom are polar and azimuthal

angles, and it models the reciprocal-space map using the

squared amplitude of spherical functions. Both of these

features lead to an optimization problem which is more

difficult to solve due to its non-linearity (e.g. Hochbaum, 2007;

Ahmadi et al., 2017). For ‘T’ [panel (b)], both SIGTT and IR

are fitting six coefficients, as ‘T’ has only rank-2 tensor

components, and in this case SIGTT is several times faster.

The sample ‘mammoth’ [panel (c)] takes substantially longer

to fit for all of the methods, as it has a greater volume

(60 � 60 � 80 voxels, whereas ‘M’ and ‘T’ have 50 � 50 � 50

voxels each), increasing the amount of time it takes to

compute each projection. SIGTT is several times faster than

IR here, and approximately two orders of magnitude faster

than ZH. This comparison should only be understood as a

broad guideline to the performance of the methods; each
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Figure 4
Comparison of virtual slices of ‘M’. (a) Virtual slice of simulated sample ‘M’. (b) SIGTT reconstruction. (c) ZH reconstruction. (d) IR reconstruction.
The glyphs are colored according to the relative anisotropy [equation (14)] and scaled according to the isotropic component [equation (13)] of each
reciprocal-space map. All three reconstructions follow the orientations of the model reasonably well on average. The SIGTT reconstruction follows both
the orientations and relative anisotropy of the model closely. The ZH reconstruction has a lot of variation in the relative anisotropy, as well as many
orientations deviating from the overall tendency to follow the model. The IR reconstruction follows the model almost as well as the SIGTT
reconstruction.

Figure 5
Correlations for sample ‘T’. (a) Box plots of R2 as defined in equation
(15), with lines and symbols indicating the respective median of each box
plot. Outlier dots each represent 100 voxels. (b)–(d) Correlation
coefficient distribution for each of the three methods. The signal-to-
noise ratio goes from 36 (darkest lines) down to 4 (lightest lines). The
image inset shows a volume render of the simulated sample.

Figure 6
Correlations for sample ‘mammoth’. (a) Box plots of R2 as defined in
equation (15), with lines and symbols indicating the respective median of
each box plot. Outlier dots each represent 100 voxels. (b)–(d) Correlation
coefficient distribution for each of the three methods. The signal-to-noise
ratio goes from 53 (darkest lines) down to 5 (lightest lines). The image
inset shows a volume render of the simulated sample.



implementation has a number of parameters which affect

convergence in different ways, which were adjusted with the

aim of obtaining a reconstruction that correlates well with the

simulation, rather than optimized for speed. Moreover,

SIGTT is implemented in Python, whereas ZH and IR are

implemented in Matlab, which means that the conditions for

optimizations such as multithreading and efficient memory

handling are different (see Section 4.6). It is therefore likely

that at least some of the speedup seen when comparing SIGTT

with the other methods is due to a more efficient imple-

mentation, i.e. the particular code used to carry out compu-

tations, rather than improvements in the basic method. It is

likely that all methods could be sped up considerably by

employing a GPU-based projection algorithm (e.g. Nikitin,

2023).

2.3. Experimental data

An ensemble of ten reconstructions, each with some initial

conditions randomized, were performed using SIGTT, ZH and

IR on a sample of trabecular bone. For experimental details,

see Liebi et al. (2015), sample B. The chosen q range of 0.0379–

0.0758 nm�1 for this reconstruction does not contain the

collagen meridional peak, and therefore its reciprocal-space

map has fiber symmetry from equatorial diffuse mineral

scattering. A comparison of a virtual section from each of the

three methods can be seen in Fig. 8. Because there is no

ground truth with which to compare for experimental data, the

ensemble of reconstructions was instead analyzed to investi-

gate the robustness of each method against perturbations in

the initial conditions. The spherical harmonic representations

of the ten reconstructions were averaged over, voxel-by-voxel,

and Fig. 8 shows the results of the averaged reconstruction.

The colors of the orientation glyphs indicate the degree to

which the anisotropy of the reciprocal-space map changes

across every reconstruction; the quantity Q is defined in

equation (16). The glyphs are scaled according to the square

root of the mean anisotropic power of each reciprocal-space

map [the anisotropic power is defined in equation (11)] across

the ensemble. The results indicate that SIGTT and IR are

robust to perturbations of the initial conditions, but that ZH is

not. However, the orientations of the averaged ZH recon-

struction agree well with those of SIGTT and IR. A plausible

reason for this difference is that ZH is the only method out of

the three which depends on Euler angles. Depending on the

initial conditions of the angles, the solution may be confined to

local minima, as the symmetries of its reciprocal space can

only vary across a limited subspace of the total spherical

harmonic coefficient space. While IR performed similarly to

SIGTT in the chosen q range, a rank-2 tensor cannot contain

more than one local maximum per hemisphere. This poses a

problem for the method in the case of the reciprocal-space

map of the collagen meridional peak q range of bone, which

contains two distinct maxima – an equatorial maximum from

diffuse mineral scattering which lies along a great circle, and a

meridional maximum from the spacing of the collagen fibril d

spacing, which lies on the poles orthogonal to that great circle

(e.g. Zhou et al., 2016). This symmetry, which requires at least

a rank-4 tensor, can be represented by both SIGTT and ZH

(Guizar-Sicairos et al., 2020).

3. Discussion

This work has demonstrated the SIGTT method for SAXSTT

reconstruction of the reciprocal-space map in samples using a

band-limited spherical function expressed in spherical

harmonics (see Section 4 for details). In three case studies

using simulated data with approximately zonally symmetric

reciprocal-space maps, rank-2 tensors and complicated-

textured higher-order reciprocal-space maps, the method

produces results superior to the approaches of Liebi et al.

(2018) and Gao et al. (2019). In addition, SIGTT is faster than

the existing implementations of the methods of Liebi et al.

(2018) and Gao et al. (2019), in many cases considerably so.

SIGTT has also been shown to be robust to perturbations in

the initial conditions when reconstructing experimental data.

The reconstruction of the reciprocal-space map using higher

spherical harmonic orders will enable the use of more specific

methods of characterization that reveal information about the

nature of the sample beyond the main orientation or adher-
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Figure 8
Experimental ensemble reconstructions. (a) Virtual slice from an
ensemble of ten reconstructions each with randomized initial conditions
of a sample of trabecular bone using SIGTT. (b) Ensemble reconstruction
using ZH. (c) Ensemble reconstruction using IR. The glyphs are scaled by
the square root of the anisotropic power, defined in equation (11). The
quantity Q, defined in equation (16), is a measure of how much the
anisotropy of each reciprocal-space map changes across the ensemble of
reconstructions. The methods generally agree in terms of the orientation
of each reciprocal-space map, but only ZH shows a change in the
anisotropy across the ensemble.

Figure 7
Timing comparison of methods. (a) Timing for sample ‘M’. (b) Timing for
sample ‘T’. (c) Timing for sample ‘mammoth’. Note the logarithmic y axis.
In all cases, SIGTT is the fastest method, followed by IR, with ZH being
the slowest by a considerable margin.



ence to a specific, predetermined symmetry. This representa-

tion of the reciprocal-space map in SIGTT makes it possible to

study not just individual domains, but also the boundaries and

transitions between them, including voxels with more than one

orientation, which frequently occur in samples in the fields of

biology and materials science (e.g. Georgiadis et al., 2023;

Maciel et al., 2018). SIGTT can be applied to more compli-

cated reciprocal-space maps, such as those that occur in SAXS

measurements of samples with hexagonal symmetries [as done

by Smarsly et al. (2005)], or in wide-angle X-ray scattering

measurements. Wide-angle X-ray scattering measurements

can be used by themselves or as a complement to SAXS

measurements; see Mao et al. (2018) for an example of using

small- and wide-angle X-ray scattering in combination for the

study of a polymer under deformation. The extension of

SAXSTT methods to also encompass wide-angle scattering is

therefore a promising area of further study. Because it is not

restricted to lower-order spherical harmonics, SIGTT is able to

model reciprocal-space maps which are not well approximated

by a rank-2 tensor, a case discussed by Georgiadis et al. (2021).

For the same reasons, SIGTT should make it easier to

reconstruct samples with smaller or less well organized

domains [as done by Georgiadis et al. (2020)], as these would

contain more transitory regions and a greater lack of

symmetry in the reciprocal-space map. In this way, the

reconstruction of the reciprocal-space map using band-limited

spherical functions makes full use of the data obtained from

the collection of scanning SAXS data at multiple angles, and

opens up many new avenues of analysis. Finally, the anchoring

of SIGTT in a framework of integral geometry and linear

algebra highlights the potential for algorithms employing

alternative schemes for data acquisition, optimization and

representation of the reciprocal-space map, e.g. in the vein of

the work of Sharma et al. (2017) on acquisition schemes for

dark-field tomography, and that of Aslan et al. (2019) on

ptycho-tomographic reconstruction.

4. Methods

4.1. Discretized formalism

The inverse problem to the forward model of equation (5) is

to obtain the distributions a‘mðrÞ for a set of measured data.

In practical terms, the solution to the inverse problem is

best discussed using a discrete formalism. Prior to recon-

struction, measurements at a particular value of q are reduced

by binning the measured pixel intensities into azimuthal

segments, which corresponds to an integral over a great circle

segment on the reciprocal-space sphere. Consequently, for the

bin i, centered on ’i of width �’, the spherical harmonics in

equation (5) are integrated to give the coefficients for these

bins,

Y
‘
mð�; iÞ ¼

1

�’

Z’iþ0:5�’

’i�0:5�’

ŶY‘
m½Cð�; �3; �4Þ� d�; ð6Þ

with �i as in equation (3), where the integration variable �
replaces the detector angle ’ used in equation (5). Since this

effectively blurs the reciprocal-space map, it constrains the

maximum frequency that can be uniquely represented in the

reduced data. It can be concluded that the ‘max of the fitted

spherical function should follow

‘max � N � 1;

where N is the number of azimuthal bins for ’i 2 [0, 	), due to

the assumption of Friedel symmetry. This can be shown

explicitly by expanding the N reciprocal-space map binned

into azimuthal segments as a trigonometric polynomial,

RSMð’iÞ ¼
PM

m¼0;2

½Cm cosðm’iÞ þ C�m sinðm’iÞ�;

where m is the frequency of each component of the poly-

nomial, and odd frequencies vanish due to Friedel symmetry.

We observe that this has a unique solution only for M = N � 1

as a direct consequence of the Nyquist–Shannon sampling

theorem (Shannon, 1949). It can be seen that a real trigono-

metric polynomial is isomorphic to a great circle cut of a

spherical harmonic representation by noting that it is the

expression for the azimuthal component of the real spherical

harmonics (see Note 2 in the supporting information for

details). The spherical harmonic rotation theorem implies that

any great circle cut of a function expressed in spherical

harmonics can be represented in a coordinate system where

this great circle cut is the equator of the unit sphere. Since the

polar angle is constant at the equator, this means that the great

circle cut is determined only by the azimuthal component;

thus, for any great circle cut of a spherical harmonic repre-

sentation, there exists an equivalent trigonometric poly-

nomial. Therefore by setting ‘max = N � 1 for the spherical

harmonic representation, a unique solution exists for the great

circle cut visible in each measurement. Consequently, the

gradient contribution of that measurement becomes unique

when solving the system (see Note 5 in the supporting infor-

mation for details).

The sample volume, spanned by r in equation (2), is divided

into cubic voxels, of the same size as the step size in the

scanning SAXS measurement.

To pose our problem in matrix form, we describe our

discretized system as a matrix X of N rows and M columns,

where each row corresponds to a voxel, and each column

corresponds to a spherical harmonic coefficient. Similarly, the

measured data are described by an I � J matrix which we label

D, with I being the number of scanned points and J the

number of detector azimuthal segments across all rotation and

tilt configurations. For simplicity of representation, we

consider scans and detector azimuthal segments at different

rotations and tilts to be distinct, so that D takes a sparse block-

matrix form. The discrete equivalent of the projection

operation P� [see equation (4)], considered across all

measured projections, is then given by a sparse I � N matrix P,

describing a mapping between weighted sums of the N voxels

to the I scanned points of the sample. Finally, the mapping

from the spherical harmonic representation of the reciprocal-
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space map to the azimuthal segment-wise detector data is

given by an M � J matrix Y, consisting of the M coefficients

calculated in equation (6) for each of the J detector azimuthal

segments.

This gives us the system of equations

PXY ¼ D;

and we write the solution as the optimization of the least-

squares problem

Xopt ¼ argminXkPXY�Dk2: ð7Þ

See Note 5 in the supporting information for details on how to

solve this system with an iterative algorithm.

4.2. Reciprocal-space map evaluations

In tomography, the solution is generally assumed to be a

reasonably smooth function, and we impose a regularization

term on equation (7) to ensure this (Natterer & Wübbeling,

2001). Since we do not want the evaluation or comparison of

reciprocal-space maps [defined by equations (1), (2)] to

depend on our choice of coordinate system, it is necessary to

use rotational invariants. A general rotational invariant is the

canonical inner product of the spherical harmonics, known as

the cross-spectrum function,

S‘ðg; hÞ ¼
P‘

m¼�‘

Nð‘Þg‘mh‘m; ð8Þ

where Nð‘Þ is a normalization factor that depends on the

choice of spherical harmonic representation, ‘ is the cross-

spectrum order, and g and h are two spherical functions

(Wieczorek & Meschede, 2018). g‘m and h‘m are the coefficients

of the spherical harmonic representation of g and h, given by

g‘m ¼
R

d� gð�; �ÞŶY‘
mð�; �Þ

� �
:

This discussion is therefore applicable to the analysis of

spherical functions of any type, but in the particular case of

SAXSTT, f and g are reciprocal-space maps as defined by

equations (1), (2). To regularize the problem by imposing a

smoothness condition, we compute a nearest-neighbor simi-

larity term,

ð�gÞij ¼ 

P‘max

‘¼0

S‘ðgi; giÞ þ S‘ðgj; gjÞ � 2S‘ðgi; gjÞ
� �

;

where the set of all (i, j) indicates neighboring pairs of voxels,

gi is the spherical function associated with each voxel and 
 is a

regularization coefficient.

In spherical harmonic coefficient space, this reduces to the

squared discrete Laplacian operator on our system matrix

weighted by 
,

�X ¼ 
 r2X
� �2

: ð9Þ

Minimizing this term results in maximizing the covariance

between neighboring voxels, since

P1
‘¼1

S‘ðg; hÞ ¼ covðg; hÞ; ð10Þ

with S‘(g, h) defined in equation (8), and therefore we also

have

P1
‘¼1

S‘ðg; gÞ ¼ varðgÞ; ð11Þ

where, in particular, we refer in this work to var(g) as the

anisotropic power of the reciprocal-space map represented

by g.

Thus, with the addition of the regularization term in equa-

tion (9), the solution becomes

Xopt ¼ argminX kPXY�Dk2
þ 
kr2Xk2

� �
: ð12Þ

We define the isotropic component of a reciprocal-space map

as its spherical mean �, and in spherical harmonic repre-

sentation,

�ðgÞ ¼ g0
0; ð13Þ

where g is the spherical function representing the reciprocal-

space map.

We also define the relative anisotropy of a reciprocal-space

map as

&ðgÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
varðgÞ

p
g0

0

¼
�ðgÞ

�ðgÞ
; ð14Þ

or, in other words, the standard deviation �(g) of the spherical

function g normalized by the spherical mean �ðgÞ. We prefer

to normalize by the mean rather than by the root-mean-

square, because normalization by the root-mean-square would

result in an upper bound of 1, which makes the contrast worse

for highly anisotropic samples. This is useful to indicate the

texture of a sample in many-voxel visualizations, and is used to

color the glyphs in Fig. 4.

The relative anisotropy is comparable with the definition of

the degree of orientation given by Bunk et al. (2009) as the

ratio of the first Fourier component of an azimuthally inte-

grated scattering pattern to the zeroth Fourier component

(which is equal to the mean). This would correspond to

calculating the relative anisotropy as defined by equation (14)

using only the ‘ = 2 components of the spherical harmonic

representation of the reciprocal-space map. We include coef-

ficients beyond ‘ = 2, however, because we are interested in

reciprocal-space maps of a more general class of symmetries,

as well as figures of merit which are easily extended to other

representations of the reciprocal-space map. The primary

reason for not using a definition akin to that of the � para-

meter used by Fratzl et al. (2004), Pabisch et al. (2013), which

uses the integrated peak intensity divided by the total intensity

(peak intensity plus background intensity), is that defining the

background intensity is difficult in a spherical harmonic

representation. Moreover, using the standard deviation also

incorporates information about the sharpness of the peaks,

which is especially useful in cases where the background may

be very small. The definition of the relative anisotropy in

equation (14) is similar but not identical to the quantity also

referred to as the degree of orientation by Liebi et al. (2018),

which evaluates to the variance of the square root of the

reconstructed reciprocal-space map divided by its mean.
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4.3. Correlation calculations

Because the variances and covariances of reciprocal-space

maps [equations (10), (11)] are rotational invariants, compo-

sitions of them are also invariants, and in particular

covðg; hÞ
2

varðgÞvarðhÞ
¼ R2
ðg; hÞ; ð15Þ

where var(g) is the variance of the spherical function g,

cov(g, h) is the covariance of two spherical functions, and

R2(g, h) is the squared Pearson correlation coefficient of the

two functions g, h. The squared Pearson correlation coefficient

is used in the comparison of reconstructed reciprocal-space

maps with those in simulated samples. The Pearson correlation

coefficient does not map directly to other measures of simi-

larity such as the difference in orientation; it is instead a

summary metric of how similar two distributions are, up to a

constant offset and a scaling factor. If R2 is close to 0, then the

distributions are very dissimilar, although it is still possible for

other measures to show similarity of specific features, such as

the orientation. If R2 is close to 1, then the distributions are

very similar and other measures will also show similarity (up

to the possible offset of a constant and scaling factor); this

generality is the reason why this is our statistic of choice. In the

calculation of R2 shown in Figs. 2, 5 and 6, the calculation is

done between the reciprocal-space maps of each voxel in the

simulated model (excluding empty voxels) and the reciprocal-

space map of the same voxel in the reconstruction. The box

plots in Figs. 2(a), 5(a) and 6(a) follow the original definitions

of Tukey (1977). They are defined such that the colored

rectangles span the interquartile range of the correlation

distribution. The black ‘whiskers’ outside the colored rectan-

gles span the smallest and largest value in the range [Q1 �

1.25 � (Q3 � Q1), Q3 + 1.25 � (Q3 � Q1)], where Qi is the ith

quartile of the distribution of R2. Values outside the range of

the ‘whiskers’ are represented by small circles, with each circle

showing the mean R2 of 100 reciprocal-space maps. If there is

at least one, but fewer than 100 reciprocal-space maps above

or below each whisker, a single black circle is shown, repre-

senting the mean of R2 across these reciprocal-space maps.

The median, equivalent to Q2, is shown by the colored

markers in each box plot.

4.4. Simulation framework

For each of the three sample volumes, source points were

determined such that the distance between each point was

maximized: four source points for ‘M’, two source points for

‘T’ and five source points for ‘mammoth’. Band-limited

spherical functions were constructed such that the spectral

power of each order followed power-law decays with respect

to ‘, and assigned to each source point. The interior distance

from each source to every other point in the volume was then

approximately computed using a combination of a k-d tree

and Dijkstra’s algorithm. The sources were assigned correla-

tion lengths, with the assumption that for each order of each

spherical function in the sample, correlation with the source

would decay with distance like a Gaussian distribution with

the correlation length as its standard deviation. The remaining

spherical functions were then solved for under several

constraints – in all cases, it was assumed that the spherical

functions of neighboring voxels in the volume would be

correlated with each other, and that the power of each order

of the function in each voxel would equal a distance-weighted

average of the power of its source. Moreover, it was

required that all functions be non-negative. Non-negativity is

difficult to enforce perfectly for spherical polynomials, but a

dense sampling of each function was performed and the

isotropic component was increased to eliminate all the

detected negative points.

‘M’ consists of spherical polynomials up to ‘max = 12 that

approximately follow zonal symmetry, i.e. there is for each

spherical function an axis of orientation, about which they

have approximate rotational symmetry. They can thus be well

represented in a rotated spherical harmonic expansion with

only m = 0 coefficients [see Fig. 9(a)]. To enforce zonal

symmetry, each spherical function was required to correlate

with the ‘-weighted spherical harmonic Dirac  function,

wð‘Þm
‘ ð�; �Þ ¼ ð�1Þ‘=2

Ym
‘ ð�; �Þ;

with (�, �) given by the fiber-like orientation vector of the

‘ = 2 component of the reciprocal-space map (see Note 3 in

the supporting information for details on orientation analysis),

and w(‘) being an ‘-weighting function. In general, the

condition of zonal symmetry requires compromise with the

demand of continuity [enforced by minimizing the spherical

harmonic Laplacian, as in equation (9)]. This is because the

different orders of spherical harmonics have differing

symmetries with respect to rotations. In effect, this leads to

some attenuation of parts of the great circle of intensity.

Hence, the reciprocal-space maps of ‘M’ are said to only

approximately follow zonal symmetry. ‘T’ is entirely repre-

sented by symmetric rank-2 tensors, with a distribution

required to be continuous [see Fig. 9(b)]. ‘Mammoth’ is

represented by spherical polynomials with ‘max = 8, which in

addition to being continuous have a damped ‘ = 2 component,

such that the ‘ = 2 and ‘ = 4 components have approximately

the same spectral power [see Fig. 9(c)]. This was done to

approximate the type of spectral power distributions that
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Figure 9
Reciprocal-space map symmetries for simulated samples. (a) Zonally
symmetric spherical function with ‘max = 12 with its maximum around a
great circle and a minimum at the poles, similar to the reciprocal-space
maps of sample ‘M’. (b) Spherical function with ‘max = 2, similar to the
reciprocal-space maps of sample ‘T’. (c) Spherical functions with ‘max = 8,
with no particular symmetry constraints, similar to the reciprocal-space
maps of sample ‘mammoth’. The color of the surface of each spherical
function indicates its amplitude on a linear scale, scaled according to the
largest and smallest value of each spherical function.



occur in reciprocal-space maps which do not either have

equatorial symmetry [with maxima concentrated around a

great circle, akin to Fig. 9(a)] or meridional symmetry (with

the maxima at the poles), such as in the region of the collagen

meridional peak in bone (e.g. Zhou et al., 2016), where the

‘ = 2 contributions from the meridional peak and the equa-

torial diffuse mineral scattering have opposing signs and thus

tend to cancel out. The reciprocal-space map cuts generated

from the projections of each simulation were divided into

eight azimuthal segments, accounting for Friedel symmetry,

and integrated over, emulating the azimuthal integration

approach used for experimental data. The choice of eight bins

was made based on previous usage in experimental data, as

well as the fact that it will restrict the band-limit of spherical

functions that can be precisely retrieved to ‘max = 6, meaning

that it will not be possible for SIGTT to exactly solve for the

reciprocal-space maps of the samples ‘M’ (‘max = 12) and

‘mammoth’ (‘max = 8).

4.5. Ensemble reconstructions

For the ensemble reconstructions shown in Fig. 8, each of

the methods had their initial conditions randomized. In the

case of SIGTT and IR, this consisted of randomizing the

coefficients of their solution vectors at values several orders of

magnitude below what is expected from their reconstructed

value. In the case of ZH, the randomization was only applied

to the Euler angles of the orientations of each voxel, which

must be initialized before each reconstruction. The Euler

angles were randomized such that the orientation vectors of

each voxel were uniformly distributed on the unit sphere. The

stepwise reconstruction procedure of Liebi et al. (2018) was

then followed. In order to average over the result of the

ensemble, the squared coefficients of the ZH reconstruction,

performed with ‘max = 6, were expanded through Driscoll–

Healy quadrature in a non-squared spherical harmonic

representation up to ‘max = 12 (Driscoll & Healy, 1994). Tests

incorporating higher orders and denser grids showed that this

approach was accurate to a relative error of approximately

0.1% in the variance of the reciprocal-space map, which was

deemed sufficient for the purpose of examining the recon-

struction’s consistency across the ensemble. To evaluate the

robustness of the reconstructions with respect to initial

conditions, we defined an anisotropic power quotient for the

reciprocal-space map in each voxel,

Q ¼
var 1

n

Pn
i¼0 gi

� �
1
n

Pn
i¼0 varðgiÞ

; ð16Þ

where gi is the spherical function representing the reciprocal-

space map in each voxel for reconstruction run i, and var(gi) is

the anisotropic power of the reciprocal-space map as defined

in equation (11), and n is the total number of reconstructions

in the ensemble. We used n = 10, as this proved sufficient to

illustrate the difference between the methods. If the reci-

procal-space maps of every reconstruction in the ensemble are

identical, the value of Q will be 1, and it will be in the range

[0, 1) if the reciprocal-space maps differ.

4.6. Implementations

SIGTT, and the simulations used in this work, was imple-

mented in Python. The most demanding parts of the code,

projections and back-projections, are carried out using

Numba, part of the software package Mumott, whereas other

calculations are carried out in NumPy and SciPy (Harris et al.,

2020; Virtanen et al., 2020; Lam et al., 2015). The version of

Mumott used in this work is available at https://doi.org/

10.5281/zenodo.7798530. The most recent version of Mumott is

made available at https://doi.org/10.5281/zenodo.7919448. The

projection code, written specifically for this work, uses only

CPU resources. It performs the John transform by using

vectors to trace out the lines of integration, and sampling the

voxels that these intersect with, in proportion to the lengths of

the intersecting segments. Visualizations of the three-dimen-

sional reconstructions were created using the Python package

Mayavi (Ramachandran & Varoquaux, 2011). The color maps

used throughout this paper were generated with the help of

ColorCET (https://colorcet.com) (Kovesi, 2015). All compu-

tations were performed on a workstation using a 12-core,

4.6 GHz AMD Ryzen 9 3900X CPU and 64 GB DDR4

2666 MHz RAM. For the IR and ZH methods, the original

code from the cSAXS software package written in Matlab was

used, with modifications for optimization and termination of

each reconstruction upon convergence. The projection code in

this package samples voxels using coordinate transforms and

bilinear interpolation. It slices the sample along the plane of

integration, and samples the four voxels closest to the line of

integration, based on the distance in the plane of projection.

Because it effectively treats the projection of each voxel as a

square at every angle of projection, and does not consider the

full three-dimensional distance between voxels, this approach

suffers from high-frequency artifacts. However, following

testing, this approach was deemed sufficiently accurate for the

purpose of comparing ZH and IR with SIGTT.

5. Data availability

The simulated data created for and used in this work are

available at https://doi.org/10.5281/zenodo.7673985. A note-

book demonstrating the analysis and reconstruction using

Mumott is available at https://doi.org/10.5281/zenodo.7799517.
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Supplementary Note 1. COORDINATE MAPPING

In the “Formalism” section of the paper, the John Transform is described using vectors in the local coordinate
system of the sample. This is the most convenient way to parameterize the system, since it is the sample volume that
is ultimately being solved for. However, for practical reasons, it is useful to lay out how one can map a coordinate
system of a laboratory frame, relative to which the sample is moving. In general, we can specify the relationship
between the laboratory system and the sample system by choosing a set of vectors and rotation axes at zero tilt and
rotation, and then applying any rotations of the sample to those vectors. Three positioning vectors are needed -
one for the direction of the x-ray beam, and two which indicate how the beam moves relative to the sample during
scanning. We may call these p, wj and wk. The vectors wj and wk should be shifted to align the system, such
that if wj = wk = 0, the beam intersects the center of the sample at all rotations. Additionally, two are required
to indicate how angles on the detector map to the reciprocal space sphere, we may call these q0 and q90, defined to
indicate where on the reciprocal space sphere detector angle 0 and 90 lie. Two orthogonal rotation axes need to be
defined, orthogonal to the projection direction, in order to translate rotations to the sphere of projection, which we
call α̂ and β̂. These do not necessarily have to correspond to the axes of real rotation stages. Then, any rotation R
that the sample is subject to must be decomposed into three components, Rα(α), Rβ(β), and Rp(γ), for rotations

around α̂, β̂ and p respectively, such that

R = Rp(γ)Rβ(β)Rα(α)

Then, any one of the vectors a in the zero-rotation system will become

a′ = RT
α(α)R

T
β (β)R

T
p (γ)a

The John transform parameters j and k are then given by the norms of wj and wk, whereas α and β are the
arguments of the rotation matrices Rα and Rβ . The rotation matrix Rp simply specifies a rotation around the axis
of projection, and therefore only changes the mapping of j and k, rather than representing a degree of freedom on the
sphere of projection. The reciprocal space angles θ and ϕ are given by the azimuthal and polar angle of the reciprocal
space vector

q′ = RT (cos(φ)q0 + sin(φ)q90)

where φ is the angle on the detector.
The vectors v and u in the John transform are given by

v = RT (wj +wk)

u = RT (p)

Using these rules, one can calculate the John transform using rotation information from any laboratory coordinate
system.
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Supplementary Note 2. TENSORS AND SPHERICAL HARMONICS

The comparison between methods using spherical harmonic representations and tensor representation merits a brief
discussion of isomorphisms between these parameterizations. Spherical harmonics are simply harmonic polynomials
on the sphere. In this work we use the real spherical harmonics, which we may define as

Ŷ ℓ
m(θ, ϕ) =

{
Lℓ
m(θ) cos(mϕ) m ≥ 0

Lℓ
m(θ) sin(|m|ϕ) m < 0

where θ is the polar angle, ϕ is the azimuthal angle, Lℓ
m(θ) is the associated Legendre polynomial of degree ℓ and

order m, with ℓ ≥ 0 and |m| ≤ ℓ. Because of this, they have an intuitive mapping to traceless symmetric Cartesian
tensors when representing functions on the unit sphere. In particular, a band-limited spherical function represented
in ℓ = n maps directly to a traceless rank-n tensor. The rank-0 tensor is simply a constant, so it naturally maps
to Ŷ 0

0 (θ, ϕ), which is a constant term. This mapping naturally leads to restricting the mapping to traceless tensors,
because the trace of a tensor on the unit sphere is a constant term. Moreover, a spherical harmonic of ℓ = n can be
represented as a polynomial of Cartesian coordinates of degree n, that is to say

P (n,x) = amŶ n
m(x)

xixi = 1

where Einstein summation over repeated indices is used, and a is some vector of 2n + 1 coefficients. In the same
way, we have for a traceless rank-n tensor T the mapping

P (n,x) = T ijk...xixjxk . . . ,

P (n,x) is the value of some polynomial of degree n at x. Restricting ourselves to the unit sphere, it is then the
case that

amŶ n
m(x) = T ijk...xixjxk . . . ,

By the additivity of polynomials, this mapping can be extended to sums of traceless symmetric tensors tensors of
arbitrary orders, and through Gaussian elimination, it is straightforward to calculate a mapping between spherical
harmonics and symmetric Cartesian tensors. Tensor and spherical harmonic representations of functions on the unit
sphere are thus isomorphic, and their different analytical and algebraic properties render them suitable for different
purposes. Spherical harmonics are especially suitable for calculations where rotational invariance is crucial, and for
calculating spherical statistics such as the variance or mean over the sphere. On the other hand, it would be easier
to perform tensor calculus (such as computing the divergence or curl) on Cartesian tensors.

Supplementary Note 3. ORIENTATION ANALYSIS

Orientation analysis is used in figures 4 and 6 of the main work, as well as in the creation of the simulated sample
“M”. The identification of a reciprocal space map’s orientation is done by eigenvector-eigenvalue decomposition of its
ℓ = 2 spherical harmonic coefficients. The ℓ = 2 coefficients are translated into a symmetric traceless rank-2 tensor
by solving for each coefficient in the tensor’s polynomial representation. Specifically, on the unit sphere, the two
representations may be expanded as

[
x y z

] Txx Txy Txz

Txy Tyy Tyz

Txz Tzy Tzz

xy
z

 = x2Txx + y2Tyy + z2Tzz + 2(xyTxy + xzTxz + yzTyz)

N (2)
[
a20 a21 a2−1 a22 a2−2

]


2z2−y2−x2

2
√
3

xz
yz
xy

x2−y2

2

 = N (2)(x2(
a2−2

2
− a20

2
√
3
) + y2(−

a2−2

2
− a20

2
√
3
) + z2

a20√
3
+ a22xy + a21xz + a2−1yz)
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a) SIGTT b) ZH c) IR
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Supplementary Figure S-1. Errors for “T”. Volume renders of the errors of a) SIGTT, b) SH, and c) IR for sample “T”,
defined as 1 − R2, where R2 is given by equation (15) of the main text. Larger errors are rendered with greater opacity and
are thus visible even if they are in the interior.

where N (2) is a normalization factor depending on the spherical harmonic representation, a2m is a spherical harmonic
coefficient with ℓ = 2, Tii are components of a rank-2 tensor, and (x, y, z) are cartesian coordinates. By equating these
two systems of equations, we can then identify each Tii with a linear combination of coefficients a2m and thus construct
a rank-2 tensor out of spherical harmonic coefficients. Subsequently, we may solve the eigenvalue problem for the
rank-2 tensor, to obtain three eigenvalues (which will sum to zero as the tensor will be traceless) and three orthogonal
eigenvectors. For a rank-2 tensor with three distinct eigenvalues, the eigenvectors associated with the largest and
smallest eigenvalues correspond to the location of the minima and maxima of the spherical function. The eigenvector
of the central eigenvalue corresponds to a saddle point. If there is degeneracy in the eigenvalues, but they are nonzero,
the unique eigenvalue corresponds to one extremum (minimum if it is negative, maximum if it is positive), whereas
the two identical eigenvalues correspond to two orthogonal points on a set of extreme points which lie along a great
circle. The orientation analysis then depends on assumptions about the symmetry of the nanostructure associated
with the reciprocal space map. If the nanostructure is known or assumed to be scattering from fiber-like structures,
orthogonal to the direction of the fibers, the eigenvector associated with the smallest eigenvalue is taken to define
the orientation. On the other hand, if the reciprocal space map is known or assumed to be scattering along the
orientation, the eigenvector associated with the largest eigenvalue is taken to define the orientation. Nanostructures
which contain both of these scattering tendencies, such as bone around the q-range of the collagen peak, cannot in
general be robustly analyzed in this manner, because each scattering tendency will tend to cancel out the contribution
from the other to the rank-2 tensor component of the reciprocal space map. Such reciprocal space maps require a
different treatment, such as correlation analysis with an ensemble of model functions.

Supplementary Note 4. ADDITIONAL RESULTS

This section shows some additional results for the simulation comparisons to supplement those in the main work.
Volume renders of the errors of each method for “T” can be seen in Supplementary Figure S-1. It is evident from

the figure that Spherical Integral Geometric Tensor Tomography (SIGTT) has the smallest errors, and tha the large
errors are concentrated around the edges. It is followed by IR, which has large regions of small errors but larger
errors around the same regions as SIGTT However, the errors for SH are far greater than for either of the other two
methods. This is partly because the squared polynomials of SH cannot exactly represent rank-2 tensors, and partly
because sample “T” is not constrained to zonal symmetry.
A similar set of volume renders of errors for each method for “mammoth” can be seen in Supplementary Figure S-

2. Again, SIGTT has the smallest errors, with larger errors around some edge regions. In this case, SH and IR are
more similar, having large errors throughout, but IR consistently appears to have somewhat smaller errors. This is
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a) SIGTT b) ZH c) IR

0.0 0.5 1.0
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Supplementary Figure S-2. Errors for “mammoth”. Volume renders of the errors of of a) SIGTT, b) SH, and c) IR for
sample “mammoth”, defined as 1− R2, where R2 is given by equation (15) of the main text. Larger errors are rendered with
greater opacity and are thus visible even if they are in the interior.
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Supplementary Figure S-3. Fractional anisotropic power. Distribution of the fraction of anisotropic power (equa-
tion (S1)) at each ℓ for the samples “M” and “mammoth”. Sample “M” has a distribution that is more dominated by the ℓ = 2
component, and a steeper decline, whereas for “mammoth”, the ℓ = 2 and ℓ = 4 components are closer to each other, and ℓ = 6
and ℓ = 8 also occupy a larger fraction than for “M”.

consistent with figure 5 in the main text. where is it clear that IR can achieve a correlation around 0.3, but not more,
whereas the correlation for SH is close to 0. These large errors for IR and SH are due to the fact that the “mammoth”
sample has a small rank-2 tensor component on the one hand, and on the other hand, no zonal symmetry constraint.
To examine the distribution of anisotropic power in samples, we define the quantity

Fℓ(g) =
Sℓ(g)

var(g)
(S1)
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where g is a spherical function, and Sℓ and var(g) are defined in Equations (8) and (11) in the main text respectively.
This quantity, referred to as the fractional anisotropic power, is then evaluated for every voxel that is part of the
sample. In Supplementary Figure S-3, we see box plots of the fractional anisotropic power of “M” and “mammoth”.
While “M” has a spectrum that goes up to ℓ = 12, the orders about ℓ = 6 only contribute a small amount of the
overall power.

Supplementary Note 5. SOLVING REGULARIZED LEAST-SQUARES SYSTEM

The system of linear equations to be solved in SIGTT is given as

Xopt = argmin
X

[
∥PXY −D∥2 + λ∥∇2X∥2

]
.

This system is solved through the gradient-based method L-BFGS-B. In detail, a general solution using a quasi-
Newton algorithm may be written

2ri = ∥PXiY −D∥2 + λ∥∇2Xi∥2

∇ri = PT (PXiY −D)YT + λ∇2Xi

Xi+1 = Xi − αi∇ri + βipi

where ri is the residual for iteration i, Xi is the estimated solution, αi and βi are method-dependent scalars, and
pi is a method-dependent momentum term. While the multiplication with YT is directly implemented as a matrix
multiplication, this is not practical to do for the adjoint projection operation PT , due to the prohibitively large size
of the matrix. Instead, it is computed using the common iterative tomographic method of back-projection of the
residual.

Supplementary Note 6. IMPLEMENTATION DETAILS

For each of the simulated data sets, an overall signal-to-noise ratio (SNR) was estimated. Noise was added to each
projected simulated data point per

Inoise =
poisson(I · k)

k

with k being a noise parameter, and poisson(x) being a sampling of x with added Poisson noise. The values used
for k were k = 10t with t ∈ {2, 1.5, 1, 0.5, 0}, This means that each data point will be a random variable with variance
I/k. Thus, the signal-to-noise ratio for a simulated data set with noise parameter k was estimated as

SNR ≈
√
µ(Ii)k

with µ(Ii) being the average intensity of all non-background data points in that data set. This SNR should be
understood principally as a relative measure for a particular simulation, not as an absolute measure.
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