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Small and wide angle x-ray scattering tensor tomography are powerful methods for studying
anisotropic nanostructures in a volume-resolved manner, and are becoming increasingly available
to users of synchrotron facilities. The analysis of such experiments requires, however, advanced
procedures and algorithms, which creates a barrier for the wider adoption of these techniques.
Here, in response to this challenge, we introduce the Mumott package. It is written in Python with
computationally demanding tasks handled via just-in-time compilation using both CPU and GPU
resources. The package is being developed with a focus on usability and extensibility, while achieving
a high computational efficiency. Following a short introduction to the common workflow, we review
key features, outline the underlying object-oriented framework, and demonstrate the computational
performance. By developing the Mumott package and making it generally available, we hope to
lower the threshold for the adoption of tensor tomography and to make these techniques accessible
to a larger research community.

I. INTRODUCTION

The properties of numerous materials depend on the
hierarchical organization of their basic building blocks
ranging from the nanometer to the micrometer scale. Ex-
amples include plant materials assembled from cellulose
and lignin [1], bone constructed of assemblies of min-
eralized collagen fibrils [2], or polymeric materials such
as in the structure of semi-crystalline polymers [3–5],
and liquid-crystalline polymers composed of rigid macro-
molecules [6]. The study of structure-property relation-
ships of hierarchical materials for applications in biol-
ogy, the biomedical field, or polymer engineering relies
on accurate structural characterization from a wide range
of techniques. X-ray techniques are of particular inter-
est with respect to providing volume-resolved nanostruc-
tural information in macroscopic samples. Due to the
high penetration depth and non-destructive nature of
the techniques, methods such as x-ray absorption and
phase contrast computed tomography (CT) have played
an important role in providing high resolution densi-
metric measurements of 3D samples [7, 8]. In addi-
tion to the densimetric fields, the arrangement of nanos-
tructural elements, in particular their direction and de-
gree of alignment, is important for many mechanical and
functional properties. This brings an additional chal-
lenge in methodologically bridging between the length
scales of the nanostructural building blocks and the
macroscopic specimen. In addition to methods resolving
the nanostructure spatially with high-resolution imaging
techniques, the orientation of the nanostructure can also
be probed by polarization, scattering, diffraction, or mag-
netic relaxation methods in a volume averaged way [9].
The first technique for probing the orientation of struc-
tures without directly resolving them was polarized light
microscopy. It was followed by other techniques that also
make use of the polarization of light such as polarized Ra-

man or Fourier transform infrared spectroscopy and po-
larized second-harmonic-generation imaging. X-ray and
neutron diffraction approaches can be used, such as di-
rectional dark-field (DDF) imaging[10, 11] which probes
the orientation at the micrometer-scale through the in-
tegrated scattering signal, or scanning small and wide
angle scattering that allow probing of nanoscale struc-
tures. Small-angle x-ray scattering (SAXS) probes the
spatial variation of the electron density, providing infor-
mation on microstructural elements with characteristic
length scales in the range of tens to hundreds of nanome-
ters, relating to the structural organization and orienta-
tion of the materials at the corresponding length scales,
while x-ray diffraction (XRD) (in this paper called wide-
angle x-ray scattering (WAXS)) probes atomic distances
and crystal lattices. Whereas DDF are a family of full-
field imaging methods, SAXS and WAXS can be used
as scanning imaging techniques in which the sample is
raster-scanned with a focused x-ray beam providing an
image of the sample consisting of a 2D diffraction pattern
in each pixel. Tomographic reconstruction of such mea-
surements using isotropically scattering samples is known
as XRD-CT and is frequently used both in the SAXS
[12, 13] and WAXS [14–16] regimes at synchrotron x-ray
sources.

To access the orientation information of the underly-
ing ultrastructure within a 3D specimen, tomographic
methods can be extended from the reconstruction of a
scalar fields to tensor fields describing the directionality
of the signal, which is in general called tensor tomography
(TT). The most established technique in this category is
diffusion magnetic resonance imaging (MRI), also called
diffusion tensor imaging (DTI), which is widely used to
study the 3D arrangement and orientation of neurons. In
the case of X-rays, TT has been demonstrated for DDF
[17, 18], SAXS [19–23] and WAXS [24]. Other related
tomography approaches which can be considered as TT
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include probing magnetic field directions with circular
polarized x-rays [25] or polarized neutrons [26].

The acquisition and analysis of TT data is a non-trivial
undertaking, creating a barrier for the wider adoption of
these powerful techniques. In response to this challenge,
specifically with regard to the analysis of such data, we
here introduce the software package Mumott for the
reconstruction of TT data. While the current imple-
mentation supports the cases of SAXS and WAXS, the
framework offers the possibility to include other modali-
ties in the future. In the following we first provide a brief
overview of the methodology (Sect. II) before describing
the structure and functionality of Mumott (Sect. III).
Finally, we give a short outlook concerning potential fu-
ture additions and developments (Sect. IV).

II. METHODOLOGY

SAXS/WAXS-TT is conceptually similar to XRD-CT
in that the sample is raster-scanned through a focused
beam to produce a number of 2D projections, varying
the sample orientation between each projection. Unlike
XRD-CT it works with azimuthally re-grouped detector
images where the intensity of the scattered x-rays in a
number of azimuthal bins is recorded rather than a sin-
gle azimuthally integrated intensity. The width of the
azimuthal bins depends on the desired angular resolu-
tion of the reconstruction. The azimuthal re-grouping
can be done with a number of freely available software
tools such as pyFAI [27] and matfraia [28]. The ex-
perimental data is then a five-dimensional dataset con-
sisting of the tomographic rotation, the two directions of
the raster scan grid, the scattering angle 2θ, and the az-
imuthal angle ϕ. Mumott deals with the reconstruction
of such a five-dimensional dataset into a six-dimensional
reconstruction, consisting of a three-dimensional voxel
map containing a three-dimensional reciprocal space map
(RSM) in each voxel.

We assume that the data has already been corrected
for various experimental errors pertaining to solid an-
gle, geometric distortions, and polarization. To account
for the effect of absorption by the sample, the collected
data can be normalized by the transmitted intensity as is
common practice in XRD-CT. Especially at small scat-
tering angles, this makes it possible to carry out recon-
structions even with low sample transmission coefficients
(≈1% has been demonstrated) assuming sufficient inci-
dent flux. The measurement of the transmitted beam in-
tensity can be done using either a semi-transparent beam
stop, a diode mounted on the beam stop, or a fluorescence
measurement [29]. Alternatively, synthetic transmission
data can be calculated based on an absorption CT recon-
struction[30].

The experiment is described in a coordinate system de-
fined by the voxel grid of the sample and the three orthog-
onal basis vectors x̂, ŷ, and ẑ. Typically these vectors
are chosen to conform to the convention of the beam-

TABLE I. Unit vectors defining the experimental geometry
and their values in the standard geometry used in previous
publications such as Ref. 21.

Symbol Standard Field name

p̂ +ẑ p_direction_0
ĵ +ŷ j_direction_0
k̂ +x̂ k_direction_0
q̂0 +x̂ detector_direction_origin
q̂90 +ŷ detector_direction_positive_90
α̂ +ŷ inner_axis
β̂ +x̂ outer_axis

line, where the experiments were performed, such that
the sample-fixed coordinates correspond to the labora-
tory coordinates when the goniometer angles are zeroed.
The geometry of the instrument is defined by specifying
a number of unit vectors in these laboratory coordinates.
These vectors include the beam direction p̂ (also called
the projection vector), the two orthogonal directions of
the raster-scan ĵ and k̂, and two vectors describing the
origin and the positive direction of the azimuthal inte-
gration q̂0 and q̂90 defined by the equation

q̂(ϕ) = cos(2θ/2)(cosϕq̂0 + sinϕq̂90)− sin(2θ/2)p̂

≈ cosϕq̂0 + sinϕq̂90.
(1)

This equation gives the normalized scattering vector q̂(ϕ)
probed by each detector segment as a function of the scat-
tering angle 2θ and the detector azimuth angle ϕ. The
second line gives a useful approximation valid for small
scattering angles. The sample can be rotated by a go-
niometer and the rotation of the sample goniometer at
a given setting labeled by s results in a rotation matrix
Rs. Typically, the goniometer is constructed by two or-
thogonal rotation stages, an inner “rotation” and outer
“tilt” stage. The full rotation is then defined by a pair
of rotation angles α and β with corresponding rotation
axes α̂ and β̂, such that Rs = Rβ̂(β)Rα̂(α). While all
these vectors may be chosen freely in Mumott (under
the restriction that certain vectors are orthogonal to cer-
tain other vectors), we work in a standard geometry in
this paper given by the choices tabulated in Table I and
visualized in Fig. 1.

The scattering from a given voxel (x, y, z) is propor-
tional to a characteristic function f3D

xyz(q) called the 3D
reciprocal space map (RSM). In the context of SAXS-TT,
the RSM is the Fourier transform of the auto-correlation
function of the electron density taken over a small vol-
ume. For the purpose of reconstruction, we consider one
“shell” of reciprocal space at a time and the 3D RSM
is built up by reconstructing and stacking successive 2D
shells (sketched in Fig. 2d). For one such shell we con-
sider the function f2D

xyz(q̂), which depends only on the
direction of the scattering vector. This function is mod-
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FIG. 1. Illustration of vectors defining the experimental
geometry in the laboratory coordinates (i.e., at α = β = 0).

eled by a sum of basis functions,

f2D
xyz(q̂) =

∑
i

cxyziBi(q̂), (2)

where Bi(q̂) are the basis functions (see Sect. III C below)
and cxyzi are the unknown expansion coefficients that we
want to find.

f2D
xyz(q̂) is described in sample-fixed coordinates such

that at a given rotation of the sample given by Rs the
detector segment at the angle ϕ measures the compo-
nent f2D

xyz(R
ᵀ
s q̂(ϕ)), where the superscript {}ᵀ denotes

the matrix transpose. In the normal setting, the detec-
tor is split into a number of evenly spaced segments in-
dexed by c covering either the full 360◦ for WAXS or 180◦
for SAXS. Each detector segment (Fig. 2a) is defined by
a start angle ϕc,start and an end angle ϕc,end. As such,
the detector segment probes the average of the scattering
function within this interval given by the integral

Ic ∝
1

ϕc,end − ϕc,start

∫ ϕc,end

ϕc,start

f2D
xyz (R

ᵀ
s q̂(ϕ)) dϕ

by inserting Eq. (2) into the above, we define the con-
stants (Fig. 2a,b)

Bsc,i =
1

ϕc,end − ϕc,start

∫ ϕc,end

ϕc,start

Bi (R
ᵀ
s q̂(ϕ)) dϕ, (3)

which describe how much each basis function scatters
in the direction measured by a given detector segment,
illustrated in Fig. 2a. This is an integral over a single
scalar variable, which can be numerically evaluated by
standard methods of quadrature.

To complete the forward model, we have to sum up
the intensity contributions from all voxels in the path
of the incident beam. At a given position of the raster
scan and rotation of the goniometer, only the voxels that
are illuminated by the beam contribute to the measured

FIG. 2. (a) Layout of vectors and angles on the detector.
A single detector segment is marked with a thick black line.
(b) Integrated basis function values Bsc,i plotted in a stere-
ographic projection. The black solid arc corresponds to the
single detector segment marked in (a). (c) Computed prob-
ing of each voxel by bilinear interpolation. (d) Splitting of a
3D-RSM into a stack of 2D-RSMs at fixed q-lengths.

scattering. A given voxel is indexed by the three integers
x, y and z and at a given setting of the sample goniometer
the position of the voxel is

rxyz = aRs

[
x y z

]ᵀ − b(j − δj)ĵ − b(k − δk)k̂, (4)

where j and k are integer indices of the raster scan, a is
the step size of the cubic voxel grid, b is the step size of
the 2D raster scan, and δj and δk are offsets caused by
parasitic movements of the sample stage during rotation.
Typically the resolution of the reconstruction is matched
with the raster scan such that a = b.

Finally, to include the scattering from all probed vox-
els, we introduce the factor Psjk,xyz which describes how
much the xyz-voxel overlaps with the incoming beam at
the position j, k of the raster scan at the goniometer set-
ting s. Psjk,xyz takes a value between 0 and 1 with the
value 0 for any voxel that does not intersect the x-ray
beam. Using this factor we can now write the scattered
intensity as a sum over all voxels in the voxel grid:

I(ϕ)sjk =
∑
xyz

Psjk,xyzf
2D
xyz(R

ᵀ
s q̂(ϕ)). (5)

Figure 2c gives a graphical interpretation of the
Psjk,xyz coefficients. By combing Eqs. (2) and (5) we
can now write up the full forward model for TT:

Isjkc =
∑
xyz

Psjk,xyz

∑
i

Bsiccxyzi (6)

⇔ I = Ac, (7)
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where on the second line we have defined the data vector
I, the system matrix A, and the coefficient vector c in
order to write the problem in linear algebra terms. The
system matrix has the block matrix structure

A =


[P0jk,xyz]⊗ [B0c,i]
[P1jk,xyz]⊗ [B1c,i]

...
[PNsjk,xyz]⊗ [BNsc,i]

 , (8)

where ⊗ is the Kronecker product. Note that the sys-
tem matrix does not factorize into a projection part and
a reciprocal-space part, as both the projection operator
and the basis function matrix depend on the orienta-
tion of the sample. This structure highlights the differ-
ence between tensor tomography and many other multi-
modal tomography techniques such as XRD-CT, x-ray
fluorescence tomography[31], time-resolved tomography,
and spectral tomography [32], where the real-space pro-
jection operation and the mapping of the other modal-
ity are decoupled. This prevents the use of many tech-
niques that rely on this factorization such as principal-
component-analysis methods [33].

With the forward model defined, we can now formulate
the inversion as the solution of a minimization problem:

c∗ = argmin
c

[
‖I−Ac‖aa + µ ‖Dc‖bb + . . .

]
, (9)

where ‖·‖a and ‖·‖b are two, potentially identical, vector
norms, µ is a regularization parameter, and D is a weight
matrix. The ellipsis indicates that more regularization
terms of the same form as µ ‖Dc‖bb may be added.

III. IMPLEMENTATION

Mumott is written in Python with performance-
critical parts implemented using the numba package [34]
for CPU and GPU acceleration in order to balance com-
putational efficiency, portability, and maintainability. It
also depends on numpy [35], scipy [36], scikit-image
[37], and colorcet [38]. The package is extensively
documented and the documentation is available online
at https://mumott.org and at https://doi.org/10.
5281/zenodo.7919448, including various examples in
the form of Jupyter notebooks.

A variety of common tasks pertaining to data align-
ment and reconstruction is accessible via functions that
provide a rather simple yet customizable interface. These
functions represent so-called “pipelines” (Sect. III D) and
are intended to serve as the primary interface for most
users.

The pipeline functions combine a number of individual
tasks and components, which are represented via objects
and are part of the underlying object-oriented framework
(Sect. III E). Through the latter, advanced users and de-
velopers can customize, adapt, and extend the functional-
ity of Mumott. Mumott is released under the Mozilla

TABLE II. Minimal example of a reconstruction workflow
using the modular iterative tomographic reconstruction algo-
rithm (MITRA) pipeline (Sect. III D 1).

# Load data
data_container = DataContainer('trabecular_bone.h5')

# Perform alignment
shifts, _, _ = run_optical_flow_alignment(

data_container , use_gpu=True)
data_container.geometry.j_offsets = shifts[:, 0]
data_container.geometry.k_offsets = shifts[:, 1]

# Execute reconstruction pipeline
result = run_mitra(data_container)

Public License Version 2.0 and developed as free-and-
open-source software, inviting the contributions of other
groups and developers.

In the following, we first provide a short demonstration
of the workflow (Sect. III A) before addressing basis sets
(Sect. III C), several common pipelines (Sect. III D), the
underlying object-oriented framework (Sect. III E), and
computational efficiency (Sect. III F).

A. Workflow

Tables II and III show examples of simple workflows
in Mumott for reconstructing a voxel map of 2D-RSMs
from experimental data. In the following sections we ex-
plain each of the steps in this process.

1. Loading the data.

The acquired data (after beamline specific preprocess-
ing) is handled using a DataContainer, which is created
by loading a HDF5 file (Table IV) that contains the az-
imuthally re-grouped data for one q-bin of the experi-
ment. While a full experimental dataset containing a
detector frame for each scan position can be quite large,
commonly on the order of 100s of gigabytes, a single q-bin
of the azimuthally regrouped data is usually hundreds of
megabytes to a few gigabytes. The data files can be pre-
pared containing the geometry data and sample offsets
information or only the data.

2. Definition of the geometry.

The geometry is defined by the vectors listed in Ta-
ble I, which can be given in any consistent coordinate
system. In the examples shown, the full geometry data
is already contained in the data file (and hence the
DataContainer), but in general it is possible to override
certain parameters after loading.

https://mumott.org
https://doi.org/10.5281/zenodo.7919448
https://doi.org/10.5281/zenodo.7919448
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TABLE III. Extended example for a reconstruction workflow
using a Tikhonov (L2) regularized least-squared model and
spherical harmonics as basis functions that uses the object-
oriented interface (Sect. III E).

# Load data
data_container = DataContainer('trabecular_bone.h5')

# Perform alignment
shifts, _, _ = run_optical_flow_alignment(

data_container , use_gpu=True)
data_container.geometry.j_offsets = shifts[:, 0]
data_container.geometry.k_offsets = shifts[:, 1]

# Define forward model
projector = SAXSProjectorCUDA(

data_container.geometry)
basis_set = SphericalHarmonics(ell_max=8)
residual_calculator = GradientResidualCalculator(

data_container , basis_set , projector)
loss_function = SquaredLoss(residual_calculator)
l2_norm = L2Norm()
loss_function.add_regularizer(

name='l2norm', regularizer=l2_norm ,
regularization_weight=2e-6)

# Carry out reconstruction
optimizer = LBFGS(loss_function , maxiter=20)
result = optimizer.optimize()

3. Aligning the data.

Before a meaningful reconstruction can be carried out
the data must be aligned, which means to calculate the
offsets defined in Eq. (4). To this end, Mumott pro-
vides several pipelines that use the transmission mea-
surement or the average scattering to correct misalign-
ment between each projection that occur due to parasitic
movements during acquisition. In the examples shown
here, we use the function that implements the optical flow
alignment procedure [39], which relies on center-of-mass
and tomographic consistency techniques. The alignment
functions return most importantly the shifts that are
needed for aligning the data. These values are then used
to override the offsets stored in the DataContainer ob-
ject.

4. Defining the reconstruction model.

The reconstruction model is defined by the choice of
basis functions, the form of the cost function as well as
the regularization terms. A large number of different al-
gorithms can be constructed by combining these three
choices. The simplest approach is to utilize one of the
existing pipelines (Sect. III D) as illustrated by the first
example (Table II), in which the modular iterative to-
mographic reconstruction algorithm (MITRA) pipeline
(Sect. III D 1) is used. Alternatively one can configure a
reconstruction model using the individual objects that

TABLE IV. Outline of the HDF5 file format used by Mu-
mott. The spaces indicate the hierarchy of entries; 0 is an
entry in the group projections, whereas data is an entry in
the group 0, and so on.

Path Type

p_direction_0 float(3)
j_direction_0 float(3)
k_direction_0 float(3)
detector_direction_origin float(3)
detector_direction_positive_90 float(3)
inner_axis float(3)
outer_axis float(3)
volume_shape int(3)
detector_angles float(nϕ)
projections Group

0 Group
data float(nj , nk, nϕ)
diode float(nj , nk)
inner_angle float(1)
j_offset float(1)
k_offset float(1)
outer_angle float(1)
weights float(nj , nk, nϕ)

1 Group
...

represent the different components. This approach is
demonstrated by the second example (Table III), where
we choose a basis of spherical harmonics in combina-
tion with a squared-difference loss function and Tikhonov
(L2) regularization.

5. Minimizing the loss function.

Once the loss function is defined, the optimization
problem can be solved using one of a number of opti-
mization routines. While this step is included in the case
of the predefined reconstruction pipeline in the first ex-
ample (Table II), it needs to be explicitly specified when
constructing the workflow as in the second example (Ta-
ble III), where we use the gradient-based LBFGS opti-
mizer. In the case of regularized models, one should then
perform a sweep of the regularization parameter space
in order to determine (a) sensible regularization param-
eter(s).

B. Deriving standard quantities from the output.

The result of a tensor tomography reconstruction is the
array of optimized coefficients, c∗ = [c∗xyzi], which are the
voxel-by-voxel expansion coefficients of the local 2D-RSM
shells in terms of the specific basis functions. In general,
the coefficients can be interpreted using the correspond-
ing basis set to compute latitude-longitude maps of the
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2D-RSMs shells and reconstructions of several q-bins can
be combined to construct 3D-RSMs from these maps.
Furthermore, a number of derived quantities are conven-
tionally used for evaluation and visualization of recon-
structions and can be calculated efficiently from the co-
efficients without needing to compute latitude-longitude
maps. Note that we define here the derived quantities
which are part of the output structure of Mumott VX.X,
additional quantities can be calculated from the array of
optimized coefficient, depending on the basis function.

The mean scattering intensity, also called the isotropic
intensity, is a measure of the density of scattering mate-
rial in all orientations and is defined as:

f =
〈
f2D
xyz(q̂)

〉
q̂

=
1

4π

∫ π

0

(∫ 2π

0

f2D
xyz(q̂(θ, φ))dφ

)
sin θdθ,

(10)

where θ and φ are a pair of polar coordinates for the
unit sphere.

A 2D-RSMs can also be expanded in tensor-
components. Especially the rank-2 tensor is of interest
because it allows easily computing primary directions,
given by the eigenvectors of the matrix. The second mo-
ment tensor is a 3 by 3 matrix with elements:

Mij =
〈
qiqjf

2D
xyz(q̂)

〉
q̂
, (11)

where qi are the x, y, and z components of q̂ for i = 1, 2, 3
respectively.

For many samples, a main orientation, such as a fiber-
symmetry axis of the nanostructure, can be defined per
voxel. The rank-2 tensor provides a means to efficiently
compute this direction through its eigendecomposition.
However, we point out that the interpretation of the main
orientation of the nanostructure depends on its scatter-
ing characteristics. Structures where a single direction
of strong scattering is expected at two opposite poles,
the main orientation is the eigenvector corresponding to
the largest eigenvalue. Similarly, for samples where a
ring equatorial band with strong scattering is observed
(e.g., the structure displayed in Fig. 3) the eigenvector
corresponding to the smallest eigenvalue should be cho-
sen. This provides a fast and noise-tolerant approach
to finding the main nanostructure orientation except in
cases where the rank-2 term vanishes, such as in Bragg
scattering from cubic-symmetric materials, where more
advanced approaches are needed.

Another quantity frequently used to describe the
anisotropy [40] of tensor tomography is the fractional
anisotropy (FA) which can be computed from the eigen-
values of the 2nd moment tensor:

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

2(λ2
1 + λ2

2 + λ2
3)

, (12)

where λ1, λ2, λ3 are the three eigenvalues of the second
moment tensor. FA = 0 for perfectly isotropic scattering

FIG. 3. Comparison of (a) spherical harmonics (SH), (b)
zonal harmonics (ZH), (c) nearest neighbors (NN), and (d)
Gaussian kernels (GK) basis sets. The upper row shows a
single basis function for each basis set. The lower row shows
the RSM at a single q of a single voxel of a reconstruction
using each of the four basis sets. The crosses in (c–d) show
the grids which are part of the definition of the NN and GK
basis sets. The directions used to define the NN model are
the face centers of the truncated icosahedron. The directions
used in the GK model are given by a modified Kurihara mesh.
The circles in (b) indicate the symmetry axes.

and reaches a maximum value of 1 when there is strong
scattering in one direction and the scattering goes to zero
in the orthogonal directions. Other values can be calcu-
lated from the coefficients to describe the anisotropy, also
referred to as the degree of orientation, and are described
elsewhere [19, 23, 41].

C. Basis sets

The most notable difference between different recon-
struction algorithms is the choice of basis functions. Fig-
ure 3 shows a comparison of the optimized 2D-RSM shell
of a single voxel of the same sample using four different
basis set types.

1. Spherical harmonics (SH).

The spherical harmonics are a set of orthogonal poly-
nomials that derive from the solution to the Laplace
equation in spherical coordinates. Any function on the
unit sphere can be represented by an infinite expansion in
spherical harmonics, but in practice the expansion must
be truncated at some finite order. Such a finite expansion
in spherical harmonics is called a band-limited spherical
function, and can be used to represent the 2D-RSM [23].
The SH basis set is fully defined by the band limit, `max,
at which the expansion in spherical harmonics is trun-
cated. This sets the resolution of the narrowest diffrac-
tion features that can be reconstructed to approximately
2π/`max radians.
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2. Nearest neighbors (NN).

A NN basis set uses a set of NN indicator functions.
This model is therefore defined by a grid of orientations
alone and the resolution is set by the distance between
grid points. This basis set can be used to emulate the
algorithm first presented in Ref. 20, which splits the TT
problem into a set of independent scalar tomography
problems.

3. Gaussian kernels (GK).

Like the NN basis set, the GK basis set is defined by
a grid of orientations, but instead of indicator functions
it uses smooth spherical Gaussian functions, rotated to
be centered on the various grid orientations. It there-
fore needs one extra parameter to define the basis set
namely the width of the kernel. The GK basis set has
many of the same properties as the NN basis set but un-
like the former results in smooth RSMs. The resolution
depends both on the distance between grid points and
the kernel width. Such spherical kernels are commonly
used in texture analysis where the specific function used
here is referred to as the Bunge normal distribution[42] to
distinguish it from several other Gaussian shaped kernel
functions that are frequently used.

4. Zonal harmonics (ZH).

The axially symmetric method established in Ref. 19
uses a ZH basis set and thereby differs from the other
methods implemented in Mumott by having a non-
linear forward model. This requires a separate workflow
involving a specialized calculator for the gradients and
optimizer. To enable high-order expansions, simplify the
code, and ensure interoperability between the ZH and
SH workflows, rotations and gradients are calculated in
coefficient space using Wigner D-matrices. This allows
orders up to `max = 100 in the current implementation,
although orders higher than `max ≈ 30 are difficult to
handle in practice due of the large number of coefficients.
Details of the implementation are given in [43].

The non-linearity of the forward model in the ZH ap-
proach makes the loss function non-convex, which renders
the optimization problem more challenging. Approaches
to overcome this difficulty include regularization of the
angle parameters and smoothing of the gradient [21], and
the use of an ensemble of randomized starting points [23].
In Mumott we use a starting guess provided by a differ-
ent reconstruction algorithm to determine the symmetry
direction.

D. Pipelines

Mumott provides various pipelines that implement
reconstruction and alignment workflows. The former in-
clude both “standard” and asynchronous pipelines. The
standard pipelines can be run using both CPU and GPU
resources and are usually highly customizable. The asyn-
chronous pipelines are optimized for GPU resources and
thus speed, and usually slightly less adjustable. They
employ asynchronous execution on the GPU to avoid the
overhead caused by transferring data between CPU and
GPU.

1. Standard reconstruction pipelines.

The simultaneous iterative reconstruction technique
(SIRT) is a popular reconstruction algorithm thanks to
its inherent regularizing properties that result from semi-
convergence [44] and the small number of tunable param-
eters. It has previously been used for tensor tomography
by, e.g., Ref. 20 and Ref. 18. In Mumott a traditional
approach to simultaneous iterative reconstruction tech-
nique (SIRT), is implemented in the SIRT pipeline.

While the SIRT algorithm is not conventionally stated
as a minimization problem, it has been shown that it is
equivalent to a specific preconditioned gradient-descent
weighted least-squares optimization [45]. Through this
re-formulation, the basic SIRT reconstruction becomes
compatible with various regularizers. The weight-
preconditioner approach employed in this form of SIRT
can also be extended to the RSM given by Eq. (3). This
approach is implemented in the modular iterative to-
mographic reconstruction algorithm (MITRA) pipeline,
which permits arbitrary regularizers and basis sets to be
used, as well as Nesterov momentum acceleration.

The spherical integral geometric tensor tomography
(SIGTT) pipeline sets up the basic reconstruction model
using a SH basis set, a squared-difference loss function,
and regularization using a finite-difference Laplacian fil-
ter [23]. The optimization problem is solved with the
LBFGS-B algorithms and uses a stop criterion based on
the relative change of the loss function.

The discrete directions (DD) pipeline emulates the re-
construction technique used by Ref. 20, which splits the
tensor reconstruction into a set of independent scalar re-
constructions, using the NN basis set. The pipeline em-
ploys the SIRT algorithm for the individual scalar re-
constructions. Discrete directions (DD) has the practical
advantage of needing less VRAM than methods which
reconstruct the entire RSM at once, as it only loads one
scalar component onto the GPU at a time.

2. Asynchronous pipelines.

These pipelines, optimized for GPU execution and
speed, include a tensor SIRT pipeline, which is similar to
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MITRA without Nesterov momentum. In addition, there
is momentum total variation reconstruction (MOTR),
which is essentially the default MITRA pipeline with L1

and two-sided total variation regularization. Finally, ro-
bust and denoised tensor tomography (RADTT) opti-
mizes for the Huber norm with two-sided total variation
regularization through Nesterov accelerated gradient de-
scent. The latter pipeline requires fine-tuning of the con-
figuration in order to converge reasonably well, but once
a proper step size and smoothing terms are found, it is
relatively robust against noise.

There are also sparse versions of the asynchronous
pipelines, which use a modified version of the John trans-
form that calculates the reciprocal-space and real-space
projection operations simultaneously within one kernel,
using a sparse approximation to the reciprocal-space
mapping. This is not necessarily faster than computing
the two mappings separately (unless the representation
is very sparse, such as only mapping one basis function
to each segment), but it uses less VRAM, as it is not nec-
essary to store the intermediate result between carrying
out the John transform and carrying out the reciprocal
space mapping.

3. Alignment.

The objective of alignment is to determine the offsets
∆j and ∆k of Eq. (4) that result from parasitic move-
ment and misalignment of the goniometer and drift dur-
ing the experiment [46]. The alignment step is essential
in tomography as any misalignment will be reflected as
an artifact in the tomographic reconstruction. There are
many algorithms to solve this problem, leading to sub-
pixel alignment accuracy, taking into account various ex-
perimental systems and data.

Mumott currently provides two alignment pipelines.
Both algorithms typically work with the transmitted in-
tensity data stored in the DataContainer or another
isotropic signal such as the azimuthally integrated in-
tensity. They iteratively update the offsets for each pro-
jection by reconstructing the absorption tomogram via a
projector. The overall workflow is shown in Fig. 4.

The phase matching alignment pipeline is based on
cross-correlation and follows Ref. 47. Cross-correlation
alignment has been proven for continuous objects in elec-
tron microscopy tomography by Ref. 48 and has been
widely used since. The principle is to determine the off-
sets by means of correlation functions formed from image
pairs of the projections, comparing the center of mass of
the image pair correlation peaks. This method is fast
and can provide sub-pixel accuracy for data with small
misalignment.

When the data exhibit misalignment of multiple pix-
els, the cross-correlation alignment alone can struggle
to find the appropriate coordinate transformation. For
such cases, Mumott provides the optical flow alignment
pipeline, which implements a toolbox algorithm based on

FIG. 4. Alignment pipeline workflow. Steps shown with
dashed outlines apply only for the optical flow alignment
pipeline.

FIG. 5. Slices from absorption reconstructions (a) before and
after alignment with (b) the phase matching method and (c)
the optical flow method. The projections have been sorted so
that the projection directions of neighboring projections are as
close to each other as possible. (d) Rotations and tilts as well
as alignment offsets from (e) the phase matching method and
(f) the optical flow method. Note how the rotations correlate
with changes in ∆j, whereas the tilts correlate with changes
in ∆k. In this case the offsets result from misalignment of the
goniometer’s rotation axes with the sample center.
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FIG. 6. Outline of the object-oriented framework in Mu-
mott. Orange boxes show input parameters and data pro-
vided by the user, blue ovals show objects, the green box
shows the output, and arrows indicate instances of objects
interacting with one another.

the work of Ref. 39. This approach uses multiple succes-
sive and interconnected alignment procedures, including
optical flow projection matching alignment, line vertical
alignment, and weight centering. The method is tunable
through various parameters and filters and is therefore
able to align extremely misaligned data, providing an ap-
proach that is usable for a larger variety of experimental
data.

Examples of alignment results with the two pipelines
are shown in the case of the publicly available experimen-
tal dataset of trabecular bone in Fig. 5 [49].

E. Object-oriented framework

The internal architecture of Mumott consists of an
object-oriented framework with some elements of func-
tional programming. The structure of the framework is
described in Fig. 6. Many objects are safely mutable
after instantiation and employ hashes of their mutable
properties to track the state of linked instances, which
means that derived properties can be recomputed when
required.

1. Data and geometry.

The DataContainer is the owner of the input data,
which is stored in HDF5 format. The input (measure-
ments and geometry metadata) is stored as a list of
projections, indexed by the direction index s as given
in Eq. (5), and the measured tensor tomographic data

can be accessed as a four-dimensional array indexed
by [s, j, k, i] as in Eq. (7). The information related
to geometry is stored in a Geometry object, which is
directly linked to the list of projections attached to
DataContainer. Thus, if a projection is removed from
the list, this will be reflected in the corresponding geome-
try data being removed from the Geometry instance. The
Geometry object stores the basis vectors of the system,
i.e., (p, j,k, q0, q90, α̂, β̂) listed in Table I and shown in
Fig. 1. The vectors must be specified in the laboratory
coordinate system, which coincides with the sample-fixed
coordinates (x, y, z) when R(s) = I, i.e., the identity
transform. A rotation operator is then specified, R(s),
which may be given as a rotation matrix or as an axis-
angle quadruplet (α̂, α(s), β̂, β(s)). Using the rotation
operator, vectors in the sample-fixed coordinates are then
dynamically computed for each s. This information can
be specified in the input data file or by the user through
direct modification of the Geometry object (see, e.g., Ta-
ble II).

2. Projectors and basis sets.

The Projector and BasisSet classes contain the
methods and properties needed to compute the forward
model defined in Eq. (7) and its adjoint. The Projector
objects depends on a Geometry object and employ rou-
tines implemented using the numba package [34] to com-
pute the spatial part of the transform, i.e., the matrix
elements Psjk,xyz in Eq. (5). This is implemented for
both CPU and GPU-based computation, the latter us-
ing the numba interface for CUDA. The implementation
employs an approach based on Joseph’s method [50] us-
ing bilinear interpolation of the field for the forward and
the projection for the adjoint computation, respectively,
based on the work of Ref. 51 and Ref. 52.

The BasisSet evaluates the constants Bsic in Eq. (3)
for the respective basis B (Sect. III C) using the provided
detector geometry and rotation operator RT

s . The inte-
gral is evaluated using adaptive Newton-Cotes quadra-
ture or approximated using the central angle of each seg-
ment. In addition, BasisSet provides a routine for com-
puting various properties of reconstructed tensors, such
as the orientation as defined by the rank-2 tensor com-
ponent of the field, the spherical mean, the variance, and
relative anisotropy (the spherical standard deviation nor-
malized by the mean).

3. Residual calculation.

The ResidualCalculator is a managing object which
takes a DataContainer, Projector, and BasisSet, and
uses them to compute residuals. It tracks the current
reconstruction, i.e., cxyzi. In other words, for the data
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Dsjkc, and the current reconstruction cxyzi it computes

r = Ac− I (13)

where r and I are flattened vectors of the residual and
data matrices respectively using the notation introduced
in Eq. (7). It also computes the gradient of a residual
norm, which is used by the gradient-based optimization
algorithms implemented in Mumott.

A special ZonalHarmonicsGradientCalculator is de-
fined to be used as a part of the ZH workflow. It is used
to map a list of ZH coefficients and two angle coordi-
nates into the space of all spherical harmonics (up to a
maximum order) in the sample-coordinate system, and
to compute gradients with respect to the ZH coefficients
and the angles.

4. Optimization.

The goal of the optimization is to minimize a
LossFunction (also known as an objective function)
by tuning the coefficients of the underlying model by
using an Optimizer. The LossFunction combines a
ResidualCalculator with one or several Regularizer
instances and can be given a preconditioner to weight
the gradient.

There are currently two types of loss functions that
support standard least-squares regression (SquaredLoss)
and robust regression via the Huber-regressor [53]
(HuberLoss), respectively.

There are also various regularization options. One can,
e.g., smoothen the solution by minimizing the squared L2

norm of the finite-difference Laplacian operator of the
tensor field (Laplacian). It is also possible to smoothen
the solution in a more robust manner by minimizing the
Huber norm of the spatial gradient for each basis-set
mode (TotalVariation). While it can be more difficult
to obtain convergence with more robust terms, it can also
be configured to use the Huber approximation for small
values to improve convergence.

Other Regularizer classes are available to minimize
the L2 and L1 norms of the tensor field, respectively.
While the L2 norm (L2Norm) penalizes large values, which
promotes rapid convergence, the L1 norm (L1Norm) en-
courages sparse solutions and tends to reduce noise in
the solution. Finally, one can also use the Huber norm
of the tensor field (HuberNorm), which acts as an L1Norm
for large values and an L2Norm for small values, converg-
ing more easily than L1Norm. When applied with the SH
basis-set, the L1Norm and HuberNorm are not rotational
invariants, and can bias the solution towards certain di-
rections.

In terms of optimizers Mumott provides gradient de-
scent with a fixed step size (GradientDescent), with
an option to use Nesterov accelerated momentum, as
well as the LBFGS-B algorithm for quasi-Newton so-
lution of the optimization (LBFGS). For the ZH work-
flow (Sect. III C 4) there is both a specialized optimizer

(ZonalHarmonicsOptimizer) and a gradient calculator
(ZonalHarmonicsGradientCalculator). It is a basic
gradient descent optimizer with a special heuristic rule
to determine a safe step size for the angle parameters.
Because of the non-convexity of the cost function, it re-
quires a good starting guess for the angles in order to
converge to a solution.

F. Computational efficiency and resource
requirements

The computational resources required to perform re-
constructions in Mumott are modest compared to pre-
vious implementations due to efficient implementations
of the John transform and the use of memory-efficient
solvers. The place where a user is most likely to run
into problems is the memory requirement for the data set
and solution vector, in addition to a few extra similarly
sized arrays needed by the solvers. The memory require-
ment is around a few gigabytes in the most common use
cases, but increases with both the size of the voxel grid
and the directional resolution. In order to use the GPU-
implementation, one requires a CUDA-compatible GPU
with sufficient VRAM to store an array the size of the
solution vector.

In general, the reconstruction is much less resource-
hungry than the preceding data-reduction steps. How-
ever, when conducting sweeps of regularization parame-
ters and full q-resolved 3D-RSM reconstructions, the re-
duced runtime from GPU-acceleration has a considerable
impact.

Table V compares the run times for different pipelines,
platforms, and configurations. Each configuration was
run 10 times on each platform, and the result was ob-
tained by averaging the run times after discarding the
first run, to enable on-disk caching to take place. All
runs were carried out with a maximum of 20 iterations,
although spherical integral geometric tensor tomography
(SIGTT) converged in 14 or fewer iterations in all cases.

The runs were carried out in separate, sequentially
run processes, which means that just-in-time compiled
kernels were not re-used beyond what is automatically
cached on disk. This has the largest effect on DD, which
creates sub-geometries for each basis function and there-
fore needs to re-compile code to carry out the John trans-
form for each sub-iteration, which adds approximately a
second of overhead per basis function. Therefore, DD
can perform substantially better than what is apparent
from this table when the same geometry is run multiple
times in a single process, as may be done for q-resolved
reconstruction. The time required to load data was not
included in the timing to eliminate the dependency on
the file systems used for benchmarking.
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TABLE V. Comparison of reconstruction times in seconds
averaged across 10 runs each for a typical single-q dataset
consisting of 247 projections, each with 65 × 55 pixels and
8 detector segments, using different reconstruction pipelines
and running on different computers. N is the number of ba-
sis functions per voxel. In all cases, relative uncertainties
were smaller than 5%, and are omitted to maintain ease of
reading. The workstation (WS) data was obtained using an
AMD Ryzen 7 3700X processor with 8 physical cores, 64GB
of DDR4 2666MHz RAM, and for the GPU accelerated cal-
culations an Nvidia GeForce RTX 3060 GPU with 12GB of
VRAM. The high-performance computing (HPC) CPU tim-
ings were generated using 8 top-level threads on a 64-core
Intel Xeon Platinum 8358 @ 2.0GHz CPU with some oper-
ations utilizing lower-level multithreading. The HPC GPU
timings were obtained used an Nvidia A100 GPU with 40GB
of VRAM and 8 threads on 16 cores of a 64-core Intel Xeon
Platinum 8358 @ 2.0GHz.

CPU GPU
N WS HPC WS HPC

SIGTT 6 23 18 9 9
20 45 29 18 14
72 108 69 60 36

MITRA 18 41 22 13 8
50 93 45 40 14

162 271 156 115 37

DD 18 81 72 40 43
50 156 157 101 111

162 334 392 290 346

MOTR 18 9 8
50 12 10

162 46 22

IV. OUTLOOK

Various additions and improvements to Mumott are
foreseen for the future. One of the main difficulties of
performing tensor-tomography experiments at present in
the interfacing with the existing data analysis pipelines at
the various synchrotron end stations with the reconstruc-
tion pipeline. At present, such an integration relies on
two intermediate steps. The first is azimuthal regroup-
ing of detector images, which results in a number of new
data files containing the azimuthally regrouped intensi-
ties that are organized projection-by-projection mirror-
ing the order in which the experiment was performed.
The second step is a slicing of the experimental dataset
into the Mumott-compatible HDF5 files described in
Table IV, which contains the data organized by q-bins.
These extra analysis steps are often slow due to requiring
many read- and write operations. On-the-fly reconstruc-

tions would require live azimuthal regrouping of detector
images and a more efficient data pipeline that allows fast
slicing in the q-dimension.

At present, Mumott is able to compute various prop-
erties of reconstructions and to save the results to HDF5
files. The user then has the responsibility for analysis and
visualization of the reconstructed quantities. It will be
useful to add the option to write to formats compatible
with common visualization software packages.

In Ref. 23, simulated data was used for the purpose
of validation and comparison of various reconstruction
methods. Being able to easily generate simulated data
in Mumott would be useful not just for validation, but
also to plan experiments and to generate synthetic data
for training machine learning models.

The splitting of the tensor-tomography reconstruction
into discrete 2D-RSM shells is a useful simplification that
reduces the size of individual reconstruction problems.
It would however often be advantageous to combine sev-
eral q-bins into a single reconstruction to enforce certain
types of prior knowledge of the nanostructure on the re-
construction for sample systems where an appropriate
model is available. An example of this is texture tomog-
raphy [54] applicable to Bragg-scattering from nanocrys-
talline materials where the rotational symmetries of the
crystal lattice can be imposed on the reconstruction by
performing a combined reconstruction of several q-bins
at once. Also in the case of fiber-scattering, different q-
ranges can contain scattering from different sample ori-
entations and a combined approach to reconstruction is
expected to be able to alleviate missing wedge artifacts
in the reconstructions.
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