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ABSTRACT: Rapidly detecting hydrogen leaks is critical for the
safe large-scale implementation of hydrogen technologies. How-
ever, to date, no technically viable sensor solution exists that meets
the corresponding response time targets under technically relevant
conditions. Here, we demonstrate how a tailored long short-term
transformer ensemble model for accelerated sensing (LEMAS)
speeds up the response of an optical plasmonic hydrogen sensor by
up to a factor of 40 and eliminates its intrinsic pressure dependence
in an environment emulating the inert gas encapsulation of large-
scale hydrogen installations by accurately predicting its response
value to a hydrogen concentration change before it is physically
reached by the sensor hardware. Moreover, LEMAS provides a
measure for the uncertainty of the predictions that are pivotal for
safety-critical sensor applications. Our results advertise the use of deep learning for the acceleration of sensor response, also beyond
the realm of plasmonic hydrogen detection.
KEYWORDS: hydrogen sensing, plasmonic sensing, nanoparticles, deep learning, neural networks

The ability to detect, quantify, and distinguish chemical species
accurately and rapidly is crucial for technologies requiring swift
data capture to support well-informed decision-making,
automation, and process-monitoring. Such technologies span
a wide range of applications, including environmental
monitoring,1 biosensing for real-time disease diagnostics,2

chemical process control3 and food quality evaluation.4 They
all have in common that they critically rely on the development
of sensors that are not only precise, sensitive, and selective but
also respond rapidly to their target substance and are able to
deliver an accurate quantitative measure of the concentration
of that target.
A domain that is rapidly expanding and where sensing will

play a pivotal role in facilitating safe large-scale implementation
is hydrogen-based technologies, including fuel cells for heavy
transport, shipping and aviation, energy storage solutions, and
green steel production. They all have in common the promise
of substantial reductions of greenhouse gas emissions.
However, this prospect also generates new demands for active
process monitoring and control and introduces safety concerns
owing to the high flammability of H2-air mixtures. All of these
issues can be effectively addressed by the development of
accurate H2 sensors.
From a sensing environment perspective, two distinct

settings exist, where ambient conditions characterized by an
abundance of oxygen constitute the most obvious one. The

second setting, which is of significant technological relevance
but much less discussed in the scientific literature to date, is so-
called “inert” or “oxygen-starved” environments. They are
established to encapsulate/enclose large-scale H2 installations,
such as entire engine rooms on fuel-cell-powered ships, or fuel
pipes on H2-powered airplanes, to avoid the formation of
flammable air-H2 mixtures. The rapid detection of even the
tiniest H2 leaks inside these inert gas encapsulation infra-
structures is critical to provide enough time for the
implementation of appropriate measures to eliminate, as well
as spatially localize, the leak by placing sensors at strategic
locations inside the system. Specifically, in such installations,
the system is continuously flushed by an inert gas, such as N2
or Ar, to eliminate or drastically reduce the presence of
molecular oxygen. Importantly, we note that the inert gas used
in such systems will be of low quality from a purity perspective
with respect to species, such as H2O, CO, or SOx, for cost
reasons. This combination of lack of O2 and the presence of
sizable amounts of “poisoning” molecules that bind strongly to
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many sensor surfaces poses a significant challenge because (i)
established H2 sensors of the catalytic and thermal type require
O2 to work and (ii) because the strong molecular bonds either
block/poison surface sites required for H2 dissociation and/or
detection, or facilitate surface reactions that consume hydrogen
species and thus prevent them from being detected.5

To steer the development of next-generation H2 sensors that
meet the upcoming demands of the widely implemented H2
technologies outlined above, agencies and stakeholders have
defined performance targets. The most well-known ones are
defined by the U.S. Department of Energy (DOE), which
identify sensor speed at ambient conditions as one of the key
unresolved metrics.6 To this end, a small number of studies
exist where H2 sensors with response times just below 1 s for a
0.1 vol % H2 pulse have been demonstrated experimentally.

7−9

However, although they are indeed important breakthroughs,
these demonstrations were made in an idealized pure H2-
vacuum environment that constitutes a severe simplification.
As the main reason for this simplification, we identify the
aforementioned challenge of “poisoning” molecular species in
technologically relevant sensing environments due to their
impact on the surface chemistry of a sensor. While it has been
shown that deactivation-resistant alloys and polymer filters can
mitigate sensor deactivation caused by gases such as CO, CO2,
CH4, and NO2,

7,10−13 and that machine learning can help
alleviate sensor deactivation due to H2O,

14 the presence of
these gases still slows down the sensor’s kinetics. Hence, even
though these demonstrations of H2 detection with subsecond
response in idealized vacuum/pure H2 conditions exist, it is
clear that further advances in this field are necessary.5

Traditionally, such advances are attempted by developing
new sensing materials, by nanostructuring the sensing materials
and/or signal transducers, and by refinement or modification
of fundamental physical sensing mechanisms.7,9,12,15−18 Inter-
estingly, however, only limited attention has been directed
toward harnessing the potential of tailoring the treatment of
output data of existing sensor platforms with the aim to
improve the sensor response time, e.g., by machine learning
techniques. While several studies have leveraged the potential
of machine learning to enhance the accuracy or sensitivity of
different kinds of gas sensors,14,19−23 including H2, the
potential to enhance sensor response times has only recently
started to gain attention.24,25 Specifically, Lin et al. used a
convolutional neural network (CNN) to accelerate the
response time of a Pd nanocap plasmonic H2 sensor, achieving
up to a 3.7-fold reduction in response time. While proving the
potential of using deep learning for this purpose, there is
potential to further accelerate sensing as their CNN-based
approach may not capture the full complexity of the sensor’s
dynamic behavior.
In response to and motivated by the high demand for faster

sensors in general and H2 sensors for inert gas environments in
particular, here, we develop an approach for accelerating H2-
sensing that combines optical nanoplasmonic sensors based on
hydride-forming metal nanoparticles, such as Pd and its alloys
with coinage metals,5,26,27 with transformer-based deep
learning. As we show below, this combination enables sensor
operation in technically highly relevant oxygen-starved
environments with significantly improved sensor performance.
Specifically, our approach reduces the response time for
predicting the H2 concentration by up to 40 times in inert gas
environments, surpassing conventional methods which are
limited by the need to reach full thermodynamic equilibration

of the sensor after a change in H2 concentration and hampered
by sensor deactivation effects due to the presence of molecular
contaminants in the inert gas environment. It also provides
uncertainty estimates of the sensor response predictions made,
which is an important feature for the safety-critical application
of H2 sensing.
To analyze the output data of plasmonic hydrogen sensors,

which typically consists of a time series of scattering or
extinction spectra in the visible light spectral range,5,27 the
current standard analysis (SA) widely applied in the field
collapses each such measured spectrum to a single spectral
descriptor, such as the spectral peak position, the full-width
half-maximum or the centroid position.28 As the key point, in
this analysis, a significant amount of information contained in
both the complete spectrum and its temporal evolution is not
used, since it is collapsed into a single descriptor. Hence, what
we argue and demonstrate here is that by utilizing all of this
information via a tailored deep-learning model, it is possible to
dramatically improve the sensor performance by analyzing
temporal trends of the full spectral information to predict the
thermodynamic sensor saturation level before this saturation is
physically reached and thereby accelerate the sensor response
time.
To harness this information with the aim to accelerate

plasmonic H2 sensor response in general, and in inert gas
environments in particular in this work, we introduce LEMAS,
short for Long Short-term Transformer Ensemble Model for
Accelerated Sensing, which improves the sensor speed by
learning the relationship between the time dependence of the
full spectrum and the H2 concentration, while simultaneously
assessing uncertainty in the model predictions through model
ensembles. The long short-term transformer (LSTR) archi-
tecture consists of long and short-term memory and has been
demonstrated to be well-suited for modeling long time
sequences.29 We demonstrate that LEMAS reduces the
response time of a Pd70Au30 alloy plasmonic H2 sensor by up
to 40 times when exposed to a distinct H2 pulse down to 0.06
vol % H2 in an inert gas environment at atmospheric pressure,
in a scenario simulating a sudden large leak. Furthermore, we
illustrate the ability of LEMAS to rapidly discern and quantify
slow gradual changes in H2 concentration from mere noise in a
simulated scenario of detecting a small leak in an enclosed
inert gas environment. This ability is critical for detecting H2 at
as low concentrations as possible as quickly as possible,
allowing sufficient time to apply safety measures, such as
system shutdown, before a safety-critical H2 concentration is
reached. Finally, as an ensemble model, LEMAS enables one to
obtain uncertainty estimates, which is of fundamental
importance for safety-critical applications, including but not
limited to H2 sensing. While we focus here on the specific case
of hydrogen sensing in an inert environment, we emphasize
that LEMAS is broadly applicable to nanoplasmonic sensors in
any environment. Our model makes no assumptions about the
specific sensing environment or the nanoparticle composition;
rather, it is trained on experimental data from a particular
sensor particle type obtained in a specific environment as a
demonstration. The approach itself, however, is fully adaptable
to other sensor types, compositions, and sensing conditions.

■ RESULTS AND DISCUSSION
Pd70Au30 Alloy Plasmonic H2 Sensors. As the plasmonic

H2 sensor platform of choice, we selected the well-established
Pd70Au30 alloy system, which we have investigated in detail in
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earlier works, where parameters such as limit of detection
(LOD), response times, and sensitivity have been re-
ported.7,30−33 This material system is especially suited for
inert gas sensing environments since its sensing mechanism,
the interstitial sorption of hydrogen into the lattice of the metal
host, does not require O2 to be present. The Au alloyant serves
the purpose of eliminating the intrinsic hysteresis characteristic
for pure Pd by lowering the critical temperature of the
system.34−37 At 30% Au the best compromise between
completely eliminating hysteresis, establishing a linear optical
response to H2 and maximizing optical contrast per unit sorbed
H2 is reached. Therefore, we nanofabricated quasi-random
arrays of Pd70Au30 alloy nanodisks with a mean diameter of 210
and 25 nm height onto fused silica substrates using hole-mask
colloidal lithography (Figure 1a,b), following the procedures
described in detail in our earlier work38 and in Sample
fabrication in Methods.

The working principle of plasmonic H2 sensors is based on
the localized surface plasmon resonance (LSPR) phenomenon,
which is characteristic of metal nanoparticles irradiated by
visible light. In an optical transmission, scattering or extinction
spectrum, the LSPR manifests itself as a distinct peak with a
maximum at a specific wavelength. The spectral position of this
peak maximum, as well as related peak descriptors, such as
width and intensity, exhibit a linear dependence on the H2
partial pressure surrounding the particles and on the amount of
hydrogen species absorbed into interstitial lattice sites of the
Pd or Pd alloy host (Figure 1c,d).32 Since the absorption and
desorption of hydrogen into and from these interstitial lattice
positions, respectively, occur spontaneously and reversibly at
ambient conditions and also in oxygen-free environments,
tracking of the spectral position (as well as other peak
descriptors) of the LSPR peak as a function of H2 partial
pressure enables real-time H2 detection (inset in Figure 1d). In
this work, for what we refer to as the SA, we use the centroid
position as a spectral descriptor, which we relate to the H2
concentration by a calibration function (see Standard analysis
in Methods and Note S3 for details).
Deep Learning Model Selection. We base our choice of

an LSTR model for accelerating the plasmonic H2 sensor
response on several key characteristics of the output data
generated by this type of sensor (see Figure 2 and Deep
learning model in Methods for details about the architecture).
The first important characteristic to take into account is that
the measured extinction spectra that constitute the raw sensor
response over time exhibit intrinsic noise (due to intensity
fluctuations of the halogen light source and detection noise of
the spectrometer used) that is comparable to the magnitude of
changes induced in the spectra by small variations in H2
concentration. Consequently, a crucial criterion for selecting
the deep learning model is its ability to accurately model long
temporal sequences, which the LSTR architecture is explicitly
designed for.29 This capability allows relevant temporal trends
in the extinction spectrum to be differentiated from the
inherent noise and used for predicting the hydrogen
concentration.
The second critical aspect influencing the performance of

the LSTR model, based on the characteristics of the sensor
data, is the preprocessing of the measured extinction spectra.
Such preprocessing is needed due to drift in the sensor
response over time (mainly due to long-term variations of light
source intensity), as well as small variations in the extinction
spectra obtained in different measurements using the same
sensor, due to slightly different placement of the sensor in the
measurement chamber for each independent experiment. Here,
we found that using several preprocessing methods is beneficial
for the performance of the LSTR model. Therefore, we used
four different preprocessing techniques (see Data preprocess-
ing and Note S2 for details) and concatenated them into a
single array.39 As a result, the input data for the deep learning
models was a time series, where each element in the sequence
consisted of the concatenation of the different preprocessing
techniques (see Figure 2a).
Another modeling choice that we make is to employ an

ensemble of LSTR models. This choice is motivated by the
safety-critical nature of the hydrogen sensor application and
yields a more robust prediction, as well as a measure of
uncertainty by aggregating the predictions of several LSTR
models to compute the mean and the standard deviation (see
Ensembles in Methods for details). Combining these modeling

Figure 1. Pd70Au30 alloy nanoparticle plasmonic sensor character-
ization and operating principle. (a) Energy-dispersive X-ray (EDX)
spectrum collected from a single Pd70Au30 alloy nanodisk in the quasi-
random array of such disks that constitutes the active sensor surface.
(b) Zoom-in of the EDX-spectrum in (a) up to 4.5 keV to focus on
the characteristic Pd and Au peaks. (c) Schematic illustration of the
plasmonic H2 sensing principle, where the sorption of hydrogen into
hydride-forming metal nanoparticles induces a change in their
localized surface plasmon resonance frequency, which leads to a
color change that is resolved in a spectroscopic measurement in the
visible light spectral range. (d) Example of the spectral response of the
Pd70Au30 alloy plasmonic sensor used in this work, resolved as a
gradual shift in the extinction spectrum as hydrogen is absorbed the
crystal lattice. Inset: Temporal evolution of the peak centroid position
is one of the spectral descriptors that can be tracked to enable real
time H2 detection.
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choices, we arrive at LEMAS, characterized by an ensemble of
LSTR models that can both rapidly predict the H2
concentration and provide a measure of uncertainty from a
time series of preprocessed spectra.
LEMAS Model Training and Testing. Having introduced

the architecture of the LEMAS model, we discuss the training
and testing data used for optimizing the sensor response in (i)
a large and fast leak scenario and (ii) a slow, gradual leak
scenario. These data were generated by measuring tailored
time series of optical extinction spectra of the sensor localized
in a custom-made measurement chamber with a small volume
to enable rapid gas exchange at atmospheric pressure to expose
the sensor to varying H2 concentrations in the simulated inert
gas environment as used for encapsulation of hydrogen
installations (see Hydrogen sensing experiments in Methods
and Figure S1 for details). Specifically, we used three different
H2 profiles for generating the training data: (i) stepwise
increase/decrease of H2 from 0.00 vol % H2 to 0.06−1.97 vol
% H2 in inert Ar environment (Figure S4), (ii) linear increase/
decrease of H2 from 0.06 vol % H2 to 0.09−1.97 vol % H2 in
inert Ar environment (Figure S5a) and (iii) exponential
increase/decrease of H2 from 0.06 vol % H2 to 0.09−1.97 vol
% H2 in inert Ar environment (Figure S5b), see Note S1 for
details.
For the first case of a large simulated leak characterized by a

rapid stepwise increase of H2 concentration in the sensor
surroundings, we trained LEMAS using two measurements of
stepwise H2 concentration increase/decrease and subsequently
tested the trained LEMAS model on a third measurement not
used for training. For the second case of a simulated small slow
leak, we trained LEMAS on one measurement of linear H2
concentration increase/decrease and tested the performance of
the trained model on one measurement with exponential H2
increase/decreases (see Deep learning training for details).
In this study, all measurements were performed using the

same sensor. Consequently, applying either LEMAS or SA to a
different sensor of the same type may require retraining, as
slight variations in sensor responses can arise due to
randomness in the fabrication process. However, in a practical

application, for other quality control reasons, it would be
imperative that the sensor chips used exhibit identical
characteristics across different batches of fabrication. This
can easily be achieved by state-of-the-art nanofabrication
methods, such as deep-uv photolithography or nanoimprint
lithography, which all have their origins in microelectronics,
where the aspect of high reproducibility is absolutely critical.
The models trained for optimizing the sensor response in a

large and fast leak scenario used a total input sequence length
corresponding to the past 3 min, whereas the models trained
for optimizing the sensor response in a slow gradual leak
scenario used an input sequence length corresponding to the
past 22 min of the sensor history. These choices were made
based on an analysis of the change in centroid position in the
training data and an estimation of the length of the time
sequence needed to differentiate the slowest occurring process
in the sensor output data from the noise in the measurement
(see Figures S10 and S11 for details).
Accelerating Sensor Response to a Simulated Large

Leak in Inert Ar Environment. To assess the ability of
LEMAS to accelerate the response of a plasmonic H2 sensor,
we first consider a scenario where a 0.06% H2 pulse in inert Ar
gas is applied to our device at 30 °C (Figure 3a). For this
analysis, we define the response time t90 as the first point in
time where the sensor response has reached 90% of its new
steady state value. Applying first the SA that predicts the
hydrogen concentration using the instantaneous value of the
centroid position reveals that it takes on the order of 85 s to
reach t90 − reflecting the physical time it takes for the response
of the system to saturate. Deploying the LEMAS analysis on
the same data shows that it is able to predict the saturated H2
level, using the temporal changes in the extinction spectrum,
after only 3.6 s and thus long before the response of the system
has saturated, leading to a more than 20-fold reduction of the
response time. This result is corroborated when comparing t90
values obtained by SA and LEMAS across a range of H2
pressure pulses from 0.06 vol % H2 to 1.97 vol % H2 (Figures
3b and S17). While LEMAS demonstrates a significant
reduction in response time compared with the SA, it is

Figure 2. Long Short-term Transformer Ensemble Model for Accelerated Sensing (LEMAS). Illustration of the deep learning model used in this
work based on the LSTR architecture (see Figure S16 for a more detailed illustration of the LSTR model). (a) The input data to the model consist
of a time sequence of the past evolution of the spectral response of the sensor. In this figure the time sequence consists of 600 time steps
corresponding to 198 s. (b) The time sequence is first split into long- and short-term memory and preprocessed using four different methods,
including wavelength dependent min-max normalization, standard normal variate standardization, global min-max normalization, and level scaling,
before the concatenation of the preprocessed data is being fed to the LSTR. (c) The LSTR first compresses the long-term memory to a fixed length
latent representation in the LSTR encoder. Second, the LSTR decoder extracts relevant temporal features in the short term memory while also
querying the compressed long-term memory. The extracted temporal features are then passed through a stack of multilayer perceptron (MLP)
layers to obtain a prediction of the current H2 concentration.
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important to note that the SA approach is computationally
more efficient. Fitting the SA model requires only a few
seconds, whereas training LEMAS takes approximately 10 h.
However, the primary time-consuming aspect for both
approaches is not training the model itself but generating the
training data; for example, a single measurement requires
approximately 20 h (see Figures S4 and S5). Notably, a large
number of such measurements would have to be carried out
also when using the SA in a practical implementation of the
sensor to generate the critically required sensor calibration
curve.
Remarkably, LEMAS also achieves a response time that is

practically independent of H2 concentration whereas the t90
from the SA quickly increases with decreasing H2 concen-
tration. We attribute this behavior to the fact that LEMAS only
requires a certain number of data points to identify the change
in the extinction spectrum and make its prediction, the

availability of which is dictated by the read-out frequency of
the spectrometer rather than the H2 pressure applied. By
contrast, the SA is limited by the intrinsic kinetics of the
material platform, causing a strong dependence on the H2
pressure. As a result, LEMAS yields the largest boost in
acceleration in the application critical range of lower H2
pressures, overcoming one of the most important intrinsic
limiting factors of hydride-based H2 sensors.
Specifically, for the smallest concentrations considered in

our experiment, at 0.1 vol % H2 and below, the response times
range between 1.6−3.6 s for the LEMAS analysis compared to
50−85 s for the SA. This corresponds to a 21- to 40-fold
improvement compared to the SA. This improvement exceeds
the one achieved by Lin et al., who used a CNN to accelerate a
Pd nanocap plasmonic H2 sensor, reducing the response time
for hydrogen concentrations of 0.1 vol % H2 and below to 6−
14 s from 13−30 s.25 At the same time, we also note that even
the accelerated response obtained by LEMAS in the present
inert gas conditions is slower than the state-of-the-art in
vacuum/H2 environment without acceleration.

7−9 As the main
reasons, we identify the following points: (i) The traces of
poisoning species, such as H2O, CO, etc. present in the Ar
inert gas used, significantly decelerate the sensor, as expected7

(see Figures S2 and S3 for quantitative mass spectrometric
analysis of the background molecular species present in the Ar
inert gas used). (ii) We have used relatively large nanoparticles,
and it is known that reducing size increases sensor speed due
to reduced hydrogen diffusion path lengths.7 (iii) We have not
applied any polymer coatings, which are known to accelerate
sensor response, as well as protect them from the poisoning
molecular species present in the inert gas.7,40 Importantly, we
emphasize that the primary outcome here is not the absolute
response time achieved by LEMAS but rather the level of
acceleration. This distinction is important since, given the
generic applicability of LEMAS, it suggests that similar
acceleration can be achieved for sensors where the intrinsic
physical response is faster than the sensor we use here.
Furthermore, we highlight that the amount of response time

acceleration that LEMAS can produce depends not only on the
obvious intrinsic response speed of the active sensor material
(in our case, the PdAu alloy nanoparticles) but also on the
sampling rate of the sensor hardware, where a higher sampling
rate enables a larger degree of acceleration. For our
experiments discussed so far, we have used a sampling
frequency of 3 Hz, which was the highest rate enabled by
the used spectrometer. Consequently, in this specific
implementation, LEMAS has only three data points available
to identify a change in the H2 concentration in less than 1 s.
Crucially, the acceleration observed in the present case is thus
not limited by LEMAS but by the underlying materials and
read-out of the used light sampling device. In other words, it
has the potential to be significantly improved by using a faster
spectrometric device.
Having established the overall LEMAS concept and

demonstrated its ability to substantially accelerate sensor
speed in inert sensing environments, in particular, in the low
concentration regime, it is interesting to evaluate the
performance of LEMAS in more detail. To do so, we select
three different H2 concentration pulses, i.e., pulses to 0.06,
0.08, and 0.10 vol % H2, and plot the sensor response
predicted by LEMAS as a function of time, with the standard
deviation of the prediction at each time point indicated in the
corresponding graphs (Figures 4a and S18 for all pulses). We

Figure 3. Accelerating sensor response to a simulated large leak in
inert gas environment. (a) Comparison of the prediction of LEMAS
and the centroid based SA for a pulse of 0.06 vol % H2 in inert Ar
environment. By utilizing the full time-dependent spectrum of the
measured sensor response, LEMAS is able to accurately predict the
final value of H2 concentration before the sensor physically reaches its
new state in equilibrium with the new H2 concentration level. (b)
Comparison of response times obtained by LEMAS and the centroid
based SA as a function of H2 concentration in inert Ar environment.
Note the significant acceleration by LEMAS, in particular at the
lowest H2 concentrations, and the elimination of the concentration
dependence of the response.
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also define the sensor settling time, ts
LEMAS, as the first time

point where the predicted H2 concentration lies within ±10%
of the target H2 concentration and the relative standard
deviation is smaller than 10%. This metric complements the
response time by also considering cases where LEMAS either
underestimates or overestimates the H2 concentration after t90.
First, we note that at the onset of each pulse, there is a brief

interval where LEMAS predicts 0 vol % H2, while the actual H2

concentration has already increased. This behavior occurs since
the change in the extinction spectrum induced by the presence
of H2 is not yet distinguishable from the noise level in the
measurement. This initial phase is followed by an interval
where a clear change in the extinction spectrum is detected but
where both error (Figure 4b) and uncertainty are still rather
large (red-shaded areas in Figure 4a). In the final phase, the
LEMAS-predicted H2 concentration settles at the correct value

Figure 4. LEMAS prediction accuracy to H2 pulses of different concentration. (a) The prediction and standard deviation from LEMAS for three
selected H2 concentration pulses in the test set. The lower panels display zoom-ins on the initial response to the pulse. (b) The relative error of the
LEMAS predictions for the entire range of H2 concentration pulses, starting at the response time, t90

LEMAS, and forward. (c) LEMAS settling and
response times as a function of the H2 concentration.

Figure 5. Small leak detection and quantification. (a,b) Time evolution of the H2 concentration obtained using the centroid based SA and LEMAS,
respectively, for exponentially increasing H2 concentration in inert Ar environment for leak rates of (a) 1.32 × 10−3 vol % H2 min−1 and (b) 5.73 ×
10−2 vol % H2 min−1. The correspondingly obtained limit of detection (LOD) and limit of quantification (LOQ) are also indicated. (c,d) LOD and
LOQ as a function of leak rate. Note that at the smallest leak rate, the LOQ is not reached for the centroid based SA.
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once the change in the extinction spectrum is sufficiently
distinct, such that all models in the ensemble predict a similar
H2 concentration, and the uncertainty becomes very small.
Finally, we note that for some pulses (illustrated by 0.08 and

0.10 vol % H2 in Figure 4a) the predicted H2 concentration is
overestimated for a brief interval past t90

LEMAS, before the mean
prediction settles around the target value. Consequently,
ts

LEMAS is larger than t90
LEMAS. Conversely, in other cases

(illustrated by the pulse to 0.06 vol % H2) the H2
concentration is underestimated until t90

LEMAS, at which point
the uncertainty has also been reduced. As a result, ts

LEMAS

equals t90
LEMAS in this (and similar) cases. To further examine

the overestimations we analyze the relative error of the
predicted response, starting from t90

LEMAS (Figure 4b). Overall
the relative error tends to be larger for lower H2 concentration
pulses since there is a transient overestimation in the LEMAS
prediction. Consequently, ts

LEMAS is generally larger for lower
H2 concentrations (Figure 4c). This is likely the consequence
of the early predictions being more affected by measurement
noise since lower H2 concentrations are associated with slower
absorption kinetics and smaller changes in the extinction
spectrum. An important implication of these initial over-
estimations is that the accuracy of the sensor's initial response
can be compromised if one relies on a single model, providing
further evidence for the benefit of using an ensemble model, as
we do with LEMAS.
Improving Sensor Response to a Simulated Small

and Slow Leak in an Inert Ar Environment. In a practical
application in an inert gas environment, H2 sensors are not
only required for the rapid detection of large leaks with fast
and essentially instantaneous increases of H2 concentration but
also in scenarios where a small leak will lead to a slow increase
in H2 concentration in an enclosed environment over time.
Technically, this translates into the challenge of being able to
discern as quickly as possible a tiny sensor signal from noise.
To address this scenario in the LEMAS framework, we define
the LOD of a sensor as the minimal amount of H2 required for
the mean H2 prediction to change by more than three times
the standard deviation of the H2 prediction at a baseline where
the H2 concentration is kept constant. In other words, the
smallest H2 required to discern (but not quantify) the presence
of hydrogen gas with a confidence of 3σ. Furthermore, we
define the limit of quantification (LOQ) as the minimal
amount of H2 for which the mean relative error of the H2
prediction is less than 5%. The mean absolute relative error

=N t
N P T

T
1

1
t t

t
is calculated over a time window of 2 min,

where N is the total number of time steps across the window,
Pt is the predicted H2 value for time step t and Tt is the true H2
value for time step t.
We then assess the sensor response to a first scenario with a

very small exponential leak rate of 1.32 × 10−3 vol % H2 min−1

using both the centroid-shift-based SA and LEMAS (Figure
5a). This analysis reveals that the LEMAS-predicted H2
concentrations contain considerably less noise compared
with the SA analysis. In the SA the noise in the H2 signal is
initially comparable to the change in the H2 concentration. As
a result, the LOD is reached faster, i.e., at lower H2
concentrations, for LEMAS due to its ability to discern
changes in the H2 concentration. We also note that the
LEMAS analysis generally delivers a more accurate response,

where the predicted H2 concentration values are closer to the
target values, resulting in the LOD being reached earlier for
LEMAS.
We also perform a similar analysis of a second scenario with

a higher exponential leak of rate 5.73 × 10−2 vol % H2 min−1

(Figure 5b; see also Figure S19 for the SA and LEMAS-
predicted H2 concentrations for all exponential leak rates).
Consistent with the previous analysis, LEMAS demonstrates a
significantly lower LOQ, which can be attributed to its overall
higher accuracy. However, despite LEMAS exhibiting less
noise than the SA the LOD of the two approaches is very
similar. This can be understood by noting that, in contrast to
the previous case, here, the fluctuations in the prediction of the
SA analysis are much smaller than the change in H2 due to the
higher exponential leak rate.
These results are further corroborated when comparing the

LOD and LOQ obtained by the SA and LEMAS methods,
respectively, across a range of exponential leak rates from 6.52
× 10−3 vol % H2 min−1 to 6.52 × 10−2 vol % H2 min−1 (Figure
5c,d). From Figure 5c we identify that for exponential leak
rates at 3.44 × 10−2 vol % H2 min−1 and below LEMAS has a
significantly lower LOD than SA. At larger exponential leak
rates, the LOD for LEMAS and SA becomes approximately
equal. This occurs because, at larger rates, the change in H2 is
sufficiently large such that the initial change in the sensor
signal is much larger than the intrinsic noise. Consequently,
the ability of LEMAS to discern small signals from noise does
not significantly contribute to decreasing the LOD. At lower
leak rates, however, LEMAS indeed makes it possible to extract
a discernible signal earlier, at lower leaked concentrations,
thereby significantly increasing the time window from triggered
sensor response to the leak has reached the flammability limit
of 4 vol % H2. Finally, in Figure 5d, we see that LEMAS has a
lower LOD for all investigated leak rates, which is a
consequence of the higher accuracy obtained through
LEMAS (see Note S3). In summary, these results underscore,
on one hand, the effectiveness of LEMAS in detecting small
and slow leaks earlier, as it consistently achieves a lower LOD
than the SA at small rates. On the other hand, they
demonstrate that LEMAS consistently outperforms the SA in
terms of leak quantification, as reflected in its lower LOQ
across all rates.

■ DISCUSSION AND CONCLUSIONS
In this work, we leveraged plasmonic H2 sensors with deep
learning to address the crucial challenge of faster H2 detection
under technically relevant conditions. We have focused so far
on the relatively unexplored yet important application area of
inert gas environments intended to enclose large H2
installations to avoid the formation of flammable air-H2
mixtures. For such applications, hydride-forming plasmonic
sensors are ideal, as they do not require molecular oxygen for
their operation, unlike the more common catalytic or thermal
H2 sensors.
From the deep learning perspective, we have developed

LEMAS, short for long short-term transformer ensemble
model for accelerated sensing, which accelerates sensor
response by learning the relationship between the time
dependence of the spectral response of the plasmonic sensor
and the H2 concentration. This allows predicting the sensor’s
final response before it is reached physically, while also
evaluating uncertainty in the prediction via model ensembles.
To obtain accurate models for the ensembles and mitigate

ACS Sensors pubs.acs.org/acssensors Article

https://doi.org/10.1021/acssensors.4c02616
ACS Sens. XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c02616/suppl_file/se4c02616_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c02616/suppl_file/se4c02616_si_001.pdf
pubs.acs.org/acssensors?ref=pdf
https://doi.org/10.1021/acssensors.4c02616?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


artifacts from measurement noise, drift, and variations between
different measurements, we found it crucial to use a sufficiently
long time series and combine the results of several different
preprocessing approaches.
Since LEMAS makes no assumptions about the specific

environment or sensor type, the approach developed here can
be readily adapted for other sensor types and operating
conditions. However, for environments containing higher
concentrations of “poisoning” molecular species, appropriate
considerations must be made. This requires designing a sensor
with deactivation-resistant alloys and/or polymer filters to
mitigate the deactivation of the sensor by such molecules. In
cases where such solutions are insufficient, we have previously
demonstrated how a different transformer-based machine
learning approach enables the accurate and stable detection
of hydrogen in a highly deactivating environment, i.e., high
humidity.14 Therefore, we believe that LEMAS could also be
applied successfully in such conditions with minor architectural
adjustments. The key to reliable application in these scenarios
lies in ensuring that the training data for LEMAS are generated
under controlled conditions, with systematic variations in the
concentrations of “poisonous” molecular species.
Overall, our results demonstrate the significant potential of

deep learning to address current H2 sensor limitations, such as
slow response times and challenges in quantifying H2 leaks.
This is important from a practical application perspective since
it provides a longer time window for the implementation of
appropriate measures for handling the leak.

■ METHODS
Hydrogen Sensing Experiments. The measurements were

conducted in a custom-built reactor chamber that is composed of a
customized DN 16 CF spacer flange (Pfeifer Vacuum), equipped with
a gas in- and outlet, and two fused-silica viewports (1.33 in. CF Flage,
Accu-Glass). The effective chamber volume is ca. 1.5 mL. The gas
flow rates were controlled by mass flow controllers (El-Flow Select
series, Bronkhorst High-Tech) (Figure S1). The sample inside the
chamber was illuminated by using an unpolarized halogen white light
source (AvaLight-HAL, Avantes) and an optical fiber equipped with a
collimating lens. The transmitted light was collected and analyzed by
using a fiber-coupled fixed-grating spectrometer (SensLine AvaSpec-
HS1024TEC, Avantes). The temperature was controlled with a
heating coil wrapped around the chamber and a temperature
controller (Eurotherm 3216) in a feedback loop manner, where the
sample surface temperature inside the chamber was continuously used
as the input.
All measurements were performed at 30 °C in an argon

background, with a constant gas flow of 300 mL/min. The hydrogen
concentration in all of the following measurements was in the range of
0.06 vol % H2 − 1.97 vol % H2 (detailed description of the different
pulse schemes as found in Note S1). The sampling frequency of the
spectrometer was set to 3 Hz.
Standard Analysis. In this work, we used the centroid position as

a spectral descriptor. The centroid position is defined as λc =
∑λλI(λ)/∑λI(λ), where λ is the wavelength in nm and I(λ) is the
intensity at wavelength λ. To enable comparison between the SA and
LEMAS on the test measurements, we fit a calibration function, using
the measured H2 concentration in the training measurements, as

= aH ( ) b
2 c c (1)

where Δλc is the change in centroid position, taken from the smallest
centroid position in each measurement. The values of parameters a
and b are determined by minimizing the mean absolute percentage
error between the measured H2 and H2 (λc). We fit two different
calibration functions, one for the data consisting of stepwise increase/

decrease of H2 and one for the data consisting of linear/exponential
increase/decrease of H2 (see Note S3 for details).
Data Preprocessing. The spectra recorded in different measure-

ments varied in total intensity due to changes in the light source but
also due to slightly different positioning of the sensor chip inside the
chamber which causes different particles to be probed at a given
measurement (see Figure S14). To address this, we preprocessed the
data before it was fed into the deep learning model using four
different methods, and the concatenation of these methods was fed as
input to the deep learning model. This to ensure that spectra
corresponding to the same hydrogen concentration were similar
across all measurements. Each measurement was preprocessed
individually by using the initial sequence of 5 pulses of 1.97 vol %
H2, for each measurement, to estimate the minimum/maximum/and
mean intensity. The preprocessing methods were (i) wavelength-
dependent min-max normalization: for each wavelength subtracting
the estimated minimum intensity at the corresponding wavelength
and dividing by the difference between the estimated maximum
intensity of all wavelengths and the estimated minimum intensity
measured at the specific wavelength, (ii) standard normal variate
standardization: scaling each spectrum using its mean and standard
deviation, (iii) global min-max normalization: subtracting the
estimated minimum intensity and dividing by the difference between
the estimated maximum and minimum intensity in, and (iv) level
scaling: subtracting and dividing each wavelength in each spectrum in
the measurement by the estimated mean intensity of each wavelength
(see Note S2 for details).
Deep Learning Model. The deep learning architecture that was

used in this work was a long short-term transformer (LSTR)29 which
operates as illustrated in Figure S16. First, each temporal feature
consisting of the concatenation of the preprocessed spectrum is
linearly mapped to a vector of size dmodel = 256. Subsequently,
positional encoding is added and the data is split into short-term
memory and long-term memory. Here, we down-sample the long-
term memory using a stride of 4. To process the time series, the long-
term memory first undergoes a two-stage memory compression
through the LSTR encoder, using a set of learnable token embeddings
of dimensions dmodel × n1 and dmodel × n0. Here, we used n0 = 8 and n1
= 4 and the encoder consisted of 4 transformer decoder units.41

Second, the LSTR decoder extracts relevant temporal features in the
short-term memory while also querying the encoded long-term
memory to retrieve useful information from the history of the sensor.
Here, the decoder consisted of 8 transformer decoder units. The
extracted temporal features are then passed through nMLP = 8 MLP
layers of dimension dMLP = 512 to obtain H2 concentration
predictions. Here all the transformer decoder units performed
multi-head attention with h = 8 heads and dk = dq = dv = dmodel/h
= 32, and the dimension of the MLP inside the transformer decoder
units was dff = 512. Furthermore, in the LSTR decoder, masked
multihead attention was performed such that during training the H2
concentration corresponding to each time step in the short-term
memory could be used for supervision during training. We used
dropout with a value of 0.1 in all layers, except the last nMLP MLP
layers. These hyperparameters were chosen based on those in the
original paper,29 with adjustments including additional MLP layers
and an increased number of transformer layers in the decoder, which
we found beneficial for reducing the noise in the LSTR’s predictions
and a smaller value of dmodel and h to reduce computational
complexity.
Ensembles. The constructed ensembles comprised ten models,

each varying in the lengths of short-term and long-term memory. This
variation was designed to induce diversity in the predictive capabilities
of the models in the ensemble. Specifically, two models were
designated for each combination of long- and short-term memory
lengths, while the total length of the input sequence was the same for
all models. For the ensemble tailored for leak detection, the length of
the time series was 4000 time steps, while the ensemble model aimed
at minimizing the response time used an input sequence of 600-time
steps. As we mentioned in LEMAS model training and testing, these
choices were based on estimating the time sequence length needed to
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distinguish the slowest process in the sensor data from measurement
noise (see Figures S10 and S11 for details). For both ensembles, the
selected lengths for short-term memory were 20, 40, 60, 80, and 100
time steps, respectively.
The values of the short-term memory length were selected based

on the idea that the short-term memory should be long enough such
that the LSTR decoder can analyze the most recent temporal trends
but short enough such that we still utilize the LSTR encoder's ability
to summarize important long-term history. The choice of the range
for these values is based on our understanding of the kinetics of the
underlying physical response of the sensor device studied here. The
variation in the length of the memories between the models in the
ensembles allows each model to capture slightly different patterns and
aspects of the data. The length of the short-term memory controls
how much of the recent portion the model can access directly, while
the LSTR decoder summarizes the rest of the time series, i.e., the
long-term memory. This setup should intuitively allow models with
different short-term memory lengths to respond slightly differently to
recent changes in the data. By aggregating the predictions across all
models, using the mean and standard deviation to compute a
prediction and measure of uncertainty, we limit the potential that
individual model limitations, such as oversensitivity to noise due to
the specific choice of short-term memory, cause inaccurate prediction.
Instead, since we average over predictions from models with varied
memory configurations, the ensemble is less likely to be biased by the
limitations of any single model. Furthermore, the uncertainty estimate
obtained from the ensemble offers insight into the prediction’s
reliability.
It is important to note that apart from the variation in memory

lengths, all models shared identical hyperparameters (see Table S1).
To make the prediction of the ensemble more robust to potential
outliers, we included only predictions that fall between the first and
third percentile to compute the ensemble prediction and uncertainty.
Deep Learning Training. The models were implemented using

TensorFlow42 and were trained for 100 epochs on Nvidia A100
graphical processing units using the AdamW43 optimizer with weight
decay 5 × 10−5, a batch size of 128, and mean-absolute-error loss. The
learning rate was increased linearly from zero to 5 × 10−5 during the
first 15 epochs and then decayed to zero following a cosine curve. To
analyze the impact of different preprocessing methods we used the
first half of the data from measurement Figure S4a,c as training data
and the other half as validation data (see Note S2).
For the first case of a large simulated leak characterized by a rapid

stepwise increase of H2 concentration in the sensor surroundings, we
trained LEMAS using the data from measurement Figure S4a,c and
used the data from measurement Figure S4b to test the model. For
the second case of a simulated small slow leak, we trained LEMAS on
the data from measurement Figure S5a and used the data from
measurement Figure S5b to test the model. Furthermore, during the
training phase, each model in the ensemble was exposed to a distinct
subset of the training data, comprising a random 90% of the total data
set.
Sample Fabrication. Quasi-random PdAu alloy (nominal 70:30

at. %) nanodisk arrays with 210 nm average disk diameter and 25 nm
height were fabricated using hole-mask colloidal lithography
(HCL).44 The metals were deposited layer-by-layer via electron
beam evaporation onto 1 cm × 1 cm fused silica substrates (Siegert
Wafer GmbH). Subsequent annealing was performed at 500 °C for 18
h under a flow of 4 vol % H2 in Ar to induce alloy formation. A more
detailed description of the nanofabrication procedure can be found in
our earlier work.45
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David Tomecěk − Department of Physics, Chalmers
University of Technology, SE-41296 Göteborg, Sweden

Pernilla Ekborg-Tanner − Department of Physics, Chalmers
University of Technology, SE-41296 Göteborg, Sweden;
orcid.org/0000-0002-9427-4816

Sara Nilsson − Department of Physics, Chalmers University of
Technology, SE-41296 Göteborg, Sweden

Giovanni Volpe − Department of Physics, University of
Gothenburg, SE-412 96 Göteborg, Sweden; orcid.org/
0000-0001-5057-1846

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssensors.4c02616

Notes
The authors declare the following competing financial
interest(s): C. L. is co-founder and scientific advisor at
Insplorion AB who markets plasmonic hydrogen sensors. D.T.
was postdoc in C.L. group when contributing to this work and
is now employed at Insplorion AB.

■ ACKNOWLEDGMENTS
This work was funded by the Vinnova project 2021-02760, the
Swedish Research Council (grant numbers 2018-06482, 2020-
04935, 2021-05072), the Swedish Energy Agency (grant No.
45410-1), the Area of Advanced Nano at Chalmers, and the
Competence Centre TechForH2. The Competence Centre
TechForH2 is hosted by Chalmers University of Technology
and is financially supported by the Swedish Energy Agency
(P2021-90268) and the member companies Volvo, Scania,
Siemens Energy, GKN Aerospace, PowerCell, Oxeon, RISE,
Stena Rederier AB, Johnsson Matthey, and Insplorion. The
computations were enabled by resources provided by the
National Academic Infrastructure for Supercomputing in
Sweden (NAISS) at C3SE partially funded by the Swedish
Research Council through grant agreement no. 2022-06725.
This work was performed in part at Myfab Chalmers and the
Chalmers Materials Analysis Laboratory (CMAL).

ACS Sensors pubs.acs.org/acssensors Article

https://doi.org/10.1021/acssensors.4c02616
ACS Sens. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c02616/suppl_file/se4c02616_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c02616/suppl_file/se4c02616_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c02616/suppl_file/se4c02616_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c02616/suppl_file/se4c02616_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c02616/suppl_file/se4c02616_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c02616/suppl_file/se4c02616_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c02616/suppl_file/se4c02616_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c02616/suppl_file/se4c02616_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssensors.4c02616?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c02616/suppl_file/se4c02616_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Paul+Erhart"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2516-6061
https://orcid.org/0000-0002-2516-6061
mailto:erhart@chalmers.se
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Christoph+Langhammer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-2180-1379
https://orcid.org/0000-0003-2180-1379
mailto:clangham@chalmers.se
mailto:clangham@chalmers.se
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Viktor+Martvall"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Henrik+Klein+Moberg"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Athanasios+Theodoridis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-4170-4325
https://orcid.org/0000-0002-4170-4325
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+Tomec%CC%8Cek"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pernilla+Ekborg-Tanner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9427-4816
https://orcid.org/0000-0002-9427-4816
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sara+Nilsson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Giovanni+Volpe"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5057-1846
https://orcid.org/0000-0001-5057-1846
https://pubs.acs.org/doi/10.1021/acssensors.4c02616?ref=pdf
pubs.acs.org/acssensors?ref=pdf
https://doi.org/10.1021/acssensors.4c02616?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ REFERENCES
(1) Zhang, M.; Yuan, Z.; Song, J.; Zheng, C. Improvement and
mechanism for the fast response of a Pt/TiO2 gas sensor. Sens.
Actuators, B 2010, 148, 87−92.
(2) Ribet, F.; Stemme, G.; Roxhed, N. Real-time intradermal
continuous glucose monitoring using a minimally invasive micro-
needle-based system. Biomed. Microdevices 2018, 20, 101.
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Supplementary Notes

Supplementary Note S1: Hydrogenation protocols

The hydrogenation protocols were as follows: 5 pulses of 1.97 vol.% H2 concentration were introduced
at the beginning of each measurement, in order to activate the nanodisks. For the step wise hydrogen
profile (Fig. S4), 3 different measurements were performed which consisted of a logarithmic distribu-
tion of H2 pulses (14 steps increase/decrease, 0.06 vol.% H2 minimum and 1.97 vol.% H2 maximum
concentration), where the pulse durations were set to 5min, 10min and 15min. The time between
pulses was 30min for all measurements.

For the linear hydrogen profile (Fig. S5a), the H2 concentration was slowly increased linearly to
a maximal concentration. For each of the ramp up/down cycles, the maximum concentrations were:
0.09, 0.13, 0.19, 0.28, 0.41, 0.61, 0.90, 1.33, 1.97 vol.% H2.The ramp-up/down duration was 1 hour.
The maximal concentrations were increasing after each ramping up/down and therefore the hydrogen
increase rate was changing as well. For the exponential hydrogen profile (Fig. S5b) the H2 concentration
was increased exponentially to a maximal concentration instead of linearly. The duration of the ramp-
up/down was 1 hour and the same maximum concentrations were used.

Supplementary Note S2: Data pre-processing

Due to variations in the spectra from different measurements (see Fig. S12 and Fig. S14), it was nec-
essary to pre-process the data before training a model (see Data pre-processing of the main paper).
Initially, we only considered one pre-processing method (wavelength dependent min-max normaliza-
tion), however, as seen by the blue curve in Fig. S13 this caused errors in the model predictions,
which are likely due to the pre-processed spectra for similar H2 concentration being relatively similar.
Sequentially, we therefore added standard normal variate standardization (orange curve in Fig. S13),
global min-max normalization (green curve in Fig. S13) and level scaling (red curve in Fig. S13). By
using all four pre-processing methods the model accuracy increases substantially.

The reason several pre-processing methods improve the accuracy of the deep learning model, we
believe, is that it is difficult to correct for the differences in spectra from different measurements
using only one pre-processing method. This because spectra from different measurement differ not
only in total amplitude but also slightly in shape (see Fig. S14). This causes spectra from different
measurements that correspond to different hydrogen concentrations to overlap at certain wavelength
intervals, making it more challenging for the deep learning model learn to distinguish between spectra
corresponding to different hydrogen concentrations. However, by introducing various pre-processing
methods, which enhance different features of the spectra, the deep learning model is able to learn more
robust features which are not as sensitive to these slight variations.

In Fig. S12 and Fig. S15 we illustrate how the different pre-processing methods used alter the
spectra. Wavelength dependent min-max normalization scales the data to the interval [0, 1], sharpens
the peak of the spectrum and enhances differences between spectra corresponding to different hydrogen
concentrations. Standard normal variate standardization centers the spectrum to have zero mean and
also accounts for potentially different noise levels by dividing each spectrum by its standard deviation.
This pre-processing method enhances the red-shift of the spectrum; however, it also reduces the relative
change of the peak position. Global min-max normalization, similar to wavelength dependent min-max
normalization scales the data to the interval [0, 1]. This method maintains the shape of the spectrum,
as it subtracts and divides all wavelengths of the spectrum by the same scalar. Level scaling focuses on
the relative difference (per wavelength) of the spectra; however, information about the spectral shape
is lost.

Supplementary Note S3: Standard Analysis

To obtain the calibration curve for the step-wise increases we used the measurement illustrated in
Fig. S4a. For each pulse, we extracted the steady-state centroid shift as well as the H2 concentration
(Fig. S6). The motivation behind only using the steady-state centroid shift is that a unique mapping
between the centroid shift and the H2 concentration does not exist during the transient state. Then
we minimized the mean absolute relative error and obtained a = 0.334 and b = 2.91 (see Eq. (1)).
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In Fig. S6 we illustrate the use of the obtained calibration function for predicting the H2 concentra-
tion on the measurement used for testing LSTR Ensemble Model for Accelerated Sensing (LEMAS)
(Fig. S4a). The mean absolute relative error of the standard analysis (SA) for this measurement
is 14.73 × 10−3 vol.% H2, which is higher than the mean absolute relative error of LEMAS being
1.048× 10−3 vol.% H2, showing that LEMAS has a higher accuracy.

To obtain the calibration curve for the linear/exponential increases we used the measurement
consisting of linear increases/decreases (Fig. S5a). Here, we used the entire measurement to obtain
a calibration curve, as the H2 concentration changes slower than the response time of the system
(Fig. S8). Then we minimized the mean absolute relative error and obtained a = 0.40 and b = 2.51. In
Fig. S9 we illustrate the use of the obtained calibration function for predicting the H2 concentration
on the measurement used for testing LEMAS (Fig. S5b). The mean absolute relative error of the SA
for this measurement is 13.43× 10−3 vol.% H2, which is higher than the mean absolute relative error
of LEMAS being 7.4× 10−3 vol.% H2, confirming again that LEMAS has a higher accuracy.
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Supplementary Figures

Figure S1: Experimental setup. Schematic illustration of the (a) reaction chamber and (b) gas
mixing system. Adapted with permission from Ref. 1.
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Figure S2: Gas background quadrupole mass spectrometer measurements. The gas flows
of 100% Ar (blue, left y-axis) followed by 100% H2 (red, left y-axis) and temperature (black, right y-
axis) during the quadrupole mass spectrometer (QMS) measurements of the concentrations of possible
trace gases in the mixture. The temperature was first increased to 400 ◦C in 100% Ar flow, to desorb
possible absorbed gases in the flow reactor. This was followed by one 15 minutes 100% H2 pulse, and
again one pulse of 100% Ar. The QMS measurement was started at time 0, marked by the dashed
line.
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Figure S3: Gas background quadrupole mass spectrometer measurements. The concentra-
tions of Ar and the trace gases during the Ar and H2 pulses in Fig. S2. The concentrations of the trace
gases at the end of the Ar pulse at 8000 s were 99.7% Ar, 0.26% H2O, 0.027% CO or N2, 31 ppm O2,
18 ppm NO, and 6.6 ppm NO2.
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Figure S4: Step wise hydrogenation measurements. Hydrogenation protocol for the step
wise increase/decrease, alongside the measured centroid shift. (a) 5min, (b) 10min, (c) 15min of
pulse duration followed by 30 minutes between each pulse for all measurements. The spectra collected
during the first 5 pulses to 1.97 vol.% H2 (gray shaded area) were used to pre-process the subsequent
spectra in each measurement and were not used for training or testing. The measured spectra and
set hydrogen concentrations from the red shaded region in measurement (a) and (c) were used for
training/validation, with the first 14 pulses being used for training and the last 14 pulses for validation.
The measured spectra and set hydrogen concentrations from non-shaded region in measurement (b)
were used for testing.
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Figure S5: Linear and exponential hydrogenation measurements. Hydrogenation protocol
for the (a) linear and (b) exponential increase/decrease alongside the measured centroid shift. The
ramp-up/down duration for each cycle was 1 h. The spectra collected during the first 5 pulses to
1.97 vol.% H2 (gray shaded area) were used to pre-process the subsequent spectra in each measurement
and were not used for training or testing. The measured spectra and set hydrogen concentrations from
the red shaded region in measurement (a) were used for training, while the measured spectra and set
hydrogen concentrations from non-shaded region in measurement (b) were used for testing.
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Figure S6: Calibration function for step-wise increases/decreases. Experimental data used
from measurement Fig. S4a to fit the calibration function for the step-wise increases and the obtained
calibration function.

Figure S7: Calibration function applied to the test data. Calibration function obtained from
Fig. S6 used on the test data, measurement Fig. S4b.
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Figure S8: Calibration function for linear/exponential increases/decreases . Experimental
data used from measurement Fig. S5a to fit the calibration function for the linear/exponential increases
and the obtained calibration function.

Figure S9: Calibration function applied to the test data. Calibration function obtained from
Fig. S8 used on the test data, measurement Fig. S5b.

Figure S10: Time series length for models optimized for accelerating sensor response.
Change in centroid position during the slowest occurring process in the training data, namely the
desorption from 0.06 vol.% H2 in measurement Fig. S4c. A time series comprising 600 time steps is
chosen here to allow the model to estimate the rate of change in the spectrum, which is a prerequisite
for accurately describing this process.
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Figure S11: Time series length for models optimized for leak detection. The change in
centroid position in the beginning of the leak with the smallest leak rate in Fig. S5a, compared to the
mean and standard deviation of the centroid position before the leak has started (indicated by the
double-headed arrow). Through using a time series comprising 4000 time steps the model should, in
the worst case, be able to differentiate the leak occurring with the smallest slope from the noise in the
sensor output data approximately 10min after the leak has started.

Figure S12: Different pre-processing methods. Illustration of the effect of different pre-
processing methods on model prediction as well as raw data for spectra from measurement Fig. S4a
(blue) and Fig. S4c (orange) at 0 vol.% H2.
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Figure S13: Impact of using different pre-processing methods. Predicted H2 concentration
on the two last step-wise increases in measurement Fig. S4c for models trained on the first half of
measurement Fig. S4a and Fig. S4c, using different combinations of pre-processing methods.
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Figure S14: Difference in spectra from different measurements. Illustration of spectra from
measurement Fig. S4a and Fig. S4c as function of the hydrogen concentration. The spectra differ
in total intensity, where spectra from measurement Fig. S4c higher intensity, while the spectra from
measurement Fig. S4a has lower intensity. The spectra also differ slightly in shape, most prominent
around 850 nm.
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Figure S15: Difference in spectra from different measurements after pre-processing. Illus-
tration of spectra from measurement Fig. S4a and Fig. S4c as function of the hydrogen concentration
after they have been pre-processed. Comparing with Fig. S14 the difference between the two mea-
surements are smaller, however some disparity still exists, which can be seen by e.g, noticing the two
distinct black lines in (i) or (iv) corresponding to spectra at 0 vol.% H2 in measurement Fig. S4a and
Fig. S4c respectively.
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Figure S16: Schematic illustration of the deep learning architecture used in this work.
Adapted from Ref. 2.
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Figure S17: Comparison of LEMAS and SA for step-wise increases in test data.
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Figure S18: Initial prediction of mean and standard deviation by LEMAS for step-wise
increases in test data.
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Figure S19: Comparison of LEMAS and SA for exponential leak rates in test data.
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Supplementary Tables

Table S1: Hyperparameters used for all models.

Parameter Value

nenc 4
ndec 8
n0 8
n1 4

dmodel 256
dff 512

num heads 8
head size 32

Temporal stride on long term memory 4
nmlp 8
dmlp 512

Dropout rate 0.1
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