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While the structural dynamics of chromophores are of interest for a range of applications, it is
experimentally very challenging to resolve the underlying microscopic mechanisms. Glassy dynam-
ics are also challenging for atomistic simulations due to the underlying dramatic slowdown over
many orders of magnitude. Here, we address this issue by combining atomic scale simulations
with autocorrelation function analysis and Bayesian regression, and apply this approach to a set
of perylene derivatives as prototypical chromophores. The predicted glass transition temperatures
and kinetic fragilities are in semi-quantitative agreement with experimental data. By analyzing the
underlying dynamics via the normal vector autocorrelation function, we are able to connect the β
and α-relaxation processes in these materials to caged (or librational) dynamics and cooperative
rotations of the molecules, respectively. The workflow presented in this work serves as a stepping
stone toward understanding glassy dynamics in many-component mixtures of perylene derivatives
and is readily extendable to other systems of chromophores.

Chromophores are an important class of materials with
a range of potential and realized applications in the area
of energy conversion thanks to their exceptional optical
properties. Chromophores have been studied, e.g., as ac-
tive materials in solar cells [1–5], organic light-emitting
diodes [6, 7], and photoswitchable and solar thermal stor-
age systems [8–10]. The properties of these materials
are sensitive to both the structural arrangements of the
molecules and their dynamic behavior. The dynamics
as manifested in macroscopic properties such as viscos-
ity and diffusivity, are also important for solution pro-
cessing, which is currently the most common approach
for large-scale manufacturing of devices based on these
materials. Controlling viscosity and diffusivity is often
achieved through glass formation [11], which can occur
upon rapid cooling, bypassing crystallization and result-
ing in a glassy state that lacks long-range order. The
glass transition is characterized by a dramatic slow down
in the materials dynamics over a narrow temperature
range that is commonly probed via the temperature de-
pendence of, e.g., the viscosity (via rheometry), the den-
sity (via dilatometry) or the heat exchanged with the
environment (via calorimetry).

For practical use, it is crucial to achieve glass forma-
tion controllably at modest cooling rates. In this con-
text, using mixtures of perylene derivatives, it has been
shown that increasingly stronger glass formers can be sys-
tematically obtained by increasing the number of compo-
nents. This principle works even though the underlying
molecules are weak (“fragile”) glass formers in single-
component systems [12]. Moreover, it has been found
that such many-component mixtures have further ben-
efits, including significantly improved thermal stability
[13]. While many-components mixtures thus have very
high potential for materials design, the much larger de-
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sign space also renders understanding the underlying dy-
namical processes much more challenging. Here, as a first
step toward a systematic understanding of these materi-
als, we investigate glass formation in single-component
liquids of perylene derivatives (Fig. 1a) using molec-
ular dynamics (MD) simulations in combination with
Bayesian regression.

While the microscopic dynamics of glass-forming sys-
tems can be explored via MD simulations [14, 15], it
is usually impossible to directly access the temperature
range in which the glass transition occurs due the time-
scale limitations of this technique. Here, to extend the
temperature range, we combine MD simulations with
Bayesian regression, which allows us to predict glass tran-
sition temperatures as well as the propensity for glass for-
mation (expressed via the kinetic fragility). To this end,
we observe the temperature dependence of the dynamics
via the diffusivity, which is anticorrelated with the vis-
cosity but computationally easier to converge than the
latter. Our results for the glass transition temperatures
and the kinetic fragility are in semi-quantitative agree-
ment with experimental data, supporting the viability of
the simulation approach. To gain insight into the mi-
croscopic processes we analyze the time-autocorrelation
function (ACF) of the molecular orientation, which re-
veals three distinct dynamic regimes corresponding to
intramolecular motion as well as β and α-relaxation pro-
cesses. Our work thereby establishes the viability of
this simulation approach and lays the groundwork for
future studies of the evolution of the dynamics in many-
component mixtures.

We considered five perylene derivatives (Fig. 1a),
which differ with respect to the length n of the pendant
alkyl chain CnH2n+1 attached to one of the bay posi-
tions. Monomer I corresponds to regular perylene with
no alkyl chain, whereas monomers II–V have alkyl chains
containing two (n = 2), four (n = 4), six (n = 6), and
twelve (n = 12) carbon atoms, respectively.

To characterize the dynamics of the perylene deriva-
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FIG. 1. (a) Perylene derivatives studied in this work. (b)
Schematic representation of the normal vector autocorrelation
function J(τ), see Eq. 2.

tives, we first consider the molecular diffusivity D, which
can be obtained from the MSD

⟨
∆r2

⟩
of the molecular

centroid positions [16],⟨
∆r2

⟩
= 6Dτ (1)

The diffusivity was computed using production runs with
a duration of up to 10 ns.

To obtain more detailed insight into the underlying
microscopic properties, we also analyzed the ACF of the
normal vectors indicating the orientation of each individ-
ual molecule (Fig. 1b) given by

J(τ) = ⟨n̂i(t) · n̂i(t+ τ)⟩it (2)

Here, n̂i(t) is the normal vector of molecule i (Sect. S1).
The ensemble average applies over all times t and each
molecule i in the system. Equation (2) can be efficiently
evaluated using the Wiener-Kinchin theorem.

One may also extract the standard error as an uncer-
tainty estimate for J(τ) from the ACF for each molecule
Ji(τ) before computing the ensemble average in Eq. 2
according to

σJ(τ) =

√
Var

(
{Ji}Ni=1

)/
N, (3)

where N is the number of molecules in the system.
Since the ACFs spans multiple orders of magnitude in

time, production runs of different length were conducted.
To sample short and long-time scales, simulations with a
length of respectively 100 ps and 10 ns were carried out
with snapshots being written every 1 fs and 100 fs, respec-
tively (Sect. S1). The normal vector ACFs were calcu-
lated for both production runs and subsequently spliced
together at a time lag of 1 ps.

We begin by analyzing the temperature dependence
of the molecular diffusivity (Fig. 2a; also see Sect. S2).
When obtaining these data from MD simulations we are
limited by the time scale that is reachable via the lat-
ter. While one can reach on the order of 1µs in total
simulation length, one has to keep in mind that com-
puting the diffusivity via the MSD according to Eq. 1
requires oversampling. For the present systems, this im-
plies that the MSD can no longer be reliably obtained

for temperatures below approximately 400K. This is be-
low the experimental melting point of pure perylene of
around 550K but above the experimental glass transition
temperatures, which range around 250K [12].

In order to be able to gain information about the
behavior at these temperatures, we need to extrapo-
late. However, since the diffusivity and other properties
change rapidly over many orders of magnitude in this
region, this extrapolation must be done with care and
account for error propagation. To this end, we employ
the VFT equation and combine it with Bayesian regres-
sion. The former describes the temperature dependence
of, e.g., the viscosity or the diffusivity of fragile glass for-
mers, allowing for non-Arrhenius behavior. While the
VFT equation is empirical in nature, it is widely used
in the analysis of glass-forming systems and provides an
accurate fit for many experimental observations as well
as the data obtained here (Fig. 2a). For the diffusivity it
reads

D(T ) = D0 exp [−B/ (T − TVF)] , (4)

where D0 is a prefactor, TVF is the Vogel-Fulcher temper-
ature, and B is a parameter akin to a pseudo-activation
energy [17]. The parameters of the VFT equation can
in turn be used to compute the kinetic fragility m =
B Tg/

[
ln(10) · (Tg − TVF)

2)
]
, where Tg is the estimated

glass transition temperature [18, 19].
Due to the exponential in Eq. 4 extrapolation and er-

ror propagation require care, which we handle here via
Bayesian regression. The latter is a technique in which
a model M(θ) with parameters represented by a param-
eter vector θ = [D0, TVF, B] is fitted to a set of data D
given prior information I, using Bayes’ theorem,

p(θ|D, I) ∝ p(D|θ, I)p(θ|I) (5)

The advantage of a Bayesian approach is twofold. First,
prior beliefs are clearly stated in the prior distribu-
tion p(θ|I). Second, error estimates are readily ex-
tractable from the posterior distribution p(θ|D, I), since
data uncertainties and errors can be encoded in the like-
lihood function p(D|θ, I). We then sample the poste-
rior distribution p(θ|D, I) via Markov-chain Monte Carlo
(MCMC) simulations using the diffusivity data from MD
simulations to fit the VFT equation (see Sect. S3 for de-
tails). This allows us to extrapolate the diffusivity to
lower temperatures along with controlled error estimates
(Fig. 2a).

The temperature at which the system transitions into
a glassy state is denoted by the glass transition temper-
ature Tg. Tg cannot be uniquely defined but is rather
set by a pragmatic property-dependent threshold. For
example, one often takes Tg as the temperature where
the viscosity reaches a value of 1011 Pa · s [19]. In the
present work, when considering the diffusivity, we adopt
a threshold of 17 × 10−22 m2/s, which corresponds to a
MSD of 100Å2 over 100 s. In other words, it specifies
the onset of diffusion beyond the first-nearest neighbor



3

750 500 375 300
Temperature (K)

0.4 0.6 0.8 1.0
Inverse temperature (1/300 K)

10−23

10−20

10−17

10−14

10−11

10−8

D
iff

us
iv

ity
(m

2
/s

)

a)

I
II
III
IV
V

I II III IV V
Perylene derivative

200

250

300

350

G
la

ss
tra

ns
iti

on
,T

g
(K

)

b)
Diffusivity ACF Experiment

I II III IV V
Perylene derivative

0

50

100

150

200

K
in

et
ic

fra
gi

lit
y,

m

c)

FIG. 2. (a) Extrapolation of the temperature dependence of the VFT fit of the diffusivity to lower temperatures (see Sect. S2
in the Supplementary Information for the MD data). The glass transition temperature Tg is defined as the temperature where
the MSD over 100 s reaches 100Å, denoted by the horizontal gray dashed line. The error band corresponds to one standard
deviation. (b,c) Violin plots of (b) the glass transition temperature Tg and (c) the kinetic fragility m estimated from both the
diffusivity and the normal vector ACF. Experimental values are from Ref. 12. Tg values were experimentally obtained from
DSC first heating thermograms with a heating rate of 0.17K · s−1. The kinetic fragility was obtained from FSC measurements
for various cooling rates as m = −d log |q|/d(Tg/T

′
f )|T ′

f
=Tg

, where q is the cooling rate and T ′
f is the fictive FSC temperature.

The simulated values for the kinetic fragility were computed from the VFT parameters as m = B Tg/
[
ln(10) · (Tg − TVF)

2)
]
.

Note that Tg is typically not observed experimentally for derivative I, due to its strong tendency to crystallize.

shell. We emphasize that since the viscosity and simi-
larly the diffusivity change very steeply around the glass
transition (Fig. 2a) the threshold value has only a mod-
est effect on the values obtained for Tg. For example,
increasing or decreasing the threshold by two orders of
magnitude changes our estimates for Tg by only ±5K

The glass transition temperatures obtained here are in
semi-quantitative agreement with experiments, and cor-
rectly predict the trend from II to V [12] (Fig. 2b). How-
ever, the simulated Tg values are overestimated compared
to experimental values obtained by differential scanning
calorimetry (DSC) by 50K to 70K. The predicted ki-
netic fragilities are also in agreement with experimentally
obtained values from fast scanning calorimetry (FSC)
(Fig. 2c).

The glass transition temperature decreases systemat-
ically with increasing alkyl chain length. Conceptually,
this can be explained by an increase in the effective vol-
ume available to each molecule caged by its neighbors,
due to the longer pendant groups. It is, however, note-
worthy that the kinetic fragility exhibits a maximum for
III, which features a butyl pendant chain — a non-trivial
behavior that is observed in both experiment and simu-
lation.

We now turn to the normal vector ACF J(τ) (Eq. 2)
to gain further insight into the relaxation processes close
to the glass transition (Fig. 3a). We demonstrate the
procedure for obtaining the temperature dependence of
J(τ) for derivative I, noting that the general temperature
dependence of J(τ) is consistent for all perylene deriva-

tives I–V (see Supplementary Information Sect. S4 for
the ACFs for all perylene derivatives).

First, we observe that the correlation time of J(τ)
depends strongly on temperature, ranging from 100 ps
at 800K to > 10 ns at 400K. At 800K the perylene
molecules thus maintain their orientation over a time
scale on the order of 100 ps, while they are effectively
locked in their orientation over 10 ns at 400K.

Second, the ACFs can be described by the sum of
two exponential functions and one stretched exponen-
tial function, where the latter is a common feature of
correlation functions in glassy systems [20]

J(τ) = A1e
−τ/τ1+A2e

−τ/τ2+(1−A1−A2)e
(−τ/τ3)

β

(6)

The timescales τ1, τ2, and τ3 are separated by several or-
ders of magnitude at low temperatures, with τ1 ≈ 0.1 ps,
τ2 ≈ 10 ps, and τ3 ≈ 1 ns at 450K. β ≤ 1 is the stretch
exponent for the long timescale component.

We can apply the same Bayesian regression workflow as
for the diffusivity to estimate the glass transition temper-
ature and kinetic fragility from the temperature depen-
dence of the normal vector ACF. However, an additional
step is required compared to the diffusivity, as the normal
vector ACF needs to be fitted to Eq. 6 for each tempera-
ture (Fig. 3b). Each fit yields a full posterior probability
distribution p(A1, A2, τ1, τ2, τ3, β|T,D, I). An estimate
for the timescale of the slowest process captured by the
ACF presented by τ3 with uncertainty estimates can then
be obtained from the marginal distribution p(τ3|T,D, I)
for each temperature (Fig. 3c). A VFT equation of the
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FIG. 3. Bayesian regression workflow used to extrapolate the normal vector ACF to longer timescales. (a) Normal vector
ACFs for perylene derivative I at different temperatures. Note that the y-axis has been split using different scales to reveal
the multiple steps in the ACF. (b) Normal vector ACF for perylene derivative I at 45K along with the corresponding posterior
distribution of fits to Eq. 6. (c) Subset of the posterior distribution in (b), p(τ1, τ2, τ3|D, I), shown as a corner plot. (d) Fit to
the VFT expression Eq. 7 using the mean µ, and standard deviation σ of the marginal distribution p(τ3|D, I).

form

τ3(T ) = τ0 exp [B/ (T − TVF)] , (7)

is then fitted to the temperature dependence of τ3, which
allows for a similar extrapolation to longer timescales as
in the case of the diffusivity (Fig. 4). Here, the thresh-
old for τ3 above which the system is deemed to be in a
glassy state was again taken to be 100 s [19]. Note that
the resulting glass transition temperature is relatively in-
sensitive to this particular threshold, as increasing or de-
creasing the threshold by two orders of magnitude only
changes Tg by ±7K.

The estimates for both the glass transition temper-
ature and the kinetic fragility from the normal-vector
ACF and the diffusivity generally agree with each other
(Fig. 2b,c). Both schemes capture the trend of decreasing
Tg with increasing length of the alkyl chain of the pery-
lene derivative. However, the estimates from the diffu-
sivity are higher than those from the normal-vector ACF
typically by 10K to 30K for the glass transition tem-
perature and by 10 to 40 for the kinetic fragility. This
difference is due to the two observables probing different
processes. The diffusivity is sensitive to the diffusion of
the monomers, while the normal vector ACF probes the
rotational motion of the monomer. The normal vector
ACF and the diffusivity are thus complementary. The
difference in Tg between both observables suggests that
the monomers continue to rotate on long timescales 10K
to 30K below the temperature at which diffusion has
slowed down.

We can elucidate the relaxation processes in the system
by decomposing the ACF into the contribution of each
exponential function that make up J(τ) (Fig. 5). The
separation of timescales between the processes allows the
selective application of frequency filters in the Fourier do-

main, corresponding to the timescales represented by τ1,
τ2, and τ3. These filters are applied to the trajectory of
a single perylene molecule extracted from the entire MD
trajectory, and allows us to single out the dynamics that
correspond to each process (see the supplementary movie
for a visual representation of this scheme, and Sect. S5
of the Supplementary Information for further details).

We study the dynamics of perylene derivative I at
a temperature of 450K as an example of this scheme
(Fig. 5). The fastest process with time scale τ1 cor-
responds to intramolecular atomic motion. The sec-
ond fastest process, τ2, corresponds to β-relaxation en-
forced by caging by neighboring molecules, such as li-
bration and twisting of the perylene core. Neither the
τ1 nor the τ2 processes significantly affect the orienta-
tion of the molecule, as is evident by their small ampli-
tude. The bulk of the autocorrelation function J(τ) is
made up of the slow τ3 process. τ3 corresponds to co-
operative intermolecular processes, such as reorientation
of molecules. The reorientation of a molecule requires
neighboring molecules to rotate, which takes place over
rapidly increasing timescales as the temperature is de-
creased. The experimental and simulated values of the
kinetic fragility indicate that all derivatives studied in
this work are fragile glass formers. In fragile glass for-
mers, the level of cooperation decreases significantly at
temperatures greater than Tg [21]. That τ3 captures co-
operative reorientation even in the supercooled regime at
450K thus indicates that it is sensitive to processes that
are more prominent close to the glass transition in frag-
ile glass formers. Based on this, we attribute τ3 to be
related to α-relaxation, and that the microscopic mecha-
nism driving glass formation in perylene derivatives I–V
is the cooperative reorientation of the molecules.

Given the sources of uncertainty related to the under-
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FIG. 4. Extrapolation of the temperature dependence of the
slowest process represented by τ3(T ), to lower temperatures
and thus lower frequencies. The error band corresponds to ±
one standard deviation. Tg is defined to be the temperature
which the timescale reaches 100 s, represented by the horizon-
tal gray dashed line.

lying empirical force field used in the MD simulations
and the extrapolation over many orders of magnitude,
we consider the overall agreement of the predicted glass
transition temperatures and kinetic fragilities with the
experimental data very encouraging. The normal vector
ACF in particular show semi-quantiative agreement with
experiments, with the ACF systematically yielding both
lower glass transition temperatures and kinetic fragilities
than the diffusivity (Fig. 2b,c). This difference highlights
the complementarity of the diffusivity and the normal
vector ACF, as they are more sensitive to molecular dif-
fusion and rotation, respectively. The estimated higher
value of the glass transition temperature from the diffu-
sivity can be understood as molecular diffusion freezing
in at a higher temperature compared to rotation. The
processes driving glass formation are thus cooperative ro-
tational processes, as elucidated by the decomposition of
the normal vector ACF. This is supported by the large
kinetic fragility deduced for all derivatives (Fig. 5). Cap-
turing both diffusion and rotation is hence key in order to
accurately describe the relaxation processes in the fragile
perylene derivatives studied in this work.

Both the normal vector ACF and the diffusivity sys-
tematically overestimate the glass transition temperature
and the kinetic fragility compared to experiment. The
overestimation of the kinetic fragility suggests that the
processes represented by τ3 in the MD simulation are
slower than those encountered during experiments. This
could be caused by the intermolecular interactions in the
simulation being somewhat too soft, which would point
toward a limitation in the accuracy of the underlying
force field. Another possible explanation could be that
the normal vector ACF overestimates the time scale of
processes in the system.

FIG. 5. Decomposition of the normal vector ACF J(τ) into
individual exponential functions representing three different
relaxation processes. The fastest process with a correlation
time of about 0.1 ps at 450K corresponds to intramolecular
atomic motion. The second one (β-relaxation) with a corre-
lation time of approximately 10 ps at 450K corresponds to
librational motion and twisting of the perylene core. Finally,
the slowest process (τ3-relaxation) with a correlation time of
approximately 10 ns at 450K corresponds to the hindered ro-
tational reorientation of the perylene molecules due to inter-
molecular interactions.

As noted in the introduction, experimentally the glass
transition can also be detected as a change in the ther-
mal expansion of the material, an approach that is also
occasionally adopted in simulations [22–26]. It is there-
fore instructive to contrast this approach with the one
based on diffusivity and time ACFs used in the present
work. For the present systems we observe a change in the
thermal expansion coefficient at a temperature of around
400K, which would suggest much higher glass transition
temperatures (Sect. S6). At the same time, one can ob-
serve from the analysis of the normal vector ACF that in
this temperature range the relaxation time for the slow-
est process τ3 reaches the limit of the MD time scale. The
change in the thermal expansion is thus merely a direct
result of the latter rather than a feature of the system.
As a result, at least for the present systems the analy-
sis of the thermal expansion cannot be expected to yield
a physically meaningful estimate of the glass transition
temperature.

The method for extending the temperature range us-
ing Bayesian regression presented in this work allows
us to study relaxation processes in liquid and super-
cooled liquid systems containing hundreds to thousands
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of molecules. Hence, it is possible to make material-
specific predictions for the glass transition temperature
and the kinetic fragility. The general approach is directly
extendable to other systems, where especially the diffu-
sivity can be readily computed. This work serves as a
first step towards accurately describing the complex re-
laxation processes in multi-component mixtures of pery-
lene derivatives. Insight into these relaxation processes
is key in obtaining a systematic understanding of the
dynamics of perylene derivatives, enabling the design of
stronger and more stable glass forming system.

COMPUTATIONAL DETAILS

MD simulations were performed using the gromacs
package [27] with the OPLS all-atom force field [28].
Topology and structure files where generated using the
LigParGen server [29–31], starting from structures from
the automated topology builder and repository [32–34].
A time step of 1 fs was used for all simulations, in com-
bination with constraining the hydrogen atoms using the
linear constraint solver algorithm [35]. The simulation
cell contained between 500 and 2000 molecules depending
on the length of the alkyl chain of the perylene deriva-
tive, and simulations were performed at temperatures in
the range 400K to 800K.

Each system was equilibrated at the target temper-
ature prior to production using the following protocol.
First, the system energy was minimized using a steep-
est descent optimizer, after which a simulation of 1 ns
was performed in the NVT ensemble. This was followed
by a 1 ns run in the NPT ensemble at a pressure of

2 kbar using a Berendsen barostat [36] to avoid cavita-
tion. The high-pressure NPT simulation was followed
by a 10 ns NPT simulation at 1 bar. Finally, produc-
tion runs were carried out in the NPT ensemble using
the stochastic pressure-rescaling barostat and a stochas-
tic velocity-rescaling thermostat [37] to obtain the diffu-
sivity as well as the short and long-time normal vector
ACF (Sect. S1). The production runs were 100 ps and
10 ns long, and trajectory files were written every 1 fs
and 100 fs, respectively.

The trajectories resulting from the simulations were
then parsed using the mdtraj package [38] and ana-
lyzed using python scripts to compute the correlation
function defined by Eq. 2. Bayesian regression analysis
was performed using the numpy [39], pandas [40, 41],
scipy [42] and emcee [43] packages. Plots were gen-
erated using matplotlib [44], seaborn [45], corner
[46], and color maps from perfect-cmaps [47].
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Figure S1: Schematic representation of the normal vector autocorrelation function J(τ), see
Eq. (S3).

S1 Computing the normal vector autocorrelation function
Given rmi (t) as the position of atom m in molecule i at time t, the centroid position of molecule i
with M atoms is defined as

ri(t) =
1

M

M∑
m=1

rmi (t). (S1)

We can now define the normal vector correlation function,

Cn̂n̂(r, τ) =

⟨
N∑
i=1

N∑
j=1

δ(r − rij)n̂i(t) · n̂j(t+ τ)

⟩
t

, (S2)

where n̂i(t) is the normal vector of molecule i, and is calculated by computing the normal to the
point cloud of atoms in the molecule, {rmi (t)}. The ensemble average is taken over all frames in the
trajectory. In particular, we study the special case of the normal vector autocorrelation function
Cn̂n̂(0, τ), denoted J(τ).

J(τ) = Cn̂n̂(τ) = ⟨n̂i(t) · n̂i(t+ τ)⟩it , (S3)
with the ensemble average taken over all frames t and each molecule i in the system. Equation
(S3) can be efficiently computed from the signal n̂i(t) using the Wiener-Kinchin theorem.

We may also extract the standard error as an uncertainty estimate for J(τ) from the correlation
function for each molecule Ji(τ) before computing the ensemble average in equation Eq. S3, using
the central limit theorem,

σJ(τ) =

√
Var

(
{Ji}Ni=1

)
/
√
N, (S4)

where N is the number of molecules in the system. The normal vector n̂i(t) and J(τ) are schemat-
ically represented in Fig. S1.

Two production molecular dynamics (MD) simulations, with a length of 100 ps and 10 ns re-
spectively, were run in order to get the same number of statistics for short and long timelags. The
trajectory files were written every 1 fs for the 100 ps simulation and every 100 fs for the 10 ns sim-
ulation. The normal vector autocorrelation functions (ACFs) according to Eq. S3 were calculated
for both production runs and then spliced together at a time lag of τ = 1ps. This splicing was
also done for the standard error in equation Eq. S4.

S2 Extracting the diffusivity from the mean-squared dis-
placement

We obtained the molecular diffusivity D for each perylene derivative I–V and temperature, from
the mean squared displacement (MSD)

⟨
∆r2

⟩
of the molecular centroid positions1,⟨

∆r2
⟩
= 6Dτ. (S5)

The diffusivity was computed using production runs with a duration of up to 10 ns. D was extracted
by performing a linear fit using Bayesian regression to the MSD (Fig. S2). Note that D for
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Figure S2: Diffusivity computed from the MSD for each perylene derivative I–V

high temperatures change slope; this is due to some of the derivatives transitioning to a gaseous
phase. When fitting the Vogel-Fulcher-Tammann (VFT) equation we thus only considered D for
temperatures < 700K.

S3 Bayesian fitting
In this work, we use a Gaussian likelihood function, which under the assumption of independent
and identically distributed Nd data di ∈ D, here takes the form,

p(D|θ, I) =
Nd∏
i=1

1√
2πσ2

i

e−(M(θ)−di)
2/(2σ2

i ), (S6)

with σ2
i as the variance of the residual for datum di. We use σi to encode the standard error of

the diffusivity and the ACF, as well as to perform error propagation.

S3.1 Fitting the autocorrelation function to triple exponential
Let J(τ)T denote the ACF for temperature T . For each perylene derivative a–e, we have a data
set of ACFs D = {J(τ)Ti}

L
i=1, where L is the number of distinct temperatures studied for this

derivative. In this stage, we used a Gaussian likelihood on the form in equation Eq. S6, where we
let σi = σ/σJ(τ)Ti

, with σJ(τ)Ti
being the standard error for ACF J(τ)Ti

at temperature Ti, and σ
is a free parameter. This is a heteroscedastic error model, in which each datum has an individual
error. In total, the set of free parameters to optimise in this stage was θ = {A1, A2, τ1, τ2, τ3, β, σ}.

The priors for each of the parameters were set as follows,

p(Ai|I) =
1

0.2
e−|Ai/0.1|, for A1, A2 (S7)

p(τ1|I) =
√
2

5
√
π
e−(τ1/5)

2/2, x > 0 (S8)

p(τ2|I) =
1

50
√
2π

e−((τ2−10)/50)2/2 (S9)

p(τ3|I) =
1√
2π

e−(log10 (τ3)−3)2/2 (S10)

p(β|I) =
√
2

0.1
√
π
e−((x−1)/0.1)2/2, x = 2− β (S11)

p(σ|I) =
√
2√
π
e−σ2/2, x > 0 (S12)

with the same priors being used for all temperatures. Note that the prior for τ3 is for log10 (τ3),
due to τ3 spanning several orders of magnitude throughout the temperature range. The joint prior
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then becomes
p(θ|I) =p(A1|I)p(A2|I)

p(τ1|I)p(τ2|I)p(τ3|I)
p(β|I)p(σ|I).

(S13)

We then used Markov-chain Monte Carlo (MCMC) sampling to sample the posterior p(θ|D, I).
For numerical stability, the likelihood and priors were rewritten as the log-likelihood and log-
prior respectively. Optimizing the posterior or the log-posterior does not change the resulting
distributions, and thus the quantity that was optimized was, up to a constant,

ln (p(θ|D, I, T )) = ln (p(D|θ, I, T )) + ln (p(θ|I)). (S14)

See Sect. S7 and Sect. S8 in the Supplementary Information for traces and corner plots resulting
from the Bayesian fitting procedure.

J(τ) = A1e
−τ/τ1 +A2e

−τ/τ2 + (1−A1 −A2)e
(−τ/τ3)

β

, (S15)
The triple-exponential model in equation Eq. S15 has six free parameters, and combined with the
noise parameter σ we thus obtain a seven-dimensional posterior distribution p(θ|D, I, T ). From
the posterior distribution, the marginal distribution for τ3 can then be extracted,

p(τ3|D, I, T ) ∝
∫

p(θ|D, I, T )dA1dA2dτ1dτ2dβdσ. (S16)

Computationally, the marginal distribution can be extracted by only studying the samples distri-
butions for the marginal parameters of interest. Mean µτ3(T ) and standard deviation στ3(T ) of
τ3(T ) were then extracted from p(τ3|D, I, T ) in order to inform the second stage of the regression
process.

S3.2 Fitting the diffusivity and autocorrelation to the VFT equation
Both the diffusivity and τ3 were fit to a VFT equation using the same framework, as described
in this section. The only difference between the two is the sign in the exponential of the VFT
equation, which was negative for the diffusivity since the diffusivity decreases with temperature.
We present the fitting for τ3 here as an example.

We fitted a VFT equation the mean values τ3(T ), µτ3(T ), from the first stage of the process,

K(T ;θ′) = τ03 exp
B

kB(T − TVF)
, (S17)

where kB is the Boltzmann constant. The VFT equation is an experimentally observed law that
the non-Arrhenius behaviour of α-relaxation in glass forming systems obeys, where τ03 , B, and
TV F are empirical fitting parameters2.

Note that the VFT equation as written in the main paper does not include kB , and is instead
written on the common form K(T ;θ′) = τ03 exp B

(T−TVF) However, when actually fitting the VFT
equation we introduced kB for numerical reasons as this yields a value of B ≤ 1. kB was then
absorbed back into B for all subsequent calculations of Tg, m etc.

The data set consisted of D′ = {µτ3(Ti)}Li=1. In this case also a Gaussian likelihood with
heteroscedastic errors σi = σ′/στ3(T ) was used, with στ3(T ) as the estimated standard deviation
of the posterior distribution for τ3. In total, four free parameters were fitted at this stage, θ′ =
{τ03 , B, TV F , σ

′}.
The priors used in the second stage of the fitting procedure were,

p(τ03 |I) =
√
2√
π
e−(τ0

3 )
2/2, x > 0 (S18)

p(B|I) =
√
2√
π
e−B2/2, x > 0 (S19)

p(TV F |I) =
1

200
√
2π

e−(TV F−200)/200)2/2 (S20)

p(σ′|I) =
√
2√
π
e−σ′2/2, x > 0 (S21)
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The log-posterior was then optimized using MCMC-sampling, similarly to the first stage of the
regression process. See Sect. S7 and Sect. S8 in the Supplementary Information for all traces and
corner plots resulting from the Bayesian fitting procedure.

The resulting posterior distribution p(θ′|D′, I ′) of the fit to the VFT equation was then used to
extrapolate τ3 to lower temperatures, feeding the posterior distribution samples through the model
in equation Eq. S17. The glass transition temperature Tg is roughly taken to be the temperature
at which the slowest relaxation process in the system exceeds 100 s2. We therefore took the
temperature at which τ3(T ) exceeded 100 s for each sample of the posterior distribution as an
individual estimate of Tg. In total, for each molecule a–e, we obtained a distribution p(Tg|D,D′, I)
of estimates of the glass transition temperature Tg. Note that the estimate for Tg is relatively
stable with regard to the choice of cutoff time for τ3(T ). Decreasing the time to 1 s or increasing it
to 10 000 s changes Tg by 7K and −5K, respectively. These changes are smaller than the standard
deviation of p(Tg|D,D′, I), which typically is approximately 10K to 20K for the systems under
study.

The glass transition temperature was similarly estimated from the diffusivity D(T ) as obtained
from the MSD, using the same workflow. In this case, the inverse of the diffusivity was fitted
against a VFT equation. The MSD over 100 s was then calculated as a function of temperature,
and Tg was estimated as the temperature at which the MSD reaches 100Å2.

S4 Autocorrelation functions for all perylene derivatives
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Figure S3: Calculated and fitted ACFs using (S15). Error bands of the fits are plus and minus one
standard deviation.
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Figure S4: Calculated and fitted ACFs using (S15). Error bands of the fits are plus and minus one
standard deviation.
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Figure S5: Calculated and fitted ACFs using (S15). Normal vector ACF for derivative IV

S5 Decomposing the autocorrelation function
Let {rki (t)}Mk=1 be a trajectory of the coordinates of the atoms in a specific molecule i. The
trajectory of a single molecule i was extracted and the centroid of the molecule, ri(t), was placed
in the middle of the simulation cell for each frame to avoid effects of the molecule moving over the
periodic boundaries. The power spectrum of for each Cartesian component of the shifted trajectory
was then computed, convoluted with a filter F (ω) in the Fourier domain, and the filtered power
spectrum S′(ω) was then back transformed to yield a filtered trajectory {r′k

i (t)}Mk=1,

Sl(ω) = F
[
rkil(t)

]2
(ω), l ∈ {x, y, z}

S′
l(ω) = Sl(ω) ∗ F (ω)

→ r
′k
il (t) = F−1 [S′

l(ω)] (t)

(S22)

where F denotes the Fourier transform. The filter F (ω) is a simplified bandpass filter, on the form

F (ω)

{
1, ω1 ≤ ω ≤ ω2

0, otherwise.
(S23)

By setting the filter frequencies ω1 and ω2 to match the expected time scales for τ1, τ2 and τ3,
this scheme gives a rough decomposition into what types of motion take place on the different
timescales and allows us to somewhat elucidate what processes the ACF capture.
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Figure S6: Glass transition temperature Tg estimated via simulated annealing using three different
cooling rates for ethyl-perylene, a perylene derivative denoted II in this work. Tg is taken as the
point at which the slope of the density changes, roughly at 425K. This estimate from simulated
annealing is severely overestimated compared to the experimentally measured glass transition tem-
perature of 252.35K from3.

S6 Estimating the glass transition temperature from simu-
lated annealing

Here we demonstrate the use of simulated annealing for predicting the glass transition temperature
of derivative II Fig. S6. Following the general approach set out in the literature, Tg is taken as
the point at which the density changes slope4–6. This approach yields Tg that is overstimated by
approximately 150K, compared to experiments using differential scanning calorimetry from3.

S7 MCMC sampling
Note that all the traces presented in this section have been sub-sampled by the maximum auto-
correlation time over all chains. The traces thus only contain uncorrelated values.

S7.1 MCMC traces: Fitting the diffusivity
In the interest of space, we only show a representative trace plot for derivative I at 450K (Fig. S7).
All traces for the remianing perylene derivatives and temperatures are similar.
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Figure S7: MCMC parameter trace for fitting the diffusivity in equation (S5) to the MSD at 450K
for derivative I

S7.2 MCMC traces: Fitting the VFT equation to the diffusivity
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Figure S8: MCMC parameter trace for the fit of the VFT equation to the diffusivity.
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Figure S9: MCMC parameter trace for the fit of the VFT equation to the diffusivity.
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Figure S10: MCMC parameter trace for the fit of the VFT equation to the diffusivity for derivative
V

S7.3 MCMC traces: Fitting the normal vector ACF
In the interest of space, we only show a representative trace plot for derivative I at 450K (Fig. S11).
All traces for the remianing perylene derivatives and temperatures are similar.
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Figure S11: MCMC parameter trace for fitting the triple exponential function in equation (S15)
to the normal vector ACF at 450K for derivative I

S7.4 MCMC traces: Fitting the VFT equation to the normal vector
ACF
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Figure S12: MCMC parameter trace for the fit of the VFT equation to the normal vector ACF.
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Figure S13: MCMC parameter trace for the fit of the VFT equation to the normal vector ACF.
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Figure S14: MCMC parameter trace for the fit of the VFT equation to the normal vector ACF for
derivative V.

S8 Corner plots
Note that all the traces presented in this section have been sub-sampled by the maximum auto-
correlation time over all chains. Thus, the corner plots only contain uncorrelated values.

S8.1 Corner plots: Fitting the diffusivity
In the interest of space, we only show a representative corner plot for derivative I at 450K
(Fig. S15). All corner plots for the remianing perylene derivatives and temperatures are simi-
lar.
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Figure S15: Corner plot of the MCMC parameter samples for fitting the diffusivity in equation
(S5) to the MSD at 450K for derivative I.

S8.2 Corner plots: Fitting the VFT equation to the diffusivity
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Figure S16: Corner plot for the fit of the VFT equation to the diffusivity.
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Figure S17: Corner plot for the fit of the VFT equation to the diffusivity.
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Figure S18: Corner plot for the fit of the VFT equation to the diffusivity for derivative V

S8.3 Corner plots: Fitting the normal vector ACF
In the interest of space, we only show a representative corner plot for derivative I at 450K
(Fig. S19). All corner plots for the remianing perylene derivatives and temperatures are simi-
lar.
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Figure S19: Corner plot of the MCMC parameter samples for fitting the triple exponential function
in (S15) to the normal vector ACF at 450K for derivative I.

S8.4 Corner plots: Fitting the VFT equation to the normal vector ACF
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Figure S20: Corner plot for the fit of the VFT equation to the normal vector ACF.
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Figure S21: Corner plot for the fit of the VFT equation to the normal vector ACF.
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Figure S22: Corner plot for the fit of the VFT equation to the normal vector ACF for derivative
V.
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