
calorine: A Python package for constructing and
sampling neuroevolution potential models

Eric Lindgren 1*, Magnus Rahm 1*, Erik Fransson 1, Fredrik Eriksson 1,
Nicklas Österbacka 1, Zheyong Fan 2, and Paul Erhart 1*¶

1 Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden 2 College of
Physical Science and Technology, Bohai University, Jinzhou 121013, P. R. China ¶ Corresponding author
* These authors contributed equally.

DOI: 10.21105/joss.06264

Software
• Review
• Repository
• Archive

Editor: Lucy Whalley
Reviewers:

• @Chronum94
• @naik-aakash

Submitted: 21 October 2023
Published: 06 March 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Molecular dynamics (MD) simulations are a key tool in computational chemistry, physics,
and materials science, aiding the understanding of microscopic processes but also guiding
the development of novel materials. A MD simulation requires a model for the interatomic
interactions. To this end, one traditionally often uses empirical interatomic potentials or force
fields, which are fast but inaccurate, or ab-initio methods based on electronic structure theory
such as density functional theory, which are accurate but computationally very expensive
(Müser et al., 2023). Machine-learned interatomic potentials (MLIPs) have in recent years
emerged as an alternative to these approaches, combining the speed of heuristic force fields
with the accuracy of ab-initio techniques (Unke et al., 2021). Neuroevolution potentials
(NEPs), implemented in the GPUMD package, in particular, are a highly accurate and efficient
class of MLIPs (Fan et al., 2021, 2022; Fan, 2022). NEP models have already been used to
study a variety of properties in a range of materials, with recent examples including radiation
damage in tungsten (Liu et al., 2023), phase transitions (Fransson, Wiktor, et al., 2023) and
dynamics of halide perovskites (Fransson, Rosander, et al., 2023) as well as thermal transport
in two-dimensional materials (Sha et al., 2023). Here, we present calorine, a Python package
that simplifies the construction, analysis and use of NEP models via GPUMD.

Statement of need
GPUMD is a package written in C++/CUDA that enables MD simulations as well as the
construction of NEP models, with all computations running on a discrete GPU. For efficiency
reasons this package uses a set of text based input and output files. calorine provides a
Python interface that makes it easy to access the functionality of GPUMD and integrate it in
Python based workflows. This includes but is not limited to managing the construction of
NEP models as well as setting up and analyzing MD simulations.

calorine also exposes two ASE Calculator objects (Larsen et al., 2017), one using the CPU
and one using the GPU. This has the expressed purpose of making NEP models transferable for
use outside of GPUMD, since the calculators can be used by other codes, as well as on machines
without discrete GPUs. Examples of such use cases include calculating force constants using
hiphive (Eriksson et al., 2019) and phonon dispersions using phonopy (Togo, 2023; Togo et
al., 2023).

The full documentation for calorine in addition to examples and tutorials can be found at
https://calorine.materialsmodeling.org/.
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Related software and recent work
Two other software packages that serve as companion software for GPUMD are PyNEP (Wang,
2023) and GPYUMD (Gabourie, 2023), focusing on NEP construction and MD simulations within
GPUMD respectively. calorine differs from these two by having a broader scope, encompassing
both NEP construction and sampling with MD simulations. Additionally, calorine exposes an
interface for modifying potential files, further improving the transferability of NEP.

Examples of recently published work supported by calorine include a study of the through-
plane lattice thermal conductivity in van-der-Waals structures (Eriksson et al., 2023), and
a study of dynamic modes in halide perovskites under a continous-order phase transition
(Fransson, Rosander, et al., 2023).
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