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Machine learning has emerged as a powerful tool in materials discovery, enabling the rapid de-
sign of novel materials with tailored properties for countless applications, including in the context
of energy and sustainability. To ensure the reliability of these methods, however, rigorous vali-
dation against experimental data is essential. Scattering techniques—using neutrons, X-rays, or
electrons—offer a direct way to probe atomic-scale structure and dynamics, making them ideal for
this purpose. In this work, we describe a computational workflow that bridges machine learning–
based simulations with experimental validation. The workflow combines density functional theory,
machine-learned interatomic potentials, molecular dynamics, and autocorrelation function analysis
to simulate experimental signatures, with a focus on inelastic neutron scattering. We demonstrate
the approach on three representative systems: crystalline silicon, crystalline benzene, and hydro-
genated scandium-doped BaTiO3, comparing the simulated spectra to measurements from four
different neutron spectrometers. While our primary focus is inelastic neutron scattering, the work-
flow is readily extendable to other modalities, including diffraction and quasi-elastic scattering of
neutrons, X-rays, and electrons. The good agreement between simulated and experimental results
highlights the potential of this approach for guiding and interpreting experiments, while also point-
ing out areas for further improvement.

I. INTRODUCTION

Advancements in materials science are pivotal for tech-
nological progress, driving innovations in energy storage,
electronics, and catalysis. Computational methodologies,
particularly density functional theory (DFT), have be-
come essential tools in materials discovery by predict-
ing materials properties and guiding experimental efforts
[1–5]. The integration of machine learning (ML) with
these computational techniques has further accelerated
the discovery of novel materials, e.g., by enabling rapid
screening of vast chemical spaces [3, 4, 6–9]. ML has
also facilitated the development of machine-learned in-
teratomic potentials (MLIPs), which allow accurate and
efficient atomic-scale simulations, bridging the gap be-
tween empirical potentials and first-principles methods
[10–12].

However, the predictive power of these computational
approaches necessitates rigorous experimental validation.
Scattering experiments, such as neutron, X-ray, and elec-
tron scattering, provide critical insights into the struc-
ture and dynamics of materials but require precise sim-
ulations to interpret the data accurately [13]. Bridging
the gap between computational predictions and experi-
mental observations remains a significant challenge in the
field. Predictive simulations could also significantly en-
hance experimental planning and execution by ensuring
that data acquisition is optimized for maximum infor-
mation gain while reducing the likelihood of inconclusive
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or ambiguous results [14–16]. Furthermore, such simu-
lations can support the preparation of beamline propos-
als, providing quantitative justifications for instrument
time requests by demonstrating expected signal strengths
and resolving power. As experimental facilities increas-
ingly integrate computational tools into their workflows,
predictive capabilities are poised to play a crucial role
in streamlining the experimental process, improving the
overall efficiency of materials characterization, and ulti-
mately accelerating scientific discoveries.

In response to these challenges, we here describe a com-
prehensive workflow that integrates DFT calculations,
MLIPs in the neuroevolution potential (NEP) format,
molecular dynamics (MD) simulations using gpumd, [17]
the computation of autocorrelation functions via dyna-
sor [18, 19], and their convolution with atomic form fac-
tors, instrument resolution functions and kinematic con-
straints. This enables instrument-specific predictions of
scattering data from first-principles, allowing direct com-
parisons between simulations and experimental measure-
ments.

We demonstrate the efficacy of this workflow by apply-
ing it to three example systems, including elemental Si,
crystalline benzene, and hydrogenated Sc-doped BaTiO3,
showcasing both its potential for guiding experimental
design and accelerating the discovery of new materials
as well as its current limitation. We focus specifically
on simulating inelastic neutron scattering (INS) exper-
iments, but the general workflow can be easily used to
simulate other experimental modalities, including diffrac-
tion as well as quasi-elastic and inelastic scattering of
neutrons, X-rays, and electrons.
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FIG. 1. Workflow for simulating neutron scattering experiments from first principles. (a) The first step of the workflow
comprises constructing machine-learned interatomic potentials (MLIPs) using an iterative cycle combining both data generation
and model validation. Here, the training is facilitated by the gpumd and calorine packages. (b) The final MLIP is used in the
second step to run large-scale MD simulations using the gpumd package. (c) The dynamic structure factor is computed from
the MD trajectories using the dynasor package. The dynamic structure factor is weighted by species-dependent scattering
lengths, and broadened with an instrument-specific resolution function in order to predict the outcome of a particular neutron
scattering experiment.

II. METHODS

The workflow that we demonstrate for predicting neu-
tron scattering experiments from first principles consists
of three steps. The first step is the the construction of
MLIPs based on the NEP framework (Fig. 1a; Sect. II A).
These accurate and efficient MLIPs enable the second
step of the workflow, which are large-scale MD simula-
tions (Fig. 1b; Sect. II B). The MD trajectories that re-
sult from the second step are then used in the third step
of the workflow, in which we compute the dynamic struc-
ture factor that is then weighted by neutron scattering
lengths as well as the instrument resolution function and
kinematic constraint (Fig. 1c; Sect. II C). The weighted
dynamic structure factor can then be compared directly
to experimental data.

A. Construction of the machine-learned potentials

The workflow starts with training of a MLIP, or using
an already trained model. Here, we used three different
MLIPs based on the NEP framework [17, 20, 21], one
for each of the systems studied in this work. For Si, the
model published in [17] was used, while we constructed
new models for crystalline benzene and hydrogenated
Sc-doped BaTiO3 (BaTi1–xScxO3Hx) using the iterative
procedure described in Ref. 22 utilizing the gpumd [17]
and calorine packages [23] (Fig. 1a).

The training set was initially composed of strained and
scaled structures, based on ideal structures using refer-
ence data from DFT calculations (Sect. II D). In the case
of benzene, the initial dataset also included dimer con-
figurations to ensure that intermolecular interactions are
correctly captured. An initial model was trained on all
available data. The dataset was then augmented with
structures from several iterations of active learning. To
this end, we trained an ensemble of five models by ran-
domly splitting the data into training and validation sets,
which was subsequently used to estimate the model un-
certainty. MD simulations were then carried out between
10 and 200K and at pressures ranging from 0 to 10GPa
for benzene, and from 300 to 2000K and at pressures
ranging from −1 to 10GPa for Sc-doped BaTiO3 using
the respective current generation of NEP models. The
ensemble was used to select structures with a high predic-
tion uncertainty, quantified by a range of predictions over
the ensemble, for which we computed reference energies,
forces, and stresses via DFT. These configurations were
subsequently included when training the next-generation
NEP model. In total the training set for benzene con-
sisted of 798 structures, corresponding to a total of 94 470
atoms. For Sc-doped BaTiO3, a total of 2280 structures,
corresponding to a total of 138 438 atoms. Structures
were generated and manipulated using the ase [24] and
hiphive packages [25].

We obtained the final NEP models after 13 iterations
for benzene and 6 iterations for Sc-doped BaTiO3. The
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final models were trained on all available data. For the
benzene model, the resulting average root mean square
errors (RMSEs) over the ensemble are 1.1(8)meV/atom
for the energies and 63(30)meV/Å for the forces, and
8.4(16)meV/atom for the virials. The corresponding
average coefficients of determination on the same folds
are R2 = 0.9997(3), R2 = 0.9949(51), and R2 =
0.9988(6) for energies, forces, and virials, respectively.
The RMSEs and R2 scores for the final benzene model
were 8.510meV/atom and R2 = 0.9998 for the ener-
gies, 59meV/Å and R2 = 0.9962 for the forces, and
9.3meV/atom and R2 = 0.9987 for the virials (Sect. S1).
For the Sc-doped BaTiO3 model, the ensemble RMSEs
were 6.6(13)meV/atom for the energies, 186(34)meV/Å
for the forces, and 31(5)meV/atom for the virials. The
respective coefficients of correlation (R2) were R2 =
0.999 98(1), R2 = 0.9765(58), and R2 = 0.9964(9) for
energies, forces, and virials, respectively. The RMSEs
and R2 scores for the final Sc-doped BaTiO3 model
were 6.2meV/atom and R2 = 0.9999 for the ener-
gies, 172meV/Å and R2 = 0.9792 for the forces, and
30meV/atom and R2 = 0.9963 for the virials (Sect. S2).

The resulting NEP models along with the reference
data used for training are available via zenodo as specified
in the Data Availability statement.

B. Molecular dynamics

In the second step of the workflow we perform MD
simulations using the MLIPs from the first step for large
supercells (Fig. 1b). The resulting MD trajectories are
later used to compute the dynamic structure factor as
detailed in the next section.

For Si, a supercell comprising 38 × 38 × 38 primitive
cells for a total of 438 976 atoms was simulated at 300K,
900K, 1200K, and 1500K, with equilibration of the sys-
tem in the NPT ensemble and production for 1 ns in the
NVE ensemble, with a timestep of 2 fs. The atomic po-
sitions were written to file every 14 fs in order to accu-
rately resolve the fastest vibrations in the system when
computing the dynamic structure factor.

Crystalline benzene was simulated in a supercell con-
taining a total of 57 024 atoms. The benzene system
was equilibrated in the path-integral molecular dynamics
(PIMD) ensemble [26, 27] to avoid the significant under-
estimation of the cell volume in the classical NPT en-
semble at low temperatures. The MD simulations were
conducted at 127K to strike a balance between computa-
tional cost and the number of PIMD beads (see Sect. S3
and Sect. S4 in the Supplementary Information). Pro-
duction runs were then performed for 1 ns in the NVE
ensemble. A timestep of 0.5 fs was used, and the posi-
tions were written every 3 fs. Ten independent MD runs
were performed to improve the statistics of the computed
dynamic structure factor.

Hydrogenated supercells of Sc-doped BaTiO3 were
constructed for various Sc concentrations in the range

16% to 70% in both the cubic and hexagonal phase.
The supercell contained ≃ 40 000 atoms. Equilibration
was performed in the PIMD ensemble at a temperature
of 15K, and production was carried out for 350 ps in
the thermostated ring-polymer MD ensemble [28] with a
timestep of 0.5 fs. This approach captures nuclear quan-
tum effects on the frequencies [27], but it should be noted
that the phonon occupation statistics are still classical.
Both equilibration and production runs used 32 PIMD
beads, for an effective system size of ≃ 1 300 000 atoms,
limiting the length of the production run compared to
Si and benzene because of the increased computational
cost.

C. Auto-correlation functions and
instrument-specific kinematic constraints

The central quantity analyzed in the third step of
the workflow is the dynamic structure factor, S(q, ω).
S(q, ω) is directly proportional to the intensity measured
in scattering experiments, and can be readily extracted
from MD simulations. While the procedure has been de-
scribed in detail in [18, 19], we briefly summarize it here
for completeness. Let n(r, t) denote the particle density
defined as

n(r, t) =

N∑
i

δ (r − ri(t)) . (1)

ri(t) is the position of particle i at time t, and N is the
total number of particles. The particle density can now
be Fourier transformed in space,

n(q, t) =

∫ ∞

−∞

N∑
i

δ (r − ri(t)) e
iq·rdr =

N∑
i

eiq·ri(t),

(2)

with the autocorrelation function of n(q, t) yielding the
intermediate scattering function F (q, t),

F (q, t) =
1

N
⟨n(q, t)n(−q, 0)⟩ , (3)

where the brackets denote an ensemble average. The in-
termediate scattering function can then be Fourier trans-
formed in time to yield the dynamic structure factor,

S(q, ω) =

∫ ∞

−∞
F (q, t)e−iωtdt. (4)

The dynamic structure factor in Eq. (4) can be fur-
ther generalized for multi-component systems. Differ-
ent atomic nuclei scatter neutrons, X-rays, and electrons
with varying intensity, which can be taken into account
by weighting the partial dynamic structure factor for
species α and β accordingly. In the case of neutrons,



4

the partial dynamic structure factor should be weighted
by the scattering lengths, bα and bβ ,

S(q, ω) =
∑
α

∑
β

bαbβSαβ(q, ω). (5)

The dynamic structure factor in Eq. (5) was computed
from the MD trajectories using the dynasor package
[18, 19] in the third step of the workflow (Fig. 1c). q-
points and time lags were selected to match the accessible
range of the simulated neutron scattering instruments.
Specifically, for Si a Brillouin zone path was sampled
connecting the high-symmetry points Γ, X, K, and L.
The path was sampled in 52 different Brillouin zones,
randomly selected from the first zone up to |q| =12Å for
a total of 6136 q-points. Randomly selected q-points up
to a magnitude |q| =14/Å and |q| =18/Å were sampled
for benzene and Sc-doped BaTiO3, respectively, yielding
2116 and 2601 q-points, respectively. Gaussian broad-
ening with a width of 0.01Å was then applied to each
q-point, followed by averaging over spherical shells in |q|
to produce S(q, ω).

Instrument-specific resolution functions and kinematic
constraints were applied to the calculated spectra us-
ing the euphonic package [29] with the resolution func-
tions defined in the ResINS package [30]. The reso-
lution functions used here are Gaussians with energy-
dependent width; the functions for TOSCA and Lagrange
are based on implementations in AbINS, and the func-
tions for MAPS and ARCS are based on PyChop [31].
(The instrument functions for both AbINS and PyChop
are distributed in Mantid [32].) Note that the true reso-
lution functions are four-dimensional and non-Gaussian,
but these 1–D approximations are used routinely in INS
simulations. The kinematic constraints have their ori-
gin in the instrument geometry and transformation from
time-of-flight measurements to (q, ω) space. In the sim-
ulations they are applied as a mask to data computed
directly in the (q, ω) space.

Finally, a quantum correction factor was applied to all
dynamic structure factors, in order to correct for the clas-
sical phonon statistics generated by the MD simulations.
Specifically, we applied the following correction factor
based on first-order Stokes-Raman scattering [33, 34],

S(q, ω)corrected = S(q, ω)
βℏω

1− exp (−βℏω)
. (6)

D. Density functional theory calculations

To generate reference data for the construction of the
MLIPs (Sect. II A) we performed non-spin polarized DFT
calculations using the projector augmented wave method
[35, 36] as implemented in the Vienna ab-initio simula-
tion package [37–39] with a plane wave energy cutoff of
520 eV using the vdW-DF-cx exchange correlation func-
tional [40] for benzene and the r2SCAN functional [41] for
Sc-doped BaTiO3. The Brillouin zone was sampled with

automatically generated Γ-centered k-point grids with an
approximate spacing of 0.25/Å and the partial occupan-
cies in each orbital were set using Gaussian smearing with
a width of 0.1 eV. The DFT data are available via zenodo
as specified in the Data Availability statement.

E. Inelastic neutron scattering experiments on
crystalline benzene

For validation of the predictions for crystalline ben-
zene, inelastic neutron scattering experiments were per-
formed at the TOSCA neutron spectrometer [42, 43] at
the ISIS Neutron and Muon Source. The liquid sample
was placed in a 1mm thick standard flat TOSCA alu-
minum cell which was then briefly submerged into liq-
uid nitrogen. As soon as the sample solidified it was
quickly transferred into the TOSCA closed cycle refrig-
erator and allowed to further cool to the cryostat base
temperature below 10K. The short INS measurements
(approximately 8 minutes per spectrum, i.e., total expo-
sure of 20µAh) were performed as part of a cooling run
at a rate of 3K/min, with the initial spectrum taken at a
starting temperature of 127K and followed by other mea-
surements at a starting temperature of 103K, 75K, 46K,
and 24K. The longer INS measurement (approximately
2 hours, i.e., total exposure of 285µAh) was performed at
the base temperature of 10K, giving a superior spectral
signal-to-noise ratio. The raw data, i.e., time-of-flight
events, were reduced using Mantid [32].

F. Post-processing and plotting

The NEP models and calculated correlation functions
were post-processed and analyzed using python scripts,
utilizing the numpy [44], pandas [45, 46], and scipy
[47] packages. Plots were generated using matplotlib
[48], with color maps from perfect-cmaps [49]. Atomic
structures were visualized and analyzed using Ovito
[50].

III. RESULTS

A. Anharmonicity in Si

We begin by applying the workflow outlined in the
methodology section to simulate an INS experiment on
crystalline Si at 300K reported in Ref. 51, that was car-
ried out at the ARCS wide range angular spectrometer
(BL-18) at the spallation neutron source (SNS) at Oak
Ridge National Laboratory (Fig. 2a). The simulation
is made instrument-specific by applying the resolution
function and kinematic constraint for ARCS to the sim-
ulated dynamic structure factor. The q and energy range
measured by ARCS is relatively broad (Fig. 3), and thus
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FIG. 2. (a) Simulated INS dispersion of Si from MD for the ARCS spectrometer at spallation neutron source, with the
harmonic phonon dispersion calculated using the NEP model overlaid (turquoise lines). (b) The simulated intensity at the
X-point, as well as (c) the first peak in the intensity at the X-point in the third Brillouin zone for 300K, 900K, 1200K, and
1500K (red lines). Note that the dispersion in (a) and intensity in (b) is aggregated over 52 different Brillouin zones, while
in (c) the results for only a single Brillouin zone are shown. The experimental data (black circles) is from [51]. The MD
simulation captures both the anharmonicity and multi-phonon effects present in the experimental data, as well as the mode
softening as the temperature is increased. The multi-phonon effects manifest as non-zero intensity between the acoustic and
optical branches at the X-point.

we computed the dynamic structure in multiple differ-
ent Brillouin zones to accurately sample the full range
allowed by the instrument. In total, 52 Brillouin zones
were sampled. The dynamic structure factors S(q, ω)
were then weighted by a factor ∝ 1/|q|2 since to first or-
der the scattered intensity grows as |q|2. Furthermore,
the Debye-Waller factor, exp (−q2U/3), was corrected for
in each of the Brillouin zones before the zones were av-
eraged together. This expression for the Debye-Waller
factor assumes an isotropic displacement of the atoms in
all Cartesian directions with U =

⟨
u2

⟩
being the mean

squared displacement in the system [52]. U was esti-
mated to be 0.013Å2 from a 100 ps MD simulation of the
Si system at 300K, otherwise following the same protocol
as the other simulations of Si in this work.

We validate our results by comparing them to the ex-
perimental data measured on the ARCS spectrometer in
Ref. 51. Specifically, we consider the intensity at the
high-symmetry X-point (Fig. 2b), where the simulated
intensity has been multiplied by an extra factor of ω2.
Our results are in quantitative agreement with exper-
iments, with the centroids of the phonon mode peaks
agreeing well. The relative intensity between the differ-
ent phonon mode peaks in the experiment are not en-
tirely reproduced in the simulation, which could be due
to a missing correction factor or experimental variability.

We note, in particular, the nonzero intensity mea-
sured in the experiment and captured by the simula-
tion in the region 30meV to 50meV. This scattered

FIG. 3. Kinematic constraints for the four neutron instru-
ments simulated in this work. ARCS (BL-18) is a wide-range
spectrometer at the spallation neutron source (SNS) at the
Oak Ridge National Laboratory (USA). TOSCA and MAPS
are spectrometers at the ISIS Muon and Neutron Source
(UK). Finally, IN1 Lagrange is a spectrometer at the Institute
Laue-Langevin in Grenoble (France). Note that all spectrome-
ters differ in q and energy range and resolution, owing to their
respective kinematic constraints and resolution functions.

intensity corresponds to multi-phonon effects, which are
inherently captured by MD simulations. Furthermore,
the effect of thermal expansion as the temperature is
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zone. (b) The kinematic constraint for the ARCS spectrom-
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in (a) depending on the |q| for the X-point in each Brillouin
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varied is also directly included by the MD simulations,
where specifically the low-energy mode at the X-point
is softened as temperature is increased (Fig. 2c). One
can observe that some of the predicted mode energies
are slightly shifted compared to experiments, by approx-
imately 1meV. Given that the MLIP accurately repro-
duces the harmonic phonon dispersion from DFT, it is
most likely due to the underlying exchange-correlation
functional.

At 1500K it moreover appears that in the region
around 40meV the simulated and experimental inten-
sities differ. This discrepancy could be due to the Bril-
louin zone in which the simulations have been conducted.
Here, we show the X-point in the third Brillouin zone,
i.e., q = [0.5,−1.0,−1.5], while in the experimental ref-
erence [51] the exact q-point is not specified. In fact,
the intensity at the X-point varies substantially depend-
ing on the Brillouin zone, especially the intensity of the
multi-phonon shoulder around 30meV (Fig. 4). For the
comparison shown in (Fig. 2c), we selected the Brillouin
zone for which the simulated spectrum best reproduces
the experimental data, based on the mean-squared error
calculated over the spectrum.

In MD, the dynamics of the system described by the
potential model is captured at the classical level, in-

cluding high-order phonon effects, thermal expansion,
and full anharmonicity. Efforts have been made in re-
cent years to include the effects of anharmonicity on
top of harmonic models, including but not limited to
using higher-order force constants [25], temperature-
dependent effective potentials [53], anharmonic lattice
models [54], and the self-consistent harmonic approxi-
mation [55]. However, a harmonic model is inherently
limited in describing such complicated dynamic events.

B. Corrections in crystalline benzene

We now turn to simulating an INS measurement of
crystalline benzene at 127K at the TOSCA spectrometer
at the ISIS Neutron and Muon Source (UK) in order to
study the effects of the resolution function and quantum
correction in more detail (Fig. 5a).

The scattered intensity from benzene is dominated by
incoherent scattering from hydrogen, owing to the excep-
tionally large incoherent scattering length of hydrogen.
We thus study the INS spectrum directly. The dynamic
structure factor can be integrated over |q| in order to
obtain S(ω) =

∫
S(q, ω)dq. Comparing the raw simu-

lated spectrum with the experimental data, we find that
the simulated spectrum captures the peaks correspond-
ing to different modes but the relative intensity between
them is not reproduced. Furthermore, the low-energy
peak at 10meV is not captured. The reason for these
discrepancies is to a large extent due to the kinematic
constraint and resolution function of the TOSCA spec-
trometer (Fig. 3). The two detector banks of TOSCA
map out two lines in q–ω space, where high (low) fre-
quencies correspond to large (low) q. By sampling along
these q–ω lines and convoluting the resulting spectrum
with the resolution function of the instrument, the agree-
ment improves notably.

However, the ratio in intensity between the high and
low-energy regions is still not reproduced. The main
reason for this discrepancy is the classical statistics of
MD simulations, which we correct for with the quan-
tum correction factor according to Eq. (6). Apply-
ing both kinematic constraint and quantum correction
yields a simulated spectrum that is in near-quantitative
agreement with experiments. The remaining difference
to experiments is a redshift of the simulated spectrum
by approximately 25meV. We attribute this redshift
to the DFT functional used to train the NEP model.
A more detailed discussion comparing experiments and
first-principles calculations to the predictions from the
NEP model can be found in the Supplementary Informa-
tion (Sect. S5).

We can further elucidate the simulated INS spectrum
by comparing it to the phonon dispersion according to
the underlying MLIP (Fig. 5b). The simulated INS spec-
trum differs notably from the phonon density of states in
terms of intensity, owing to the kinematic constraint of
the TOSCA spectrometer, and the quantum correction.



7

0 50 100 150 200

Energy (meV)

In
te

ns
ity

a)

Kinematic constraint &
quantum correction
Kinematic constraint
Raw spectrum
Experiment

Γ YY Γ R2R2 Γ U2U2 Γ V2

0

50

100

150

200

Fr
eq

ue
nc

y
(m

eV
)

b)

Intensity

Phonon dispersion
Kinematic constraint &
quantum correction0 250 500 750 1000 1250 1500

Wavelength (cm−1)

0

250

500

750

1000

1250

1500

Fr
eu

en
cy

(c
m
−

1
)

FIG. 5. (a) Simulated INS spectra for crystalline benzene, at increasing levels of refinement, compared to an experimental
spectrum obtained at 127K at the TOSCA spectrometer at the ISIS Neutron and Muon Source (UK). The first level of accuracy
is the raw simulated spectrum from MD with only scattering lengths applied (raw spectrum). Correcting for the resolution
function and kinematic constraint of the TOSCA spectrometer yields a marked increase in accuracy, with further improvement
when additionally applying a quantum correction factor to compensate for the classical statistics in MD simulations, especially
for low energies around 10meV. The spectra have been individually scaled to match the experimental spectrum as closely
as possible above 50meV. (b) Phonon dispersion and density of states compared to the simulated INS spectrum at 127K,
corrected for the kinematic constraint of the TOSCA spectrometer and with quantum statistics.

Furthermore, the full anharmonicity included in the MD
simulation in combination with the TOSCA resolution
function yields a broadening of the peaks in the simu-
lated INS spectrum.

In summary, this study of crystalline benzene high-
lights the importance of considering the resolution and
kinematic constraints of the specific instrument, as well
as correcting the statistics from classical MD simulations,
when aiming for quantitative predictions of neutron scat-
tering experiments.

C. Hydrogen dynamics in hydrogenated Sc-doped
BaTiO3

Finally, we turn to a more complicated sys-
tem, in the form of hydrogenated Sc-doped BaTiO3
(BaTi1–xScxO3Hx) where x is the doping fraction of the
tetravalent site (Ti, Sc). Perrichon et al. have per-
formed a detailed INS study of the hydrogen dynam-
ics in this system at three different spectrometers: the
TOSCA and MAPS spectrometers at the ISIS Neutron
and Muon source as well as IN1 Lagrange at the Institut
Laue-Langevin [56]. The experiments were carried out
at temperatures below 20K. INS spectra were then ob-
tained by averaging the dynamic structure factor S(q, ω)
up to a magnitude of |q| =12/Å. Our simulations pre-
sented in this section were averaged over q up to the
limit of the kinematic constraint for MAPS, |q| =18/Å,
in order to obtain better statistics.

Sc-doped BaTiO3 undergoes a phase transition from
a hexagonal structure to a cubic perovskite structure as
the Sc concentration increases. On MD time scales, both
structures are, however, at least metastable over the en-
tire composition range, which (in contrast to experiment)
allows us to sample structure and composition indepen-
dently (Fig. 6).

The simulated spectra using our workflow and the ex-
perimental spectra agree well in the full energy range 0 to
500meV. The peak at 125meV corresponds to O–H vi-
brations, and is best described by the hexagonal phase
for low Sc concentrations and by the cubic phase for high
Sc-concentrations (Fig. 6a). However, the overtone peak
at 250meV is underestimated in both simulated phases.
This discrepancy could be due to the quantum correc-
tion factor in Eq. (6), which is only valid for first-order
scattering. This is further supported by the simulated
spectra obtained using AbINS, which accurately capture
the intensity of the 250meV overtone peak. The latter
method handles multi-phonon effects perturbatively and
includes quantum effects but does not account for anhar-
monicity, which explains the sharper first-order features
compared to the MD-based simulations.

The results from TOSCA highlight the 125meV fea-
ture further (Fig. 6b). For low Sc concentrations the
simulated spectrum using our workflow for the hexag-
onal structure agrees well with experiments, although
the simulated spectrum is redshifted by approximately
25meV. The simulated spectrum for the cubic structure
agrees better with experiments as the Sc concentration
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FIG. 6. Hydrogen dynamics in hydrogenated Sc-doped BaTiO3 (BaTi1–xScxO3Hx) for various concentrations of dopants,
compared with experimental results measured at three different neutron spectrometers: IN1 Lagrange, TOSCA, and MAPS.
Experimental data are from [56]. (a) IN1 Lagrange is a wide-range spectrometer that probes the dynamics in the region from
0 to 500meV. (b) TOSCA and (c) MAPS on the other hand can be used to study the region around 100meV and 500meV,
respectively, utilizing the higher energy resolution they offer. Simulated spectra using our workflow (labeled MD) corrected
for quantum statistics and the kinematic constraint of the specific instrument are shown for all concentrations of dopants
considered experimentally, with the simulated structure both in the cubic and hexagonal structure. Experimentally, only one
of these phases is stable for a given concentration of Sc, but the energy of the two phases are sufficiently close that both phases
are stable on the timescales of the MD simulations. The experimental data has thus been duplicated in the upper and lower
rows of plots, where the compositions that are stable for each phase are indicated by the black lines. Additionally, simulated
spectra based on harmonic phonons obtained via AbINS are included for comparison.

is increased, which is in line with the hexagonal to cubic
phase transition with increasing Sc concentration. We
can thus clearly distinguish the spectra for the two phases
of Sc-doped BaTiO3, as the Sc-doping is varied.

Finally, the MAPS spectrometer probes the high-
energy region between 300meV to 600meV. The fea-
ture in the experimental spectra at 450meV corresponds
to stretching of the O–H bond according to Perrichon
et al., with the peak at 550meV assigned as a com-
bination mode of the O–H wag mode at 120meV and
the O–H stretch mode at 450meV. The fundamental
vibrational peak at 450meV is captured by the simula-
tions, although with a slight blueshift of 10meV. How-
ever, the intensity for the combination mode is not re-
produced by the simulation, neither using the MD-based
workflow nor AbINS. In this case, we can further elu-
cidate the nature of the combination modes at 550meV

using AbINS (Fig. 7). In these harmonic incoherent-
approximation simulations, the intensity in that region
is mainly composed of fourth-order scattering events and
above. Such high-order phonons require a higher-order
correction factor in order for the statistics to come out
correctly using the MD-based workflow. However, ap-
plying a higher-order correction factor is not straightfor-
ward, as one would have to know a priori in which region
of the spectrum to apply the correction, and the order of
the higher-order scattering process.

D. Discussion

The demonstrated workflows enable predictions of neu-
tron scattering experiments, here in the form of INS
spectra, from first principles. Starting from an atomic
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(a). Specifically note that the feature at 550meV originates
from fourth-order scattering processes and above.

representation of a material, we develop MLIPs using
the NEP framework for performing accurate MD simu-
lations for systems comprising at least tens of thousands
of atoms over at least a few nanoseconds, from which the
dynamic structure factor can be computed using the dy-
nasor package. We have focused on crystalline materials
in the examples above, but the workflow is directly ap-
plicable to disordered systems as well, including liquids
as well as amorphous or biological materials. The predic-
tions are made instrument-specific by applying resolution
functions and kinematic constraints, and are additionally
corrected to account for the classical statistics inherent
to the MD simulations.

The predictions show remarkable quantitative agree-
ment with experiments. Almost all experimental fea-
tures in the form of vibrational peaks are faithfully re-
produced in the predicted spectra, including their rela-
tive intensities after applying correction factors for the
quantum statistics. Remaining differences between the
spectra, such as systematic blue- or redshifts of certain
peaks in the case of crystalline benzene, can be most
likely attributed to the DFT functional used for train-
ing the MLIP. However, the intensity for some higher-
order phonon processes, such as in Sc-doped BaTiO3, are
not reproduced faithfully compared to experiments at the
present level. In principle these discrepancies can, how-
ever, be corrected for by applying higher-order correction
factors to recover the correct statistics for overtones and
combination modes.

Such a correction would not represent a general-
purpose ab initio approach as it is only possible in regions
where these features can clearly be identified and sepa-
rated, such that a single correction can be applied. For an
unknown system, identifying such modes is problematic,
although some information can be gained from harmonic
calculations, e.g., using the AbINS package. However,

these corrections only affect the relative intensity of these
peaks, the positions are directly obtained from the MD
simulations. Applying higher-order quantum corrections
is thus not strictly necessary in order to give a reason-
able prediction of a neutron scattering experiment. In
general, we suggest applying the lowest order correction
for the whole spectrum to be sufficient for the purpose of
guiding neutron scattering experiments.

The workflow as presented in this work relies on MLIPs
in order to run accurate and efficient MD simulations.
Classical force fields could be used but the results might
be of limited accuracy, especially in systems involving
both bonded and non-bonded interactions. However,
training a MLIP or selecting an appropriate force field
for a system of interest constitutes a bottleneck in the
workflow, requiring domain knowledge and effort. Foun-
dational models trained on large parts of the periodic ta-
ble, such as MACE-MP-0 or CHGNet among others [57–
61], offer an appealing alternative to creating bespoke
MLIPs or using existing force fields. These foundational
models can either be used out-of-the-box, or fine tuned
with a small number of structures from DFT to yield an
accurate model with comparatively low effort. It should,
however, be noted that these models are computation-
ally much more demanding than either NEP models or
classical force fields.

IV. CONCLUSION

In this study, we have presented a workflow that en-
ables predictions of neutron scattering experiments from
first principles, by combining DFT calculations, MLIPs,
autocorrelation functions from MD simulations as well
as instrument resolution functions and kinematic con-
straints. We envision this workflow to be of great use in
the context of materials discovery, offering an avenue for
generating simulated experimental signatures for novel
materials that can be directly compared to neutron, X-
ray, and electron scattering experiments. ML in the form
of MLIPs plays a central role, as the latter enable the ac-
curate MD simulations and the extensive sampling that
are the foundation of the present workflow. By integrat-
ing these components into a cohesive pipeline, our ap-
proach bridges the gap between theory and experiment,
facilitating a more efficient feedback loop in the design
and characterization of new materials. Ultimately, this
workflow stands to accelerate materials analysis and dis-
covery processes by providing high-fidelity, simulation-
based insights that are directly aligned with experimental
observables.
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S1 NEP model for benzene: Training curves and parity
plots
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Figure S1: Training curves for the final model for benzene, trained on all available data. This
model was used for production runs.
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Figure S2: Training curves for the models in the ensemble trained on various K-fold cross validation
splits of the training data.
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Figure S3: Parity plots for the final benzene model, evaluated on all structures in the data set.

Figure S4: Parity plots for the final benzene model, evaluated on all structures in the data set,
split by species. ’C’ denotes carbon, and ’H’ denotes hydrogen.
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S2 NEP model for hydrogenated Sc-doped BaTiO3: Train-
ing curves and parity plots
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Figure S5: Training curves for the models in the ensemble trained on various K-fold cross validation
splits of the training data, for hydrogenated Sc-doped BaTiO3. The ’split1’ model was used for
production runs.

Figure S6: Parity plots for the final hydrogenated Sc-doped BaTiO3 model, referred to as ’split1’
in Fig. S5, evaluated on all structures in the data set.
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Figure S7: Parity plots for the final hydrogenated Sc-doped BaTiO3 model, referred to as ’split1’
in Fig. S5, evaluated on all structures in the data set, split by species.

S3 Path-integral molecular dynamics convergence study for
crystalline benzene and hydrogenated Sc-doped BaTiO3

Here we vary the number of PIMD beads and study the convergence for various properties for
crystalline benzene and hydrogenated Sc-doped BaTiO3. For all simulations in this work, we used
32 PIMD beads. The computational cost of a PIMD simulation scales linearly with the number
of beams. For benzene, we thus focused our simulations on a temperature of 127K, since we
had available experimental data at that temperature, and the computational cost of performing
PIMD with more than 32 beads was deemed too excessive (Fig. S8). For completeness, we include
simulations at a range of other temperatures for crystalline benzene compared to experimental
data, but note that the number of beads is not necessarily sufficient in all cases (Sect. S4).

For hydrogenated Sc-doped BaTiO3 we performed the convergence study in the hexagonal
structure with a Sc doping fraction of 0.16 (Fig. S9). The simulations presented in the main
work are performed at 15K. 32 beads was again used to strike a balance between accuracy and
computational cost, but do note that the potential energy and volume of the systems are not fully
converged for that number of beads.
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Figure S8: Potential energy and volume from molecular dynamics simulations run in the PIMD
ensemble for crystalline benzene.
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(Å
3
/a

to
m

)

Figure S9: Potential energy and volume from molecular dynamics simulations run in the PIMD
ensemble for hydrogenated Sc-doped BaTiO3 in the hexagonal phase with a doping fraction of
0.16.

S4 Temperature dependence of Inelastic Neutron Scatter-
ing spectrum for crystalline benzene

Experimental data compared with simulated spectra at 127K, 103K, 75K, and 24K. Note that
the number of PIMD beads used to perform equilibration is not necessarily enough, see Sect. S3
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Figure S10: Predicted INS spectrum for crystalline benzene at the TOSCA spectrometer, at 127K,
103K, 75K, and 24K.

S5 Red-shift for vibrational spectrum for benzene
The simulated INS spectrum for benzene is red-shifted compared to the experimental spectrum
measured at TOSCA. We compare the harmonic density of states (DOS) calculated using our
production NEP model for benzene to calculations and experiments performed at low temperature
Fig. S11. We focus on the harmonic DOS to decouple the predicted mode energies from the
temperature in our MD simulations, as well as the ensemble in which the simulation was conducted
in (in this case, NVE). Focusing on the region around 100meV, we observe that the DOS for our
NEP model trained on the vdw-CX functional is red-shifted by approximately 25meV compared
to the collected Raman and IR spectroscopy experiments, as well as the simulated values based
on Møller-Plesset perturbation theory (MP2) and DFTMD using a LDA functional. All collected
experiments and simulations agree well with the experimental INS spectrum measured at TOSCA.
The NEP model used in this work is well-converged with regards to the target energies, forces,
and virials calculated using the vdW-CX functional, achieving errors of 8.510meV atom−1 for the
energies, 59.29meVÅ−1 for the forces, and 9.295meV atom−1 for the virials (Sect. S1). We thus
attribute a systematic red-shift of the predicted DOS for our NEP model to be a feature of the
vdW-CX functional.
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a) Mair (1949), IR, 103K

b) Mvondo et al (2022), IR, 130K

c) Gee et al. (1970), Raman, 2K

d) Marzocchi et al. (1970), Raman, 85K

e) Handy et al. (1992), MP2

f) Wang (2020), LDA DFTMD

g) NEP CX, log10(DOS)
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Figure S11: Compilation of density of vibrational frequencies for benzene from the literature. a) IR
spectrum measured by Mair et al.1 b) IR spectrum measured by Mvondo et al.2 c) Raman spectrum
measured by Gee et al.3 d) Raman spectrum measured by Marzocchi et al.4 e) Møller-Plesset
perturbation theory (MP2) calculations by Handy et al.5 f) Vibrational modes from DFTMD by
Wang et al.6 g) Harmonic density of states (DOS) computed using the NEP model for benzene
developed in the course of the present work. h) Experimental INS spectrum for crystalline benzene
measured at TOSCA at 127K, measured in this work. The experimental results and simulations
from the literature generally agree well with our measured INS spectrum in the region around
100meV, indicating that the red-shift we observe for the our NEP model (g) is related to the
DFT-functional used to train the model.
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