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Moiré superlattices serve as a playground for emerging phenomena, such as localization of band
states, superconductivity, and localization of excitons. These superlattices are large and are often
modeled in the zero angle limit, which obscures the effect of finite twist angles. Here, by means
of first-principles calculations we quantify the twist-angle dependence of the moiré potential in
the MoS2 homobilayer and identify the contributions from the constituent elements of the moiré
potential. Furthermore, by considering the zero-angle limit configurations, we show that the moiré
potential is rather homogeneous across the transition metal dichalcogenides (TMDs) and briefly
discuss the separate effects of potential shifts and hybridization on the bilayer hybrid excitons. We
find that the moiré potential in TMDs exhibits both an electrostatic component and a hybridization
component, which are intertwined and have different relative strengths in different parts of the
Brillouin zone. The electrostatic component of the moiré potential is a varying dipole field, which
has a strong twist angle dependence. In some cases, the hybridization component can be interpreted
as a tunneling rate but the interpretation is not generally applicable over the full Brillouin zone.

I. INTRODUCTION

Hexagonal bilayer transition metal dichalcogenides
(TMDs) with a rotational misorientation between the
monolayer sheets can exhibit an interference pattern in
the atomic positions known as a moiré pattern. The
latter can alter the electronic structure of the twisted
TMD bilayer and lead to, e.g., localized electronic1 and
excitonic states.2 Since the moiré unit cell at low twist
angles (for a lattice constant matched bilayer) becomes
very large, such structures are very demanding to simu-
late with first-principles calculations.

Density functional theory (DFT)-based first-principles
calculations of the ground state of moiré structures have
revealed localized electronic states.1 It is, however, com-
putationally much more difficult to access electronic ex-
citations within such a framework. Hence, tight-binding
models3 remain the most feasible route to access elec-
tronic properties of twisted bilayers at low angles.

The twisting induces a moiré pattern with spatially
varying local stacking orders (Fig. 1a). There are three
locations within the moiré unit cell where the local en-
vironment exhibits high symmetry (threefold rotational
symmetry), which can be modeled by stacking the atoms
accordingly in the primitive bilayer cell (Fig. 1a). This
method for analyzing twist-induced phenomena in TMDs
has been used in, e.g., Refs. 2–5. The caveat of this
method is that it is strictly valid only at very low twist
angles since for shorter moiré periods the atomic ar-
rangement changes rapidly away from the high symme-
try points. Therefore, it is of importance to quantify the
twist angle dependence of the induced potential.

Furthermore, in order to construct more accurate
tight-binding models the electrostatic part of the moiré
potential needs to be disentangled from the tunneling
contribution, which calls for a deeper investigation of
the electronic structure of the limiting configurations.
This includes a more careful study of the actual origin
and nature of the moiré potential, and recently several

studies emerged targeting the fundamental properties of
the moiré potential. Specifically, the moiré potential in
MoSe2/WSe2 heterobilayers has been shown to be on the
order of 150 to 300 meV and dominated by planar strain,6

and the band gap in MoS2/MoTe2 has been observed to
be strongly twist-angle dependent.7 A comprehensive de-
scription that connects the aforedescribed observations
and establishes general trends that hold across different
combinations of TMDs is, however, still needed.

Here, we therefore assess the moiré potential via first-
principles calculations both on explicit moiré configura-
tions and limiting configurations based on the primitive
unit cell (Fig. 1). We aim to provide a unifying perspec-
tive of the moiré potential in TMDs, in particular of the
origin of the potential and the similarity of the potential
in different bilayer systems. Finally, we disentangle the
electrostatic part of the moiré potential and determine
the hybridization contribution at high symmetry points
in the moiré superlattice.

II. METHODOLOGY

In order to construct the explicit moiré superlattices we
have used the method outlined in Ref. 8. The commen-
surate hexagonal moiré superlattices are found at angles8

θk = arccos

(
3k2 + 3k + 0.5

3k2 + 3k + 1

)
, (1)

where k is a non-negative integer. In this work, we con-
sider values up to k = 7, corresponding to an angle of
4.41◦. The variations in the local atomic environment
give rise to an electrostatic potential that varies in the
plane of the monolayer sheets, which we denote as the in-
tralayer moiré potential. By definition, the difference of
the intralayer moiré potentials in the two adjacent layers
is the interlayer moiré potential.7

We consider two different measures of the electrostatic
potential induced by twisting: (1) The (average) elec-
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FIG. 1. (a) The explicit MoS2 homobilayer moiré structure at a twist angle of θ = 2.9◦ along with the limiting (θ → 0◦) local
registry at three specific points. Blue (yellow) atoms indicate atomic species Mo (S). (b) Lateral relaxation for the MoS2/MoS2

homobilayer twisted 4.41◦. The arrows are amplified with a factor of 30.

trostatic core potential is a measure of the local elec-
trostatic environment of the relevant electronic states,
which in TMDs are primarily composed of d orbitals of
the transition metal.9 (2) The second measure, which is
closely related to the first is the induced dipole field.10

It is strictly applicable only to the limiting configura-
tions, since in explicit moiré superlattices, the field ex-
hibits higher moments. The charge density difference
upon bilayer formation is

δn(r) = n(r)−
∑
i

ni(r), (2)

where n(r) is the charge density of the bilayer structure
and ni(r) denotes the charge densities of the constituent
monolayers. The charge density difference δn gives rise
to a potential δV . In order to accurately determine the
potential δV and the induced vacuum level difference D

D = δV (−∞)− δV (∞), (3)

dipole corrections are added when solving the Poisson
equation for the electron density.

In order to estimate how δV affects different single par-
ticle states we compute the following matrix elements for

the monolayer states In order to estimate how δV affects
different single particle states we compute the following
matrix elements for the monolayer states

ML
nk = 〈ψLnk|δV |ψLnk〉, (4)

where L is the monolayer index and n is either v (valence
band) or c (conduction band). In the spirit of perturba-
tion theory, ML

nk is the first-order shift of the state nk in
monolayer L due to the induced electrostatic potential.
The (average) hybridization contribution to the level shift
upon bilayer formation is then computed as

∆nk =
1

2

[
εbilayer,+nk − εbilayer,−nk

−
(
M+
nk −M

−
nk + ∆εmono

nk

) ]
, (5)

where εbilayer, +nk is the energy of the bilayer state that

shifts towards larger energies, M+
nk is the matrix element

in the layer which experiences a positive potential, and
∆εmono

nk is the energy level difference between the mono-
layers (which is zero for homobilayers). We will also make
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use of the (average) interlayer tunneling rate

T 2
nk =

1

2

[(
εbilayer,+nk − εbilayer,−nk

)2
−
(
M+
nk −M

−
nk + ∆εmono

nk

)2 ]
, (6)

which may be interpreted as the off-diagonal perturba-
tion of a two-level system. These tunneling strengths
may be, e.g., included in a tight-binding model for the
exciton energies of twisted structures.2

For the purpose of this paper, we consider a simpler
case of untwisted structures to disentangle the effect of
electrostatic effects and hybridization.11 To this end, we
use the exciton density matrix formalism12–14 and cal-
culate the exciton energies for untwisted van-der-Waals
heterostructures by first formulating a Hamiltonian in
second quantization for the interaction free electronic en-
ergies

H =
∑
αlk

Ẽαslk a
†
αlkaαlk +

∑
αkl 6=l′

Tαsll′ a
†
αlkaαlk, (7)

where l, l′ are layer indices, α = (λ, ξ) is a compound
index with ξ denoting the valley and λ = (c, v) the con-
duction and the valence band respectively. Here a† (a)
denotes the electronic creation (annihilation) operator.
The possible excitonic transitions in this way are illus-
trated in Fig. 2. Here, k is the electronic wave vector
and s is the stacking index. Ẽαslk are the electronic en-
ergies as well as the electrostatically induced alignment
shifts. Tαsll′ is the tunneling matrix element, which is
modeled following a tight-binding approach.15,16 Conse-
quently, the tunneling matrix element are directly pro-
portional to the tunneling strength for those stackings,
for which tunneling is allowed by C3 symmetry. By fol-
lowing the method laid out in Refs. 15 and 2, the Hamil-
tonian is transformed into an exciton basis, thus taking
into account the binding energies. The final hybrid ex-
citon energies are calculated by first transforming into a

hybrid basis Y †ξη =
∑
L C

ξη
L (Q)∗X†ξLQ, which consists of

a linear combination of the intra and interlayer exciton

contributions CξηL (Q) to the final hybrid state. Here, L is
a compound layer index, Q is the center-of-mass momen-
tum, η the new band index and X†(X) are the exciton
creation(annihilation) operators. The eigenvalue prob-
lem that arises in order to diagonalize this new hybrid
exciton Hamiltonian yields the final exciton energies.

DFT calculations were performed using the projec-
tor augmented wave method17 while atomic configura-
tions were prepared and analyzed using ase.18 All struc-
tural relaxations were carried out using vasp19,20 and the
vdW-DF-cx method.21,22 The monolayer lattice param-
eters were obtained using a plane wave cutoff of 340 eV

and a k-point mesh with a density of 0.3 Å
−1

. The atomic
positions for the limiting bilayer structures (Fig. 1) were
relaxed using the same functional but with a cutoff en-
ergy of 500 eV and a 18 × 18 × 1 k-point mesh until

KΛΓ

FIG. 2. Schematic illustration of the possible excitonic tran-
sitions considered here with a band arrangement that corre-
sponds to the case of non-interacting monolayers with type
II band alignment. The K − K exciton is a direct exciton,
whereas the other considered excitons (K −Λ, Γ−Λ, Γ−K)
are indirect in momentum.

the maximum force acting on any atom was less than

2.5 meV Å
−1

. The explicit moiré superlattices with up
to 1,014 atoms were relaxed using a plane wave cutoff
of 340 eV until the maximal force acting on any ion was

less than 7.5 meV Å
−1

. The cell vector in the out-of-plane
direction was 70 Å for these configurations to ensure de-
coupling across periodic boundary conditions.

The analysis of the electronic densities and potentials
was carried out using gpaw23,24 and the local density ap-
proximation (LDA).25 The electron densities of the lim-
iting bilayer configurations were computed using a grid
expansion with 0.15 Å spacing and a 18× 18× 1 k-point
mesh. Here, a compensating dipole layer was included in
the Poisson solver.

III. RESULTS

The TMDs with MX2 (M=Mo,W;X=S,Se) constitute
a class of materials with similar behavior and here we
therefore only carry out computations for large explicit
moiré superlattices for the MoS2/MoS2 homobilayer.
Computations and analysis of the limiting bilayer stack-
ings have, however, been performed for all homobilayers
and lattice constant matched heterobilayers.

A. Structural properties

First we report the computations of the interlayer dis-
tance, which is of fundamental importance since the wave
function overlap of the constituent monolayer states is
sensitively dependent on the interlayer distance. There-
fore, both polarization and hybridization magnitude de-
pend on the interlayer distance. In the zero-angle limit
configurations, the interlayer distance for MoS2/MoS2
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varies between 6.86 Å in Rhh and 6.10 Å in RXh and RMh in
decent agreement with other theoretical estimations.26

In moiré superlattices the interlayer distance varies
with the lateral position. In order to quantify the inter-
layer distance for the explicit moiré structures, we there-
fore consider the distribution of distances (Fig. 3a), which
we obtain by centering a cylinder of radius 3 Å on a tran-
sition metal atom in the upper layer and then taking the
interlayer distance as the vertical distance between tran-
sition metal atoms found within the same cylinder.

At the largest considered twist angle (13◦) the inter-
layer distance is rather homogeneous with a value roughly
equal to the mean of the interlayer distance in Rhh and
RXh . This is not surprising since the interlayer interac-
tion is very weak due to its van-der-Waals nature while
the deformation of the monolayer sheets requires bend-
ing the much stronger covalent bonds. As the twist an-
gle decreases the distribution widens. The extrema oc-
cur at Rhh and RMh (RXh ) and the local environment of
the moiré superlattice at these specific points mimics the
limiting configurations more and more as the twist angle
decreases. The lower limit of the distribution shifts to
smaller values (Fig. 3a) but even at the lowest twist an-
gle considered, the smallest values are still slightly larger
than the interlayer distance for the limiting RXh and RMh
structures where the interlayer distance attains its mini-
mum (which corresponds to the lower limit of the x-range
in Fig. 3a).

One can also consider the distribution of the lateral dis-
placements of the Mo atoms relative to the ideal moiré su-
perlattice (δdMo

xy ) that appear during relaxation (Fig. 3b-
e). The largest twist angle shown is 7.34◦ in which the
maximal lateral displacement of the Mo atoms is 0.025 Å.
For the smallest twist angle (4.41◦), the maximum relax-
ation distance of the Mo atoms is significantly larger at
0.065 Å. For the 4.41◦ twist angle, the planar displace-
ments forms three bands (Fig. 3e) corresponding to dif-
ferent distances of the displaced atom from the rotation
center with a local AA stacking order. The direction of
the lateral displacements for the Mo atoms is shown in
Fig. 1b. The regions around the high symmetry points
are almost vertically aligned and exhibit very little relax-
ation. The main relaxation occurs between high symme-
try point Rhh and RXh (and between RMh and Rhh).

B. Moiré potential

Next we turn to the moiré potential. In Fig. 4a,
a schematic illustration of the vacuum level difference
(Eq. 3) as a function of displacement along the long di-
agonal of the unit cell is shown. The minimum occurs at
RXh while the maximum occurs at RMh . The origin of the
spatially varying vacuum level difference is the stacking
dependent density polarization (Fig. 4b-d), which gives
rise to asymmetric (with respect to the plane halfway
between the monolayers) potentials (Fig. 4e-g). The po-
tentials shown in (Fig. 4e-g) would correspond to the

interlayer moiré potential at these specific sites within
the moiré superlattice and the magnitude of this poten-
tial is around 80 meV for the MoS2/MoS2 homobilayer.
Due to symmetry, this is also the full variation of the in-
tralayer moiré potential, and taken together it places the
full variation of the interlayer moiré potential at around
160 meV for this system.

We have also studied the twist angle dependence of
the intralayer moiré potential by considering the maxi-
mal planar variation of the core potentials (Fig. 5). We
find that it decays rapidly with increasing twist angle
and already at ∼ 5◦ it has decayed to half of the zero
limit value. Part of this decay can likely be explained by
the increasing minimal interlayer distance with increas-
ing twist angle and partly by the deviation from ideal
stacking at RXh and RMh . This behavior of the moiré
potential is consistent with explicit calculations of the
MoS2/MoTe2 system,7 with measured energy barriers of
exciton diffusion in twisted MoSe2/WSe2

27 and in the
localization of excitons in MoS2/WS2.28

The twist angle dependence of the moiré potential was
computed without dipole corrections. In order to validate
this approach we performed a test with an out-of-plane
lattice vector of 100 Å and compared it with the 70 Å re-
sults. We found that the maximal planar variation of the
Mo core potential for the 6.01◦ structure was 26.1 meV
in both cases confirming that the spurious electric field
does not influence the results.

C. Hybridization and tunneling in MoS2/MoS2

The electrostatic moiré potential rigidly shifts the sin-
gle particle electronic states according to Eq. (4). The bi-
layer states are, however, subject to interlayer hybridiza-
tion as well, which for MoS2/MoS2 homobilayer is quanti-
fied in Fig. 6 along the path between the Γ and K points.
In all configurations, the hybridization contribution to
the valence band shifts is small at the K point and large
at Γ. For the conduction band, the hybridization contri-
bution is largest at Λ (halfway between Γ and K). At
the Γ point the hybridization is much stronger in RXh
and RMh than for Rhh. At K, on the other hand, the va-
lence band hybridization is slightly larger in Rhh (15 meV)
compared to RXh , and RMh (5 meV) despite exhibiting a
much larger interlayer distance. For the conduction band
at K in RXh , and RMh the hybridization contribution is
negative with a value of −2 meV.

The tunneling rates defined in Eq. (6) largely follow
the hybridization energy but become imaginary when the
hybridization energy is negative, which implies that the
solution becomes non-physical (Sect. IV). This occurs at
the Λ point for the valence band and the K point for the
conduction band in RXh , and RMh . The tunneling rate
at Λ for the conduction band is 132 meV in Rhh rising to
184 meV in RXh and RMh . The tunneling rate for the K
point is 2 meV (conduction band) and 15 meV (valence
band) in Rhh. The latter value rises to 19 meV in RXh and
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0

20

40

O
cc

ur
re

nc
e

θ = 5.09◦

d

0.00 0.02 0.04 0.06

δdMo
xy (Å)
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FIG. 3. (a) Distribution of interlayer distances in MoS2/MoS2 homobilayer as a function of twist angle. The lower and upper
limits of the x-axis correspond to the layer spacing in Rh

h and RM
h /RX

h , respectively. (b–e) The distribution of lateral relaxation
for the four lowest twist angles.
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RMh while the former becomes imaginary. It was shown
in Ref. 29 that the tunneling rate at K vanished in RXh
and RMh under the assumption that the orbital character
of the monolayer band edges were completely composed
of transition metal d states. We attribute the appearance
of a finite tunneling rate for the valence band at RXh and
RMh at K to orbital mixing with other states. Based on
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FIG. 5. Maximal planar variation of the core potential for
MoS2/MoS2 moiré superlattices. 4.41◦ is the smallest twist
angle for which explicit computations have been performed.
The data point (indicated by a square) at 0◦ is the zero degree
limit computed as the Mo core potential difference at Rh

h and
the connecting line is a guide to the eye. The gray area in-
dicates the range between the smallest and largest interlayer
distance.

semi-local DFT calculations, it was found in Ref. 30 that
there is a minor but non-zero contribution to the band
edge states coming from the chalcogen species.

The tunneling rates at Λ and K for Rhh and RXh are
to a good approximation linear in the interlayer distance
(Fig. 7). In Rhh, the interlayer dependence is stronger
for both the states at Λ compared with K, whereas the
dependence is very weak for the conduction band states.
In RXh , the conduction band at Λ and the valence band at
K exhibit stronger interlayer dependence than the other
two states considered.



6

Γ Λ K
−7

−6

−5

−4

E
−

E
va

c
(e

V
)

Rh
h

Γ Λ K
RX

h

0 100 200 300

∆nk (meV)

FIG. 6. Average hybridization contribution according to
Eq. (5) of the valence band and conduction band for the limit-
ing configurations of MoS2/MoS2 between the Γ and K points
superimposed on the monolayer bands computed within the
LDA.

6.8 7.0

δzMo−Mo (Å)
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D. Extension to other TMDs

In Fig. 8 the vacuum level difference D as defined in
Eq. (3) is shown for all Mo and W-based TMDs including
the heterobilayers. For the homobilayers, the magnitude
of the vacuum level difference is more or less uniform with
minor variations between different TMDs despite rather
large differences in the interlayer distance.

For the heterostructures, in contrast to the homobilay-
ers, there is a vacuum level splitting present in Rhh due
to the presence of different transition metals. However,
the full variation of the interlayer moiré potential is still
rather similar over both the homobilayers and heterobi-
layers with an average of 131 meV (standard deviation is
8 meV). This is likely due to the fact that the relevant
orbital character of all the TMDs considered are similar.

E. Excitons in TMD bilayers

We have briefly investigated how the layer dependent
polarization and hybridization influence the exciton spec-
trum in the different stackings originating from the AA
stacked system. The present analysis has been performed
by solving the Wannier equation in a basis of the con-
stituent monolayers (see Eq. (7)) and the resulting exci-
tons contains both intra and inter-layer components31,32

(Fig. 2).
The exciton spectra were investigated for the two

prototype cases i) homobilayer WS2, and ii) the
MoSe2/WSe2 heterobilayer. In Fig. 9, the energy of the
lowest lying exciton peak relative to the K −K exciton
in the Rhh stacked structure is shown for the WS2 ho-
mobilayer, and in Fig. 10, the same data is shown for
the MoSe2/WSe2 heterobilayer. The transparent bars
include the polarization shift but not the hybridization
energy. For the homobilayer, the lowest K − K exci-
ton is of intralayer nature and hence the stacking depen-
dent polarization does not affect the position of the peak.
In particular, there is a very weak hybridization of the
K − K excitons. For the case of excitons that involve
the K − Λ valleys, the energy is around 150 meV lower
than the Rhh K−K exciton with the largest contribution
stemming from the hybridization of the conduction band
at the Λ point. To properly see the effect of hybridiza-
tion, we consider the Γ−K exciton in the RMh stacking.
Without accounting for hybridization, the exciton energy
is about 200 meV higher in energy in comparison with
the Rhh K−K exciton, since the valence band maximum
(VBM) at Γ is lower in energy in comparison with at the
K-point. The VBM at Γ is pushed to higher energies by
hybridization and the exciton energy becomes lower than
the Rhh K −K exciton. The Γ−Λ indirect exciton is the
one mostly affected by the hybridization since it is strong
in both these valleys.

In the heterobilayer however, where the lowest exciton
exhibits interlayer character, there is a pronounced ef-
fect of the polarization field on the lowest K−K exciton
and the exciton energy difference between the different
stacking orders corresponds to the variation of the dipole
field. The K − Λ exciton is, without accounting for hy-
bridization located around 150 meV-200 meV above the
Rhh exciton. This energy drops significantly due to hy-
bridization pushing the Λ valley to lower energies. In
contrast to the case of the homobilayer where the indi-
rect Γ−K exciton is lower in energy with respect to the
Rhh K − K exciton, the Γ − K exciton in the heterobi-
layer has a much larger energy in comparison with the
Rhh K −K exciton.

IV. DISCUSSION

The main result of this study is that the moiré po-
tential exhibits a strong twist angle dependence, as is
evident from Fig. 5. The origin of this potential is an
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FIG. 9. Energy of the lowest exciton peak relative to the
lowest K(hole) − K(electron) exciton for the WS2 homobi-
layer. The shaded bars indicate the influence of the polariza-
tion shift and the solid bars indicate the influence of both the
polarization shift and hybridization.

asymmetric charge density displacement that is depen-
dent on the twist angle. The twist angle dependence of
the potential can be traced back to the varying inter-
layer distance and the horizontal alignment. The latter
was suggested to be the explanation for the twist angle
dependence of the band gap in the twisted heterostruc-
ture MoS2/MoTe2

7 and is likely to be the dominating
contribution to the twist angle dependence of the moiré
potential in MoS2/MoS2 as well.

The implications of a twist angle dependent potential
are manifold. For example, it determines for which an-
gles the electronic states at the band edges become lo-
calized. Furthermore, the twist angle dependence has
implications for the temporal localization of charge car-
riers, since the potential is effectively an energy barrier.
One of the charge carriers will be subject to an energy
barrier induced by the dipole potential. For example, the
transition from the lowest hole potential configuration to
Rhh raises the hole energy by D/2. With increasing twist

angle the energy barrier becomes smaller. Therefore, it is
expected that the temporal localization of charge carriers
is strongest at very small twist angles.

Exciton migration may proceed via resonant energy
transfer28 but in the case that electron and hole migrate
separately the current results are consistent with mea-
surements on exciton diffusion. The interlayer exciton
diffusion in MoSe2/WSe2 was investigated in Ref. 33 and
it was found that the exciton diffusion was considerably
larger at a 3.5◦ twist angle than a 1◦ twist angle.

The numerical values of the dipole field amplitude
D are quite similar for all the TMDs considered here
(Fig. 8). The similarity of D despite vastly different
interlayer distances is interesting in itself and suggests
that the dipole field is primarily a geometrical property,
which, together with orbital similarity across this class of
materials, results in a similar magnitude. In fact, the in-
terlayer distance and the induced density difference (δn)
are not independent quantities. The density difference
forms mainly between the layers, creating a bonding elec-
tron density that is slightly polarized, which in turn gives
rise to an electric field that balances the bonding electron
density and dispersion interaction.

The moiré potential affects inter and intralayer ex-
citons differently in the bilayer structures (Fig. 9 and
Fig. 10) and the energy for the K −K exciton with in-
terlayer character exhibits an energy variation over the
stacking orders Rhh, RXh , and RMh that closely resembles
the dipole field magnitude. The tunneling rates at the
conduction band at K and the valence band at Λ are
imaginary at RXh and RMh with similar values of around
10i− 20i meV. While the Λ valence band is largely irrel-
evant due to its low energy, the conduction band at K is
rather important for the excitonic spectra. The tunnel-
ing rates are, as constructed, off-diagonal components to
a perturbation of the two-level system consisting of the
equivalent band from different monolayers. In this case,
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FIG. 10. Energy of the lowest exciton peak relative to the
lowest K(hole) − K(electron) exciton for the MoSe2/WSe2
heterobilayer. The shaded bars indicate the influence of the
polarization shift and the solid bars indicate the the influence
of both the polarization shift and hybridization.

the splitting of the levels in the bilayer system is smaller
than the difference in potential shift between the states.
The tunneling matrix element represents the interaction
that causes band edge shifts that go beyond the split-
ting that is caused by potential alignment. To describe
this effect, here we employ a simple two-band model, see
Eq. (6). The appearance of imaginary solutions can be
attributed the breakdown of this approximation and sig-
nify that the bilayer energy shifts are influenced by cou-
pling to multiple states.

V. CONCLUSIONS

To summarize, we have shown that the moiré potential
in TMDs exhibits both an electrostatic component and

a hybridization component, which are intertwined and
have different relative strengths in different parts of the
Brillouin zone. The electrostatic component of the moiré
potential is a varying dipole field, which has a strong
twist angle dependence. In some cases, the hybridization
component can be interpreted as a tunneling rate but
the interpretation is not generally applicable over the full
Brillouin zone.
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