
PHYSICAL REVIEW B 94, 115205 (2016)

Thermal transport in van der Waals solids from first-principles calculations
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The lattice thermal expansion and conductivity in bulk Mo and W-based transition metal dichalcogenides are
investigated by means of density functional and Boltzmann transport theory calculations. To this end, a recent
van der Waals density functional (vdW-DF-CX) is employed, which is shown to yield excellent agreement with
reference data for the structural parameters. The calculated in-plane thermal conductivity compares well with
experimental room-temperature values, when phonon-phonon and isotopic scattering are included. To explain
the behavior over the entire available temperature range one must, however, include additional (temperature
independent) scattering mechanisms that limit the mean free path. Generally, the primary heat carrying modes
have mean free paths of 1 μm or more, which makes these materials very susceptible to structural defects. The
conductivity of Mo- and W-based transition metal dichalcogenides is primarily determined by the chalcogenide
species and increases in the order Te-Se-S. While for the tellurides and selenides the transition metal element has
a negligible effect, the conductivity of WS2 is notably higher than for MoS2, which may be traced to the much
larger phonon band gap of the former. Overall, the present study provides a consistent set of thermal conductivities
that reveal chemical trends and constitute the basis for future investigations of van der Waals solids.
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I. INTRODUCTION

In the advent of increasingly elaborate synthesis techniques
[1,2], highly engineered van der Waals (vdW) solids are
emerging as promising candidates for a manifold of appli-
cations including electronic components [3], optoelectronics
[4–6], thermoelectrics [7], and spintronics [8]. Since thermal
transport plays a key role in many of these situations, it is
important to develop a detailed understanding of the thermal
conductivity in vdW solids.

Unfortunately, the values for the thermal conductivities
reported in the literature exhibit a wide spread. For example,
in the case of nominally single-crystalline MoS2, experimental
values for the in-plane (basal plane) thermal lattice conduc-
tivity vary over one order of magnitude ranging from around
20 W/K m [9] up to 110 W/K m [10] at room temperature
(Fig. 1). This can be partly attributed to the challenges
associated with experimental measurements of the thermal
conductivity in nanostructures with pronounced anisotropy,
see, e.g., Refs. [10,11]. Possibly even more crucial are defects
and sample size effects, as the growth of large high-quality
transition metal dichalcogenide (TMD) single crystals is very
time consuming [10]. The extreme sensitivity to structure has
been possibly most impressively demonstrated in the case
of WSe2 [12,13], for which the out-of-plane (through plane)
thermal conductivity κ⊥ has been shown to vary by almost two
orders of magnitude at room temperature. This variation can in
fact be rationalized in terms of the microstructure, in particular
planar defects such as stacking faults and subtle variations in
layer spacing [14].

Similar to the experimental data, calculated values for
the thermal conductivity cover a wide range as well. Ab
initio calculations based on Boltzmann transport theory in
combination with density functional theory have only become
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available relatively recently [15–19]. Still, as illustrated by
the case of MoS2 (Fig. 1), calculations have usually been
restricted to monolayers [20–26]. This is at least in part
due to the fact that computational studies of bulk systems
[27,28] require taking into account the vdW forces that
mediate interlayer binding. These interactions are, however,
not captured by common semilocal exchange-correlation (XC)
functionals [29], including widely popular functionals such as
PBE [30] and PBEsol [31]. In some cases, this shortcoming has
been addressed by using semiempirical methods [32]. As will
be shown below, in general, the structural parameters of TMDs
as well as other quantities that affect the thermal conductivity
are, however, very sensitive to the treatment of exchange and
correlation. Furthermore, since vdW forces are rather weak
and computational noise can blur anharmonic effects, both
the choice of the XC functional and the convergence of the
computational parameters require special care.

This perspective motivates the present study, in which
we have carefully evaluated both the in-plane and out-of-
plane thermal conductivities of Mo and W-based TMDs. To
this end, we employ a combination of density functional
and Boltzmann transport theory calculations based on the
vdW density functional method [37] in combination with a
recently formulated consistent-exchange part [29,38], which
has already been found to work very well, e.g., WSe2 [14]. In
the following, we first demonstrate that this approach yields
an excellent description of the structural parameters of Mo and
W-based TMDs at finite temperatures. We then carefully assess
the relevant computational parameters before conducting a
comprehensive investigation of the thermal conductivities.
Since the largest contribution to the thermal conductivities
stems from modes with mean free paths (phonon-phonon
scattering limited) of more than 1μm, both in-plane and
out-of-plane conductivities are in practice often limited by
structural incoherence. The thermal conductivities κ are found
to increase from the tellurides to the sulphides but, in
opposition to the trend expected based on the group velocities,
κ tends to be higher for WS2 than for the respective Mo
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FIG. 1. Experimental and theoretical results for the in-plane
(basal plane) thermal conductivity of MoS2. Calculations and experi-
ments are from (a) Ref. [9], (b) Ref. [20], (c) Ref. [21], (d) Ref. [22],
(e) Ref. [28], (f) Ref. [23], (g) Ref. [24], (h) Ref. [10], (i) Ref. [33],
(j) Ref. [34], (k) Ref. [35], (l) Ref. [25], (m) Ref. [36], (n) Ref. [26],
and (o) Ref. [27]. Data from Refs. [20–26,33,36] were obtained for
monolayers; the data from Ref. [34] are for few-layer systems.

compound. This behavior is shown to be due to higher lifetimes
in the former case, which can be rationalized in terms of the
scattering condition and the different phononic band gaps.

II. METHODOLOGY

A. Thermal conductivity

In general, the thermal conductivity comprises both an
electronic κe and a phononic (lattice) part κl . According to the
Wiedemann-Franz law the electronic contribution κe is closely
related to the electrical conductivity. Since the TMDs of
interest in the present work have comparably large (electronic)
band gaps κe is usually much smaller than κl . For example,
in the case of the in-plane conductivity in MoS2, κe reaches
only about 5% of the value of κl at room temperature [9] and
the ratio is even smaller below 300 K. In the present work, we
therefore focus entirely on the lattice contribution κl and from
here on drop the subscript l.

To calculate the lattice thermal conductivity, we utilize
Boltzmann transport theory within the relaxation time approx-
imation. In this approximation, each mode λ = (q,p), where q
is the phonon wave-vector and p is the band index, is associated
with a relaxation time τλ. The total relaxation time is the result
of several scattering processes, and in the present work, we
consider phonon-phonon scattering as well as isotopic and
boundary scattering. If one assumes that each scattering rate
individually contributes in parallel, the total relaxation time
for a phonon mode is given by Matthiessen’s rule,

τ−1
λ = τ−1

ph-ph,λ + τ−1
iso,λ + τ−1

boundary,λ. (1)

Isotopic scattering is the result of variations in the atomic
masses due to the natural isotope distribution. The correspond-
ing relaxation time contribution τiso,λ has been calculated
according to second-order perturbation theory [39] using
isotope distributions and masses from Ref. [40].

Boundary scattering is accounted for by assuming that the
mean free path (MFP) of any phonon mode is capped by
a structural length scale L, which in the most simple case
corresponds to the sample size [41],

τ−1
boundary,λ = vλ/L. (2)

This expression represents the limit, in which the scattering
event is fully diffusive, equivalent to a vanishing specularity
parameter [42,43]. Below we will treat this model as a means to
establish the characteristic length scale L that is representative
of the (temperature independent) structural homogeneity of
the material. We note that the model was used in a similar
fashion in Ref. [44] to describe the effect of nanostructuring
in Zn chalcogenides.

Phonon-phonon scattering is computationally the most
intricate contribution. The corresponding lifetime τph-ph,λ can
be obtained using perturbation theory on top of a harmonic
description of lattice vibrations. The phonon-phonon limited
lifetime is then obtained as the inverse of the self energy
τph-ph,λ = 1/2�λ(ωλ), where the self-energy is given by [19]

�λ(ω) = 18π

�2

∑
λ′λ′′

|�−λλ′λ′′ |2{(nλ′+nλ′′+1) δ(ω − ωλ′ − ωλ′′ )

+ (nλ′ − nλ′′ )[δ(ω + ωλ′−ωλ′′) − δ(ω−ωλ′+ωλ′′ )]}.
(3)

Here, �−λλ′λ′′ is obtained from the third-order interatomic
force constant (IFC) matrix and nλ is the Bose-Einstein
distribution. The mode frequencies ωλ can be obtained in the
usual fashion from the second order IFCs [41].

Phonon scattering processes must obey (i) momentum con-
servation, qλ + qλ′ + qλ′′ + G = 0, where G is a reciprocal
lattice vector, and (ii) energy conservation, δ(ωλ ± ωλ′ ± ωλ′′ ),
where the signs are determined by the type of scattering
event. Condition (i) is included in the constructing of the
third-order IFCs, while condition (ii) is apparent in Eq. (3).
The structure of the self-energy and accordingly the lifetimes
is thus determined to a large extent by the geometry of
the Brillouin zone and the phonon dispersion [41]. This
observation allows one to identify general trends in the lifetime
spectrum already on the basis of the phonon dispersion and
thus the second-order IFCs. In this context, the joint density of
states (JDOS) is a very useful quantity. The JDOS is defined
as

D2(q,ω) = 1

N

∑
λ′,λ′′


(−q + q ′ + q ′′)

×
{[

δ(ω + ωλ′ − ωλ′′) − δ(ω − ωλ′ + ωλ′′ )︸ ︷︷ ︸
Class 1 processes

]

+ δ(ω − ωλ′ − ωλ′′)︸ ︷︷ ︸
Class 2 processes

}
, (4)
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where N is the number of unit cells in the crystal and

(−q + q ′ + q ′′) embodies the momentum conservation con-
dition expressed above. D2(q,ω) thus effectively counts the
number of collision and decay processes that contribute to
the phonon-phonon scattering time of a given mode. By
comparison with the full expression one recognizes as the
main difference the occurrence of third-order derivatives of
the total energy in Eq. (3),1 which represent the efficiency
of the scattering processes that are energy and momentum
allowed. By contrast, Eq. (4) requires only knowledge of the
second-order force constants.

Finally, the full lattice thermal conductivity tensor is
obtained by summing over all modes [45]

κ(T ) = 1

Nq�

∑
λ

τλ(T )vλ︸ ︷︷ ︸
�λ(T )

⊗vλcλ(T ). (5)

Here, � is the unit cell volume, Nq denotes the number of q

points, vλ = ∇ωλ is the group velocity, �λ is the phonon MFP,
and cλ(T ) is the mode specific heat capacity. For analyzing,
e.g., the sensitivity of the thermal conductivity to structural
inhomogeneities it is convenient to consider the cumulative
thermal conductivity, which is given by

κ̄(�) = 1

Nq�

�λ<�∑
λ

�λ(T ) ⊗ vλcλ(T ). (6)

If the MFP is uniformly limited to a constant value �̄, one
obtains the so-called small-grain conductivity [18], which is
given by

κsg = 1

Nq�

∑
λ

vλcλ(T ). (7)

The small-grain conductivity represents the limit, in which
scattering is dominated by a structural length scale as for
example in the case of nanostructuring.

B. Computational details

Density functional theory calculations were carried out
using the projector augmented wave method [46,47] as
implemented in the Vienna ab initio simulation package
(VASP) [48,49]. To assess the sensitivity of our results
to the treatment of exchange-correlation effects, we used both
the local density approximation (LDA) and the van der Waals
density functional (vdW-DF) method [50–53]. In the vdW-DF
method, the correlation energy Enl

c assumes a nonlocal form,
which is expressed as a double integral over the spatial degrees
of freedom [38]:

Enl
c [ρ] = 1

2

∫ ∫
ρ(r)φ(r,r ′)ρ(r ′)d3rd3r ′, (8)

where ρ is the electron density and the kernel φ(r,r ′)
represents the nonlocal coupling of the electron density. The
correlation energy is then complemented with a semilocal
exchange functional giving the exchange-correlation energy

1Also compare Eqs. (3.2.11-12) in Ref. [41] and Eq. (1) in Ref. [19].

for the vdW-DF method:

EvdW−DF
xc [ρ] = Esl

x [ρ(r)] + Enl
c [ρ(r)]. (9)

We considered both the empirically adjusted PBE exchange
part from Ref. [54] (vdW-DF-optPBE) and the recently
developed nonempirical consistent exchange version (vdW-
DF-CX) [29,38] as implemented in VASP [54,55].

The plane-wave energy cutoff energy was set to 290 eV in
the calculations of WSe2, MoSe2, WTe2, and MoTe2 and to
336 eV in the calculations of WS2 och MoS2. In calculations
based on the primitive cell, the Brillouin zone was sampled
using a �-centered 12 × 12 × 3 k-point mesh.

Thermal conductivities and other phonon related quantities
where obtained with the PHONOPY [56,57] and PHONO3PY [19]
packages. The convergence of the lattice thermal conductivity
with respect to q-point sampling mesh, displacement ampli-
tude, supercell size as well as the cutoff for the maximal range
of force interactions was analyzed as described in Sec. III B
below. The final calculations for both second- and third-order
force constants were conducted using supercells comprising
3 × 3 × 1 primitive unit cells while a �-centered 4 × 4 × 3
grid was utilized for k-point sampling. The displacement
amplitude employed in the calculation of finite differences
was set to 0.09 Å. This value was obtained by balancing
the need to reduce the numerical noise in the computation
of soft interlayer force components while remaining in
the harmonic (linear response) regime. For computational
efficiency, forces were only computed for pairs and triplets
within a cutoff range of 3.8 Å; this includes interactions
up to the third-nearest-neighbor shell for in-plane terms and
between neighboring layers in the out-of-plane direction for
all considered materials. For the lattice thermal conductivity
calculations, a tetrahedron method was used for Brillouin zone
integrations while employing a 21 × 21 × 13 q-point mesh.

The structural properties at finite temperature were obtained
at the level of the quasiharmonic approximation as imple-
mented in PHONOPY [56,57]. To this end, the second-order
IFCs were computed at seven different volumes between 95%
and 105% of the respective equilibrium volume.

III. RESULTS AND DISCUSSION

A. Description of van der Waals solids

1. Tungsten diselenide

Molybdenum and tungsten based TMDs are among the
most widely investigated vdW solids. They adopt layered
structures with stoichiometry MX2 (M = Mo and W; X = S,
Se, and Te) that are composed of two-dimensional sheets with
strong intralayer bonding coupled to each other via comparably
weak vdW interactions. With the exception of WTe2 the
equilibrium structures belong to space group P 63/mmc

(International Tables of Crystallography No. 194, see Fig. 2).
In equilibrium WTe2 adopts an orthorhombic crystal structure
that belongs to space group Pmn21 (ITC No. 31) [66]. It is
included here in space group P 63/mmc to exhibit chemical
trends and since it be incorporated in multilayer vdW solids
with hexagonal symmetry.

For WSe2, the structural parameters at 300 K were
computed using the local density approximation (LDA) as
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FIG. 2. Crystal structure of molybdenum and tungsten based
transition metal dichalcogenides (space group P 63/mmc, ITC No.
194). The transition metal and chalcogenide species correspond to
M and X, respectively. Structures were created using the atomic
simulation environment [58] and visualized with OVITO [59] as well
as Blender [60].

well as the vdW-DF-optPBE and vdW-DF-CX functionals
[Table I and Fig. 3(a)]. We also considered the PBE functional
but the lack of vdW binding gives rise to extremely weak
interlayer binding and a very poor description of the structure,
in particular the out-of-plane lattice parameter.

The closest agreement with the structural reference data is
obtained for the vdW-DF-CX functional, which yields values
for the in-plane and out-of-plane lattice parameters that are
within respectively 0.1% and 0.3% of the experimental data.
We are not aware of higher-level (experiment or calculation)
reference data for the interlayer binding energy [Fig. 3(a)] but
note that the vdW-DF-CX functional has been shown to yield
excellent binding energies for other vdW bonded systems [53].

The vdW-DF-optPBE functional was obtained in semi-
empirical fashion by combining the non-local vdW-DF

TABLE I. Comparison of structural parameters for WSe2 from
experiment [61,62] and calculation. a and c are the in-plane and
out-of-plane lattice constants (Å), respectively; zSe is the internal
parameter, which specifies the position of the Se atoms.

Calculations Experiment

LDA vdW-optPBE vdW-CX
zero K excluding zero-point vibrations

a 3.250 3.341 3.277
c 12.819 13.550 12.942

zSe 0.620 0.626 0.620
zero K with zero-point vibrations

a 3.250 3.339 3.279
c 12.824 13.500 12.991

zSe 0.620 0.625 0.620
300 K

a 3.250 3.339 3.279 3.282 3.286
c 12.832 13.508 12.998 12.960 12.960

zSe 0.620 0.625 0.621 0.621 0.621
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FIG. 3. Binding energy as a function of interlayer spacing (a)
for WSe2 as obtained using different XC functionals and (b) for Mo
and W-based sulfides, selenides, and tellurides calculated using the
vdW-DF-CX functional. The in-plane lattice constant was held fixed
at the equilibrium value.

correlation with the rescaled exchange part of the PBE
functional [30,54]. Here, it is found to overestimate both
in-plane (1.7%) and out-of-plane (4.2%) lattice constants of
WSe2 notably; it also yields a slightly smaller value for the
interlayer cohesion than the vdW-DF-CX functional.

The LDA results for both lattice constants are within 1% of
the experimental values. This result is partially surprising in so
far as the LDA actually does not account for dispersive vdW
interactions, and the good agreement is rather the result of the
characteristic LDA overbinding, which has been pointed out
previously [50,68]. The LDA thus yields the correct result
for the wrong reasons [69], which becomes more evident
when considering the binding energy curve [Fig. 3(a)]. The
asymptotic behavior of the LDA data clearly differs from
the two vdW functionals and yields only about half of the
interlayer binding energy. The energy landscape around the
equilibrium spacing is, however, similar to the one obtained
with the vdW-DF-CX functional.

2. Extension to other TMDs

Based on the results for WSe2, we only considered the
vdW-DF-CX functional for the analysis of the other Mo and
W-based TMDs. This functional generally achieves very good
agreement with experimental measurements (Table II) as the
deviations from the reference data generally do not exceed
0.4% and are on average below 0.2%.

The results show the structural parameters are barely
affected by the transition metal, while the chalcogenide species
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TABLE II. Comparison of structural parameters for di-sulfides,
selenides, and tellurides of Mo and W in spacegroup P 63/mmc

(ITC No. 194) as obtained from calculations using the vdW-DF-CX
functional and experiment. Results from calculations that exclude
of zero-point vibrations are shown in brackets. The in-plane and
out-of-plane lattice constants a and c are given in units of angstroms.

Material Calculation Experiment

0 K 300 K 300 K

MoS2, Refs. [62,63]
a 3.152 (3.149) 3.152 3.160 3.160
c 12.291 (12.225) 12.295 12.294 12.290
zS 0.622 (0.621) 0.622 0.621 0.620

MoSe2, Refs. [62,63]
a 3.280 (3.278) 3.280 3.289 3.288
c 12.920 (12.875) 12.928 12.927 12.930

zSe 0.620 (0.621) 0.621 0.621 0.620
MoTe2, Refs. [64,65]

a 3.504 (3.501) 3.504 3.519 3.518
c 13.904 (13.865) 13.913 13.964 13.974

zTe 0.619 (0.619) 0.619 0.625 0.621
WS2, Refs. [61,62]

a 3.152 (3.150) 3.152 3.153 3.154
c 12.358 (12.288) 12.365 12.323 12.360
zS 0.623 (0.622) 0.623 0.623 0.614

WSe2, Refs. [61,62]
a 3.279 (3.277) 3.279 3.282 3.286
c 12.991 (12.942) 12.998 12.960 12.980

zSe 0.620 (0.620) 0.621 0.621 0.620
WTe2

a 3.506 (3.503) 3.506
c 13.954 (13.916) 13.961

zTe 0.620 (0.619) 0.620

has a very strong effect as the lattice parameters increase in
the order S–Se–Te. As will be discussed in more detail below,
this has a direct impact on the vibrational properties as the size
of the Brillouin zone is inversely proportional to the lattice
parameters (see Fig. 4).

B. Convergence of the thermal conductivity

Since the vdW forces acting between layers are much
weaker than the covalent and ionic interactions in denser
materials, they are more prone to numerical errors. This is
partially compensated by using tight convergence parameters,
e.g., for the plane wave cutoff energy and the termination of
the electronic self-consistency loop. When calculating second
and especially third-order derivatives using finite differences
errors in the forces are, however, enhanced. We therefore
carefully tested the effect of the displacement amplitude 
r

used for computing the IFCs on the calculated lattice thermal
conductivity.

The thermal conductivity is in fact very sensitive to the
displacement amplitude 
r [Fig. 5(a)]. While in the case
of silicon [inset in Fig. 5(a)] κ is only weakly dependent
on 
r , for WSe2 the thermal conductivity is dramatically
underestimated for smaller values of 
r . Since one usually
strives to use small values for 
r in order to remain in the linear

response regime, common (default) values for 
r typically fall
in the range between 0.01 and 0.03 Å [18,19]. In the case of
WSe2 these values cause a pronounced error in κ , as 
r values
�0.05 Å are required to obtain convergence. We therefore
adopted a value of 0.09 Å for the bulk of our calculations.

The calculation of the thermal conductivity is also affected
by supercell size and the cutoff imposed on the interac-
tion range. Based on the results of our convergence study
[Fig. 5(b)], production runs were conducted using supercells
comprising 3 × 3 × 1 unit cells and interactions were included
up to the third-neighbor shell in-plane and the first neighbor
shell out-of-plane (equivalent to a cutoff of 3.63 Å in the case
of WSe2).

Finally, the thermal conductivity is affected by the density
of the q-point grid used for Brillouin zone integrations.
In this regard, we find that a 19 × 19 × 12 q-point mesh
corresponding to approximately 4300 q points in the full
Brillouin zone achieves a convergence level that is comparable
to the other parameters considered here [Fig. 5(c)].

C. Thermal conductivity in WS2 and WSe2

Having established the quality of the underlying XC func-
tional with regard to structural parameters (Sec. III A) as well
as the numerical convergence of our calculations (Sec. III B),
we can now compare the calculated thermal conductivities
with experiment. To this end, we first consider WS2 and WSe2,
for which experimental data over a wide temperature range is
available for both the in-plane and out-of-plane conductivities
of nominally single-crystalline material [12,70].

If only phonon-phonon scattering is included as a lifetime
limiting mechanism in Eq. (1), the calculated thermal con-
ductivity invariably exhibits a 1/T dependence as expected in
this limit [71] (Fig. 6). Isotopic scattering lowers κ as well
as the temperature exponent in particular for temperatures
below 100 K. At room temperature the in-plane (out-of-plane)
conductivity is reduced from 157 to 126 W/K m (5.4 to
4.7 W/K m) in the case of WS2 and from 45 to 42 W/K m
(3.1 to 3.0 W/K m) for WSe2.

In the case of WS2, the calculated in-plane conductivity at
room temperature of 126 W/mk (including phonon-phonon as
well as isotopic scattering) agrees very well with the measured
value of 124 W/K m [70]. At lower temperatures, there is,
however, a noticeable disparity suggesting that at least one
other scattering mechanism is important for κ . In fact, if
boundary scattering is taken into account via Eq. (2), it is
possible to reproduce the experimental in-plane conductivity
over the entire temperature range using L = 4 μm. Rather
than thinking of this value as corresponding to the sample
size, it should be understood as a characteristic structural
length scale. It should also be recalled that Eq. (2) represents
the extreme limit in which the scattering process is entirely
diffusive whereas in reality some level of directional scattering
can be expected [42,43].

The notion that not only the out-of-plane [12,14] but also
the in-plane thermal conductivity is sensitive to structural
inhomogeneities is further supported by observing that the
major contributions to the thermal conductivity stem from
modes with MFPs of at least 1 μm [Figs. 7(a) and 7(b)],
which is substantially longer than, e.g., in the case of PbTe
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FIG. 4. (a) In-plane and (b) out-of-plane phonon dispersion for Mo and W-based TMDs color coded by group velocity. The
inset in (a) shows the Brillouin zone for spacegroup P 63/mmc (ITC No. 194) [67]. The number in the left bottom corner of plot
represents the dimension of the Brillouin zone along the direction shown by the dashed arrows. The longitudinal sound velocities along
(a) �-K and (b) �-A are indicated by dashed triangles in the cases of MoS2 and WS2.

[Fig. 7(c)], a system, in which nanostructuring has been
used with great success to lower the thermal conductivity
[17,72]. The representative MFP for WS2 and WSe2 as
well as other TMDs is rather comparable to Si [Fig. 7(c)],
the synthesis of which—at least currently in contrast to

TMDs—can be extremely well controlled yielding very low
defect densities.

The calculated out-of-plane conductivities exhibit a con-
siderable deviation from experiment already at room temper-
ature (WS2: κ

expt
⊥ = 1.7 W/K m versus κcalc

⊥ = 5.4 W/K m;
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FIG. 5. Convergence of thermal conductivity with respect to different numerical parameters. (a) Calculated lattice thermal conductivity in
WSe2 at 300 K as a function of the displacement amplitude used for calculating the IFCs. The out-of-plane conductivity has been scaled by
10 for clarity. The inset compares the relative error in the in-plane conductivity for WSe2 with the case of silicon, which is a purely covalently
bonded material and much less sensitive to the choice of the displacement amplitude. (b) Convergence of κ at 300 K with respect to supercell
size and interaction cutoff distance. (c) Convergence with respect to the q-point mesh used for Brillouin zone integrations.
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FIG. 6. Calculated lattice thermal conductivity of WSe2 and WS2

in comparison with experiment. Solid and dashed lines and lines
with squares show the calculated thermal conductivity obtained
when including phonon-phonon scattering, isotopic scattering and
boundary scattering. The structural length scale L is set to 4 μm for the
in-plane and 0.15 μm for the out-of-plane conductivity. Experimental
data for WS2 and WSe2 were taken from Pisoni (2016) [70] and
Chiritescu (2007) [12], respectively.

WSe2: κ
expt
⊥ = 1.5 W/K m versus κcalc

⊥ = 3.1 W/K m). Ap-
plying the same approach as in the case of the in-plane
conductivity, we obtain a structural length scale of L =
0.15 μm for both materials [Figs. 7(a) and 7(b)], which yields
an excellent match between calculation and experiment over
the entire temperature range. Of course both experiment and
calculation are subject to certain errors that are difficult to
control either in the form of uncertainties concerning the
interpretation of the experimental raw data [11] or intrinsic
limitations of the theoretical description. In either case, the
lower value compared to the in-plane case is consistent with
the weaker binding along the c axis, which implies that it is
relatively easy for the material to introduce (planar) defects
that reduce the effective coherence length [13,14].

D. Extension to other chalcogenides

The analysis in the previous section has demonstrated
both the level of accuracy of our calculations and the strong
impact of impurities and other defects on many experimental
measurements. These effects hinder a systematic investigation
and understanding of the trends in thermal conductivity.
In the following, we therefore analyze κ for Mo and
W-based TMDs considering only phonon-phonon and isotopic
scattering channels.

The calculations show a systematic variation of the lattice
thermal conductivity that is primarily determined by the
chalcogenide species and except for the sulfides is only
weakly affected by the transition metal element (Fig. 8). The
calculated in-plane conductivities at room temperature vary
from 19 W/K m (MoTe2, WTe2) to 126 W/K m (WS2),
while the out-of-plane data range from 2.8 W/K m (WTe2)
to 5.1 W/K m (MoS2). (Recall that these values represent the
limit, in which only phonon-phonon and isotopic scattering
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FIG. 7. Cumulative in-plane and out-of-plane lattice thermal
conductivity κ̄ according to Eq. (6) as a function of the mode specific
MFP �λ in (a) WS2 and (b) WSe2 at 50 and 300 K, and in (c) PbTe
and Si at 300 K, calculated in the present work. The length scale �̄

corresponds to the length scale related to the small grain conductivity
[see Eq. (7)].

channels are available.) The thermal conductivity is thus highly
anisotropic as the ratio between the in-plane and out-of-plane
values ranges from 7 (MoTe2) to 27 (WS2) again following the
sequence Te-Se-S.

The large anisotropy between in-plane and out-of-plane
conductivity is largely due to the much smaller group velocities
in the c direction [Fig. 4(b)]. They are the result of the interlayer
(vdW) interactions being much weaker than the intralayer
(mixed covalent/ionic) bonding. This anisotropy has also been
shown to give rise to a phonon focusing effect and a much lower
minimum thermal conductivity than in the case of isotropic
materials [73].

The chemical trend for κ is analogous to the situation for
the structural parameters, which was described in Sec. III A.
The lattice parameters are the largest for the tellurides, which
accordingly exhibit the smallest Brillouin zone (Fig. 4) and
generally yield smaller group velocities resulting in lower
thermal conductivities, see Eq. (5). One might thus be led to
use the group velocities and thus the small-grain conductivity
κsg as a (computationally much cheaper) predictor for the
thermal conductivity. A closer inspection, however, reveals
no correlation between κsg and the full thermal conductivity
κ (Fig. 9), emphasizing the need to include phonon-phonon
scattering at least at an approximate level, see, e.g., Ref. [74].

Compared to the other TMDs in the case of the sulfides
the transition metal species has a much more pronounced
effect on the in-plane lattice thermal conductivity (Fig. 8)
with values of [83] and 126 W/K m for MoS2 and WS2,
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isotopic scattering [τλ,iso in Eq. (1)] for the TMDs considered in
this study. The insets show close-ups of the values at 300 K on a
linear scale and highlight the ordering of the materials.

respectively. This observation is supported by experimental
data as measurements for bulk MoS2 fall in the range between
85 and 110 W/K m [10] (also see Fig. 1), while a value of
124 W/K m was recently measured for WS2 [70]. Since both
the lattice parameters and the second-order IFCs of MoS2 and
WS2 are similar, the differences in phonon dispersion and
thus group velocities arise primarily from the mass difference
between Mo and W (Fig. 4). The lighter mass of Mo leads to
larger group velocities, which would suggest κ to be larger for
MoS2, yet the opposite is the case. The difference thus must
be traceable to the lifetimes.

The largest contributions to the thermal conductivity in both
materials come from modes with frequencies below 4.5 THz
[Fig. 10(a)]. In the case of WS2 the relative contributions in
the interval between 2 and 5 THz are, however, notably larger
than in MoS2. In fact, the lifetimes, in particular between 3.5
and 4.5 THz are much larger in WS2 [Fig. 10(c)] than in MoS2

[Fig. 10(b)]. These longer lifetimes can be largely attributed to
a much smaller number of allowed collision processes in this
frequency range in the case of WS2 [Fig. 10(d)], which can
be traced to differences in the phonon band structures of WS2

and MoS2 (Fig. 4) as follows.
The phonon band structure of WS2 exhibits a band gap

of 3.1 THz that separates the lower branches, which are
dominated by W, from the higher branches, which have
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FIG. 9. Comparison of the small-grain conductivity κsg according
to Eq. (7) with the respective full lattice thermal conductivity κ

according to Eq. (5) at 300 K.

primarily S character (Fig. 4). The equivalent gap in MoS2

amounts to only 1.5 THz. Any scattering process must obey
energy and momentum conservation as evident from Eq. (4).
The larger gap in the case WS2 implies that fewer combinations
of modes are allowed in the range between 3.5 and 4.5 THz,
which leads to less scattering. To demonstrate this aspect
quantitatively, we artifically modified the phonon band gap
in WS2 by rigidly shifting the upper branches by an amount

 (scissors shift), while keeping all other contributions to
Eq. (3) constant. Reducing the band gap from its original value
of 3.1 THz causes a systematic reduction of the lifetimes in
the energy range of interest and a monotonic decrease in the
thermal conductivity (Fig. 11). Finally, if one reaches a value of
1.5 THz corresponding to MoS2 one in fact observes a thermal
conductivity, which is slightly smaller than in the case of MoS2.
This clearly demonstrates the causal relationship between the
larger band gap and thermal conductivity in WS2 compared to
MoS2. Note that if boundary scattering is included the relative
importance of phonon-phonon scattering is reduced, which
diminishes the difference between WS2 and MoS2 (Fig. 12).

Differences in lifetimes between Mo and W-based TMDs,
albeit smaller than for the sulfides, are also present for the
selenides and tellurides. In these materials the lifetime effect
is, however, outweighed by the group velocity contribution
(compare the insets in Fig. 8). The present analysis nonetheless
demonstrates the importance of lifetime effects for understand-
ing the thermal conductivity in these materials.
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IV. CONCLUSIONS

In the present work, we investigated finite temperature
properties as well as the lattice thermal conductivity in Mo
and W-based TMDs employing a combination of density
functional and Boltzmann transport theory. The calculations
were carried out using the vdW-DF-CX functional, which was
shown to yield excellent agreement with experimental lattice
constants at room temperature with an average relative error
below 0.2% (Table II).

The calculated in-plane conductivities at room temperature
are in good agreement with experimental data for high-purity
material, when only phonon-phonon and isotopic scattering
are included (Figs. 1 and 6). Explaining the experimental data
over the entire temperature, however, requires inclusion of
at least one additional scattering mechanism (here boundary
scattering) that limits the phonon MFP (Fig. 6). The latter
effect is even more pronounced in the case of the out-of-plane
conductivity, for which we obtain a structural length scale of
L = 0.15 μm to be compared with L = 4 μm in the in-plane
situation.

The sensitivity of the thermal conductivity to structural
inhomogeneities can be explained in terms of the long MFP of
the modes that contribute the most strongly to κ (Fig. 7). The
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FIG. 11. The effect of the phonon band gap in WS2 on
(a) lifetimes and (b) thermal conductivity at 300 K.

MFP of these modes (including phonon-phonon and isotopic
scattering) is at least 1 μm, which is comparable to silicon but
much larger than, e.g., PbTe. This behavior is promising for
thermoelectric applications, where lowering the lattice part
of the thermal conductivity is a widely employed approach
for increasing the thermodynamic efficiency. On the other
hand, it can pose problems for electronic and optoelectronic
applications, which require a large κ for rapid heat dissipation.

A comprehensive analysis shows that the thermal con-
ductivity is primarily affected by the chalcogenide species
and increases in the order Te–Se–S (Fig. 8). As expected
from the elemental masses, MoTe2 and MoSe2 exhibit a
higher conductivity than the respective W-based TMDs. For
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FIG. 12. Variation of in-plane and out-of-plane thermal conduc-
tivity of MoS2 and WS2 with boundary scattering dimension L [see
Eq. (2)].
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the sulfides the situation is inverted, which may be traced
to the larger phononic band gap in the case of WS2 (see
Figs. 4 and 10). This observation suggests that in principle
phonon-engineering can be achieved not only via the group
velocity term in Eq. (5) and microstructuring but also via the
phonon-phonon scattering.

The present work was in part motivated by considerable
variations in experimental and computational data, based on
which it was very difficult if not impossible to establish
upper boundaries and chemical trends. Here, the present
study contributes a systematic analysis that enables one to
separate the contributions from scattering channels, which
can be considered intrinsic (phonon-phonon, isotopic), and
extrinsic ones (e.g., defects, boundaries, and interfaces), which
are sensitive to synthesis conditions.

The structural length scale that was employed in the present
work can originate from a variety of effects including, e.g.,
defects, interfaces, or sample boundaries (note that single
crystalline TMD samples are usually very small). It is beyond
the scope of the present work to provide detailed insight into

the specific scattering mechanisms, as such an investigation is
much more extensic in nature [14]. It is, however, noteworthy
that for the TMDs, for which experimental data allowed a more
careful comparison (WSe2, WS2), the structural length scale
thus obtained amounted to 4 and 0.15 μm, respectively, for
both materials.

In this sense, the present study provides a comprehensive set
of lattice thermal conductivities for bulk TMDs that establishes
bounds set by phonon-phonon scattering and structural length
scales. It thereby forms the basis for future studies on these
systems, which could focus, e.g., on vdW solids comprising
different layers.
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