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While machine-learned interatomic potentials offer near-quantum-mechanical accuracy for atom-
istic simulations, many are material-specific or computationally intensive, limiting their broader
use. Here we introduce NEP89, a foundation model based on neuroevolution potential architec-
ture, delivering empirical-potential-like speed and high accuracy across 89 elements. A compact
yet comprehensive training dataset covering inorganic and organic materials was curated through
descriptor-space subsampling and iterative refinement across multiple datasets. NEP89 achieves
competitive accuracy compared to representative foundation models while being three to four orders
of magnitude more computationally efficient, enabling previously impractical large-scale atomistic
simulations of inorganic and organic systems. In addition to its out-of-the-box applicability to diverse
scenarios, including million-atom-scale compression of compositionally complex alloys, ion diffusion
in solid-state electrolytes and water, rocksalt dissolution, methane combustion, and protein-ligand
dynamics, NEP89 also supports fine-tuning for rapid adaptation to user-specific applications, such
as mechanical, thermal, structural, and spectral properties of two-dimensional materials, metallic
glasses, and organic crystals.

I. INTRODUCTION

Large-scale atomistic molecular dynamics (MD) simu-
lations are invaluable tools for elucidating the intricate
properties of complex materials. However, the fidelity of
these simulations critically relies on the accuracy of the
underlying interatomic potentials (or force fields). Ab
initio molecular dynamics (AIMD) simulations offer the
desired level of fidelity, but their computational cost is
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prohibitive in large-scale MD simulations of millions of
atoms and more.

In recent years, artificial intelligence has been success-
fully applied to construct accurate yet efficient machine-
learned interatomic potential models [1, 2], significantly
advancing the field of atomistic simulations [3–7]. Early
models were developed for specific materials and even
specific properties of a given material. More recent de-
velopments have revealed a trend toward building more
general-purpose potentials, from a single element [8] to
a set of metals [9], to tens of elements [10, 11], and to
almost the entire periodic table [12–17]. The last cate-
gory of potential models, although encompassing many
species, remains incomplete, as they were mostly con-
structed based on inorganic materials. Moreover, their
high computational cost severely limits their practical
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applicability, particularly for large-scale or long-timescale
simulations.

Here, to overcome these limitations, we introduce
NEP89, a foundation model that enables high-fidelity
simulations of both inorganic and organic materials
across 89 elements, while achieving a computational
speed several orders of magnitude faster than previous
universal interatomic potential models. Our model is
based on the state-of-the-art neuroevolution potential
(NEP) approach [9, 18, 19], which combines high accu-
racy with efficiency. This approach has recently been
demonstrated to achieve a general-purpose interatomic
potential for 16 metals and their alloys [9].

One major obstacle is the lack of a readily usable train-
ing dataset that comprehensively incorporates both inor-
ganic and organic materials. The lack of such a dataset
is presumably the reason why previous works have only
trained universal potential models either for inorganic
[12–17] or organic materials [20–23], or both, but with
multiple training tasks instead of a single unified one
[11]. A crucial contribution in the present work is the
curation of existing databases of separate sets of materi-
als to ensure they have consistent target data for training
a unified interatomic potential for both inorganic and or-
ganic materials. Starting from a sub-sampled dataset of
OMAT24 [24], we iteratively train NEP89 and build the
corresponding training dataset, incorporating structures
from many other public datasets [9, 13, 20–22, 25–27].
Moreover, we add the D3 dispersion correction [28, 29]
to some datasets such that all of them have proper dis-
persion interactions. Furthermore, the relative energies
between different datasets are also optimized during the
training process, which is a prerequisite for constructing
a unified single-task model. The NEP89 model achieves
competitive accuracy in predicting both static and dy-
namic properties. It also enables large-scale atomistic
simulations of both inorganic and organic systems out of
the box, while supporting rapid and cost-effective fine-
tuning across a broad range of applications.

II. RESULTS

The architecture of the NEP89 model and its fine-
tuning. The NEP89 model is built on the NEP ap-
proach [9, 18, 19]. We begin by briefly introducing the
NEP architecture and then discuss the extensions that
enable the fine-tuning of NEP89. The NEP approach is
a many-body neural network potential that uses an atom-
decomposed total energy and atom-centered descriptors
constructed with Chebyshev and Legendre polynomials,
along with an advanced training algorithm that incor-
porates regularization and employs the separable natu-
ral evolution strategy [30]. The latter evolves a set of
mean and variance values for the trainable parameters
that also form the basis for fine-tuning. The descriptors
are defined within a specified cutoff radius to ensure that
the computational cost scales linearly with the number

of atoms. The input layer neurons of the neural network
correspond to the descriptors, while the output layer neu-
ron represents the site energy Ui of the central atom
i. Force and virial stress are calculated via analytical
derivatives of the energy (see Supp. Note S1 for details).
Atomic species are encoded in the expansion coefficients
of a set of radial functions. For each pair of species, there
is an independent set of Nec expansion coefficients opti-
mized during training. Additionally, each species has its
own independent set of Nnn trainable weight and bias
parameters within the neural network. Therefore, for a
system with Nspe species, there are N2

speNec + NspeNnn

trainable parameters (refer to Supp. Note S2 for the hy-
perparameters used when training NEP89).

Thanks to the combinatorial architecture of NEP, the
trained NEP89 model can be conveniently fine-tuned into
smaller models tailored to subsets of species using a new
training dataset. During the fine-tuning process, it is
crucial to maintain the descriptor normalization. To this
end, for the targeted species, the mean and variance of
their trainable parameters, used by the separable natural
evolution strategy, are extracted from NEP89 and reused
during continued training. Fine-tuning typically requires
only a small fraction of the training steps compared to
training from scratch to achieve optimal results. Ad-
ditionally, to prevent the model from undesirably losing
memory, the variance values of the descriptor parameters
are set to zero, ensuring that only the neural network pa-
rameters are updated during fine-tuning.

Iterative training of NEP89. To train a universal
potential model across 89 species for both inorganic and
organic materials, the first task is to construct a train-
ing set that is diverse, reliable, and consistent. So far,
no single available dataset meets these three conditions
simultaneously. Fortunately, there are already many in-
dividual datasets, and we aim to combine them to form a
consistent dataset with enhanced diversity and reliability.
A notable one is the OMat24 dataset [24] containing over
110 million structures for inorganic bulk materials. To
supplement the OMat24 dataset, we also include struc-
tures from other important datasets, including the MPtrj
dataset for relaxation trajectories of inorganic bulk mate-
rials across 89 elements [13], the SPICE dataset for drug-
like small molecules, peptides, and solvated amino acids
[21], the ANI-1xnr dataset for reactive organics [22], the
SSE-ABACUS and SSE-VASP datasets for solid-state
electrolytes [25], the solvated protein fragments (Pro-
tein for short) dataset [20], the UNEP-v1 dataset for 16
metals and their alloys [9], the CH dataset for general
and reactive CH systems [26], the water dataset with
liquid, gas, and vapor-liquid phases [27], and a reactive
CHONPS dataset we created. More details regarding
these datasets are provided in Supp. Table S1. The suc-
cessful training of NEP89 was not accomplished by pro-
viding all the aforementioned datasets to the optimizer
simultaneously, but rather through an iterative training
strategy, as described below.
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Initially, we note that these datasets are inconsistent
in their incorporation of dispersion interactions. While
some datasets (SPICE, Protein, ANI-1xnr) include the
D3 dispersion [28, 29], we added this dispersion interac-
tion to the remaining datasets for uniformity. The wa-
ter dataset is unique, as it was labeled using the MB-
pol method [31], delivering accuracy close to CCSD(T).
Although not all datasets are calculated at the same
level of quantum-mechanical theory, the differences in
force and stress are minor and can be disregarded in
training the NEP89 model. On the other hand, these
datasets have significantly different energy references for
a given species, which hinders the development of a uni-
fied model. To address this challenge, we initially focused
exclusively on the energies in the OMAT24 dataset, dis-
regarding reference energies from all other datasets.

Another challenge in training a unified model based
on extensive public datasets is managing the vast num-
ber of training structures. A good training dataset does
not necessarily require a large number of structures but
rather a diverse and well-balanced selection. To address
this, we first created a randomly sub-sampled dataset
from the OMAT24 database to train an initial model. Us-
ing this model, we then selected a subset of the OMAT24
database with uniformly distributed descriptor values
(see Supp. Note S3 for details) to train an improved
model. We then performed model training and data cura-
tion for more than ten iterations. During each iteration,
the current model predicted unseen structures across all
datasets. Structures with high force and stress errors
were identified, and a subset with evenly distributed de-
scriptor values was sampled and added to the training
dataset. This refined dataset was then used to train the
next model in the sequence.

An essential aspect of dataset refinement is identify-
ing inaccuracies in the reference data. Several datasets,
such as OMAT24 and MPtrj, contain erroneous entries
or unconverged density functional theory (DFT) calcu-
lations. To mitigate the impact of noisy reference data,
prior studies have employed the Huber loss function [12–
14, 16, 17]. Our approach involves iteratively remov-
ing outliers from the training dataset, thereby gradu-
ally reducing their influence on the resulting models. In
Supp. Figure S1, we show results for 113 typical struc-
tures in the MPtrj dataset identified as outliers during
our training, where the original DFT reference values
were found to be inaccurate, while predictions by NEP89
closely aligned with our recalculated reference values.

Through this iterative training and refinement pro-
cess, we developed a diverse and balanced training
dataset, which is visualized in the reduced descriptor
space spanned by the two principal components in Fig-
ure 1a. However, the model obtained in this process was
exclusively trained on the OMAT24 dataset in terms of
energy, introducing a possible bias toward this dataset.
To ensure balanced training across different datasets, we
accordingly adjusted the reference energies for the other
datasets. These adjustments minimized differences be-

RMSE = 58.1 meV atom-1

MAE = 39.9 meV atom-1

R2 = 0.99935

RMSE = 401.6 meV Å-1

MAE = 250.3 meV Å-1

R2 = 0.94094

a

b c

FIG. 1. Dataset composition for NEP89 and overall
training accuracy. (a) Distribution of the NEP89 datasets
in the reduced descriptor space spanned by the first two prin-
cipal components. The individual datasets were subsampled
from the UNEP-v1 [9], OMAT24 [24], MPtrj [13], CH [26],
ANI-1xnr [22], SPICE [21], SSE-ABACUS [25], SSE-VASP
[25], water [27], and Protein [20] datasets, or newly pre-
pared in this work (CHONPS). (b,c) Parity plots for energy
and force comparing NEP89 predictions with reference values
(DFT or high-level quantum chemistry). The color intensity
visualizes the distribution and density of the NEP89 datasets.

tween the model predictions and the shifted reference en-
ergies (see Supp. Note S4 for details). We excluded the
reference energies for the MPtrj dataset from training,
since they were incompatible with those in the OMAT24
dataset due to differing treatments of the DFT+U tech-
nique. We then performed the energy adjustment for a
few iterations and trained the final model, which we refer
to as the NEP89 model. The parity plot for the energies
(Figure 1b) indicates that all the considered reference en-
ergies are indeed quite consistent after our adjustment.
The parity plot for the forces (Figure 1c) also indicates a
well-trained model for the combined dataset. (Supp. Fig-
ure S2 shows error metrics for energy, force, and stress
for the individual datasets.)

Benchmarks on static properties. Figure 2 presents
a number of benchmarks on static properties predicted
by NEP89 and various foundation models, including
MACE-MP-0 (medium version) [16], CHGNet [13] (ver-
sion 0.3.0), and M3GNet [12] (version 2021.2.8-DIRECT-
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b
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FIG. 2. Various benchmarks on static properties for
validating the foundation models. Mean absolute errors
(MAEs) of several foundation models, NEP89 (this work),
MACE-MP-0 [16], CHGNet [13], and M3GNet [12], with re-
spect to DFT reference data for the nine evaluated properties.
(a) Formation energies (γ) for structures sampled from the
Materials Project (MP-ternary) [32] and the GNoME dataset
[14], and binding energies (Eb) of the S66 dimer set [33] with
DFT (PBE+D3) references [16]. (b) Lattice energies (Elatt)
for the DMC-ICE13 dataset [34] with DFT references [16],
formation energies (Evac) of iron vacancy clusters of differ-
ent sizes, and adhesion energy (Ead) of hydrogen atoms in
iron nanopores with DFT (PBE). (c) Highest phonon band
frequencies (ω) of 97 materials with DFT (PBE) references
from the PhononDB database [35], and bulk (K) and shear
(G) moduli with DFT references from Materials Project [32]
covering more than 11,000 materials.

PES); see Methods and Supp. Figures S3–S8 for cal-
culation details. Overall, NEP89 demonstrates compa-
rable accuracy to other foundation models, based on
mean absolute errors across nine evaluated properties
relative to DFT data. For the formation energies (γ)
of the ternary structures sampled from the Materials
Project (MP-ternary) [32], MACE-MP-0 and CHGNet
are slightly more accurate, with NEP89 ranking third,
despite not being trained on the MPtrj energies. For
the 2-component to 5-component structures from the

GNoME dataset [14], on which none of the models were
trained, MACE-MP-0 shows the worst accuracy, while
NEP89 performs very close to CHGNet as the second-
best model. For the binding energies (Eb) of the S66
dimer set [33], NEP89 ranks as the second-best model,
even though it does not require a separate D3 correction
as for the other models. NEP89 demonstrates superior
accuracy for lattice energies (Elatt) for the DMC-ICE13
dataset [16, 34] and formation energies (Evac) of iron va-
cancy clusters of different sizes, and comparable accu-
racy for adhesion energy (Ead) of hydrogen atoms in iron
nanopores (see Supp. Note S8 for details on our iron
vacancy cluster and nanopore datasets). For the high-
est phonon band frequencies (ω) for 97 materials from
the PhononDB database [35], NEP89 achieves the third-
best performance. For more than 11 000 materials from
Materials Project [32], NEP89 demonstrates comparable
accuracy in predicting the bulk modulus (K) and the
best accuracy in predicting the shear modulus (G).

Evaluation of computational performance. Since
the primary motivation for developing machine-learned
interatomic potentials is to extend the spatiotemporal
scales of ab initio calculations, computational efficiency,
in terms of both memory usage and computational speed,
is a crucial factor. As shown in Figure 3a–b, NEP89 con-
sistently outperforms other foundation models in terms
of speed and memory usage across a wide range of system
sizes, using a 20-element high-entropy alloy as a repre-
sentative example (see Methods for details). On the 24-
GB RTX 4090 and 80-GB H800 GPUs considered here,
NEP89 can simulate up to 8 × 106 atoms at a speed of
5 × 106 atom-steps per second and 1.5 × 107 atoms at
a speed of 7 × 106 atom-steps per second, respectively.
Overall, NEP89 extends the accessible spatiotemporal
scale of atomistic simulations by at least three orders of
magnitude compared to other foundation models, while
maintaining competitive accuracy for both static proper-
ties (as shown above) and dynamic properties (as we will
discuss next).

Benchmarks of dynamical properties. To further
evaluate the performance of NEP89 in atomistic MD sim-
ulations, we compare dynamical properties of three typ-
ical systems with different structural phases, including
amorphous carbon, liquid water, and three solid-state
electrolytes, obtained using NEP89 and other founda-
tion models (see Methods for computational details).
Figure 3c shows the bonding statistics of amorphous
carbon, comparing experimental data with predictions
from NEP89 and other foundation models. NEP89
achieves comparable accuracy to other foundation mod-
els and aligns reasonably well with experimental results.
Figure 3d–f shows a comparative analysis of the den-
sity, radial distribution function, and self-diffusion co-
efficient of liquid water as obtained from experiments,
NEP89, and other foundation models. The results
show that the NEP89 predictions closely match exper-
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FIG. 3. Computational performance and benchmarks of dynamical properties. (a) and (b) show the benchmark
results of computational efficiency of NEP89 and various foundation models in twenty-element alloys. Insets show representative
atomic snapshots of the alloy model used in the MD simulations. NEP89 achieves about a three-order-of-magnitude improve-
ment in computational efficiency compared to the other foundation models. (c) Comparison of experimental and predicted
bonding statistics of amorphous carbon. (d–f) Experimental and predicted density (d), radial distribution function (e), and
self-diffusion coefficient (SDC) (f) of liquid water simulated using NEP89 and other foundation models. (g-i) Experimental
and calculated lithium-ion SDC in (g) Li10GeP2S12, (h) Li10SiP2S12, and (i) Li10SnP2S12 solid-state electrolytes using NEP89,
three other foundation models, a specialized DP model, and AIMD. Overall, predictions from NEP89 show good agreement
with experimental data or AIMD results.

imental data and that NEP89 outperforms the other
foundation models, particularly in reproducing the den-
sity (Figure 3d) and the oxygen-oxygen radial distribu-
tion function (Figure 3e). Next, Figure 3g–i present a
comparative analysis of calculated versus experimental
lithium-ion self-diffusion coefficients for three thiophos-
phate solid-state electrolytes: Li10GeP2S12, Li10SiP2S12,
and Li10SnP2S12, spanning temperatures from 300 to
1100K. Notably, NEP89 achieves excellent agreement
with AIMD simulations and a specialized force field [25],
while outperforming other foundation models across the
full temperature range.

Out-of-the-box large-scale MD simulations. Af-
ter demonstrating the capabilities of NEP89 in dy-
namical simulations using small systems designed for
benchmarking purposes, we next showcase the out-of-
the-box applicability of NEP89 for large-scale atom-
istic MD simulations of inorganic and organic materi-
als, which are typically impractical for other founda-
tion models. The examples include a million-atom-scale
compression simulation of the complex multicomponent
Cu0.7Mo25.0Ta29.6V17.0W27.7 (CuMoTaVW) alloy, calcu-
lations of ion diffusivities in water, a study of rocksalt dis-
solution kinetics, a simulation of methane combustion,
and a dynamical simulation of a protein-ligand system
(see Methods for details).
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FIG. 4. NEP89 applications in inorganic and organic systems. (a) Snapshots of atomic configurations of
Cu0.7Mo25.0Ta29.6V17.0W27.7 alloy at different stages during MD simulations (1 221 240 atoms) using NEP89. The left panel
shows the initial configuration; the right panel shows the configuration under 10% strain, colored by common neighbor analysis.
Dark blue, red, and green indicate atoms in body-centered cubic, hexagon close-packed, and face-centered cubic environments,
respectively; off-white indicates atoms in amorphous environments. (b) Stress-strain curve and yield strength predicted using
NEP89. The dashed line indicates the 0.2% offset method used to determine the yield strength. The NEP89 prediction is
in good agreement with experimentally measured yield strength (∼ 10.0 GPa) [36]. (c) Diffusivity of various ions in water at
300 K predicted by NEP89, compared to experimental values from Ref. [37]. (d) Dissolution of NaCl nanocrystal in water at
different temperatures calculated by NEP89. The dissolution rate τ is extracted from the power law fits (straight lines) at each
temperature, and collected in the inset, illustrating that NEP89 captures the expected Arrhenius behavior of the dissolution
process. (e) Atomic snapshots of the spatial distribution of NaCl during the dissolution in water at different temperatures.
(f) Time evolution of O2, CH4, and major products (CO, CO2, H2O) during a methane combustion simulation. (g) Atomic
snapshots of initial reactants, intermediate species, and final products. The results are consistent with those of Zhang et al. [22],
showing that NEP89 qualitatively captures the reactive chemistry of methane combustion. (h) Initial protein-ligand model;
(i, j) Configurations obtained after 20 ns of MD simulations using NEP89 (i) and CHARMM36 (j). (k) Schematic diagram of
the backbone rotation angle (ϕ and ψ) used in the Ramachandran diagram. (l, m) Ramachandran diagram showing the dis-
tribution of ϕ and ψ angles from simulations using NEP89 (l) and CHARMM36 (m), demonstrating that NEP89 qualitatively
captures key aspects of protein-ligand interactions and overall protein structure.

For the CuMoTaVW alloy, common neighbor anal-
ysis (Figure 4a) shows that NEP89 successfully main-
tains structural stability during isothermal equilibration
and compression. The polycrystalline body-centered cu-
bic structure remains intact throughout the deformation

process, with no observable phase transformation. The
yield strength and yield strain calculated by NEP89 are
9.2GPa and 5.8%, respectively (Figure 4b), which closely
reproduce the experimentally measured yield strength
(∼10.0GPa) and yield strain (∼6%) [36]. This quan-
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titative agreement illustrates the ability of NEP89 to ac-
curately capture atomic interactions in complex multi-
component alloy systems.

Moreover, the diffusivities of various monovalent and
divalent ions in water predicted by the NEP89 model
(Figure 4c), and their corresponding activation energies
(Supp. Figure S9), are in good agreement with experi-
ments [37, 38]. In combination with computational ef-
ficiency, this enables the prediction of, for example, the
dissolution kinetics of a small salt crystallite in water
(Figure 4d,e, Supp. Figure S10). The expected Arrhe-
nius behavior of the dissolution process is captured out
of the box with NEP89 (Figure 4d, inset).

The methane combustion simulation (Figure 4f) shows
that NEP89 generates primary reaction products and
product distributions that are remarkably similar to
those obtained with the ANI-1xnr model [22], indicating
the capability of NEP89 to capture the underlying reac-
tion physics and mechanisms. Atomic snapshots during
combustion (Figure 4g) confirm that NEP89 also pro-
vides reasonable predictions of the reaction chemistry.
Furthermore, NEP89 reproduces the near-exponential
decay profiles of CH4 and O2 concentrations originally
observed in ANI-1xnr simulations [22], demonstrating its
robust performance in modeling organic reactions.

For the protein-ligand case, we simulate the dynamics
of a protein (T4 lysozyme L99A/M102Q, 3HTB) in com-
plex with a ligand (2-propylphenol, JZ4) using NEP89
and compare the results with those obtained using the
specialized protein-optimized CHARMM36 force field.
As shown in Figure 4h–j, both models achieve the sta-
ble binding of the ligand JZ4 to the protein 3HTB in
long-term simulations. The binding energy calculated
by NEP89 is −1.64 eV, while the reference value from
CHARMM36 is −1.24 eV, suggesting that NEP89 can
reasonably describe the protein-ligand interactions. In
addition, we calculated the Ramachandran diagram of
the protein obtained by the two potentials, which can
be used to analyze whether the conformation of the pro-
tein model conforms to the rules of stereochemistry. As
shown in the Figure 4l,m, the total allowed areas calcu-
lated by NEP89 and CHARMM36 are 63.1% and 90.47%,
respectively. While NEP89 shows a lower proportion of
allowed areas compared to the specialized CHARMM36
force field, both Ramachandran diagrams [39] show that
the highest probability of protein configuration is around
the (−60◦, −30◦) area, with a higher proportion of α
area (bottom left area in Figure 4l,m) than that of
β area (top left area in Figure 4l,m). This indicates
that NEP89 can qualitatively describe the overall pro-
tein structure. We also calculated the number of protein-
water hydrogen bonds, obtaining 220 for NEP89 and 375
for CHARMM36, which are of the same order of mag-
nitude. Overall, these results demonstrate that NEP89
can qualitatively capture key aspects of protein-ligand
interactions and protein structure, even though it is not
specifically optimized for these protein systems. Further
improvements are expected through fine-tuning, which

we will introduce next.

Fine-tuning applications. For some specific applica-
tions, the accuracy of NEP89 may not be sufficient. In
such cases, one can still fully leverage NEP89 to quickly
obtain a reliable model through a simple but effective
active learning process. We can first use NEP89 to per-
form atomistic simulations at our target conditions, gen-
erating abundant trajectories. By sampling structures
from the trajectories and performing single-point DFT
calculations, we can create a training dataset to fine-
tune NEP89 into a special-purpose model for the material
and application in question. This process is considerably
more efficient than sampling structures using AIMD. In
the following, we present four case studies, including me-
chanical properties of the 2D material MoSi2N4, thermal
and structural properties of Pd42.5Cu30Ni7.5P20 metallic
glass, thermal conductivity of monolayer MoS2, and sim-
ulated inelastic neutron scattering spectra for crystalline
benzene (see Methods for fine-tuning and simulation de-
tails).
MoSi2N4 has been successfully synthesized via chemi-

cal vapor deposition in recent years and exhibited promis-
ing properties [40]. Here, we showcase the fine-tuning of
NEP89 specifically for MoSi2N4 with only 100 additional
configurations. The out-of-the-box predictions by NEP89
for the fracture strength and the Young’s modulus are
(272 ± 1)GPa and (34.2 ± 0.4)GPa, respectively. The
fine-tuned model on the other hand yields (463± 4)GPa
and (45.7 ± 0.2)GPa, respectively, which is in signifi-
cantly better agreement with the experimental values of
(491 ± 139)GPa and (66 ± 18)GPa, respectively (Fig-
ure 5a–d).

The Pd42.5Ni7.5Cu30P20 alloy is among the best-known
bulk metallic glasses in terms of glass-forming ability [48].
Here, we demonstrate that fine-tuning NEP89 with only
around 200 additional configurations yields excellent per-
formance. After fine-tuning, the computed glass transi-
tion temperature Tg matches closely with both the pre-
diction from a specialized NEP model [41] and experi-
mental data [42], as shown in Figure 5e–f. Moreover, the
icosahedral coordination, which describes the short-range
structure, is quantitatively improved after fine-tuning,
achieving results comparable to a specialized NEP model
(Figure 5g) [41].

Next, we demonstrate that fine-tuning the NEP89
model with only 104 additional configurations enables
accurate prediction of the thermal conductivity of the
monolayer MoS2. Figure 5h shows the evolution of the
predicted thermal conductivity using the homogeneous
nonequilibrium MD method [49] as a function of the
number of fine-tuning steps. As the latter increases, the
predicted thermal conductivity gradually rises and even-
tually converges to the reference values. Notably, after
10 000 fine-tuning steps, the model yields thermal con-
ductivity values that closely match those reported using
a customized NEP potential [43] as well as the Boltz-
mann transport equation approach using force constants
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FIG. 5. Example applications enabled by fine-tuning NEP89. (a–d) Mechanical properties of monolayer MoSi2N4. (a)
Stress-strain curves averaged over five MD simulations at 300 K. (b) Atomic snapshot at 16% strain after fine-tuning, showing
fracture. (c,d) Comparison of the Young’s modulus and tensile strength before and after fine-tuning, alongside DFT calculations
and experimental measurements [40]. Error bars for the MD results represent the standard deviation across five simulations.
(e–g) Thermal and structural properties of Pd42.5Cu30Ni7.5P20 metallic glass. (e) Atomic snapshots of the quenched metallic
glass structure generated by a fine-tuned model based on NEP89. (f) Comparison of Tg values before and after fine-tuning,
with results obtained using the NEP model by Zhao et al. [41] and experimental data [42]. (g) Spatial distribution and number
(NICO) of icosahedral structures (colored in gold for central atoms) in a quenched glass predicted by different potentials. (h)
Thermal conductivity of monolayer MoS2. Results are compared with predictions from a customized NEP model [43] and
Boltzmann transport equation (BTE) calculations using DFT-derived force constants [44–46]. (i) Simulated inelastic neutron
scattering spectra for crystalline benzene at 127 K using NEP89 and a fine-tuned model, compared with experimental data [47].

obtained via DFT calculations [44–46].

Finally, we showcase the prediction of scattering exper-
iments based on the workflow outlined in [47] (see Meth-
ods for details), employing NEP89 and a fine-tuned ver-
sion trained on 120 additional structures obtained via ac-
tive learning. While the simulated spectrum from NEP89
is overall in qualitative agreement with experimental data
[47] (Figure 5i), the peaks in the spectrum, which corre-
spond to phonon modes, deviate from their experimen-
tal counterpart by about 10meV. After fine-tuning, the
predicted mode frequencies agree even better with the
experimental spectrum, barring a general red shift of the
broad feature at 100meV, which can be attributed to the
vdW-DF-cx exchange correlation functional used for the
DFT calculations of the structures for fine-tuning. More-
over, the relative peak intensities are in better agreement
with experiments as well.

III. DISCUSSION

In summary, we have introduced NEP89, a highly effi-
cient and accurate foundation model for large-scale atom-
istic simulations of both inorganic and organic materials
across 89 elements. To the best of our knowledge, no ex-
isting machine-learned interatomic potential model offers
this combination of elemental and chemical breadth with
inference speeds comparable to typical empirical poten-
tials. NEP89 represents a significant milestone toward
the long-standing goal of a unified computational frame-
work that delivers near-ab-initio accuracy and empirical-
potential-like computational efficiency across diverse ma-
terial systems.
To achieve this, we employed an iterative train-

ing strategy incorporating descriptor-space subsampling,
targeted data curation, and reference energy adjust-
ments. The resulting training dataset strikes a balance
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between diversity and compactness, supporting reliable
predictions across a wide range of static and dynamic
properties, and remains flexible for future extension.

Comprehensive benchmarks highlight the competitive
performance of NEP89 in static properties, including for-
mation energies, binding energies, adhesion energies, lat-
tice energies, vacancy formation energies, phonon fre-
quencies, and elastic moduli. NEP89 also demonstrates
robust predictions in dynamic properties, such as bond-
ing statistics in amorphous carbon, thermodynamic prop-
erties of liquid water, and lithium-ion transport in solid-
state electrolytes. NEP89 often matches or outperforms
representative foundation models, exhibiting good agree-
ment with experimental results and robustness across di-
verse applications.

Beyond benchmarks on small-scale systems, we demon-
strated the out-of-the-box capability of NEP89 in large-
scale MD simulations, enabled by its computational effi-
ciency, which is comparable to that of empirical poten-
tials. From large-scale simulations of complex alloy sys-
tems and solution chemistry to modeling methane com-
bustion and protein-ligand dynamics, NEP89 showcases
versatility across a wide range of inorganic and organic
systems. Notably, NEP89 achieves quantitative agree-
ment with experiments on yield strength and ion diffusiv-
ities in water, reproduces the expected Arrhenius behav-
ior in rocksalt dissolution kinetics, and matches special-
ized model predictions for combustion reaction dynam-
ics. In addition, it qualitatively captures key structural
features and interactions in protein systems. These re-
sults highlight the ability of NEP89 to model complex
systems with high fidelity, even without domain-specific
optimization.

The fine-tuning capabilities of NEP89 provide a prac-
tical pathway for rapidly developing specialized mod-
els from limited training data. Researchers can effi-
ciently customize NEP89 for specific materials or con-
ditions, as demonstrated in case studies on MoSi2N4 me-
chanical properties, thermal and structural properties of
Pd42.5Cu30Ni7.5P20 metallic glass, thermal conductivity
of monolayer MoS2, and neutron scattering simulations of
crystalline benzene. Fine-tuning yields substantially im-
proved agreement with results from quantum-mechanical
calculations and experiments, demonstrating the util-
ity of NEP89 as both a versatile out-of-the-box and an
adaptable foundation model.

While the demonstrated out-of-the-box and fine-tuning
applications are not exhaustive, they provide a solid foun-
dation for future explorations in various application do-
mains. Such efforts will further characterize the capabil-
ities of NEP89 and identify potential areas for improve-
ment. We expect that with ongoing extension and refine-
ment, the out-of-the-box performance of NEP89 will con-
tinue to improve. Additionally, we anticipate the devel-
opment of numerous domain-specific, medium-sized mod-
els fine-tuned from NEP89, enabling tailored solutions for
a wide range of applications.

IV. METHODS

Benchmark calculations for static properties.
Static properties were calculated with the help of the
gpumd-wizard [50], ase [51], calorine [52], phonopy
[35], and MatCalc [53] packages. Detailed computa-
tional procedures can be found in Supp. Notes S5–S10 .
Atomic snapshots were generated using ovito [54].

Computational performance evaluation. We per-
formed MD simulations with 1000 steps on a 20-element
equiatomic alloy composed of Mn, Cr, Fe, Co, Ni, Cu,
Ag, W, Mo, Nb, Al, Cd, Sn, Pb, Bi, Zn, Ge, Si, Sb,
and Mg [55] to evaluate the computational efficiency of
different foundation models. The initial structure of the
alloy is face-centered cubic with randomly distributed
atoms and a lattice constant of 3.7 Å. Simulations
were conducted on systems ranging from the smallest
unit cell to progressively larger supercells until memory
limitations were reached.

MD simulation of amorphous carbon. A system
with 512 atoms in a diamond structure with a given
density undergoes an initial rapid melting process at
9000K for 25 ps, followed by a relaxation at 5000K for
5 ps. This is followed by a rapid quenching from 5000K
down to 1000K in 0.4 ps, with further relaxation stages
at 1000K for 5 ps and subsequently at 300K for 5 ps.
The time step for integration is 0.5 fs.

MD simulation of water. A system with 699 atoms
with an initial density of 1.0 g cm−3 was used in the
MD simulations of water. The system was equili-
brated in the isothermal-isobaric ensemble at a given
temperature and a pressure of 1 bar for 100 ps and
then in the canonical ensemble for 50 ps, followed by
a production run in the microcanonical ensemble for
25 ps. The time step for integration was 0.5 fs. For
each temperature, five independent runs were performed.

Lithium-ion diffusion in solid-state electrolytes.
MD simulations were performed on systems with 900
atoms for each of the three thiophosphate solid-state elec-
trolytes: Li10GeP2S12, Li10SiP2S12, and Li10SnP2S12.
Each system was equilibrated in the isothermal-isobaric
ensemble at a given temperature and a pressure of 1 bar
for 50 ps and then in the canonical ensemble for 100 ps,
followed by a production run in the microcanonical
ensemble for 200 ps. The time step for integration is
0.5 fs. For each material and each temperature, three
independent runs were performed.

MD simulation of CuMoTaVW alloy. The ini-
tial configuration comprises a body-centered cubic
polycrystalline structure with 10 grains (average grain
size about 12 nm), forming a 27 nm × 27 nm × 27 nm
simulation box containing 1 221 240 atoms. Using a
hybrid MC/MD method, we performed 4 million Monte
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Carlo attempts to obtain a low-energy configuration.
The system was then equilibrated at 300K for 100 ps
under the isothermal-isobaric ensemble. Subsequently,
uniaxial compression was applied along the x-axis at an
engineering strain rate of 2× 108 s−1, up to a maximum
strain of 10%. Yield strength is determined using the
commonly adopted 0.2% offset method, which identifies
the point where the stress-strain curve intersects a line
parallel to the linear (elastic) region, offset by 0.2%
strain.

Ion diffusivity in water. To compute the diffusivity
of Li+, Na+, K+, Ca2+, F– , Cl– , and Br– , 14 (7)
monovalent (divalent) ions along with the corresponding
number of OH– or H+ ions were randomly mixed with
14 000 H2O molecules at an initial density of 1.0 g cm−3.
The systems were equilibrated in the isothermal-isobaric
ensemble at a given temperature and a pressure of 0 bar
for 200 ps, followed by a production run in the micro-
canonical ensemble for 400 ps using a time step of 0.2 fs.
During the latter run, the mean-square displacement
was recorded, from which the diffusivity was calculated.

Dissolution kinetics of NaCl in water. A nanocrys-
tal comprising 32 NaCl units was placed in a cell
surrounded by 14 000 H2O molecules at a density of
1.0 g cm−3. The system was then evolved in the canoni-
cal ensemble at a given temperature for up to 2 ns using
a time step of 0.2 fs. The size of the largest cluster was
tracked over time, where the clusters were defined by
connectivity using a maximum Na–Cl bond cutoff of 4 Å
calculated using ovito [54]. 10 runs were carried out at
each temperature, and the crystal size was averaged over
these runs. The dissolution rate for each temperature
was determined by fitting the time dependence of the
cluster size to a simple exponential law.

MD simulation of methane combustion. CH4

and O2 molecules were mixed into a reactive system
containing 100 CH4 and 200 O2 molecules, enclosed
in a cubic cell of dimensions 37.5 Å × 37.5 Å × 37.5 Å,
corresponding to a density of 0.25 g cm−3. Each
trajectory began with isothermal equilibration at
300 K; subsequently, the temperature was ramped to
trigger combustion. The timestep for integration is 0.1 fs.

MD simulation of protein dynamics. Dynamics of a
protein (T4 lysozyme L99A/M102Q, 3HTB) in complex
with a ligand (2-propylphenol, JZ4) was simulated using
both GROMACS [56] with the CHARMM36 [57] (for
3HTB) and CGenFF [58] (for JZ4), as well as GPUMD
with NEP89. The system consists of 33 917 atoms,
and the simulation was performed for 20 ns in the
isothermal-isobaric ensemble using a timestep of 0.5 fs.
The last 15 ns were used for data analysis.

Fine-tuning for MoSi2N4 and MD simulations.
Using the NEP89 model, we conducted tensile loading

MD simulations of MoSi2N4 using an orthorhombic
cell with 210 atoms at 300K and evenly sampled 100
structures from the trajectory. Then we performed
single-point DFT-D3(BJ) calculations using the vasp
package [59, 60] with the projected augmented wave
method and the generalized gradient approximation,
along with the Perdew-Burke-Ernzerhof (PBE) func-
tional [61]. A vacuum layer of 20 Å was used to model
the two-dimensional systems. The plane-wave truncation
energy was set to 500 eV, and a Γ-centered k-point grid
with 2×2×1 divisions was used. Using the new training
dataset, we trained 5000 steps to obtain the fine-tuned
model for MoSi2N4. Using both the NEP89 and fine-
tuned models, we performed tensile loading simulations
for the monolayer MoSi2N4, using an orthorhombic cell
with 44 800 atoms. The engineering strain rate in the
herringbone direction was 8.6 × 107 s−1. The thickness
of the monolayer was taken as 10.7 Å in calculating
the volume, following earlier literature [40]. We con-
ducted five independent tensile loading simulations and
averaged them to report the stress-strain curves and
standard deviations.

Fine-tuning for PdCuNiP metallic glass and
MD simulations. To perform fine-tuning for the
Pd42.5Cu30Ni7.5P20 metallic glass, we carried out
quenching simulations for three specific compositions:
Pd40Cu30Ni10P20, Pd40Ni40P20, and Pd42.5Cu30Ni7.5P20

using the NEP89 model. The simulation protocol in-
volved constructing a 108-atom supercell equilibrated at
1800K in the NPT ensemble for 1 ns, followed by rapid
quenching to 300K at a cooling rate of 5 × 1010 Ks−1.
The structure was then equilibrated at 300K for 1 ns.
From the resulting trajectory, 209 configurations were
sampled. Single-point calculations were performed using
vasp [59, 60] with the PBE functional [61], a Γ-centered

k-point grid with a spacing of 0.2 Å
−1

, a plane wave
energy cutoff of 600 eV, and a threshold for the self-
consistency loop of 10−6 eV. After labeling the 209
structures with DFT reference data, the NEP89 model
was fine-tuned for 5000 steps. For the calculation of the
glass transition temperature (Tg) and short-range order
analysis of Pd42.5Cu30Ni7.5P20, a system containing
32 000 atoms randomly arranged in a cubic box with
dimensions of 7.6 nm× 7.6 nm× 7.6 nm was equilibrated
in the NPT ensemble (zero pressure) at 1800K for 1 ns
with a timestep of 1 fs, followed by rapid cooling to 300K
at a rate of 5 × 1010 Ks−1, and further equilibrated at
300K for 1 ns (see Supp. Figure S11 for potential energy
curves and Tg). The polyhedral template matching
method [62] with a root-mean-square deviation cutoff
of 0.12 was employed to identify local structural motifs
such as icosahedral clusters and other short-range order
structures.

Fine-tuning for MoS2 and thermal conductivity
calculations. Using the NEP89 model, we performed a
6 ns NPT simulation of MoS2 in an orthorhombic box
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containing 90 atoms at 300K, and applied the farthest
point sampling method to sample 104 configurations
from the trajectory. Single-point DFT-D3(BJ) calcula-
tions were performed with the VASP package [59, 60]
with the PBE functional [61], a k-space with a spacing

of 0.15 Å
−1

, a threshold for the self-consistency loop
of 10−6 eV, and a plane wave energy cutoff of 520 eV.
The dataset with 104 structures was used to fine-tune
the NEP89 model, yielding models for monolayer MoS2
with different fine-tuned steps. Using the homogeneous
nonequilibrium MD method [49], we calculated the
thermal conductivity of a MoS2 model containing
11 484 atoms. Ten independent 10 ns simulations were
conducted, and the standard error was calculated from
the results.

Fine-tuning for crystalline benzene and inelastic
neutron scattering calculations. Energies and forces
for the active-learning training structures were evalu-
ated using the vdW-DF-cx exchange-correlation func-
tional [63]. Crystalline benzene was simulated using both
the NEP89 and fine-tuned models in a 57 024-atom super-
cell at 127K, with a timestep of 0.5 fs and positions saved
every 3 fs. Path-integral MD simulations with 32 beads
ensured accurate cell volumes at low temperature [64].
After equilibration, a 1 ns microcanonical production run
was performed. The dynamic structure factor S(q, ω)
was computed from the resulting trajectories following
Ref. [47], briefly summarized here. S(q, ω) was com-
puted using dynasor [65] for 2116 random q-points up

to |q| = 14 Å
−1

. Results were smoothed with a Gaussian

of width 0.01 Å
−1

and averaged over spherical |q| shells
to obtain S(q, ω). S(q, ω) was then weighted for neutron
probes using species-specific scattering lengths and con-
volved with the kinematic constraint and resolution func-
tion of the TOSCA spectrometer at the ISIS Neutron and
Muon Source, UK. Finally, the weighted S(q, ω) was in-
tegrated to yield the spectrum S(ω) =

∫
S(q, ω)dq. The

TOSCA resolution function, implemented via euphonic
[66] and ResINS [67], is based on the AbINS module in
Mantid [68].
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[37] P. Vanýsek, Ionic Conductivity and Diffusion at Infinite
Dilution, in CRC Handbook of Chemistry and Physics,
edited by D. R. Lide (Taylor and Francis, Boca Raton,
FL, 2006) pp. 5–76 to 5–78.

[38] L. G. Longsworth, Temperature Dependence of Diffusion
in Aqueous Solutions, The Journal of Physical Chemistry
58, 770 (1954).

[39] G. Ramachandran, C. Ramakrishnan, and V. Sasisekha-
ran, Stereochemistry of polypeptide chain configurations,
Journal of Molecular Biology 7, 95 (1963).

[40] Y.-L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu,
S. Feng, L. Chen, M.-L. Chen, D.-M. Sun, X.-Q. Chen,
H.-M. Cheng, and W. Ren, Chemical vapor deposition
of layered two-dimensional MoSi2N4 materials, Science
369, 670 (2020).

[41] R. Zhao, S. Wang, Z. Kong, Y. Xu, K. Fu, P. Peng, and
C. Wu, Development of a neuroevolution machine learn-
ing potential of Pd-Cu-Ni-P alloys, Materials & Design
231, 112012 (2023).

[42] O. Haruyama, Thermodynamic approach to free volume
kinetics during isothermal relaxation in bulk Pd-Cu-Ni-
P20 glasses, Intermetallics 15, 659 (2007), advanced In-
termetallic Alloys and Bulk Metallic Glasses.

[43] W. Jiang, H. Bu, T. Liang, P. Ying, Z. Fan, J. Xu, and
W. Ouyang, Accurate Modeling of Interfacial Thermal
Transport in van der Waals Heterostructures via Hy-
brid Machine Learning and Registry-Dependent Poten-
tials (2025), arXiv:2505.00376 [physics.comp-ph].

[44] W. Bao, G. Chen, Z. Wang, and D. Tang, Bilateral

phonon transport modulation of Bi-layer TMDCs (MX2,
M=Mo, W; X=S), International Journal of Thermal Sci-
ences 179, 107669 (2022).

[45] X. Gu, B. Li, and R. Yang, Layer thickness-dependent
phonon properties and thermal conductivity of MoS2,
Journal of Applied Physics 119, 085106 (2016).

[46] A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri,
F. Mauri, and N. Marzari, Phonon hydrodynamics in
two-dimensional materials, Nature Communications 6, 1
(2015).

[47] E. Lindgren, A. J. Jackson, E. Fransson, E. Berger,
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Supplementary Notes

Supplementary Note S1: Energy, force, and stress calculations
for the NEP89 model

In our universal neuroevolution potential model across 89 elements (NEP89) model, the
total potential energy is a sum of the site energies, U =

∑
i Ui, where the site energy Ui

for a given atom i is a function of an abstract descriptor vector qi with a number of
components qiν (ν = 1, 2, · · · , Ndes). This function is expressed as

Ui =
Nneu∑
µ=1

w(1)
µ tanh

(
Ndes∑
ν=1

w(0)
µν q

i
ν − b(0)µ

)
− b(1).

Here, tanh(x) is the activation function, w(0) are the weight parameters connecting the
input layer (with dimension Ndes) and the hidden layer (with dimension Nneu), w

(1)

represents the weight parameters connecting the hidden layer and the output layer (the
site energy), b(0) represents the bias parameters in the hidden layer, and b(1) is the bias
parameter in the output layer. The descriptor vector consists of radial and angular
components as detailed previously [1]. The force acting on an atom i can be derived
to be Fi =

∑
j ̸=i (∂Ui/∂rij − ∂Uj/∂rji) , where rij = rj − ri. The virial tensor for the

whole system can be derived to be W =
∑

i

∑
j ̸=i rij ⊗ ∂Uj/∂rji. The stress tensor

is defined as W/V , where V represents the volume of the structure. The trainable
parameters z are optimized using the natural evolution strategy [2] to minimize the loss
function L = ∆U +∆F +∆W , where ∆U , ∆F , and ∆W denote the root-mean-square
errors (RMSEs) of energy, force, and virial, respectively, between the predicted and
reference values. To prevent overfitting and undesirable increases in model parameters,
L2 regularization is applied. Additionally, to ensure physically meaningful behavior at
short interatomic distances, the short-range Ziegler-Biersack-Littmark potential [3] is
included as a background term [4]. The hyperparameters used for training the NEP89
model are detailed in Supplementary Note S2.
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Supplementary Note S2: The nep.in input file for training
NEP89

We have used the following inputs in the nep.in file of the gpumd code to train the
NEP89 model:

type 89 H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca

Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W

Re Os Ir Pt Au Hg Tl Pb Bi Ac Th Pa U Np Pu

version 4

zbl 2

cutoff 6 5

n_max 4 4

basis_size 8 8

l_max 4 2 1

neuron 80

lambda_1 0

lambda_e 1

lambda_f 1

lambda_v 2

batch 90000

population 60

generation 1000000
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Supplementary Note S3: Details on descriptor-space subsam-
pling

To enable subsampling in the descriptor space, we first computed the descriptor compo-
nents for each structure in the database targeted for subsampling. For each descriptor
component, the value of a structure was defined as the mean of the component values
across all atoms in that structure. The process began with the random selection of
one structure from the database. Subsequently, we iterated through the remaining
structures, adding a new structure to the selection only if its distance from all previously
selected structures exceeded a predefined threshold, dmin, which was set to 0.05 in our
case. The distance between two descriptors was quantified as the Euclidean distance
calculated from their components. This methodology ensured that the selected structures
maintained a minimum separation of dmin in the descriptor space.
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Supplementary Note S4: Energy shifting between the different
datasets

After training the NEP model using a dataset that excluded all reference energies
except those from the subsampled OMAT24 dataset, we predicted energies for all other
datasets. Then we applied the separable natural evolution strategy [2] to determine the
energy shift values for relevant species in other datasets. These shifts were optimized
to minimize the difference between the predicted and reference energy values. For a
given dataset with Nstr structures, the predicted and reference energies for a structure a
are denoted as Upre

a and U ref
a , respectively. The shifted reference energy is expressed as

U ref
a +N I

a∆
I , where N I

a represents the number of species I in the structure a, and ∆I is
the energy shift for species I to be determined. The loss function to be minimized is

defined as L =
∑

a

(
U ref
a +N I

a∆
I − Upre

a

)2
/Nstr.
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Supplementary Note S5: The formation energy calculations of
MP-ternary and GNoME datasets for various foundation models

We employed two publicly available datasets, comprising all relevant ternary structures
from the Materials Project database [5] and a wide range of structures predicted by
GNoME [6], spanning 2-component to 5-component systems with force components
below 80 eV Å−1. These datasets were used to benchmark the accuracy of different
foundational models in predicting formation energies.

Specifically, we evaluated four models: NEP89 (this work), MACE-MP-0 [7], CHGNet
[8], and M3GNet [9]. For each model, formation energies were computed with reference
to the most stable allotrope of each constituent species. All the formation energy
calculations were carried out within an integrated environment combining the gpumd-
wizard [10] and calorine [11] packages. The predicted formation energies from each
model were then compared against DFT reference values from Ref. [12], as illustrated
in Fig. S3. The mean absolute errors (MAEs) for each model are summarized in Fig. 2
of the main text.
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Supplementary Note S6: Binding energy calculations for S66
dimer set

To benchmark the performance of various foundation models, we evaluate their pre-
dictions of binding energies on the widely used S66 dimer set [13]. S66 comprises 66
reference equilibrium geometries of molecular complexes designed to represent the most
common types of noncovalent interactions found in biomolecules, while maintaining a
balanced representation of dispersion and electrostatic contributions.

The DFT reference binding energies (obtained from Ref. [7]) were computed using
the Perdew-Burke-Ernzerhof (PBE) functional with D3 dispersion correction and Becke-
Johnson damping [14, 15], with a plane-wave energy cutoff of 520 eV. The predicted
binding energies of molecular dimers in S66, computed using different foundation models
(NEP89, MACE-MP-0, CHGNet, and M3GNet), are shown in Fig. S4. The MAEs for
each model are summarized in Fig. 2 of the main text.
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Supplementary Note S7: Lattice energy calculations for DMC-
ICE13 dataset

Ice is one of the most important and intriguing molecular crystals, exhibiting a rich
and continuously evolving phase diagram. Here, we evaluate the performance of various
foundation models by computing both the absolute and relative lattice energies from
the DMC-ICE13 dataset [16], where the relative values are referenced to hexagonal ice
Ih. The DMC-ICE13 dataset comprises lattice energies of 13 distinct ice polymorphs,
capturing the full structural complexity observed in ambient and high-pressure molecular
ice phases. Such benchmarking offers insight into the capacity of different foundation
models to capture the subtle and diverse intermolecular interactions governing molecular
ice polymorphism. The absolute and relative lattice energies computed by different
foundation models are presented in Fig. S5. Here, the DFT reference values were
obtained using the same computational protocol described in Supplementary Note S6,
and were extracted from Ref. [7]. The MAEs of absolute lattice energies are summarized
in Fig. 2 of the main text.
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Supplementary Note S8: Calculation of the formation energy
of iron vacancy clusters and the adhesion energy of hydrogen
atoms in iron anopores

Understanding the structure and energetics of vacancy clusters is fundamental to
describing defect evolution in metals. We compute the formation energies of vacancy
clusters of arbitrary size in body-centered cubic iron using different foundation models.
The computational methodology follows the procedure outlined in Ref. [17]. Fig. S6a
compares the predicted formation energies from different foundation models (NEP89,
MACE-MP-0, CHGNet, and M3GNet) with reference values obtained from DFT.

In addition, the interaction between hydrogen and nanoscale voids is a critical
factor in hydrogen-induced damage in structural materials [18]. We evaluate the
adsorption energies of varying numbers of hydrogen atoms in iron nanovoids using
different foundation models, with comparisons to DFT reference values shown in Fig. S6c–
d.

All DFT reference data were calculated using the PBE exchange-correlation func-
tional. The MAEs for the formation and adsorption energies across different foundation
models are summarized in Fig. 2 of the main text.
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Supplementary Note S9: Phonon property calculations for vari-
ous foundation models

In this section, we assess the phonon properties of a diverse set of materials using
different foundation models, which require accurate force predictions to ensure physically
meaningful lattice vibrational characteristics.

To facilitate direct comparison, we adopted a benchmark set of 97 materials intro-
duced in Ref. [7], which were randomly selected from the PhononDB database [19]
and previously used to evaluate the performance of MACE-MP-0 [7]. We employed
the finite-displacement method implemented in Phonopy [19] to compute the phonon
modes—including both the highest and lowest phonon frequencies—for all 97 compounds,
and compared the results to DFT reference data (at the PBE level) reported in the
PhononDB database [19]. The reliability of the DFT reference values in the PhononDB
database is discussed in Ref. [7]. To minimize discrepancies between the foundation
model predictions and the PhononDB results, we used the same supercell structures
as those in the database and removed the non-analytical corrections arising from Born
effective charges.

Fig. S7 presents parity plots comparing the highest and lowest phonon mode frequen-
cies predicted by different foundation models against the DFT reference values. The
MAEs for the highest phonon mode frequencies are reported in Fig. 2 of the main text.
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Supplementary Note S10: Bulk and Shear Moduli calculations
for various foundation models

We conducted a systematic benchmark of the elastic properties predicted by different
foundation models across more than 11,000 materials stored in the Materials Project
database [5]. A foundation model that accurately captures the potential energy surface
should be able to well reproduce elastic properties such as the bulk and shear moduli,
which depend on the second derivatives of energy with respect to strain [7].

Specifically, we computed the Voigt-Reuss-Hill (VRH) averaged bulk and shear
moduli [20] from stress-strain relations using different foundation models, following the
computational protocols described in Refs. [7, 21]. All calculations were carried out
using the elasticity module of the MatCalc package [22], and thus all predictions are
based solely on equilibrium, bulk crystalline structures.

To exclude potentially unphysical values arising from DFT errors, we filtered out
entries in the Materials Project database [5] with VRH-averaged bulk or shear moduli
≥ 600 GPa or ≤ −50 GPa, resulting in a curated dataset of 11,626 structures.

Fig. S8 presents parity plots comparing the bulk and shear moduli predicted by
different foundation models with the DFT (PBE-level) reference values, along with
corresponding MAE and RMSE values. The MAEs for each model are summarized in
Fig. 2 of the main text.
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Supplementary Table

Supplementary Table S1: The dataset used for training NEP89

Table S1: The dataset used to train the NEP89 model.

Source of
dataset

N spe N str Quantum-
mechanical

level

Software Our curation

OMAT24 [23] 89 395469 PBE+U VASP Add D3(BJ)

MPtrj [8] 89 56987 PBE+U VASP Add D3(BJ),
discard energy

SPICE [24] 15 24142 ωB97M-
D3(BJ)/def2-
TZVPPD

PSI4 Shift energy

ANI-1xnr [25] 4 18723 BLYP-
D3(0)/TZV2P

CP2K Shift energy

SSE-ABACUS
[26]

27 12300 PBE ABACUS Add D3(BJ),
discard energy

SSE-VASP [26] 15 9024 PBEsol VASP Add D3(BJ),
discard energy

Protein [27] 5 6842 revPBE-
D3(BJ)/def2-

TZVP

PSI4 Shift energy

UNEP-v1 [12] 16 5597 PBE VASP Add D3(BJ)

CH [28] 2 4582 PBE VASP Add D3(BJ)

CHONPS (This
work)

6 3049 PBE/DZVP-
MOLOPT-SR-

GTH

CP2K Add D3(BJ),
discard energy

Water [29] 2 926 MB-pol MBX Shift energy

Total 89 537641 – – –
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Supplementary Figures

Figure S1: Comparison of the recalculated DFT reference values of typical structures in
MPtrj database [30]. (a,b) Parity plots comparing the recalculated force and stress of
different configurations with original MPtrj references [30]. (c,d) Parity plots of force
and stress between recomputed DFT results and predictions from various foundation
models. We used the MACE-MP-0 model [7] as a predictor, and structures with predicted
stresses exceeding the DFT reference values of 100 GPa were selected. Accordingly,
we selected 113 configurations for stress outliers. We performed DFT self-consistent
calculations on these structures using the original computational inputs provided by
the Material Project [5]. It can be observed from the figure that the original MPtrj
reference values are unreliable, whereas predictions from different foundation models
closely match the recalculated DFT references. It is worth noting that the 113 structures
were excluded from the NEP89 training set, yet the model yielded reliable predictions,
underscoring the effectiveness of our data screening process.
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a

Figure S2: (a) RMSE and (b) MAE values of NEP89 model for different training
subsets (see Table S1), with units of meV/atom for energy, meV/Å for force, and MPa
for stress. The RMSE and MAE of the reference energies for the MPtrj dataset [30]
are not presented, as they are incompatible with the reference energies in the OMAT24
dataset [23] due to differing treatments using the DFT+U technique. For some other
subsets, RMSE and MAE for stress are not available due to the absence of DFT/high-
level-quantum-chemistry reference values.
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a b

Figure S3: (a,b) Parity plots of formation energies (γ) comparing DFT reference data
with predictions from NEP89 (this work), MACE-MP-0 [7], CHGNet [8], and M3GNet
[9], for the structures sampled from the Materials Project (MP-ternary) [5] and the
GNoME dataset [6].
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Figure S4: A detailed comparison of S66 dimers binding energies calculated by different
foundation models with DFT (PBE+D3) reference values [7]. (a) Parity plot for
the binding energies (Eb) of S66 dimer set [13], comparing predictions from various
foundation models. The NEP89 results presented here do not include an explicit D3
correction. (b) A system-by-system comparison of binding energies predicted by various
foundation models in the S66 dimer set.
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b

Figure S5: Comparison of lattice energies (Elatt) of the DMC-ICE13 dataset [16]
calculated by different foundation models with DFT reference values (PBE+D3) [7].
The NEP89 results presented here do not include an explicit D3 correction. (a) Absolute
lattice energy, defined as the energy per molecule of each crystalline phase relative to
the gas phase. (b) Relative lattice energy, defined as the lattice energy relative to that
of ice Ih.
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b

Figure S6: (a) Formation energies of iron vacancy clusters of different sizes predicted
by various foundation models compared to DFT calculations. (b) Parity plot of the
adhesion energy of hydrogen atoms in iron nanopores predicted by different foundation
models and DFT. (c) Variation of adhesion energy with respect to the number of
hydrogen atoms in iron nanopores predicted by different foundation models.
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Figure S7: Comparison of the (a) maximum and (b) minimum phonon band frequencies
for 97 materials calculated by different foundation models and by DFT (PBE).
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Figure S8: Parity plots of the bulk modulus and shear modulus calculated by different
foundation models. The MAE and RMSE relative to the DFT reference values are
labeled above each subplot. Different subplots show the predictions of bulk and shear
moduli for over 11,000 materials by various foundation models. Color intensity indicates
the distribution and density of the modulus data. Predictions considered unphysical
(≥ 600 GPa or ≤ −50 GPa) were excluded from the plots for each base model, and
MAE and RMSE values were computed accordingly. VRH in the plots refers to the
Voigt-Reuss-Hill [20] averaged bulk and shear moduli.
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Divalent cations 
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Figure S9: (a–c) Atomic snapshots of the random distribution of one of the monovalent
cations (a), the divalent cations (b), and one of the monovalent anions (c) in water. (d)
Predicted activation energies for ion diffusion in water at 300K using NEP89, as well
as experimental values at 291K from Refs. [31, 32]. Note that the experimental data
contains no record for F– .
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Figure S10: Dissolution kinetics of NaCl crystallite at 400K predicted using NEP89, as
well as other potentials [7]. The average cluster size (solid blue line) and individual runs
(faint blue lines) illustrate that thermodynamic averages and kinetics with statistical
significance are easily accessible using NEP89, due to the computational efficiency.
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Figure S11: Potential energy curves and extrapolated glass transition temperature (Tg)
of Pd42.5Cu30Ni7.5P20 metallic glass predicted by (a) no fine-tuning, (b) after NEP89
fine-tuning, and (c) NEP-Zhao [33].
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