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Abstract. We present libvdwxc, a general library for evaluating the energy and
potential for the family of vdW-DF exchange–correlation functionals. libvdwxc is
written in C and provides an efficient implementation of the vdW-DF method and
can be interfaced with various general-purpose DFT codes. Currently, the Gpaw
and Octopus codes implement interfaces to libvdwxc. The present implementation
emphasizes scalability and parallel performance, and thereby enables ab initio
calculations of nanometer-scale complexes. The numerical accuracy is benchmarked
on the S22 test set whereas parallel performance is benchmarked on ligand-protected
gold nanoparticles (Au144(SC11NH25)60) up to 9696 atoms.
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1. Introduction

Kohn–Sham density functional theory [1, 2] (DFT) is widely used as a predictive tool
in areas ranging from chemistry and materials physics to biochemical applications. The
continually increasing computational power is pushing the reach of ab initio modelling to
the nanometer scale and provides access to systems with remarkable diversity. Many of
these are sufficiently sparse in terms of the spatial distribution of the electron density for
dispersive interactions to play a role [3]. In addition to requiring extensive computational
resources, the common denominator among these systems is the importance of van der
Waals (vdW) interactions.

This situation has prompted the development of the vdW density functional
(vdW-DF) method [4, 5] which comprises a growing family of exchange–correlation
(XC) functionals. These include vdW-DF1 [6, 7], vdW-DF2 [8], vdW-DF-C09 [9],
vdW-DF-cx [10], vdW-DF-optb86 [11], rev-vdW-DF2 [12], vdW-DF-optPBE, vdW-
DF-optB88 [13], BEEF-vdW [14], and mBEEF-vdW [15]. In those functionals the
nonlocal correlation forces are captured through a formal analysis of screened response
in the electron gas [4]. Closely related is also VV10 [16] and revised VV10 [17],
which adapt the vdW-DF framework to a simpler response description. The vdW-
DF method can characterize both pure vdW forces and vdW forces in combination
with other types of binding [18, 4]. The vdW-DF method has gained a reputation for
providing accurate characterizations and predictions for a range of systems including
but not limited to metals [13, 19], layered materials [20, 21, 22, 18, 23], and molecular
systems [10, 24, 25, 26, 27].

In the vdW-DF family, the XC energy can be written in the form

Exc[n] = EGGA
x [n] + ELDA

c [n] + Enl
c [n]. (1)

Here, EGGA
x [n] is an exchange energy functional in the generalized gradient approxima-

tion (GGA), and ELDA
c [n] is the well-established Perdew–Wang parametrization of the

correlation energy in the local-density approximation (LDA) [28]. The third term is
the characteristic non-local correlation energy functional of the vdW-DF method that
describes the vdW interactions,

Enl
c [n] =

1

2

∫∫
n(r)φ

(
q0(r), q0(r

′), |r− r′|
)
n(r′) dr dr′, (2)

which has a different formal structure from semilocal functionals. In (2), φ(q0, q
′
0, r) is the

vdW kernel, and q0(r) represents an inverse length scale that characterizes the roll-over
in the vdW-DF plasmon-pole description. This roll-over function q0(r) is determined by
the energy per particle of an internal GGA-type functional [8, 29, 4], and is therefore
local, depending exclusively on the local density and its gradient.

The integral (2) is six-dimensional, but it can be efficiently computed using a
spline decomposition of the two spatial variables together with the Fourier convolution
theorem [30].
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While the vdW-DF method has been implemented, e.g., in the Siesta [31],
Abinit [32], Quantum Espresso [33], Vasp [34], and Gpaw [35] codes, both
performance and results vary. Typical vdW forces are small, corresponding to
shallow potential energy landscapes with weak curvature. Bonding distances are
sensitive to even small differences in implementations. Hence a standardized reference
implementation is of great interest.

We therefore ‡ present here the libvdwxc software library that provides an efficient
implementation of the vdW-DF method and can be interfaced with various general-
purpose DFT codes.

What libvdwxc does is to compute the non-local correlation energy (2) and its
derivatives for evaluating the potential. The corresponding semilocal functionals in
(1) are available from the libxc library [38]. Indeed the success of libxc has been
a major source of inspiration for libvdwxc. libvdwxc complements libxc so that all
the functionals in the vdW-DF family mentioned above are accessible given the two
libraries. The reason why libvdwxc is a separate library and not part of libxc is the
big difference between semilocal and fully non-local functionals. libxc relies on the
fact that all the supported functionals are evaluated pointwise: At each point, the
calculation requires only the density and its derivatives in that point. Since the vdW-
DF functionals are non-local, libvdwxc must instead work on the full density. The
evaluation also requires separate array allocations and fast Fourier transforms (FFTs),
and is non-trivial to parallelize. libvdwxc therefore depends on FFTs from the FFTW
library [39] or optionally PFFT [40]. Parallelism is supported through MPI.

libvdwxc does not at present include other vdW-inclusive approaches such as the
Wannier function approach [41, 42], the Tkatchenko–Scheffler method [43], the Grimme
D-correction series [44, 45], or exchange-hole dipole moment theory [46].

The remainder of this article is organized as follows. In the following section,
we review the Román-Pérez–Soler algorithm. (Background information concerning
construction and interpretation of the vdW-DF method can be found in Refs. [4] and
[29]). Section 3 is a detailed description of the parallel implementation of vdW-DF.
Calculated results are benchmarked against other codes in Section 4. We demonstrate
the excellent scalability of the library in Section 5. Finally, a brief technical description
is provided in Section 6.

2. Román-Pérez–Soler method

While Eq. (2) is prohibitively expensive to evaluate by direct numerical integration in
six dimensions §, it can be efficiently approximated by the 2D interpolation method by

‡ One reason to start work on libvdwxc was the desire to include vdW-DF in the Octopus code [36]
and improve the performance of the existing vdW-DF implementation in Gpaw [37, 35] without further
increasing the number of of separate implementations.
§ However, on sufficiently large systems, theoretical O(N) scaling may be achieved using purely real
space methods due to the real-space cut off of the kernel. [47]
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Román-Pérez and Soler [30]. The idea is to replace the continuous q0 parameters of
the kernel φ(q0, q

′
0, r) by a grid of M discrete q0 values, such that the kernel is instead

described by M × M radial functions φαβ(r) with α, β = 0, 1, . . . ,M − 1. A spline
representation over the q0 grid is used to retain high numerical precision between the
points of the discrete q0 grid [30]. Specifically this is done by introducing M helper
splines pα(q0) such that pα(qβ0 ) = δαβ: Each function takes the value 1 on its “own” mesh
point and 0 on all the others. Between the mesh points the functions oscillate weakly.
The spline representation interpolates both q0 and q′0 of φ(q0, q

′
0, r), combining to produce

an overall accurate and smooth representation over the whole range of (q0, q
′
0). The full

definition of the helper function pα(q0) at the grid point qβ0 plus a small displacement
dq0 is

pα(qβ0 + dq0) =
3∑
c=0

acαβ(dq0)
c, 0 ≤ dq0 < qβ+1

0 − qβ0 . (3)

The coefficients aαβ are determined by the aforementioned condition that pα(qβ0 ) = δαβ,
along with the requirement of continuity of derivatives up to second order. It was found
in Ref. [30] that M = 20 mesh points were sufficient to achieve good precision. This
remains the standard procedure today, although a smoother representation of the kernel
has recently been suggested which reduces the required number of points [48].

We now define the auxiliary quantity

θα(r) = n(r)pα(q0(r)), (4)

which is the key quantity in actual computations. The energy can then be written as

Enl
c [n] =

1

2

∑
αβ

∫∫
θα(r)φαβ(|r′ − r|)θβ(r′) dr′ dr

=
1

2

∑
α

∫
θα(r)Fα(r) dr, (5)

where

Fα(r) =
∑
β

∫
φαβ(|r− r′|)θβ(r′) dr′. (6)

This integral is a convolution, and the energy can therefore be written using the
convolution theorem as

Enl
c [n] =

1

2

∑
αβ

∫
θ∗α(k)φαβ(k)θβ(k) dk, (7)

where θα(k) is the Fourier transform of θα(r).
Practical calculations also require the potential, which is defined as the derivative

of the energy with respect to the density,

vnl
c (r) ≡ δEnl

c [n]

δn(r)
=
∂Enl

c [n]

∂n(r)

∣∣∣∣
σ

+
∂Enl

c [n]

∂σ(r)

∣∣∣∣
n

dσ(r)

dn(r)
, (8)
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Expression Description Scaling Expensive
q0
(
n(r), σ(r)

)
math O(N) no

θα(r) splines O(N) no
θα(k) 20 × FFT O(N logN) yes

Enl
c , Fα(k) 400 integrals O(N) yes
Fα(r) 20 × iFFT O(N logN) yes
vnl
c (r) math O(N) no

Table 1. Steps in a vdW calculation and their computational scaling with respect to
the total number N of real-space points.

where σ(r) = |∇n(r)|2. The partial derivatives are

∂Enl
c [n]

∂n(r)
=
∑
α

Fα(r)

[
pα(q0(r)) + n(r)p′α(q0(r))

∂q0(r)

∂n(r)

]
, (9)

∂Enl
c [n]

∂σ(r)
= n(r)

∑
α

Fα(r)
dpα(q0(r))

dq0(r)

∂q0(r)

∂σ(r)
. (10)

libvdwxc implements these partial derivatives, while the calling DFT code is responsible
for calculating the density-derivative σ(r) and combining the calculated partial
derivatives (9) and (10) to obtain the potential. Any DFT code that supports GGAs
already implements the requisite functionality, which is also the requirement for calling
libxc. For completeness we provide the expression for q0(r) in the appendix (see also
Ref. [6]).

libvdwxc currently uses the standard kernel and mesh representation from Quantum
Espresso. This means using the same 20 mesh points qα0 and the same 20 × 20

radial functions φαβ(k); Support for multiple pluggable kernels (e.g. the GPAW
parametrization) is under development.

3. Computation and parallelization

vdW calculations are significantly more complex than ordinary GGA calculations. The
calculation needs to allocate at least 20 functions (θα(r)) on top of a GGA calculation.
Furthermore, vdW systems are often very sparse, and due to the long range of the vdW
interactions, a larger vacuum region is often required to avoid artificial interactions
between periodic images. Good performance is therefore important and in particular
good parallel scalability. The computational complexity of a vdW calculation is
O(N logN) due to the Fourier transforms, whereas standard Kohn–Sham DFT scales as
O(N3). Therefore the vdW calculation will hardly topple the computational budget for
large systems unless it is grossly unscalable. Since part of the reason to write libvdwxc
is to provide a scalable implementation, we discuss the technical aspects in some detail
below.
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The calculation of vdW energy and potential involves the steps listed in Table 1.
The computationally important parts of the calculation are the Fourier transforms, and
to a lesser extent the convolution in Fourier space for calculating Fα(k) and the energy.

The (α, r) and (α, k) arrays can be distributed over α or r/k. Parallelization
over α is not overly promising, though, as there are only M = 20 of them. libvdwxc
therefore distributes θα(r) over r and, taking advantage of the parallel features of FFTW,
correspondingly distributes θα(k) over k. We have found this type of parallelization to be
quite sufficient (see Section 5), and so have not implemented simultaneous parallelization
over α.

libvdwxc assumes that the electron density is provided on a uniform real-space grid
within a simulation cell that is a parallelepiped. This means θα(k) is calculated from
20 standard 3D FFTs of the real-valued functions θα(r). A 3D FFT on a p × q × r

grid consists of many 1D FFTs: First p × q FFTs of length r over the z axis, then
likewise over y and x. Distributing the many 1D FFTs over many cores is more efficient
than performing inherently parallel 1D FFTs. In FFTW the data is initially distributed
along the x (least memory-contiguous) axis. The FFTs over z and y can be performed
immediately, but then the data must be redistributed using a parallel transpose to allow
the FFT over x. This is handled by FFTW, but the initial data distribution must still
be set up by the caller.

Codes that wish to interface with libvdwxc must therefore redistribute their density
to the initial FFTW-MPI layout: Process n is responsible for B elements along the x axis
numbered nB to (n+ 1)B (truncated if necessary to total number of points), where the
blocksize B should divide all the points between all available cores as evenly as possible.
Implementing this redistribution is the most complex task from the perspective of the
calling DFT code, although many codes may already support this feature if they employ
parallel FFTs (e.g. Octopus [49]).

The distribution takes advantage of as many cores as there are grid points along
the coordinate axes. If more cores are available, they will be idle during this stage.
This does not occur in normal calculations, but is insufficient for massively parallel
architectures. For this case libvdwxc can use PFFT [40], which relies on FFTW while
extending parallelization to two dimensions (PFFT in general supports parallelization
over n − 1 dimensions for an n-dimensional Fourier transform). This is much more
scalable, but requires another parallel transpose between the transforms over z and y.
For common forms of parallelism we therefore recommend standard FFTW with MPI.

The full calculation procedure is:

(i) Evaluate the functions θα(r) as an array θ̄xyzα distributed over x. Here and below,
bars “ ”̄ denote arrays indexed by one or more subscripted quantities. The rightmost
subscripted quantity (in this case α) is contiguous in memory.

(ii) Compute the FFT of θ̄xyzα in-place (input and output buffers are the same). This
yields θ̄kxkykzα, now distributed over ky.

(iii) For each k = (kx, ky, kz), processing only the local ky for each process:
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(a) Compute the kernel as an M × M matrix φ̄kαβ using linear interpolation to
resolve the kernel function values for the continuous variable k from the discrete
k-grid on which they are represented.

(b) Calculate Fα(k) as the matrix–vector product

F̄ k
α =

∑
β

φ̄kαβ θ̄kxkykzβ. (11)

F̄ k
α is a buffer of size M .

(c) Sum up the energy contributions

∆Enl
c =

∑
α

θ̄∗kxkykzαF̄
k
α , (12)

and write the buffer F̄ k
α back into the same buffer as θ̄kxkykzα, now denoted

F̄kxkykzα.

(iv) Compute the inverse in-place FFT of F̄kxkykzα to obtain F̄xyzα, once again
distributed over x.

(v) Compute the energy-derivatives using (9) and (10).

The above procedure follows the efficiency recommendations of FFTW:

(i) The memory layout of the input buffer is strided, so for each point r of space,
values for theM = 20 different α are stored contiguously rather than the other way
around,

(ii) the transform is performed in-place, and

(iii) the output array remains in its transposed form, i.e., it is distributed over the second
axis instead of the first.

We note that only a single work buffer is used for the four quantities θα(r), θα(k),
Fα(k), and Fα(r). libvdwxc allocates memory for 23 spatial functions: M = 20 for the
workbuffer, plus q0 and its two partial derivatives.

4. Numerical benchmarks

To establish the numerical accuracy of libvdwxc, the current implementation is here
benchmarked using Gpaw [35, 50], comparing to Quantum Espresso [33] (QE) and
Vasp [34, 51]. To this end, we consider the standard S22 test set for dispersive
interactions [52] and use the vdW-DF-cx functional [10]. Each member of the S22 test
set corresponds to a weakly bound pair of small molecules at different intermolecular
distances. The calculated total energies therefore yield an intermolecular binding curve.

All calculations are carried out using PAW setups or pseudopotentials for the PBE
functional. Energies are evaluated for a series of distances di = dref + i · 0.025 Å, where
dref is the reference equilibrium distance [52] for that S22 member; binding energies and
distances are then fitted from the 5 values of i that surround the calculated minimum.
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Figure 1. Benchmark of S22 dataset for different implementations of vdW-DF-cx.
Binding energy (top) and equilibrium bond length (bottom) calculated using: Gpaw
with libvdwxc and PBE PAW datasets (green); Gpaw with libvdwxc and the norm-
conserving SG15 pseudopotentials (blue); QE (purple) and Vasp (red) codes using
their internal vdW implementations.

The simulation cell is such that no atom would be closer to any edge than 10 Å at
intermolecular separation dref + 5 Å. For each S22 member, the full series uses the same
simulation cell.

For each separation di, the binding energy E[AB] − E[A] − E[B] is evaluated by
performing the calculations for each isolated molecule A and B with the atoms kept at
the same absolute positions as in the dimer calculation AB. The purpose of this is to
minimize the egg-box effect.‖

Gpaw calculations use real-space (FD) mode with the the standard PAW datasets
(version 0.9.11271) and grid spacing 0.14 Å, as well as the norm-conserving SG15
pseudopotentials [53] with grid spacing 0.1 Å.¶ The calculations use the FFT Poisson

‖ The egg-box effect arises since space is represented by a discrete mesh. This causes numerical noise
which has the same periodicity as the grid and may resemble the shape of an egg-box. If the egg-box
effect did not exist, an entire binding curve could be generated from one series of dimer calculations
and two single-molecule reference calculations. Instead we must do a series of reference calculations
following the movement of the dimer constituents. Note that even planewave codes exhibit a small egg-
box effect, because typically the density is represented on a uniform real-space grid when evaluating
the XC contribution.
¶ To completely converge the PAW and SG15 results it was necessary to change the finite-difference
stencil used to evaluate σ(r) from 1st to 2nd order; this required small changes to the GPAW source
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solver.
QE calculations use the norm-conserving SG15 pseudopotentials with a planewave

cutoff of 1800 eV, while VASP calculations use the standard PAW datasets and a cutoff
of 680 eV.

Figure 1 shows the results: The codes produce progressively stronger binding
energies in the order Gpaw/PAW (weakest binding), Gpaw/SG15 (+1.4 meV on average
with respect to Gpaw/GPAW), QE (+3.8 meV), and Vasp (+6.2 meV), and as binding
energies become stronger, equilibrium bond lengths usually become smaller (on average
0, -0.92, -5.51, and -6.76, respectively, times 10−3 Å).

All these methods yield slightly different results, but no single method is in strong
disagreement compared to the rest. Comparing Gpaw/PAW and Gpaw/SG15, the
main difference is the representation of the atoms. Between Gpaw/SG15 and QE, the
main difference is real-space versus planewave representation, although there are clearly
many other implementation differences. Finally Vasp again uses PAW and has its own
vdW-DF kernel.

Aside from the differences in atomic representation itself, the Gpaw/PAW and
Gpaw/SG15 calculations have a more profound reason to differ: (1) the vdW-DF
implementation in GPAW does not take into account that the PAW datasets are
not norm-conserving, and (2) the calculations lack PAW corrections for non-local XC
contributions because the standard equations are derived for semilocal functionals [54].

To elaborate on point (1), when the states are not norm-conserving, the contribution
from each state to the valence electron density does not integrate exactly to one electron.
As a result, the total pseudodensity from which the XC energy is evaluated is “deficient”,
and the PAW corrections only compensate for this in the semilocal terms. This must
be assumed to spuriously affect the non-local energy. For the chemical species included
in the S22 test set, the particular PAW datasets used by Gpaw are, however, rather
close to norm-conserving. The s and p valence states of H, B, C, N, and O have norms
between 0.88 and 1.07. This may explain that the error is small and does not cause a
clear discrepancy.

The regions far away from the atoms are also likely to provide most of the
contribution to the bonding [55, 56, 10, 29]. In these regions the density is equal to
the true (all-electron) density, and the errors mentioned do not apply. This is another
reason why the errors may be (almost) neglected. Overall, the error associated with the
use of PAW without non-local XC corrections for lack of norm-conservation is therefore
not much larger than the implementation error present between different codes. Note,
however, that this conclusion applies only to molecules similar to those in the S22 set.
In particular the situation is different for metals, for which the PAW norm is often only
around 0.3 electrons per d state.

In conclusion, 1) while the different methods and codes produce different results,
there are no gross outliers; and 2) the neglection of PAW corrections has not caused the

code which are not yet released.
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PAW calculations to particularly disagree with pseudopotential calculations.

5. Performance

The Román-Pérez–Soler algorithm solves the fundamental serial performance issue
of vdW functionals, but parallel scalability remains essential for modern parallel
computation. In this section we investigate the scalability of libvdwxc for large systems
using the DFT code Gpaw [35, 50] in the ASE framework [57].

We consider a system of 2424 atoms: An Au144 nanoparticle protected by 60
extended thiol ligands [58] (SC11NH25) as shown in Fig. 2. The system is chosen for its
prodigious size (compared to typical DFT calculations) and because vdW interactions
are important due to the length of ligands [24]. Replicating the system up to four times
(9696 atoms) along the x axis enables one to generate test systems of different size.

It is perfectly possible to test the performance of libvdwxc without doing a full
DFT calculation, by simply providing an array of arbitrary numbers. A full DFT
calculation is, however, more representative and complete, taking into account the time
spent redistributing data into the FFTW MPI layout.

In practice the O(N3) diagonalization of the Kohn–Sham system will always
dominate execution time for a system of this size, except if some part of the calculation
does not parallelize well or is otherwise unnecessarily wasteful. The primary objective of
performance testing is thus to rule out that the vdW implementation in any way limits
parallel scalability.

The calculation uses a linear combination of atomic orbitals (LCAO) [59] with a
single-ζ (sz) basis set for H and single-ζ polarized (szp) basis sets for N, S and C (the
ligands), which are smaller than the usually recommended double-ζ polarized (dzp)
basis set. The new and improved “p-valence” basis set [60] is used for Au. All timings
are averaged over 15 iterations of the self-consistency cycle. The single nanoparticle
test system has 3203 points in real-space (density and potential including vdW XC are
evaluated on a 6403 grid), 11112 atomic orbitals, and 6384 valence electrons within 3352
electronic states. The simulation box volume is (58 Å)3.

The test environment was the Niflheim supercomputer at the Technical University
of Denmark. Each test node has two Intel Ivy Bridge Xeon E5-2650 v2 8-core 2.6 GHz
CPUs (16 cores per node) using quad data rate Infiniband interconnect.

Figure 3 shows the scaling of large calculations based on the nanoparticle
system described above. Since there is no single natural choice for the main Gpaw
parallelization parameters (ScaLAPACK layout, domain decomposition and band
parallelization), these parameters were chosen on a best-effort basis for each system. As a
result, the timings shown in the left-most figure ought be considered only representative.
The libvdwxc timings do not depend on those parameters, however, so timings in the
remaining figures are consistent. libvdwxc uses the standard FFTW-MPI distribution
with the (automatically chosen) blocksize that most evenly divides the number of grid
points. Overall the libvdwxc calculation performs in the strong scaling limit at least as
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Figure 2. Ligand-protected Au nanocluster [58] composed of 2424 atoms with 6384
valence electrons used for testing parallel performance. Rendered using ovito [61].
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Figure 3. Scaling benchmarks for libvdwxc. Left: Time per full self-consistent
field (SCF) step in DFT calculation (squares) as a function of number of compute
nodes, each with 16 cores, calculated for 1 (blue), 2 (green), 3 (orange) and 4 (red)
repetitions of the nanocluster test system (see Fig. 2). Also shown is the time hereof
spent diagonalizing the Hamiltonian (circles), which is the most expensive part of the
SCF step. Dotted lines indicate perfect parallel scaling. Middle: Timing spent for full
XC calculation (libvdwxc + semilocal + distribution of data) (squares) and, hereof,
time spent in libvdwxc (circles). Right: Time spent in libvdwxc (squares) and, hereof,
time spent doing FFTs and convolution. The remaining operations are inexpensive.
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well as the O(N3) diagonalization. Note that for simplicity we have benchmarked only
with FFTW-MPI (not the more scalable PFFT).

Calculations normally use the larger dzp basis sets. This would make the vdW part
of the calculation less expensive in comparison; the test therefore represents a worst-case
comparison of vdW performance with respect to the overall DFT calculation. Real-space
or planewave calculations of a system of this size would be even more expensive.

6. The library

libvdwxc is written in C and uses the standard GNU build system, autotools, for
compilation. Software requirements are the FFTW3 library, an MPI library (for
parallelism), and optionally the PFFT library. These can be specified at compilation
time. The installation produces the main library (libvdwxc.so or libvdwxc.a) plus
Fortran bindings.

A calculation comprises the following steps:

(i) Call vdwxc_new to create an empty vdwxc_data data structure for a given vdW
functional. The vdwxc_data structure contains the internal data associated with a
calculation and is always passed as a handle to libvdwxc functions.

(ii) Call vdwxc_set_unit_cell to specify the number of grid points in each direction
as well as the unit cell.

(iii) Call one of vdwxc_init_serial, vdwxc_init_mpi, or vdwxc_init_pfft to
initialize the FFTW backend and allocate the necessary memory.

(iv) Call vdwxc_calculate any number of times, passing pointers to arrays with the
input density and output potential.

(v) Call vdwxc_finalize to deallocate the memory.

All calculations use double precision floating point numbers. Further convenience
functions are provided, e.g., to print the state of a vdwxc_data data structure, or to
check which of the optional libraries are available at runtime.

The code below illustrates the simplest possible form of a program using libvdwxc:

#include <stdio.h>
#include <vdwxc.h>

void main()
{

double rho[] = {1.0, 2.0, 3.0, 4.0}; // input: density & gradient
double sigma[] = {0.5, 1.5, 2.5, 3.5};
double dedrho [] = {0.0, 0.0, 0.0, 0.0}; // output: derivatives
double dedsigma [] = {0.0, 0.0, 0.0, 0.0};

vdwxc_data vdw = vdwxc_new(VDWXC_DF1 ); // vdW -DF1 functional
vdwxc_set_unit_cell(vdw , 1, 2, 2, // 1x2x2 grid; then cell vectors

1.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 2.0);
vdwxc_init_serial(vdw);
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double energy = vdwxc_calculate(vdw , rho , sigma , dedrho , dedsigma );
vdwxc_finalize (&vdw);
printf("Energy %f Hartree\n", energy );

}

The greatest challenge facing a DFT code developer who wants to call libvdwxc, is to
redistribute the density into the correct parallel format as described in Section 3. This is
difficult to generalize since DFT codes use different parallelizations, but would typically
involve a call to MPI_Alltoallv after establishing suitable buffers. Nevertheless
DFT codes tend to provide tools for accomplishing this task. We implemented the
redistribution in Gpaw using the existing parallel Python framework. Octopus already
happened to support redistributions of the required type since it uses the same FFT
libraries.

libvdwxc is free software distributed under the GNU General Public License 3 or
any later version.+ Source code and documentation are available from the homepage [62]
including the current stable release, libvdwxc 0.2.0. Development takes place openly on
GitLab [63].

7. Concluding remarks

libvdwxc enables the efficient computation of the non-local correlation energies and
potentials of the vdW-DF functionals on massively parallel architectures. The energies
are evaluated using the vdW kernel parametrization from QE [33], while support for the
Gpaw kernel format [37] and others is planned. Furthermore, extending the library to
support spin polarized calculations [5] is underway.

Up to now, libvdwxc has therefore been interfaced with the Gpaw and Octopus
codes, which are attractive starting points for different reasons. Gpaw features an
extremely efficient linear combination of atomic orbitals implementation for DFT [59]
(as demonstrated in Section 5) and time-dependent DFT [60]. Octopus, on the other
hand, has been used to simulate coherent charge transfer on very large supermolecular
triads with non-adiabatic dynamics [64]. Since vdW forces appear to play a role in
the charge separation in organic photovoltaics [65], vdW-DF functionals in Octopus
are particularly appealing. Furthermore an interface for the planewave PAW code
Abinit [32] is planned.

The non-local vdW functionals can be combined with the semilocal functionals
from libxc [38] to form various other functionals of the vdW-DF family. Hence vdW-
DF-optPBE, vdW-DF-optB88, vdW-DF-C09, vdW-DF-BEEF, and vdW-DF-mBEEF
are all available in Gpaw with libvdwxc.
+ We expect that libvdwxc will be of most interest to codes that already link to libxc. The vast
majority of these codes is released under GPL; since FFTW and PFFT are released under GPL as
well, GPL is a logical choice for libvdwxc. In the future we may consider making it possible to use
the library from non-GPL codes —such as libxc which is released under LGPL— if this benefits the
community.
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Tests of vdW-DF-cx on the S22 set of molecular binding curves show that binding
energies and bond lengths differ somewhat across several tested vdW implementations,
as is commonly the case. The deviations are, however, rather small for the tested
implementations. From tests of up to 10000 atoms, we conclude that the parallel
scalability of libvdwxc should be sufficient for any kind of system accessible to ordinary
Kohn–Sham DFT.

We expect this library to enhance the widespread use of the vdW-DF method. We
hope that the availability of an implementation that is independent from any DFT code
will lead to more reliable and reproducible calculations of the small energy differences
that are characteristic of vdW interactions, and that libvdwxc can serve as a common
testing ground for new developments within the framework of van der Waals functionals
and related methods. Indeed the spline decomposition algorithm could be adapted to
entirely different non-local functionals if they are expressible as a convolution. What
happens will depend on the community since libvdwxc is open to contributions.
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*

Appendix A. q0(r)

Dion et al. [6] introduced the quantity q0 as a modification of the local Fermi wave
vector,

q0 =
ε0xc
εLDA
x

kF , (A1)

where kF = (3π2n)1/3 is the local Fermi wavevector and ε0xc is the LDA energy per
particle modified by a a gradient correction describing screened exchange. For spin
paired system, the full expression can be written as [66]

q0 = kF −
4π

3
εLDA
c − Zab

36

σ

kFn2
. (A2)
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The LDA correlation energy per particle is evaluated using the parametrization of
Perdew and Wang [28],

εLDA
c = −2A(1 + α1rs) log

[
1 +

1

2A
∑4

i=1 βir
i/2
s

]
. (A3)

The constants are A = 0.031091, α1 = 0.2137, β1 = 7.5957, β2 = 3.5876, β3 = 1.6382,
β4 = 0.49294, and rs is the Wigner–Seitz radius, r3s = 4πn/3. vdW-DF1 uses
Zab = −0.8491 whereas vdW-DF2 uses Zab = −1.887. Other functionals in the vdW-DF
family generally use one of these two values, and this is the only common variation of
the non-local correlation energy.

For calculations that use pseudopotentials or PAW, the density is generally
relatively smooth and values of q0 are generally smaller than 5 atomic units. Therefore
the q0 grid ends at 5 a.u., and to retain good numerical behavior towards this limit, the
values of q0 are filtered through the saturation function from Ref. [30] given by

ha(x) = a

[
1− exp

(
−

12∑
m=1

1

m

[x
a

]m)]
. (A4)

This function has the property that ha(x) ≈ x for small x, and ha(x) → a from below
for x→∞. Thus, in actual computations, q0(r) = ha=5(q

orig
0 (r)).
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