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This study presents a systematic assessment of the behavior of self-trapped electrons in PbTiO3, which is a
prototypical ferroelectric material with a wide range of technological applications. Since modeling of polarons
depends sensitively on the applied method, the goal of this work is to identify the parameters used in density
functional theory (DFT), which allow to predict the properties of polarons with high accuracy. The DFT+U
method is employed to benchmark how the choice of k-mesh grids, lattice parameters, and pseudopotential
(PP) affects the polaron trapping energy. Then, the appropriate parameters were used to study polaron trapping
energy and its optical transition using the HSE06 hybrid functional. It is shown that the magnitude of the trapping
energy is highly sensitive to the choice of the PP and the applied lattice parameters. A comparison of polaron
trapping energies using the two functionals indicates proximity of the DFT+U result to the HSE06 result. Finally,
configuration coordinate diagrams for the polaron-associated absorption and luminescence peaks in PbTiO3 are
presented and compared to experiments.
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I. INTRODUCTION

The dissociation of short-lived excitons gives rise to free
electrons and holes. If coupled with the motion of nuclei,
these free charges get trapped at a lattice site and polarons
form. Due to the involvement of lattice distortions in the
formation of polarons, their lifetime exceeds that of excitons.
The prediction of polaronic states is therefore important for
understanding the structural, electronic, magnetic, and op-
tical properties of materials. Electron (hole) polarons with
large migration barriers, for example, impede n-type (p-type)
conductivity of the material [1], while those with low acti-
vation barriers trigger electrical conductivity [2,3]. Polarons
can also affect electronic properties of optoelectronic de-
vices by stimulating and/or impeding the recombination of
photogenerated electrons and holes [4,5]. In addition, the
existence of polarons can alter the optical properties of the
host material, manifesting itself in specific absorption and/or
emission bands [6–12]. Polaron formation also plays a role in
charge compensation mechanisms and can cause Fermi level
pinning [13–15]. A quantitative determination of the carrier
(self-)trapping energy and its electronic energy level is thus
essential for designing materials with respect to a specific
application.

Experimentally, valuable information on polarons can be
obtained from electrical conductivity measurements [16,17],
electron paramagnetic resonance [18–20], optical measure-
ments [7,8], scanning tunneling microscopy, and spectroscopy
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[21] as well as infrared spectroscopy [22]. On the other hand,
first-principles calculations based on density functional the-
ory (DFT) provide a robust and complementary approach
for gaining information about polaron properties [23–28].
This includes binding and migration energies [28], photolu-
minescence peaks [21,29], lattice distortions around localized
charge, and contributing modes responsible for the trapping
mechanism [30].

PbTiO3 is a prototypical ABO3 ferroelectric with a
ferroelectric-to-paraelectric phase transition at about 763 K
[31,32]. PbTiO3 is also the end member of the most im-
portant and widely used piezoelectric and ferroelectric solid
solutions, including Pb(ZrxTi1−x )O3 and Pb(Mg1/3Nb2/3)O3-
PbTiO3 ceramics [33]. These materials have applications
ranging from nonvolatile electronic and optical storage mem-
ory devices to high-strain actuators. Due to its technological
importance, the defect chemistry of PbTiO3 including native
defects [34–38], aliovalent doping [39–43], and defect dipoles
[43–46] has been intensively investigated, both theoretically
and experimentally. Nevertheless, the state of understanding
of polarons in this material is relatively poor. Considering the
influence of trapped charges on generating an internal bias
field and the respective impact on polarization and pinning
of ferroelectric domain walls, the identification of such quasi-
particles in this model ferroelectric perovskite oxide is of high
interest.

In 1993, Robertson et al. used electron paramag-
netic resonance measurements to study charge trapping in
Pb(ZrxTi1−x )O3 ferroelectric compositions [47]. According to
their report, the paramagnetic Pb3+ hole center is present in
all samples independent of composition. The Ti3+ electron
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center, however, is only seen in a narrow range of com-
positions around x = 0.5 [47,48]. Later, Eglitis et al. [9]
studied the presence of self-trapped electrons (STels) in cubic
(paraelectric phase) PbTiO3 by a semiempirical Hartree-
Fock method and attributed the green-luminescence signal
at 2.38 eV to the presence of Ti+3 electron polarons with
a binding energy of 0.22 eV . In 2014, Erhart et al. [26]
investigated the formation of self-trapped holes (STHs) in
cubic PbTiO3 using the DFT+U formalism and found that the
formation of STHs in PbTiO3 is not energetically favorable.
This finding has been rationalized by considering the strong
coupling between Pb 6s and O 2p states near the valence band
maximum (VBM) of PbTiO3, which results in a higher VBM
in this material compared to other perovskites [49] forming
STHs on O 2p sites [26,50].

Despite the technological importance of the tetragonal fer-
roelectric phase of PbTiO3, only a very small number of
studies attempted to study polarons in this material. As a
result, the current understanding of the behavior of excess
charges in PbTiO3 is very limited. At this point, ab initio
calculations can shape our knowledge to a great extent, since
they allow us to have a quantitative understanding of the
trapping energy and migration barrier of self-trapped charge
carriers. To this end, we systematically quantify the errors
in the calculated polaron trapping energy associated with the
computational approach. Using the DFT+U method [51],
we first evaluate the suitability of different U parameters
for correcting the DFT self-interaction error in the polaron
configuration. We then compare polaron binding energies
obtained with different k-point grids. Next, we study how
cell parameters obtained through relaxation with different
functionals influence the trapping energy of the polaron. In
a next step, we analyze band structures, trapping energies,
and migration barriers of self-trapped electrons on Ti, using
three different projector augmented wave (PAW) setups for
Ti. Using hybrid functional calculations we finally construct
a configuration coordinate diagram to provide a theoretical
prediction of the photoluminescence features associated with
the identified STel.

II. THEORETICAL APPROACH

Calculations in the framework of DFT were carried out
using the Vienna Ab initio Simulation Package [52,53]. The
interactions between the ionic cores and the valence electrons
were described with the PAW approach [54,55]. Calculations
were performed using a 3 × 3 × 3 supercell containing 135
atoms. To test the influence of the Ti pseudopotential on our
calculations, the following three different PAW setups were
considered: Ti 4s and 3d orbitals as valence states with a total
number of 4 valence electrons; Ti 3p, 4s, and 3d orbitals as
valence states with a total number of 10 valence electrons;
and Ti 3s, 3p, 4s, and 3d orbitals as valence states with a total
number of 12 valence electrons. The convergency of the cutoff
energy was tested for all three PAW setups and the results con-
firm that a plane-wave cutoff energy of 400 eV is converged
for all cases. The convergence threshold for electronic self-
consistency was set to 10−6 eV. The Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional [56] was employed.

TABLE I. Calculated and experimentally measured lattice pa-
rameters a and c/a and energy band gap Eg for PbTiO3.

a (Å) c/a Eg (eV)

PBE 3.84 1.23 2.41
PBE + U 3.98 1.005 2.21
HSE 3.89 1.06 2.95
Expt. 3.89 [62] 1.07 [62] 3.6 [63]

It is well established that DFT based on semilocal
exchange-correlation functionals suffers severely from self-
interaction errors. As a consequence, the electron interacts
with itself, which favors its artificial delocalization. This re-
sults in sizable errors in describing strongly localized states of
polarons [25,57–59]. Therefore, in order to obtain an accurate
quantitative and qualitative description of the total energy and
structural properties of the polaron configuration, applying a
functional that can treat the self-interaction error of the density
functional approximations is essential. For correcting the DFT
self-interaction error, we employed DFT+U and hybrid func-
tional approaches [60]. In the DFT+U calculations, we used
a U parameter of 4.75 eV on the Ti d orbital, as suggested by
Gou et al. [61].

We note that this choice of U = 4.75 eV also results in
a polaron binding energy being consistent with the HSE06
functional.

The hybrid functional calculations were performed using
the HSE06 formalism [60], where the contribution of screened
Hartree-Fock exchange was set to the standard value of α =
0.25 and the screening range of the electron interaction was
treated by setting the screening parameter, w, to 0.20 Å−1. Re-
laxation of the ionic positions was continued until the residual
Hellmann-Feynman force component on each ion fell below
0.01 eV/Å . The obtained lattice parameters for the unit cell
of PbTiO3 and the electronic band-gap energy are listed in
Table I.

Table I show that the PBE functional tends to overestimate
the tetragonality of PbTiO3. On the other hand, the lattice
relaxation with the PBE + U functional takes the structure
back to a nearly cubic lattice with a c/a ratio of 1.005 and sub-
sequently underestimates ferroelectric distortions. The lattice
parameters obtained with the HSE functional are in very good
agreement with experimental results. Although the band-gap
energy obtained with HSE06 is smaller than with PBE0 [61],
we performed our calculations with HSE06 because the lattice
parameters obtained with HSE06 are described very accu-
rately.

An important feature of a polaron is its trapping energy,
which can be calculated using the expression

E±1
trap = E±1

pol − E±1
id + �Ecorr (q = ±1), (1)

where E±1
pol and E±1

id are the total energies of supercells corre-
sponding to the polaron and the perfect system, respectively.
In practice, calculating E±1

pol consists of taking the system
out of a high-symmetry configuration through applying an
initial symmetry-breaking distortion followed by structure re-
laxation in the singly charged supercell. The term �Ecorr (q =
±1) accounts for the correction of the artificial image charge
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TABLE II. Calculated macroscopic dielectric tensor of tetrago-
nal PbTiO3. ε∞ and εion are electronic and ionic contributions to
the dielectric tensor, respectively, and ε denotes the static dielectric
constant. The experimental values are given in parentheses.

Lattice direction ε∞ εion ε

a 316.0 (210 [65]) 7.1 323.1
b 375.3 7.1 382.4
c 123.7 (115 [65]) 6.9 130.6

interactions in polaron supercells. Although both E±1
pol and E±1

id
configurations are equally charged, spurious image charge
interactions exist only in the polaron system, while the de-
localized charge in the ideal supercell will be compensated
by the existing jellium background charge. The leading (first-
order) correction term for the electrostatic interaction energy
between the images of charged supercells is the screened
Madelung energy [64]:

�Ecorr (q) = 2

3

Mq2

2εL
, (2)

where M is the lattice-dependent Madelung constant, L is
the length of the supercell, and ε is the static dielectric con-
stant of the host, which has been obtained by computing
the dielectric tensor from the system’s response to a finite
external field under absence (electronic contribution, ε∞) and
presence (ionic contribution, εion) of lattice distortions. The
sum of the ε∞ and εion terms yields the ε. Using DFT+U ,
we obtained ε∞ and εion as listed in Table II. Due to the
large dielectric response of PbTiO3 (both experimentally and
computationally), the image-charge correction term has not
been taken into account. The deviation between the calcu-
lated dielectric constant (316.0) and the experimental value
(210) for the electronic contribution is large. The problem is
probably linked to the exchange-correlation functional which
results in a band-gap energy that is about 40% smaller than the
experimental energy gap in this material. Furthermore, other
aspects such as temperature, pressure, impurities, defects, and
surface charges can affect the experimental results [66–68].
SrTiO3, for instance, has a dielectric constant of ∼300 at room
temperature, which increases to ∼30 000 close to 0 K [69].
And in BaTiO3, the dielectric constant ranges from 500 to
6900, depending on the synthesis technique [70].

For investigating the polaron dynamics, we used a linear in-
terpolation scheme to construct a hopping trajectory between
two neighboring polaronic configurations, where an electron
polaron localized at a Ti3+ site jumps to a neighboring Ti4+
site. The energy barrier for the transition of the polaron was
then characterized using the nudged elastic band approach
[71,72].

III. RESULTS AND DISCUSSIONS

A. PBE + U calculations

The stability of a polaron can be understood by considering
its trapping energy. While a positive trapping energy manifests
instability of the polaronic configuration, a negative trapping
energy means that the polaronic configuration is energetically

FIG. 1. The relaxed configuration of the STel on Ti site in
PbTiO3. The blue, pink, and yellow spheres represent Pb, Ti, and
O ions, respectively. The charge density isosurface illustrates the
polaron wave function.

more stable than the delocalized solution. Hence, the system
prefers to relax into the polaronic solution. We studied the
trapping of a positive charge (STH) on oxygen 2p orbitals
and a negative charge on Ti 3d orbitals. In case of the STH,
we obtained positive trapping energy, which is consistent
with the report of Erhart et al. on the formation of STHs
in cubic PbTiO3 [26]. This finding implies that the localized
holes (STHs) are energetically less favorable than their delo-
calized counterparts. Therefore, small polaron formation by
hole self-trapping on O 2p is metastable and energetically
hindered. Note that we did not study other small hole polaron
mechanisms, such as bound polarons close to an acceptor
defect. Both Geneste et al. and Sun et al. have studied the
interaction of polarons with dopants in BaSnO3 and oxygen
vacancies in CeO2, showing that the interaction with point
defects can stabilize polarons [50,73]. Therefore, existence
of hole polarons in this material cannot be ruled out. For
the STel, we observed a negative trapping energy revealing
the tendency of the system towards trapping excess electrons
on Ti sites. Figure 1 illustrates the atomic configuration and
charge distribution of the STel in PbTiO3, where the STel is
mainly localized on the Ti dxy orbital.

To ensure the reliability of the computational procedure,
we tested the dependence of the calculated trapping energy
on the k-point grid, lattice constant, and PAW setup. So far,
the main focus was given to an accurate description of the
on-site localization parameter (Hubbard U , Fock exchange,
etc). For obtaining an accurate polaron trapping energy, as will
be shown in the following, an accurate determination of the
k-point mesh, lattice constant, and elemental PAW setups are
essential and as important. Indeed, different lattice parameters
and PAW setups can drastically affect the polaron binding
energy and lead to wrong conclusions, as will be discussed
below.

We first focus on the effect of the k-point sampling on
the polaron trapping energy. In Table III, trapping energies
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TABLE III. Trapping energies of STel in PbTiO3 using different
�-centered k grids. The calculations were carried out with PBE + U
[UTi(3d) = 4.75 eV].

2 × 2 × 2 3 × 3 × 3 4 × 4 × 4 5 × 5 × 5

–0.12 –0.19 –0.18 –0.18

of the STel using different k-mesh sets are listed. According
to Eq. (1), the trapping energy is obtained as the difference
in total energy of a supercell of a perfect crystal containing
an extra electron in the conduction band and the total energy
of a supercell with the localized electron. While the supercell
containing the STel possesses only fully occupied and fully
empty (spin-polarized) states, the ideal supercell with excess
charge has partial occupancies in its electronic states. Hence,
its total energy converges slower as a function of the k mesh.
Consequently, the convergence of the trapping energy with
respect to the k-point density should be tested. Previously,
Erhart et al. [26] studied the convergence of formation energy
of STHs in SrTiO3 with different k meshes using Eq. (1) and
the formation energy relation from defect thermodynamics.
Their results demonstrate that convergence is slower when
using Eq. (1) and as a consequence higher k-mesh grids need
to be applied. It is clear from Table III that the magnitude of
the trapping energy depends on the size of the k mesh and that
the commonly considered 2 × 2 × 2 k mesh for the 3 × 3 × 3
perovskite-based supercells is not a precise choice and the
trapping energy is converged already for a 4 × 4 × 4 k mesh.
Note that the difference of trapping energies calculated using a
2 × 2 × 2 and a 4 × 4 × 4 k mesh is 60 meV. This significant
difference underlines the importance of using a k mesh that
ensures a converged trapping energy. Accordingly, the rest of
the calculations presented in this paper were performed using
a 4 × 4 × 4 �-centered k mesh.

In order to find other sources for the variation of the po-
laron trapping energy, we carried out a detailed benchmarking
considering the effects of lattice parameters and PAW setups.
As mentioned in the previous section and shown in Table I,
the PBE functional tends to magnify the c/a ratio of the
tetragonal PbTiO3. On the other hand, by applying the U
parameter, the relaxed structure becomes almost cubic, ex-
hibiting a minimal ferroelectric distortion. For studying the
effect of lattice parameters on the polaron trapping energy, we
constructed 3 × 3 × 3 supercells from conventional unit cells
and used PBE, HSE, as well as experimental lattice constants.
Hereafter, @PBE, @HSE and @Exp refer to the PBE + U
calculations performed respectively on the supercells con-
structed with PBE, HSE, and experimental lattice parameters.
Next, we tested the influence of the Ti PAW setup on the
polaron trapping energy. We note that PAW implementations
usually rely on the frozen-core approximation, which is based
on separating the electrons into core and valence electrons. In
this method, the electrons in the core orbitals are not allowed
to polarize under the effect of the valence electrons or the
other atoms, which makes this method distinct from an all-
electron method [74]. Keeping this in mind, we decided to
quantify the effect of the PAW setups on electronic structure
calculations of small polarons. Here, calculations were first

FIG. 2. Calculated trapping energies of STel on Ti atom obtained
with PBE + U , using different PPs of Ti. Z denotes the number of
electrons treated as valence electrons in the PP of Ti. @PBE, @HSE,
and @Exp denote PBE + U calculations performed with PBE, HSE,
and experimental lattice constants, respectively. Calculations were
carried out using 4 × 4 × 4 �-centered grids.

performed by treating Ti 4s and 3d orbitals as valence states
with 4 total valence electrons (Z = 4, large core) on the Ti
site. Then, Ti 3p, 4s, and 3d orbitals with a total number
of 10 electrons (Z = 10, medium core) were considered as
valence electrons. Finally, the trapping energy was calculated
by treating Ti 3s, 3p, 4s, and 3d orbitals as valence states with
a total number of 12 valence electrons (Z = 12, small core)
on Ti. The results are illustrated in Fig. 2.

According to Fig. 2, the trapping energy obtained for su-
percells constructed from the PBE-relaxed unit cell (@PBE)
is much more negative than those obtained with @HSE and
@Exp supercells. This is because the larger c/a ratio in
@PBE calculations allows for more ionic relaxations and
stronger localization, leading to more negative trapping en-
ergies. In particular, in the case of Z = 4, the trapping energy
of the STel varies from –0.79 eV using the @PBE supercell to
–0.40 eV and –0.43 eV using the @HSE and @Exp supercells,
respectively.

Note that in all calculations the trapping energy is a nega-
tive number, which speaks for formation of STels. However,
the large variation of polaron trapping energy in different
supercells may impact the polaron hopping mechanism. This
can impact the polaron mobility and spatial configuration
at different temperatures. Hence, to ensure reliable ionic
relaxation and charge localization, we considered @Exp su-
percells for our further analysis with the PBE + U , and
used @HSE supercells for our calculations with the HSE
functional. Note that, according to Fig. 2, PBE + U calcula-
tions using @HSE and @Exp supercells yield very similar
results.

For computational efficiency, it is often desirable to employ
pseudopotentials (PPs) with the least number of electrons
considered as valence electrons. While this “standard” choice
of PP decreases the computational time, it is instructive to
examine its fidelity more closely. So, the question that we ad-
dress here is how or whether the inclusion of semicore levels
in PP would affect the trapping energy and diffusion barrier
of small polarons. To that end, we performed calculations
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FIG. 3. Top row: Electronic band structure of polaronic configuration, calculated by treating (a) 4, (b) 10, and (c) 12 outermost electrons of
Ti as valence. Middle row: The schematic configuration coordinate diagram depicting the excitation of a small STel to a delocalized electron
configuration energy as a functional of lattice distortion, calculated by treating (d) 4, (e) 10, and (f) 12 outermost electrons of Ti as valence.
Bottom row: Schematic configuration coordinate diagram depicting the excitation of a small STel to a nearest-neighbor site, calculated by
treating (g) 4, (h) 10, and (i) 12 outermost electrons of Ti as valence.

treating 4, 10, and 12 electrons of Ti as valence electrons. With
these setups, the comparison clearly demonstrates that the
fewer valence electrons in the PAW setup, the more negative
will be the trapping energy of the polaron. For example, the
trapping energy for @Exp calculations changes from −0.43
to −0.18 eV when going from a large-core (Z = 4) to a
small-core (Z = 12) PP scheme, as can be seen in Fig. 2. For
a closer inspection of this behavior, we compared electronic
band structures and configuration coordinate diagrams for the
three PP setups using a 4 × 4 × 4 k mesh and @Exp supercell.
The results are shown in Fig. 3.

The PBE + U spin-polarized band structure of PbTiO3

shows one fully occupied flat band in the spin-up channel
within the band gap for all three sets of calculations [see
Figs. 3(a)–3(c)]. The flat band shows almost no dispersion,
the relevant feature of a fully localized state. The precise
placement of the flat band (polaronic band), however, changes
with the applied PP. The flat bands for Z = 4, 10, and 12 are
1.39, 1.15, and 0.96 eV below the conduction-band minimum,
respectively.

Next, to inspect the source of variation in polaron trap-
ping energies consequent to applying different PPs, schematic
configuration coordinate diagrams [27,75,76] were calculated
for the three PP setups and are illustrated in Figs. 3(d)–3(f).
The polaron trapping energy can be decomposed into strain
energy and electronic energy. The strain energy (Est ), being
a positive number, corresponds to the relaxation energy gain
for distorting the lattice and stabilizing the localized charge
configuration. The electronic energy (Eel ), being a negative
number, is the energy cost by localizing the electron at the Ti
site. The electronic energy Eel is also indicative of the energy
required for exciting a carrier from a localized in-gap state to
a delocalized band state and corresponds to the absorption of a
photon of that energy for making the transition from the local-
ized to the delocalized state plausible. Note that the electronic
energy Eel can be measured in photoemission spectroscopy
or scanning tunneling spectroscopy and then can be directly
compared to the theoretical value [21,29,77].

We found that the strain energy Est is similar in all three
calculations. This is consistent with the relaxation patterns,
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FIG. 4. Charge distribution corresponding to the small STel hopping from the (a)initial to the (b) saddle point, and (c) final configurations
using PBE + U calculations.

which are similar for the three calculations, all showing anal-
ogous outward relaxation of O atoms in the xy plane. So,
the difference in polaron trapping energies stems from the
electronic part, which decreases considerably when moving
from 4 to 12 valence electrons on Ti sites. This inconsistency
can arise from the interactions between the Ti d-level and the
semicore states, as the localized d orbitals are more tightly
bound to the semicore states. We will discuss this feature at
the end of the current section.

Next, we studied the change in the migration barrier of
the STel using the three PP setups [Figs. 3(g)–3(i)]. The
corresponding charge distributions for the STel hopping at
the initial, saddle point, and final configurations are shown in
Fig. 4. Here, the excitation of the STel is considered through
hopping from its self-trapping potential well to an adjacent
site, separated by 3.90 Å. In the initial configuration, the extra
electron is localized on one particular Ti site, while all other
Ti atoms are in a 4+ oxidation state, Ti3+-Ti4+. In the final
configuration, the electron hopped to an adjacent site, leaving
the original Ti site and reducing the oxidation state of the next
Ti ion, Ti4+-Ti3+. The migration barrier is shown as Em. Our
calculations indicate that when going from a large-core PP to
a small-core PP, the migration barrier changes from 320 to
210 meV, amounting to a large variation of 110 meV. This
provides evidence that the migration barrier is also highly
sensitive to the choice of the PP and a large-core scheme is
insufficient for obtaining a correct migration barrier, Em.

As shown in Fig. 4(b), at the transition state, the excess
electron is equally distributed between the initial and final
states. This feature holds for all three PP setups and is an
indication of an adiabatic transfer of excess electron from one
Ti site to the neighboring Ti site [72]. In adiabatic hopping,
there is a strong electronic coupling between the initial and
final states, leading to a gradual transfer of electron from one
site to the other, and a migration barrier which is generally
smaller than the polaron trapping energy. As a result, the
polaron transport proceeds through thermal hopping without
delocalization [78]. We see in Figs. 3(g)–3(i) that, as a result
of semicore relaxation, the migration barrier decreases by
including semicore levels in the Nudged Elastic Band (NEB)
calculations. For Z = 4 and 10, the polaron migration barrier
is smaller compared to the polaron trapping energy. For

Z = 12, however, the migration barrier becomes slightly
larger than the trapping energy. This implies that the polaron
hops through a delocalization-localization mechanism.
However, since the migration barrier is only 0.03 eV larger
than the polaron trapping energy, this slight surplus could
be an artifact of the PBE+U functional. It is important
to note that the DFT+U tends to underestimate coupling
between the initial and final configurations and consequently
the activation barrier for polaronic hopping is commonly
overestimated when applying DFT+U [73]. The estimation
can be improved by using more accurate but substantially
more expensive HSE06 hybrid functional.

The effects of the semicore levels relaxation on the
polaron migration barrier has been also investigated in FePO4

by Wang et al. [79]. Their results show that the relaxation
of electronic states far below the Fermi energy could impact
the ab initio polaronic migration barrier substantially. To
have a closer look at the effect of semicore level electronic
relaxation on polaron trapping energy and the migration
barrier, the projected density of states of the Ti orbitals in the
presence of a delocalized electron and a STel are presented
in Fig. 5. The results show that the electronic interactions
between the localized d state of the polaron and the semicore
states [Fig. 5(b)] breaks the symmetry and induces degeneracy
of the Ti 3p (the blue lines between −30 and −40 eV) and 3s
(the green lines between −50 and −60 eV) states, a feature
that does not exist while having a delocalized electron in
the system [Fig. 5(a)]. Hence, the localized electron on the
Ti d orbital gives rise to additional electronic relaxations on
electronic levels far below the Fermi energy. So, the inclusion
of the semicore states in the calculations allows for the full
electronic relaxations of the semicore states. As a result, the
total energy of the system and, in consequence, the trapping
energy and migration barrier of the polaron decrease. Note
that when the semicore states are taken as frozen states,
such electronic relaxations are not allowed anymore and
their significant contribution to the trapping energy and the
migration barrier of polaron will be neglected.

B. Hybrid functional calculations

As mentioned before, the current state of the art of the
polarons in tetragonal PbTiO3 is not well understood and,

074410-6



SELF-CONSISTENT CALCULATIONS OF CHARGE … PHYSICAL REVIEW MATERIALS 6, 074410 (2022)

FIG. 5. Spin-polarized projected density of states of Ti ions for
two configurations: (a) The added electron is delocalized, forming a
band electron, and (b) the added electron is localized on a Ti site,
forming a STel.

despite its technological importance, there is only very little
known about polarons in this material. We are only aware of
one Electron Paramagnetic Resonance (EPR) study performed
by Robertson et al. [48], where electron polarons associated
with Ti3+ centers were reported in tetragonal Pb(ZrxTi1−x )O3,
only around x = 0.5. However, they could not find evidence
for the existence of Ti3+ centers in other compositions with
varying x. This contrasts with our results, where both PBE+U
and HSE06 calculations provide strong evidence for the exis-
tence of electron polarons on Ti d orbitals of pure tetragonal
PbTiO3. The discrepancy between the experimental and the-
oretical studies can be related to the lifetime of the excited
state. The EPR measurements are performed in an optically
excited state and optical excitation always comes along with
recombination. So, the faster the recombination, the lower the
polaron concentration. Thus, it is probably the lifetime of the
excited state, which is higher in Pb(ZrxTi1−x )O3 than in pure
PbTiO3.

The results presented in the current section were calculated
using the HSE06 hybrid functional. The lattice parameters
were also relaxed using the HSE06 functional. Here, we first
compare the results obtained using the PBE + U (UTi(3d ) =

FIG. 6. Schematic configuration coordinate diagram showing the
optical absorption process, associated with the STel in PbTiO3.

4.75 eV @Exp lattice constants) functional to those attained
with the HSE06 hybrid functional. Using a 4 × 4 × 4 �-
centered k mesh, the HSE06 STel trapping energies obtained
with large-, medium-, and small-core PAW setups are respec-
tively −0.41, −0.30, and −0.16 eV. Note that the HSE06
calculated trapping energies are in very good agreement with
those obtained with PBE + U . Note that applying various
PAW setups has a large influence over the calculated trapping
energies, here as well. This reveals that there are significant
electronic interactions between the polaronic d state and the
semicore states, which would not be taken into consideration
if the semicore levels are treated as frozen core states. There-
fore, in studying polarons, and irrespective of the applied
functional, the semicore states must be treated as valence
electrons.

Since HSE06 calculations yield a good estimate of the
electronic band gap of PbTiO3, we are able to analyze the
optical transitions associated with the STel. The configuration
coordinate diagram illustrating the absorption and lumines-
cence processes associated with the small STel in PbTiO3 is
given in Fig. 6. The lowest parabola denotes the bulk, the
highest parabola denotes the bulk with an pair, and the middle
parabola denotes the bulk with a STel. Absorption of photons
with energies equal to or larger than the band gap produces an
electron-hole pair, as shown with the upward-pointing violet
arrow. The photogenerated electron goes through a phonon-
mediated nonradiative process and gets trapped on a Ti site.
Radiative recombination of the valence-band hole with the
STel results in a below-gap emission (or photoluminescence)
peak in the optical transition spectra in photoluminescence
and cathodoluminescence measurements, which is associated
with emitting a photon and is shown with the downward-
pointing green arrow. Finally, the lattice gets back to its
ground-state (bulk) configuration through a phonon-mediated
relaxation.

Conventionally, luminescence of wide-gap materials has
been attributed to the presence of intrinsic defects or dopants.
However, for many perovskites including SrTiO3, BaTiO3,
and PbTiO3 the optical measurements indicate broad band
emission in the visible spectral region (“green” lumines-
cence), which could not be associated to any defect or
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impurity states and could be only explained by considering
the existence of an electron polaron on the Ti site. According
to these experiments, the emission spectra in all of these
perovskites peaks around 2.4 eV [10,80,81]. For PbTiO3,
our calculated STel emission of 2.49 eV explains the green
luminescence in this material, in agreement with previous
experiments.

IV. CONCLUSIONS

PbTiO3 is a prototypical ABO3 ferroelectric material,
which is also the end member of several of the most important
piezoelectric and ferroelectric solid solutions. Nevertheless,
the formation and migration of small polarons on its tech-
nologically important tetragonal phase are missing in the
literature. Using a Hubbard U parameter of 4.75 eV on a Ti
d orbital, a 4 × 4 × 4 �-centered k mesh, and the small-core
PP of Ti, we identified the formation of a small STel with the
trapping energy of 0.18 eV, which was in very good agreement
with results obtained with the HSE06 functional (0.16 eV).
Furthermore, we have investigated the migration of the STel
using the nudged elastic band, resulting in a migration barrier
of 0.21 eV, which is too high to have significant influence on
the n-type conductivity of PbTiO3.

We also present the configuration coordinate diagram il-
lustrating energy balance as a function of lattice distortions
for delocalized and polaronic solutions and predict the energy
required to absorb a photon for exciting an electron from a
localized in-gap state to a delocalized band state to be 0.58 eV.
Complementary insights on the optical transitions of the elec-
tron polaron were provided through calculating the schematic
configuration coordinate diagram associated with the optical
transitions of the STel using hybrid functional calculations.
The results showed that recombination of the STel with a free
hole in the valence band leads to an emission peak at 2.49 eV,
giving rise to a green luminescence and in good agreement

with the experimental optical emission peak at 2.4 eV. For the
case of hole self-trapping on O 2p, we found that the localized
holes are energetically less favorable than their delocalized
counterparts.

In terms of the methodology, we presented a systematic
benchmark of the effect of k-mesh grids, lattice parameters,
and PP on polaron trapping energy in PbTiO3 using density
functional theory calculations. So far, an accurate description
of the on-site localization parameter (U , Fock exchange, etc.)
received the most attention for a proper description of po-
larons in materials of study. For obtaining an accurate polaron
trapping energy, however, we show that a correct determina-
tion of the k-point mesh, lattice constant, and elemental PAW
setups are as essential and can drastically affect the polaron
binding energy. Our results showed that the magnitude of the
polaron trapping energy and migration barrier is highly sensi-
tive to the choice of the PP, and to a less extent to the choice
of lattice parameters and k-mesh grid. In view of the present
results, we conclude that in order to properly quantify polaron
properties, the effects of choosing a PP need to be taken into
account in future studies and the precision of calculations
cannot be sacrificed by lowering the computational cost.
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