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Due to their high strength and advantageous high-temperature properties, tungsten-based alloys are

being considered as plasma-facing candidate materials in fusion devices. Under neutron irradiation,

rhenium, which is produced by nuclear transmutation, has been found to precipitate in elongated

precipitates forming thermodynamic intermetallic phases at concentrations well below the solubili-

ty limit. Recent measurements have shown that Re precipitation can lead to substantial hardening,

which may have a detrimental effect on the fracture toughness of W alloys. This puzzle of sub-

solubility precipitation points to the role played by irradiation induced defects, specifically mixed

solute-W interstitials. Here, using first-principles calculations based on density functional theory,

we study the energetics of mixed interstitial defects in W-Re, W-V, and W-Ti alloys, as well as the

heat of mixing for each substitutional solute. We find that mixed interstitials in all systems are

strongly attracted to each other with binding energies of �2.4 to �3:2 eV and form interstitial pairs

that are aligned along parallel first-neighbor h111i strings. Low barriers for defect translation and

rotation enable defect agglomeration and alignment even at moderate temperatures. We propose

that these elongated agglomerates of mixed-interstitials may act as precursors for the formation of

needle-shaped intermetallic precipitates. This interstitial-based mechanism is not limited to radia-

tion induced segregation and precipitation in W–Re alloys but is also applicable to other body-

centered cubic alloys. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4956377]

I. MOTIVATION

Tungsten is being considered as a candidate material in

magnetic fusion energy devices due to its high strength and

excellent high temperature properties.1–4 Upon fast neutron

irradiation in the 600–1000 �C temperature range, W trans-

mutes into Re by the way of beta decay reactions at a rate

that depends on the neutron spectrum and the position in the

reactor. For the DEMO (demonstration fusion power plant)

reactor concept, calculations show that the transmutation

rate is 2000 and 7000 atomic parts per 106 (appm) per dis-

placements per atom (dpa) in the divertor and the equatorial

plane of the first wall, respectively (where damage, in each

case, accumulates at rates of 3.4 and 4.4 dpa/year).5,6

The irradiated microstructure initially evolves by accu-

mulating a high density of prismatic dislocation loops and va-

cancy clusters, approximately up to 0.15 dpa.7,8 Subsequently,

a void lattice emerges and fully develops at fluences of around

1 dpa. After a critical dose that ranges between 5 dpa for fast

(>1 MeV) neutron irradiation8 and 2.2 dpa in modified target

rabbits in the HFIR,9 W and W-Re alloys develop a high den-

sity of nanometric precipitates with acicular shape at Re con-

centrations well below the solubility limit.8 The structure of

these precipitates is consistent with r (W7Re6) and v (WRe3)

intermetallic phases, which under equilibrium conditions

only occur at temperatures and Re concentrations substantial-

ly higher than those found in neutron irradiation studies. A

principal signature of the formation of these intermetallic

structures in body-centered cubic (BCC) W is the sharp

increases in hardness and embrittlement, as well as other det-

rimental effects.8,10 Qualitatively similar observations were

recently made on W-25Re alloys subjected to heavy ion irra-

diation,11 clearly establishing a link between primary damage

production and Re precipitation.

For a number of reasons, the formation of these non-

thermodynamic phases is inconsistent with the standard pic-

ture of solute precipitation by a vacancy mechanism, even in

the context of radiation enhanced diffusion (RED) and radia-

tion induced precipitation (RIP). For example, the phase dia-

gram points to the r phase as the first one to emerge from

the BCC solid solution, whereas electron diffraction studies

show the co-occurrence of both phases, with even an initial

preeminence of the v phase in some cases.12 All this is sug-

gestive of the role played by interstitial defects, such as

mixed dumbbells and crowdions, in facilitating solute trans-

port and potentially shifting phase boundary lines. Although

detailed kinetic models linking solute transport and precipi-

tation with irradiation defects exist (e.g., Ref. 13), self-

and mixed-interstitial (solute) transport introduces a set of

particularities that cannot be captured in effective models.

Specifically, motion directionality and solute transport mech-

anisms are directly governed by crystal structure and the

chemical nature of the defect-solute binding. These are pro-

cesses that must be characterized at the atomistic scale using

first principles calculations. There have been recent efforts to

study interstitial defect energetics in W-based alloys, using

density functional theory (DFT) calculations, in an attempta)erhart@chalmers.se
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to establish the grounds for defect diffusion models.4,14,15

These studies build on existing knowledge of self-interstitial

atoms (SIA) in metals gained from electronic structure and

semi-empirical calculations over the last 20 or so years.16,17

In any case, the formation of sub-soluble intermetallic

phases in irradiated W and W-Re remains unexplained, and,

to date, a detailed model of Re precipitation in irradiated W

is still lacking. In this paper, we study the precipitation be-

havior of W–V, W–Ti, and W–Re alloys as a function of al-

loy composition with an emphasis on interstitials in order to

understand and explain property changes of tungsten under

irradiation conditions. The paper is organized as follows. In

Sec. II, we describe the general approach as well as the com-

putational methodology employed in this work. The results

of interstitial binding in the dilute limit for V, Ti, and Re are

given in Sec. III A. This is followed by a comprehensive in-

vestigation of the mixing energies of both substitutional and

interstitial-based systems over the full composition range in

Sec. III B before we then consider in Sec. III C the mobility

of mixed interstitials. Finally, we formulate a mechanism

that provides a rationale for the occurrence and shape of ex-

perimentally observed r and v-phase precipitates in W–Re

alloys.

II. METHODOLOGY

A. General approach

The present work is primarily centered around Re since

as described above W–Re alloys are naturally formed due

to nuclear transmutation under fusion conditions and are

well known to exhibit RIP and RIS (radiation induced seg-

regation).18 Vanadium and titanium are included as well

since it was determined in Ref. 15 that their mixed intersti-

tial configurations exhibit a number of similarities with Re.

Specifically, it was shown that all three elements adopt a

bridge-like interstitial configuration [Fig. 1(a)] in the W ma-

trix. The latter can be thought of as a dumbbell interstitial

oriented along h111i [Fig. 1(b)], in which the extrinsic atom

is displaced along one of three h211i directions perpendicu-

lar to the dumbbell orientation. This results in a bond angle

with the nearest neighbors of approximately 150� as op-

posed to 180� in the case of the straight dumbbell interstitial

[see Fig. 1(a)]. In addition, Re, Ti, and V trap SIAs, i.e., the

reaction XW þ ðW�WÞint ! ðX �WÞint is exothermic,

which strongly affects the migration behavior of SIAs.

Finally, for all three elements, the defect formation volume

tensor of the mixed interstitials is strongly anisotropic,

which thus also applies to the strain field associated with

these defects and provides a strong driving force for defect

alignment. To investigate this behavior further, we consid-

ered several different types of configurations, the construc-

tion of which is described in the following.

1. Double-interstitial configurations

To quantify interstitial-interstitial interactions, defect con-

figurations including two interstitials were created based on

4� 4� 4 conventional supercells (128 atoms). Configurations

were constructed by systematically varying the distance as

well as the relative orientation (rotation) of two bridge intersti-

tials, yielding more than 100 initially distinct configurations.

2. Dilute substitution

The direct interaction of two Ti, V, or Re atoms in a

body-centered cubic W matrix was studied using 4� 4� 4

conventional supercells. Their relative separation was varied to

extract their (pair-wise) interaction as a function of distance.

3. Substitutional alloys

The energetics of concentrated alloys was determined

in two ways. First, 3� 3� 3 conventional supercells

(54-atoms) were employed, in which a number of extrinsic

substitutional atoms was inserted corresponding to concen-

trations covering the entire concentration range in the case of

V and the concentration range up to 50% in the case of Ti

and Re. The latter restriction was imposed since the BCC

lattice structure is mechanically unstable for these elements,

whence Ti and Re-rich supercells do not maintain the BCC

structure upon relaxation. Second, in the case of W–Ti, an

alloy cluster expansion was constructed using the atomic

alloy toolkit, from which a series of low energy structures

was derived.

4. Interstitial based structures

As discussed in detail below, the defect supercell calcu-

lations indicated strong interstitial-interstitial interactions

suggestive of defect clustering. To explore this effect, further

additional structures were constructed in the following fash-

ion.19 First, ideal supercells were generated based on the

primitive cell by applying an integer transformation matrix P

that relates the primitive cell metric hp to the supercell met-

ric h according to h ¼ Php. Subsequently, all distinct config-

urations were constructed that result from insertion of a

bridge interstitial on one lattice site when taking into account

the orientation of the interstitial. In this fashion, 166

“interstitial based” structures were obtained.

B. Computational details

For all configurations described in Sec. II, density func-

tional theory (DFT) calculations were carried out using the

FIG. 1. Bridge (a) and h111i dumbbell (b) interstitial defects in tungsten.

The h111i crowdion configuration closely resembles the h111i dumbbell

configuration with a slightly larger spacing of the defect atoms along the

h111i axis. The figure shows a slice parallel to f110g. Small (blue) spheres

indicate tungsten atoms, whereas large (gray) spheres indicate extrinsic

atoms (V, Ti, Re). Thicker (yellow) cylinders indicate bond lengths shorter

than 2.3 Å, whereas thinner (gray) cylinders indicate bond lengths shorter

than 2.5 Å. The bond angle h is indicated in (a).
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projector augmented wave (PAW) method20,21 as imple-

mented in the Vienna ab-initio simulation package.22–25

Since interstitial configurations involve short interatomic dis-

tances “hard” PAW setups that include semi-core electron

states were employed with plane wave energy cutoffs of

343 eV, 290 eV, and 295 eV for V, Ti, and Re, respectively.

Exchange and correlation effects were described using

the generalized gradient approximation,26 while the occupa-

tion of electronic states was performed using the first order

Methfessel-Paxton scheme with a smearing width of 0.2 eV.

The Brillouin zone was sampled using Monkhorst-Pack grids

of at least 4� 4� 4. (A detailed discussion of the effect of

different computational parameters on the results can be

found in Ref. 15.) All structures were optimized allowing

full relaxation of both ionic positions and cell shape with

forces converged to below 15 meV/Å. Migration barriers

were computed using 4� 4� 4 supercells and the climbing

image-nudged elastic band method with up to five images.27

III. RESULTS

A. Interstitial-interstitial binding

The SIA in tungsten has been shown to adopt a so-called

crowdion configuration in which the atoms that form the de-

fect are delocalized along h111i directions of the lattice.

Some extrinsic elements such as V, Ti, and Re bind to SIAs

and cause the interstitial to localize.15 These mixed-

interstitial defects have very large defect formation volumes

that range from 1.2 to 1.6 times the volume per atom of the

ideal structure. The associated strain field is oriented along

h111i and highly anisotropic, which is evident from the ratio

of the largest and smallest eigenvalues of the formation vol-

ume tensor.

When the concentration of solute atoms increases, the

strain field produced by individual bridge mixed–interstitials

remains unchanged. However, the reduction in the average

distance between solute atoms implies that mixed-interstitials

interactions become important, which due to the anisotropy of

the strain field can be expected to exhibit a strong directionali-

ty. The system can thus reduce its strain energy by rearrang-

ing both defect location and orientation.

To test this possibility, we first consider the interaction

of pairs of mixed-interstitials of V, Ti, and Re, which were

constructed as described in Sec. II A. Specifically, we calcu-

late the binding energy, which is defined as the difference

between the formation energy of the di-interstitial configura-

tion Ef ð2½X �W�WÞ and the sum of the formation energy of

two individual mixed–interstitial defects, 2Ef ð½X �W�WÞ

Eb
2½X� ¼ E f ð2½X �W�WÞ � 2E f ð½X �W�WÞ: (1)

Note that by this definition, two interstitials are attracted to

each other if the binding energy is negative.

The calculations reveal strongly bound configurations

for all three elements, with Eb
2½X� as high as �2.4, �2.7, and

�3:2 eV for V, Ti, and Re, respectively [Fig. 2]. In addition,

as mentioned above, the individual mixed interstitial defects

have a large and very anisotropic strain field that could

result in defect reorientation. This anisotropy should mani-

fest itself in the formation volume of the di-interstitial con-

figuration Vf ð2½X �W�WÞ relative to the individual defects

Vf ð½X �W�WÞ, which can be defined entirely analogously to

the binding energy above as

DV f
2½X� ¼ V f ð2½X �W�WÞ � 2V f ð½X �W�WÞ: (2)

FIG. 2. Binding energy according to Eq. (1) between two (a) V–W, (b)

Ti–W, and (c) Re–W mixed interstitials as a function of pair separation

(left) as well as relative formation volume (right), where latter was comput-

ed according to Eq. (2). The blue tics indicate the positions of the neighbors

shells in the perfect structure. The solid orange lines represent the repulsive

interaction between two substitutional extrinsic atoms (compare Fig. 4) re-

ferred to the most strongly bound configuration.
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Here, V f ð2½X �W�WÞ and V f ð½X �W�WÞ denote the forma-

tion volumes of the di-interstitial and (single) interstitial, re-

spectively, which were computed as described in Refs. 15,

28, and 29.

In fact, we find a strong correlation between the binding

energy Eb
2½X� and the change in the formation volume DVf

2½X�
[Fig. 2]. While a strong binding is obtained for short defect

separations, the lowest binding energies occur for somewhat

longer distances. Yet, at the same approximate distance, one

can obtain binding energies that cover the entire range be-

tween strong and no binding [compare, e.g., the data points

near 6 Å in Fig. 2(a)]. This suggests that the relative orienta-

tion of defects is important.

A closer inspection of di-interstitial configurations

reveals that in the structures that exhibit the strongest bind-

ing [structure (I) and (II) in Fig. 3(a)], the mixed-

interstitials are aligned along parallel h111i directions and

the two strings hosting the extrinsic atoms are first nearest

neighbors of each other [Figs. 3(b) and 3(c)]. If the mixed-

interstitials are located either in the same string or in two

strings that are second or farther nearest neighbors of each

other [configuration (III) in Fig. 3(a)], the energy increases

relative to the respective first-nearest neighbor configura-

tion [Fig. 3(c)]. The behavior of defects that is located in

the same string can be rationalized as being the result of

strong repulsion due to overlapping strain fields. The situa-

tion for second and farther nearest neighbor configurations,

on the other hand, is the result of a strong decrease in elec-

tronic coupling with distance. The short-range interaction

between h111i strings in BCC metals, in general, and W, in

particular, is in fact also evident from the success of first-

nearest neighbor string (Frenkel-Kontorova) models that

have been used in the past to describe both interstitial and

dislocation related features in these systems.3,30–32 Finally,

note that if the two mixed-interstitials are “far” apart and

have no specific orientation relative to each other [configu-

ration (IV) in Fig. 3(a)], their interaction vanishes and the

binding energy decays to zero.

It is worth noting that in the case of first-nearest neigh-

bor strings, the binding energy decreases with increasing dis-

tance. This effect can be attributed to the repulsive

interaction between two extrinsic atoms of the same type, as

it exhibits the same strength and distance dependence as the

interaction between two corresponding substitutional atoms

in a BCC W matrix [compare Figs. 2 and 4].

B. Mixing energies and phase equilibria

The results described in Sec. III A provide clear evidence

of the energetic preference for the alignment of mixed-

interstitials. The magnitude of the binding energies, however,

suggests an effect on the electronic structure that extends be-

yond strain effects. To shed more light on this aspect, we now

consider substitutional alloy configurations along with a series

of interstitial based structures that were constructed as de-

scribed in Sec. II A. The mixing energy Emix for a given alloy

composition XxW1�x was computed using the fully relaxed

configurations according to

EmixðXxW1�xÞ ¼ EðXxW1�xÞ � ½xEðXÞ þ ð1� xÞEðWÞ�;
(3)

where x denotes the fraction of the alloying element X.

Below, we first summarize the results for the substitutional

alloys before addressing the interstitial-based structures,

which exhibit a rather universal behavior.

1. Vanadium

Among the alloying elements included in this study, V is

the only other element with a ground state BCC lattice, and it

therefore gives rise to the simplest mixing energetics [see Fig.

5(a)]. The difference in lattice constant at ambient conditions

between W and V is 5.9% (V: 2.989 Å, W: 3.177 Å according

to PBE). The mixing energy is only slightly asymmetric and

negative throughout the entire composition range. The low

FIG. 3. (a) Defect configurations involving two ðX �WÞW mixed–interstitials in which X corresponds to V, Ti, and Re atoms. The figure shows a slice parallel

to a f110g plane of the structure. Small (blue) spheres indicate tungsten atoms, whereas large (gray) spheres indicate X atoms. Thicker (yellow) cylinders indi-

cate bond lengths shorter than 2.3 Å, whereas thinner (gray) cylinders indicate bond lengths shorter than 2.5 Å. (b) An illustration of parallel h111i strings in

BCC tungsten. (c) Binding energy of a pair of titanium bridge mixed–interstitial with respect to string number.

FIG. 4. Energy of a pair of V, Ti, and Re substitutional defects as a function

of distance with respect to the infinite separation limit. Positive values indi-

cate repulsion.

025901-4 Gharaee, Marian, and Erhart J. Appl. Phys. 120, 025901 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  129.16.69.49 On: Sat, 16 Jul 2016

10:09:46



energy structures are closely spaced along the convex hull,

and our calculations closely match the data from Muzyk

et al.33

2. Titanium

While at ambient conditions Ti adopts a hexagonal

close-packed (HCP) structure (a-phase), it also exhibits a

BCC polymorph (b-phase), which occurs at temperatures

above 1200 K. Here, we focus on BCC-based structures on

the W-rich side of the composition range.

As in the case of W–V, the mixing energy for BCC W–Ti

is negative over the entire concentration range when referred

to the elemental BCC phases [Fig. 5(b)]. Due to the energy

difference between BCC Ti and HCP Ti, the mixing energy of

BCC-based structure relative to the elemental ground states,

i.e., BCC W and HCP Ti, however, turns positive at approxi-

mately 60%. The lowest mixing energy occurs at a composi-

tion of 20%. It belongs to space group R�3m and has the same

structure of the W4V structure described in Ref. 33.

W and Ti also mix on the HCP lattice as the energy of

one substitutional W atom in HCP Ti is negative. The energy

offset between HCP W and BCC W is, however, even larger

than in the case of Ti, and thus, the mixing energy referred to

the ground state structures is positive over the entire compo-

sition range. When combined, these data imply that one can

expect a very asymmetric phase diagram with a large solubil-

ity for Ti in BCC-W but a very small solubility for W in

HCP-Ti. In the high-temperature region of the phase dia-

gram, which is experimentally accessible,35 this is, indeed,

the case. For lack of reliable low temperature data, previous

thermodynamic models of the phase diagram, however, as-

sumed a mixing energy that is positive over the entire com-

position range.36,37 As a result, these models predict the

solubility in both limits as the temperature approaches zero.

A revision of the low temperature part of the phase diagram

is therefore in order, which will be the subject of a separate

study.38

3. Rhenium

As for Ti, the mixing energy of Re in W on BCC and

HCP lattices is negative when referred to BCC and HCP ele-

mental reference states, respectively (Fig. 5(c)). The HCP-

BCC energy difference for Re is, however, even larger than

for Ti, which causes the mixing energy for these two phases

to be positive. This implies very small finite-temperature sol-

ubilities for both Re in BCC-W and W in HCP-Re in agree-

ment with experiment.

In addition to the BCC and HCP phases, the W–Re sys-

tem also features r and v phases.34 The r phase [red line in

Fig. 5(c); data from Ref. 34] experimentally occurs at high

temperatures only, consistent with slightly positive mixing

energies. The v phase, on the other hand [purple line in Fig.

5(c)], has a small negative mixing energy at about 83%,

which is compatible with this phase being a ground state

(zero K) phase.

4. Interstitial-based structures

Thus far, it has been shown that while the crystal struc-

tures of the elemental boundary phases differ between V, Ti,

and Re, the substitutional alloys show common characteris-

tics with both BCC and HCP based phases being miscible

with respect to the elemental phase with the same crystal

structure. One also observes strong similarities with respect

to the interstitial-based structures. While some of them relax

into substitutional structures, the majority remain close to

the initial structure after relaxation. For all three elements

(V, Ti, and Re), the mixing energies of these interstitial-

based structures exhibit a similar dependence on concentra-

tion (green data points in Fig. 5). The mixing energies are

positive and feature a maximum at about 15%. For concen-

trations of approximately 30% and above, the mixing energy

approaches zero and the structures loose interstitial-

characteristics, which is apparent from an analysis of the pair

distribution functions. This suggests that if the concentration

of mixed-interstitials reaches a concentration of � 30%, the

FIG. 5. Mixing energy of (a) V, (b) Ti, and (c) Re defects in tungsten-based structures obtained by substitution (squares) and interstitial insertion (circles). The

solid (blue) line indicates the convex hull corresponding to the minimum mixing energy. The solid (yellow) line indicates the effective convex hull. Available

data from W-V evaluated using cluster expansion are shown in plot (a) for comparison.33 r and v phases of a W-Re alloy34 are presented as well in plot (c) as

a function of defect concentration.
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structure becomes (locally) unstable with respect to a substi-

tutional phase.

The concentration dependence of the mixing energy of

interstitial-based structures thus suggests a miscibility-gap

like behavior between dilute interstitial solutions and more

concentrated structures, which contain 30% or more of the

alloying element and can transition more readily into substi-

tutional configurations. These results further support the no-

tion that interstitial agglomeration is energetically favorable.

C. Mixed-interstitial migration

Up to this point, we have shown that there is an energetic

driving force for further interstitial agglomeration and that

mixed-interstitials prefer an alignment along parallel nearest-

neighbor h111i strings. Next, we discuss migration energies

of interstitial structures. For all elements considered here, the

binding energy between a SIA and a substitutional defect is

large (V: �1:8 eV, Ti: �0:6 eV, Re: �0:8 eV).4,15,18 Thus, if

mixed-interstitial diffusion were to proceed via dissociation

of the mixed-interstitial, defect migration would be very slow

except at very high temperatures. It has, however, been shown

for the case of Re that mixed-interstitial can migrate via a

non-dissociative mechanism with a much lower barrier, which

in the case of Re was computed to be 0.12 eV.18

This low barrier is obtained for a sequence of a short

displacive transformation, which shifts the center of the

mixed-interstitial by a0

ffiffiffi

3
p

=2 along h111i, a rotation of the

mixed-interstitial orientation, and another short jump along

h111i [Fig. 6(a)]. As a result of these events, the interstitial

center moves by one lattice constant along h100i.
Note that during the rotation, the configuration effec-

tively passes through a h110i dumbbell configuration, which

happens to be practically identical with the saddle point of

that segment. The rotational barrier therefore closely corre-

sponds to the energy difference between the bridge and the

h110i mixed-dumbbell, at least for V, Ti, and Re.

We have computed the landscape for this mechanism

for all three extrinsic elements, see Fig. 6(b). For the initial

translation barrier, we obtain values of 0.22, 0.07, and

0.11 eV for V, Ti, and Re, respectively. The latter value

agrees well with earlier calculations.18 The barriers for the

rotation are 0.14, 0.02, and 0.07 eV for V, Ti, and Re, respec-

tively. Since the rotational barrier is always smaller than the

barrier for the translation segment, the effective barrier for

the entire path is set by the latter. While Ti has the lowest

barrier, the values for V and Re mixed-interstitials are simi-

lar in magnitude so that these defects should be mobile under

reactor relevant conditions. Note that the order of the barriers

correlates with the degree of anisotropy of the formation vol-

ume tensor of the bridge interstitials.15

IV. DISCUSSION

One of the main motivations behind this work is to inves-

tigate the causes behind the sub-soluble precipitation of trans-

mutation solutes (mainly Re) observed in W subjected to

high-energy particle irradiation. We seek mechanisms that

connect point defects to solute transport in binary systems be-

low the solubility limit. While long term precipitation kinetics

is governed by the onset of defect fluxes to sinks, which is

well beyond the scope of electronic structure calculations, the

underlying mechanisms responsible for solute-defect coupling

can only be investigated at the atomic scale using high accura-

cy methods. Here, we have employed DFT calculations to

study the fundamental energetics of interstitial-solute com-

plexes in three different binary alloys, W-Re, W-Ti, and

W-V. These three are the main implications of our findings:

(1) For all binary systems considered, mixed interstitial con-

figurations are energetically favored over SIA-solute

complexes. This is consistent with previous work on the

subject conducted on W alloys.15,18,39

(2) These mixed interstitials all display a migration mecha-

nism that involves low-energy (�0:14 eV) rotations in

the bridge interstitial configuration, followed by short

translations in the h110i orientation. In contrast with the

interstitialcy mechanism, which propagates the lattice

perturbation leaving the solute behind, this “associative”

mechanism can effectively transport solutes long distan-

ces in three dimensions, rendering it an efficient mass

transport mechanism (in fact, due to the comparatively

low migration energy barriers, interstitial-mediated trans-

port could potentially surpass that due to vacancies18).

(3) While the heat of solution of all substitutional solutes at

0 K is negative in the BCC W matrix, corresponding to

compounds that form solid concentrated solutions, the for-

mation energies of all mixed interstitials are positive. This

of course results in a strong segregation driving force for

mixed interstitials defects, which ultimately may result in

solute precipitation by way of mixed-dumbbell clustering.

Another aspect worth considering related to the precip-

itation kinetics of sub-soluble transmutants in W is the

acicular (elongated) shape of the resulting precipitates.

Precipitates are seen to form in the intermetallic r and v
phases,7,8,11 although there is experimental indication that

they nucleate as solute-rich BCC clusters40 that may ulti-

mately undergo a structural transformation.41 While the

shape of these intermetallic precipitates is likely to be

FIG. 6. Energetically favorable non-dissociative diffusion of a mixed–inter-

stitial in dilute tungsten alloy. The configurations are presenting the [�110]

dumbbell mixed–interstitial translation along [100] direction including a 90�

rotation. The plot in the lower row illustrates the corresponding migration

barriers in eV. For a better comparison, the path, which connects bridge to

[101] dumbbell mixed–interstitial via a rotation, is illustrated in the begin-

ning of the migration barrier plot.

025901-6 Gharaee, Marian, and Erhart J. Appl. Phys. 120, 025901 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  129.16.69.49 On: Sat, 16 Jul 2016

10:09:46



controlled by anisotropic interfacial energies and other ther-

modynamic features, here we put forward a mechanism

based on the computed DFT energetics that may contribute

to the incipient alignment of these clusters along crystallo-

graphic BCC h111i directions. The mechanism is as follows:

(i) Starting from a substitutional alloy of W and Re, irra-

diation leads to the production of SIAs, which diffuse

along h111i directions throughout the lattice until

they become trapped by substitutional Re atoms due

to a high binding energy.

(ii) Mixed interstitials migrate associatively in 3D even-

tually resulting in clustering. The strong energetic

driving force for clustering (see Sec. III A) and the

low barriers for non-dissociative interstitial migration

(see Sec. III C) facilitate defect co-alignment.

(iii) These mixed di-interstitials are kinetically very stable

due to the strong binding energies, which make them

preferential sites for more defect absorption. While

additional interstitials approaching these small clus-

ters may not be initially aligned, they are energetical-

ly favored to again rotate into alignment, increasing

cluster size and forming a precipitate nucleus.

(iv) As interstitial accumulation proceeds, the local Re

concentration increases and the system samples the

mixing energy curve representing interstitial-based

configurations [see Fig. 5(c)].

It is also worth mentioning that, as pointed out by Tanno

and Hasegawa,7,8 the formation of precipitates occurs at high

accumulated doses (>5 dpa), after sufficient transmutant

buildup has occurred and the void-lattice stage subsides by re-

combination with large cascade-produced SIA clusters, result-

ing in an excess population of single SIAs and/or mixed

interstitials. The above mechanism for interstitial-mediated

solute transport and clustering is schematically depicted in

Fig. 7. We recognize that this picture is somewhat speculative

at this point, and we are currently implementing the energetics

and the mechanisms presented here into long-term kinetic

models capable of approaching doses of several dpa. In any

case, the formation of these precipitates is one of the possible

pitfalls associated with the development of W-based alloys

for applications in fusion environments, as r/v precipitates

are known to cause very strong matrix hardening.42

V. CONCLUSIONS

In conclusion, in the present study, we have demonstrat-

ed that mixed interstitials in BCC-W involving V, Ti, and Re

are strongly attracted to each other with binding energies of

several eV. This interaction leads to the alignment of intersti-

tials along parallel first nearest neighbor h111i strings.

All three systems exhibit mixing on the BCC lattice

with respect to BCC boundary phases. In the case of Ti and

Re, we also find negative formation energies for substitution-

al defects on the HCP lattice. The energetic offset between

HCP-W and BCC-W on one side and BCC-Re and HCP-Re

on the other side of the composition range, however, leads to

very small solubilities in the boundary phases. In the case of

Ti, the BCC/HCP energy difference is relatively smaller,

which gives rise to an asymmetric solubility that is substan-

tially larger on the W-rich side.

Furthermore, we have calculated the activation barriers for

mixed interstitial motion, which are comparably low for all three

elements. The migration mechanism involves defect migration

and reorientation, resulting in effective solute transport in 3D.

The ease of rotation and strong binding of mixed inter-

stitials could help explain the incipient formation of BCC

solute-rich clusters oriented preferentially along h111i direc-

tions. It is not clear whether this may help steer the formation

of elongated r and/or v phase precipitates, as this is a more

complex process involving long term kinetics and structural

transformations, but it is interesting to note that there is an

intrinsic directionality associated with the formation of these

clusters. The analogies among V, Ti, and Re with respect to

defect and alloying properties suggest that similar mecha-

nisms could also come into play in W-Ti and W-V alloys.

The impact of interstitial binding described here on clus-

ter formation and subsequently mechanical properties

deserves further study. This is motivated by the observation

that interstitial clustering has been shown give rise to com-

plex diffusion behavior in other BCC metals43,44 and to im-

pact swelling behavior.45
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