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Abstract

The thermodynamic properties of intrinsic and extrinsic (Ti, V, Zr, Nb, Hf, Ta, Re) defects in tungsten have been investigated using density
functional theory calculations. The formation energies of substitutional defects are discussed with respect to their thermodynamic solubility
limits. Several different interstitial configurations have been identified as local minima on the potential energy surface. In addition to dumbbell
configurations with orientations along ⟨111⟩ and ⟨110⟩, a lower symmetry configuration is described, which is referred to as a bridge interstitial.
This interstitial type is found to be the lowest energy configuration for mixed–interstitials containing Ti, V, and Re, and can be up to 0.2 eV lower
in energy than the other configurations. According to the calculations Ti, V and Re also trap self-interstitial atoms, which can be produced in
substantial numbers during ion irradiation, affecting the mobility of the latter.
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1. Introduction

Tungsten alloys are considered for structural applications
in fusion reactors, especially for armor materials at the diver-
tor and first wall [1–4]. This interest is motivated by promising
physical properties such as high melting point, low coefficient
of thermal expansion, high thermal conductivity, and high sput-
tering resistance. Alloy formation occurs naturally during fu-
sion reactor operation due to nuclear transmutation caused by
high energy neutron exposure [5]. In this fashion pure tungsten
will gradually evolve into an W–Re–Os–Ta alloy [6]. Alloy-
ing has also been suggested to lower the temperature range in
which the fracture mode of pure tungsten changes from ductile
to brittle [7, 8]. The latter intersects with the operation temper-
ature window of current and future fusion reactors [2, 9], which
causes concern with regard to mechanical integrity. Since alloy-
ing affects many properties of importance including mechanical
performance, thermal conductivity, as well as swelling under ir-
radiation, it is important to develop our understanding of tung-
sten alloys under the relevant conditions [10].

With regard to applications in fusion reactors one must in
particular consider the performance of the material under ion
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irradiation, which causes the localized production of lattice de-
fects such as vacancies and interstitials [11, 12]. Whereas va-
cancies are relatively immobile, interstitials in pure tungsten
can migrate extremely fast [13] allowing for efficient defect re-
combination, which is a crucial factor with respect to radiation
tolerance [14]. In alloys solute atoms and interstitials can po-
tentially bind to each other, reducing the mobility of the latter
and possibly accelerating damage buildup compared to the pure
material.

An assessment of different alloys for applications in fusion
environments should thus invoke information regarding the in-
teraction of intrinsic point defects, solute atoms, and disloca-
tions. As such information is difficult to obtain experimentally,
computational modelling plays an important role in investigat-
ing the fundamental limits of materials performance. Since the
problem at hand involves many length and time lengths, a mul-
tiscale modelling approach must be employed. In this context,
first-principles calculations can provide critical microscopic pa-
rameters that cannot be accessed otherwise. While pure tung-
sten has been studied extensively, see e.g., Ref. [15], our un-
derstanding of alloy behavior is still in its infancy. Recent first-
principles calculations considered the energetics of intrinsic de-
fects and solute atoms for a range of transition elements and
identified chemical trends across the periodic table [16]. The
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migration behavior has been investigated using a similar ap-
proach for the two dominant products of nuclear transmutation
(Re, Os) [6]. There is also information available regarding the
interaction of subsitutional Re with dislocations and its effect
on lattice expansion [17].

The objective of the present paper is to deepen our under-
standing of the interaction of alloy elements with intrinsic de-
fects (formation and binding energies) and to provide param-
eters that characterize the elastic long-range interactions be-
tween different defects (formation volume tensors) in particular
with respect to dislocations [17]. The focus is on refractory el-
ements that are close to W in the periodic table and possess a
similar electronic structure. The paper provides a careful analy-
sis of the computational parameters that affect the convergence
of the respective data. For Ti, V, and Re, a low symmetry inter-
stitial configuration is observed, referred to as a bridge intersti-
tial, which is between 0.05 and 0.2 eV lower in energy than the
commonly investigated dumbbell configurations [16]. For these
three elements, we also find a strong binding to self-interstitial
atoms (SIAs), on a scale which prohibits detrapping on realistic
time scales. The analysis of the formation volume tensors re-
veals a very strong elastic anisotropy for the interstitial defects,
which can be expected to enhance long-range defect-defect in-
teraction and alignment.

2. Methodology

2.1. Computational details
Calculations were performed within density functional the-

ory (DFT) using the projector augmented wave (PAW) method
[18, 19] as implemented in the Vienna ab–initio simulation pack-
age [20–23]. Exchange-correlation effects were treated within
the generalized gradient approximation as parametrized by Perdew,
Burke and Ernzerhof [24] and the occupation of electronic states
was performed using the first order Methfessel-Paxton scheme
with a smearing width of 0.2 eV. Defect configurations based on
supercells with up to 250 atoms were considered corresponding
to 5 × 5 × 5 repetitions of the conventional (2-atom) unit cell.
For structural optimizations the atomic coordinates as well as
the cell metric were relaxed until the atomic forces were con-
verged to within 20 meV/Å and the residual stresses were less
than 0.2 GPa. A plane wave energy cutoff energy of 300 eV
was employed; increasing the cutoff energy up to 500 eV led to
changes in formation and binding energies by less than 0.02 eV.
We furthermore carefully considered the effects of Brillouin
zone sampling, supercell size, and semicore states on the for-
mation and binding energies as detailed in Sect. 3.1 below.

2.2. Thermodynamic relations
Defect formation energies were calculated using a well es-

tablished thermodynamic formalism [25] (also see Ref. [26])

E f = Edefect − Eideal −
∑

i

∆ni µi, (1)

where Ede f ect is the energy of the defective system and Eideal

is the total energy of the perfect reference cell. The variation

of the formation energy with the chemical environment is given
by the last term in Eq. (1), which involves the chemical poten-
tials of the constituents. The difference between the number of
atoms of type i in the reference cell and the defective cell is de-
noted by ∆ni, where positive and negative values correspond to
the addition and removal of an atom relative to the ideal cell,
respectively. Here, we take the chemical potential µi of each
constituent to be identical to its cohesive energy per atom [26].

The binding energy between solute atoms and point defects
is a key factor for understanding the thermodynamic properties
of alloys [27, 28]. It is given by the difference between forma-
tion energies of the mixed–interstitial, E f ([X −W])W, and the
sum of formation energy of the self–interstitial, E f ([W−W])W,
and substitutional configurations, E f (X)W,

Eb
X = E f ([X −W]W) − E f ([W −W]W) − E f (XW). (2)

In this notation, the binding energy corresponds to the quasi-
chemical reaction

(W −W)W︸       ︷︷       ︸
self-interstitial

+ XW︸︷︷︸
extrinsic substitutional defect

Eb
X−−→ (X −W)W︸      ︷︷      ︸

mixed interstitial

.

Negative binding energies thus imply an attractive interaction
between SIA and extrinsic substitutional defect.

The elastic distortion caused by a defect can be quantified
by its formation volume tensor [29–31]. It determines the long-
range elastic interaction between defects including but not lim-
ited to point and line defects. Given the cell metrics of the ideal
supercell L0 and the fully relaxed supercell containing the de-
fect L, the formation volume tensor can be obtained from the
relation [29, 31]

v f = det(L0) ln(L0
−1L) ≈ det(L0)(L − L0

−1)L−1
0
. (3)

The formation volume equals one third of the trace of the for-
mation volume tensor. By diagonalizing the formation volume
tensor one obtains the orientation and the strength of the strain
field. The former is specified by the eigenvectors whereas the
latter is related to the magnitude of the eigenvalues. In particu-
lar, we consider below the anisotropy defined here as the ratio
of the largest to the smallest eigenvalue.

3. Results and discussion

3.1. Convergence considerations

3.1.1. Brillouin zone sampling
The calculation of defect formation energies in metallic sys-

tems via density functional theory calculations and the super-
cell approach is subject to several sources of errors most impor-
tantly the sampling of the Brillouin zone via a discrete k-point
mesh, the interaction between periodic images of the same de-
fect, and the treatment of semicore states. The first aspect re-
sults from the fact that defects in metals act as perturbations,
which can cause long-range oscillations in the electronic struc-
ture (Friedel oscillations). To capture these oscillations it is not
uncommon that one requires a denser k-point mesh than for the
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Figure 1. Convergence of the formation energies of (a) vacancy, (b) Ti bridge interstitial, (c) and substitutional Ti with k-point density for different system sizes. (d)
Finite size scaling of formation energies for Ti interstitial defects. The defect configurations are schematically shown in Fig. 3. The calculations shown here did not
include semicore states.

corresponding defect free system. This is illustrated in Fig. 1(a)
for the W vacancy. It is apparent from these data that even for
a 250-atom cell (5 × 5 × 5 conventional unit cells) one requires
at least a 5 × 5 × 5 Monkhorst-Pack mesh in order to converge
the formation energy to better than 0.1 eV; this is equivalent
to a 25 × 25 × 25 mesh with respect to the primitive unit cell.
For comparison, a 15 × 15 × 15 Monkhorst-Pack is sufficient
to converge the total energy of a primitive cell to better than
1 meV/atom. In the case of interstitials, which are also strong
perturbation centers, the formation energies exhibit a slightly
smaller yet still pronounced variation than for the vacancy as
illustrated in Fig. 1(b). Finally, for substitutional defects the ef-
fect is rather weak as shown for substitutional Ti in Fig. 1(c).
An extensive data set of calculated formation energies provided
in the appendix demonstrates that the aforedescribed effects are
present for all alloying elements considered in the present study.
All formation energies discussed in Sect. 3.2 were calculated
using a 6 × 6 × 6 Monkhorst-Pack grid in order to minimize
Brillouin zone sampling errors.

3.1.2. Size dependence
The most widely methodology to describe defects in the di-

lute limit is the supercell approach, in which a defect is rep-
resented by a periodic array of identical configurations. The
approach has significant computational advantages and avoids
surface effects. Even with relatively large supercells there is,
however, a contribution to the formation energy that results
from the interaction of a periodic array of elastic dipoles. 1

In an elastically isotropic medium the elastic interaction scales
with the inverse volume, i.e.

E f (N) ≈ E f (N → ∞) + a/V = E f (N → ∞) + b/N, (4)

where a and b are constants of proportionality. This relation en-
ables one to correct for this error by finite size scaling [33, 34].

1In the case of semiconductors additional effects such as image charge in-
teractions and potential alignment corrections need to be taken into account.
[32]

This is illustrated for Ti interstitial configurations in Fig. 1(d),
which clearly exhibits an inverse linear behavior; the interstitial
configurations are shown in Fig. 3. Note that smaller cells than
the ones included here (e.g., a 2 × 2 × 2 16-atom cell) deviate
from the inverse linear behavior because of to non-linear contri-
butions associated with interacting defect cores. The formation
energies discussed in Sect. 3.2 were obtained using the same
finite-size scaling approach as used in Fig. 1(d) based on the
data compiled in the appendix. The error associated with fitting
the data to Eq. (4) is 0.03 eV or less for all defect configurations.

3.1.3. Semicore states
It is has been argued that the inclusion of semicore states,

specifically W-5p states, in the pseudopotential or PAW data
set is important to correctly describe the formation energies
of SIAs in tungsten [16, 35]. This is reasonable as intersti-
tial configurations involve very short interatomic distances and
are therefore more sensitive to the core radius of the pseudopo-
tential/PAW data set. To quantify these effects for the present
defects, we carried out a systematic analysis of the effect of in-
cluding semicore states. As the computational effort increases
significantly due to approximately twice as many electrons in
the calculation, the bulk of this study was restricted to 128-atom
cells and a 3× 3× 3 Monkhorst-Pack k-point mesh, see table in
the appendix. For a selected number of configurations includ-
ing both interstitial and substitutional defects, we also studied
250-atom cells as well as 6 × 6 × 6 k-point grids. These data
showed that the effect of semicore states is only weakly depen-
dent by Brillouin zone sampling and system size.

From the data in Table .2, one can deduce that semicore
states have a negligible influence on the formation energies of
substitutional defects with the exception of V and possibly Zr.
The situation is quite different in the case of the interstitial de-
fects, for which the effect ranges from almost zero (Zr, Nb) to
0.5 eV and above (Ti, V, Ta). The energy shift varies between
the different configurations and in some cases changes the en-
ergetic order (Ti, V). It is typically larger for ⟨110⟩ interstitials,
which have the shortest interatomic separation, than for ⟨111⟩
and bridge interstitial configurations.
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Figure 2. Variation of the formation energies of substitutional defects across the
periodic table according to the present calculations as well as prior calculations
by Kong et al. [16].

Given the computational expense associated not only with
the treatment of semicore states but system size and Brillouin
zone sampling, we below present formation energies that are
obtained as follows. We consider calculations that are based a
6 × 6 × 6 Monkhorst-Pack mesh and do not include semicore
states. These data are subjected to the finite-size scaling pro-
cedure described in Sect. 3.1.2, after which we add the shift in
the formation energies due to semicore states that was obtained
using 128-atom cells and a 3 × 3 × 3 Monkhorst-Pack mesh.
All respective formation energies are shown explicitly in Ta-
ble .2. Based on the analysis in the present section, we conser-
vatively estimate the error in the calculated formation energies
to be about 0.1 eV for absolute numbers and 0.05 eV for energy
differences.

3.2. Formation energies

3.2.1. Substitutional defects
The formation energies for substitutional solute atoms are

compiled in Table 1 and are shown in Fig. 2. One observes
that both the elements from group 4 (V, Nb, Ta) and group 5
(Ti, Zr, Hf) exhibit a non-monotonic variation as one passes
the 3d to the 5d series. These observations are in accord with
earlier calculations [16] although in the latter case the formation
energy of Zr is slightly negative whereas it is slightly positive in
the present case. As discussed in Sect. 3.1, various sources of
errors have been very carefully considered in the present case
and the full data set shown in Table .2 also shows the present
data to be very consistent.

The formation energy of a substitutional defect is related to
the slope of the mixing energy curve in the dilute limit. Nega-
tive formation energies therefore imply a tendency to form solid
solutions over a wide temperature range with W and addition-
ally indicate a tendency to form ordered phases at lower tem-
peratures [39–41].

For the group 5 elements one obtains consistently negative
formation energies, which is consistent with the mixing energy
curves calculated earlier for the W–V [41], W–Nb [39], and W–
Ta [39, 41] systems.

(a) bridge interstitial

[111]

[110]

[001]

(b) dumbbell (c) dumbell

- -

⟨110⟩ ⟨111⟩ 

Figure 3. Representative configurations of (a) bridge, (b) ⟨110⟩ dumbbell,
and (c) ⟨111⟩ dumbbell interstitial defects. The ⟨111⟩ crowdion configuration
closely resembles the ⟨111⟩ dumbbell configuration with a slightly larger spac-
ing of the defect atoms along ⟨111⟩ axis. The figure shows a slice parallel to
a {110} plane of the structure. Small (blue) spheres indicate tungsten atoms
whereas large (gray) spheres indicate alloying elements in the case of extrinsic
and tungsten atoms in the case of intrinsic defects. Thicker (yellow) cylinders
indicate bond lengths shorter than 2.3 Åwhereas thinner (gray) cylinders indi-
cate bond lengths shorter than 2.5 Å.

While in the case of the group 5 alloys all boundary phases
possess a BCC lattice structure, the situation is more compli-
cated in the case of the group 4 and group 7 (Re) elements,
for which the low temperature boundary phases with the excep-
tion of W adopt a hexagonal-close packed (HCP) structure. In
addition, in the case of the group 4 elements one furthermore
observes a high-temperature BCC phase that is vibrationally
stabilized, whereas it is mechanically unstable at low temper-
atures.

Experimentally, it is difficult to accurately assess the phase
diagrams of W-based alloys down to low temperatures due to
the slow kinetics of refractory systems even at relatively high
temperatures. As a result, most of the information available to
date is based on thermodynamic assessments, which are fre-
quently based on assumptions concerning the nature of the in-
teratomic interactions [42].

In the case of Ti the calculated phase diagram [42] sug-
gests a very extended solubility region at high-temperatures but
a vanishing solubility as the temperature approaches zero. Bar-
ring any experimental information for temperatures below ap-
proximately 1000 K [43], this assessment was based on the as-
sumption that the mixing energy is positive over the entire con-
centration range [42]. The present finding suggests that this as-
sumption needs to be revised and a better data basis is required
to accurately determine the solvus line for Ti in W. It should be
noted that while this region of the phase diagram is difficult to
access by thermodynamic equilibrium studies, it can nonethe-
less be relevant for the behavior of the material under irradiation
conditions as it determines the thermodynamic driving forces.

The solubility limits of Zr [42], Hf [42] as well as Re [44]
in W are not determined by the equilibrium between W and
another elemental phase but rather several ordered structure in-
cluding the χ andσ phases [45]. This implies that the respective
compound formation enthalpy should be used to determine the
chemical boundary conditions that enter Eq. (1) in the form of
the chemical potentials µi. This level of analysis is beyond the
scope of the present work.

3.2.2. Interstitial defects
A systematic exploration of interstitial configurations asso-

ciated with solute atoms in BCC tungsten, revealed three dis-
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Table 1. Formation energies and volumes of intrinsic and extrinsic point defects in tungsten.

Formation energies Formation volumes
Element Sub ⟨111⟩–int ⟨110⟩–int bridge–int v f

S ub v f
⟨111⟩ A⟨111⟩ v f

⟨110⟩ A⟨110⟩ v f
bridge Abridge

W 10.16 10.59 10.17 - 1.63 9.05 1.66 6.16 1.64 12.10
DFT [36] 9.55 9.84
DFT [37] 9.82 10.10
Expt. [38] 9.06 ± 0.63

Ti −0.81 8.83 8.99 8.73 0.01 1.38 8.99 1.30 8.34 1.33 9.45
V −0.60 8.00 8.10 7.77 −0.18 1.21 16.37 1.19 14.93 1.20 24.37
Zr 0.07 11.21 11.74 11.21 0.28 1.85 5.18 1.83 3.35 1.85 5.62
Nb −0.32 10.22 10.74 10.19 0.12 1.73 7.42 1.74 4.44 1.73 7.49
Hf −0.20 9.99 11.53 10.14 0.25 1.86 8.25 1.64 4.96 1.85 7.04
Ta −0.47 10.34 11.01 10.33 0.06 1.70 7.58 1.67 5.48 1.69 8.03
Re 0.17 9.53 9.55 9.49 −0.02 1.56 15.25 1.63 8.72 1.60 18.68
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Figure 4. Formation energy of bridge, ⟨111⟩ and ⟨110⟩ interstitials (left axis).
Energy difference between ⟨111⟩ and ⟨110⟩ dumbbell interstitials with respect
to bridge interstitial (right axis).

tinct low energy configurations corresponding to different local
minima on the potential energy surface; these configurations
are shown in Fig. 3. In addition to the well known ⟨111⟩ and
⟨110⟩ dumbbell configurations [3, 13, 36] a third “bridge inter-
stitial” configuration [see Fig. 3(a)] was identified. This con-
figuration can be understood as a lower symmetry derivative of
the ⟨111⟩ dumbbell configuration, in which the solute atom has
moved away from the ⟨111⟩ direction along one of the three⟨
21̄1
⟩

directions. This results in a bond angle with the nearest
neighbors of approximately 150◦ (compared to 180◦ in the case
of the straight dumbbell interstitial).

A configuration similar to the bridge interstitial has been
reported for SIAs [6, 35] and for the Re mixed-interstitial [6],
which in the latter reference was referred to as a ⟨11h⟩ inter-
stitial. In both of those cases the energy difference relative to
the respective ⟨111⟩ interstitial configurations appeared to be
rather small (less than 0.05 eV). In particular in the case of the
SIA the energy difference between crowdion and bridge ⟨11h⟩
configurations is quite sensitive to supercell size and shape with
the crowdion configuration being the most stable in the limit

of large defect separations [35]. We have carried out a vi-
brational analysis of bridge and crowdion configurations that
demonstrates the slow size convergence of the crowdion con-
figuration (due its strongly delocalized nature [3]) and supports
the earlier analysis and conclusion [35]. In absolute numbers
our results are very close to previous calculations [36, 37].

The formation energies of extrinsic interstitial configura-
tions are compiled in Table 1 and shown in Fig. 4. The bridge
interstitial is found to be the most stable configuration for Ti, V,
and Re interstitials. In the case of Zr and Hf the ⟨111⟩ dumb-
bell shows the lowest formation energy, while for Nb and Ta
the bridge and ⟨111⟩ dumbbell configurations are energetically
practically degenerate (yet configurationally distinct). Our find-
ing of a bridge interstitial for Re agrees the results presented
in [6]. Note that bridge interstitial-type configurations were
not considered in Ref. [16]. Furthermore, the binding of so-
lute atoms was investigated relative to the ⟨111⟩-crowdion in-
terstitial rather than with regard to the respective lowest energy
configuration. For radiation induced segregation and precipita-
tion processes, however, the latter quantitiy, which yields the
thermodynamic binding energy, is the most relevant quantity.

In contrast to the present calculations for W-V, Muzyk et
al. [41] found the ⟨110⟩ dumbbell interstitial to be the most
stable configuration. The latter study, however, relied on cal-
culations involving only 128-atom supercells and a 3 × 3 × 3
k-point mesh. The analysis of computational errors provided in
Sect. 3.1 suggests that these values are not fully converged.

For reference, Table 1 also contains data for SIAs, which
have been extensively described before [6, 35]. The geometries
and energetics obtained here agree with these earlier calcula-
tions.

3.3. Binding energies
Interactions of impurities and alloying elements with point

defects are of great importance for materials under irradiation
as they can significantly affect the mobility of defects [4]. This
can result in segregation, precipitation and/or the formation of
secondary phases at grain boundaries. To assess the tendency
of different elements to trap SIAs we have therefore calculated
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binding energies between impurities and interstitials. As shown
in Fig. 5 negative values are obtained for Ti, V and Re intersti-
tial configurations, while for the remaining elements the bind-
ing energies are positive.

A previous study [4] has also reported an attractive interac-
tion between Re and SIAs of Eb = −0.8 eV, the orientation of
the mixed–interstitial was, however, not specified. The binding
energies obtained in the present study are Eb

bridge = −0.62 eV,
Eb
⟨111⟩int = −0.52 eV and Eb

⟨110⟩int = −0.36 eV.
The negative binding energies for Ti, V and Re, which are

also the three elements that favor bridge interstitial configura-
tions, imply an attractive interactions with SIAs, whence these
elements are expected to trap interstitials. The binding is very
strong (∼ 0.6−1.8 eV) in all three cases, indicating that thermal
detrapping is unlikely. Trapping is a precursor to segregation
and associated with radiation–induced segregation and precipi-
tation. Previous experimental studies have confirmed radiation–
induced Re precipitation in tungsten [46, 47], yet no equivalent
experimental data has yet been reported for Ti and V.

SIAs travel with very high mobility along the cowdion di-
rection with a migration barrier on the order of a few meV
(≤ 0.046 eV) [48]. The high diffusivity of SIAs is closely re-
lated to the effective delocalization of the defect center and the
fact that their migration involves only small atomic displace-
ments [3]. The strong tendency of impurities to bind with SIAs
causes the interstitial to localize and reduces its mobility dra-
matically. In this context it is important to quantify the range
of the SIA–solute interaction as it provides a measure for the
effective capture radius associated with a substitutional solute
atom. Figure 6 shows the formation energy of solute-interstitial
configurations as a function of the distance between interstitial
center and solute atom for the case of Ti. The data indicate a
short interaction range as binding is practically absent outside
a radius of approximately 2.5 Å, which corresponds to the first
nearest neighbor shell of the BCC lattice.

3.4. Formation volumes and formation volume tensors
A defect can affect other point as well as line defects (dis-

locations) either via a direct “chemical” interaction or via long-
range elastic interactions. The strain field can modify the saddle
points during point defect migration [49]. Similarly, it can af-
fect the barriers for dislocation kink nucleation and growth and
thereby affect the plastic behavior of the materials [17]. For-
mation volumes quantify the induced strain in terms of linear
elasticity theory; the formation volume tensors provide addi-
tional information concerning the orientation and anisotropy of
the strain field.

From constant pressure calculations we obtain the change
in cell shape due to defect formation L − L0, from which one
readily obtains the formation volume tensor v f using Eq. (3).
All solute atoms are associated with a symmetric lattice relax-
ation whence the formation volume tensor is simply v f = v f I,
where v f = (1/3)Trv f is the formation volume. The values are
compiled in Table 1 and Fig. 7, which shows that the formation
volumes closely correlate with the atomic radii.

In the case of interstitial defects the formation volume ten-
sor reflects the orientation of the dumbbell as illustrated in Fig. 9.
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The formation volumes are reported in Table 1 and Fig. 7. The
strongly elongated shape of the ellipsoids in Fig. 9 indicates a
large degree of anisotropy. The latter can be conveniently mea-
sured by the ratio A of the largest and smallest eigenvalues of
the formation volume tensor, see Table 1. Large values of A
are obtained with typical values in the range from 6–10. For
Re and V the anisotropy is even larger with A values up to 24,
see Fig. 8. It is remarkable that the three elements that favor the
bridge interstitial configuration and trap SIAs, are also the three
elements with the largest anisotropy ratio.

Finally, for the vacancy one obtains a formation volume that
is very close to zero, which is an indication for the covalent
bonding character that is characteristic for W.

4. Conclusions

Substitutional and interstitial defects in W associated with
several alloying elements of interest were investigated by first-
principles calculations based on density functional theory. A
systematic investigation of computational parameters was car-
ried out in order to establish the accuracy limits of the present
calculations. The errors due to finite size, Brillouin zone sam-
pling, and the treatment of semicore effects were shown to be
of similar magnitude and a procedure was described to account
for each contribution.

Negative formation energies were obtained for substitutional
Ti, V, Nb, Hf as well as Ta and positive values for Zr and Re.
The negative values suggest a negative mixing energy for the
BCC solutions, which should result in an extended miscibil-
ity range and possibly the formation of ordered phases at low
temperatures, see Refs. [40, 41]. This is partially at odds with
phase diagrams based on thermodynamic calculations. As the
latter are based on limited experimental data due to the refrac-
tory nature of the W-alloys, this suggests that further investi-
gations should be carried out to establish the low temperature
phase diagrams as they determine the thermodynamic driving
forces that underpin the dynamic behavior of the material.

While interstitials are practically absent under equilibrium
conditions due to their large formation energies, they are im-
portant under reactor relevant conditions when SIAs are pro-
duced by ion irradiation. In addition to high symmetry dumb-
bell configurations, here another interstitial configuration has
been systematically investigated that was referred to as a bridge
interstitial. For mixed-interstitials involving Ti, V, and Re the
bridge interstitial configuration is found to be the most stable
configuration.

The same three elements (Ti, V and Re) exhibit negative
binding energies with respect to SIAs and are thus predicted to
trap these defects. This causes a reduction of the interstitial mo-
bility, which is likely to accelerate damage build up. It is also
of interest in connection with radiation-induced segregation and
precipitation, which has already been observed for Re.

Finally, the elastic strain field of both substitutional and in-
terstitial defects was quantified in the form of formation volume
tensors. Remarkably, again Ti, V, and Re interstitials are the
defects that exhibit the strongest anisotropy as quantified by the

7



L. Gharaee and P. Erhart / Journal of Nuclear Materials 00 (2015) 1–11 8

ratio between the largest and smallest eigenvalues of the forma-
tion volume tensor. These parameters are suitable e.g., for the
construction of kinetic Monte Carlo models of defect migration
and dislocation mobility.

Acknowledgments

This work was supported by the the Swedish Research Coun-
cil in the form of a Young Researcher grant, the European Re-
search Council via a Marie Curie Career Integration Grant, and
the Area of Advance – Materials Science at Chalmers. Com-
puter time allocations by the Swedish National Infrastructure
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