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dynasor—A Tool for Extracting Dynamical Structure
Factors and Current Correlation Functions from Molecular
Dynamics Simulations

Erik Fransson, Mattias Slabanja, Paul Erhart,* and Göran Wahnström*

Perturbative treatments of the lattice dynamics are widely successful for many
crystalline materials; however, their applicability is limited for strongly
anharmonic systems, metastable crystal structures and liquids. The full
dynamics of these systems can, however, be accessed via molecular dynamics
(MD) simulations using correlation functions, which includes dynamical
structure factors providing a direct bridge to experiment. To simplify the
analysis of correlation functions, here the dynasor package is presented as a
flexible and efficient tool that enables the calculation of static and dynamical
structure factors, current correlation functions as well as their partial
counterparts from MD trajectories. The dynasor code can handle input from
several major open source MD packages and thanks to its C/Python structure
can be readily extended to support additional codes. The utility of dynasor is
demonstrated via examples for both solid and liquid single and
multi-component systems. In particular, the possibility to extract the full
temperature dependence of phonon frequencies and lifetimes is emphasized.

1. Introduction

The dynamical properties of materials are fundamental to, for ex-
ample, their thermodynamic, kinetic, optical and transport prop-
erties. They can be accessed via neutron[1–4] or X-ray[5] scattering
experiments, which provide quantitative information in the form
of dynamical structure factors.[6,7] The latter can also be gener-
ated using atomic scale modeling via molecular dynamics (MD)
simulations or lattice dynamics, providing a quantitative bridge
between experiment and atomic scale modeling.

MD simulations are the primary choice for modeling liquids[8]

and in recent years several packages geared toward the anal-
ysis of their dynamics have emerged, including, for example,
nMoldyn,[9] mdanse,[10] liquidlib,[11] and freud.[12] The dy-
namical properties of (periodic) solid state systems are, on the
other hand, commonly analyzed within the framework of lattice
dynamics, that is, a low-order expansion of energy and forces in
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terms of small atomic displacements.
The lowest (second-order) force constant
(FC) expansion can be conveniently han-
dled using packages such as phonopy[13] or
phonon,[14] while higher-order terms can
be obtained either directly via tools such
as phono3py[15] and shengbte[16] (for third-
order FC terms) or via regression using, for
example, alamode,[17] tdep,[18] csld[19] or
hiphive.[20]

The calculation of the dynamical prop-
erties in general and the dynamical struc-
ture factor in particular via the FC ap-
proach typically includes only second-order
(harmonic) or third-order (lowest anhar-
monic order) terms, limiting the approach
to materials with relatively weak anhar-
monicity. Moreover, the quick explosion of
terms with system size imposes a rather se-
vere limit on system size. As a result, the
computation of the dynamical properties

becomes very cumbersome or impossible formaterials with large
unit cells, low symmetry and/or strong anharmonicity, includ-
ing metastable crystal structures and materials with soft modes,
which exhibit particular rich and interesting dynamical proper-
ties (For lattice-based systems, phonon frequencies and lifetimes
can also be obtained from MD simulations via the spectral en-
ergy density.[21,22] The latter approach, however, breaks down for
amorphous structures and solids that exhibit diffusion.).

All of the latter limitations can in principle be overcome by ana-
lyzing correlation functions, such as the dynamical structure fac-
tor, from MD simulations using forces from density-functional
theory (DFT) calculations, empirical potentials[23] or high-order
force constants.[24] To take full advantage of this approach it is de-
sirable to obtain the dispersion relations as a function of not only
the magnitude but also the direction of the momentum transfer
vector. While this information is in principle present whenever
analyzing trajectories from periodic systems, this is not the pri-
mary focus of the aforementioned tools. Here, to fill this need,
we introduce the dynasor package for the efficient calculation of
dynamical structure factors fromMD trajectories.While it is gen-
erally applicable to both solids and liquids, it is particularly well
suited to analyze the dynamics of fully or partially periodic sys-
tems.

dynasor, which is written in a combination of C and Python,
can parse MD trajectories from lammps,[23] gromacs[25] as well
as namd.[26] If vmd[27] is available, dynasor can employ the
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molfileplugin to read even more formats (with some limita-
tions). By using existing trajectory converters such as mdtraj[28]

and pizza[29] as well as tools such as ase,[30] it is straightforward
to parse many more formats, including those from ab-initio MD
simulations. The code then allows one to compute not only the
dynamical structure factor but also current correlation as well as
partial correlation functions. In this fashion, it is for example pos-
sible to extract the full temperature dependence of phonon dis-
persions, as illustrated below for both solids (Sections 4.1 and
4.3) and liquids (Sections 4.2 and 4.4).

Below, we first provide a review of the theoretical background,
before describing the implementation and basic usage of dyna-
sor. We then demonstrate the application and performance of
the code for both solids and liquids, and specifically illustrate the
extraction of phonon dispersions and lifetimes.

2. Theoretical Background

In the following we provide a concise compilation of the expres-
sions for the dynamical structure factor and current correlation
functions in terms of the atomic coordinates and velocities. More
extensive information can be found, for example, in refs. [7] and
[31]. We describe a theoretical framework for how these corre-
lation functions can be analyzed in order to extract vibrational
information of the system.

2.1. Dynamical Structure Factor

The density of atoms n(r, t) is defined as

n(r, t) =
N∑
i

𝛿(r − ri(t)), (1)

where ri(t) denotes the position of atom i at time t and N is the
total number of atoms. The density can be spatially Fourier trans-
formed via

n(q, t) = ∫ n(r, t)eiq⋅rdr =
N∑
i

eiq⋅ri(t) (2)

The intermediate scattering function F(q, t) is defined in terms
of the time correlation function of n(q, t) as

F(q, t) = 1
N

⟨n(q, t)n(−q, 0)⟩ , (3)

where < … > denotes an ensemble average or —if the systems
is ergodic— a time average. The static structure factor is given by
the initial value of the intermediate scattering function

S(q) = F(q, t = 0), (4)

while one obtains the dynamical structure factor S(q,𝜔) via a tem-
poral Fourier transformation of F(q, t)

S(q,𝜔) = ∫
∞

−∞
F(q, t)e−i𝜔tdt. (5)

S(q,𝜔) exhibits peaks in the (q,𝜔) plane corresponding to longi-
tudinal modes. The broadening of these peaks is related to the
phonon lifetimes and thus the anharmonicity of the system (Sec-
tion 4.1).

2.2. Velocity Autocorrelation Function

The velocity autocorrelation function (VACF),Φ(t), is defined as

Φ(t) = 1
N

N∑
i

⟨vi(t) ⋅ vi(0)⟩⟨vi(0) ⋅ vi(0)⟩ , (6)

where vi(t) denotes the velocity of atom i at time t. The Fourier
transformation of Φ(t) is related to the vibrational density of
states, g(𝜔), via

g(𝜔) = 2
𝜋 ∫

∞

0
Φ(t) cos(𝜔t)dt (7)

2.3. Current Correlations

In order to obtain mode specific vibrational frequencies the po-
sitions of the atoms need to be included in the analysis. This can
be done by computing current correlation functions. These are
defined in a fashion that is analogous to the approach for the in-
termediate scattering function, but with the atom density being
replaced with the current density, n(r, t),

j(r, t) =
N∑
i

vi(t)𝛿(r − ri(t))

j(q, t) =
N∑
i

vi(t)e
iq⋅ri(t). (8)

The current density is a vector quantity which can be decomposed
into a longitudinal part containing the component parallel to the
q-vector and a transverse part containing the perpendicular com-
ponent, according to

j(q, t) = jL(q, t) + jT (q, t) (9)

where

jL(q, t) =
N∑
i

(vi(t) ⋅ q̂)q̂e
iq⋅ri(t)

jT (q, t) =
N∑
i

[
vi(t) − (vi(t) ⋅ q̂)q̂

]
eiq⋅ri(t) (10)

and q̂ denotes the unit vector. The current correlation functions
can now be computed (analogous to the intermediate scattering
function) as

CL(q, t) =
1
N

⟨jL(q, t) ⋅ jL(−q, 0)⟩
CT (q, t) =

1
N

⟨jT (q, t) ⋅ jT (−q, 0)⟩ . (11)
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As in the case of the intermediate scattering function, the cur-
rent correlations can be temporally Fourier transformed to the
frequency domain. By inspection of (2) and (3) particle density
and current density are related via

𝜕

𝜕t
n(q, t) = iq ⋅ j(q, t), (12)

which yields the following relation

𝜔
2S(q,𝜔) = q2CL(q,𝜔) (13)

in the frequency domain.

2.4. Multi-Component Systems and Liquids

Inmulti-component systems one can furthermore introduce par-
tial correlation functions. For example in the case of a binary sys-
tem (AB) the above expressions for the particle density generalize
to

nA(q, t) =
NA∑
i

eiq⋅ri(t)

FAB(q, t) =
1√
NANB

⟨nA(q, t)nB(−q, 0)⟩ . (14)

This generalization extends to current correlations in the same
manner. In some situations, instead of analyzing the partial cor-
relation functions directly, it is convenient to consider linear com-
binations of these functions. This will be demonstrated and dis-
cussed in the case of liquid NaCl in Section 4.4.

In solids, it is often desirable to determine the above men-
tioned quantities along specific paths connecting high symmetry
q-points. In isotropic samples on the other hand, such as for ex-
ample liquids, it is usually preferable to compute these functions
with respect to q = |q|, by performing a spherical average.

2.5. Damped Harmonic Oscillators—Fitting

Phonons are often modeled as damped harmonic oscillators.[1,32]

This enables correlation functions from both experiments and
computer simulations to be fitted to the corresponding analytic
functions, allowing the extraction of phonon frequency and life-
time (or damping factor). For this purpose, the analytic form for
the above mentioned correlation functions is derived and ana-
lyzed in the following.

Assuming the particle density, n(q, t), oscillates as a damped
harmonic oscillator then F(q, t) is, for each q, described by a func-
tion a(t) that is given by

d2

dt2
a(t) + Γ d

dt
a(t) + 𝜔

2
0a(t) = 0, (15)

where Γ is the damping coefficient and 𝜔0 the natural frequency
of the oscillator. This means that Γ = Γ(q) and 𝜔0 = 𝜔0(q), but
for simplicity these arguments are left out through out the rest
of this section. This equation is solved under the assumptions

that d
dt
a(t = 0) = 0 and t ≥ 0. For simplicity we set a(t = 0) = A

yielding the following solution

F(t) = Ae−Γt∕2
(
cos𝜔et +

Γ
2𝜔e

sin𝜔et
)
, 𝜔0 >

Γ
2

F(t) = Ae−Γt∕2
(
cosh𝜔et +

Γ
2𝜔e

sinh𝜔et
)
, 𝜔0 <

Γ
2

, (16)

where 𝜔e =
√

𝜔
2
0 −

Γ2

4
and 𝜔0 >

Γ
2
represents the underdamped

limit. This yields three fitting parameters A, Γ, and 𝜔0 for each q.
The functional form for a(t) can be Fourier transformed to

a(𝜔) = A
2Γ𝜔2

0

(𝜔2 − 𝜔
2
0)

2 + (Γ𝜔)2
. (17)

This corresponds to the analytic functional form of the dynamical
structure factor, which is thus a peaked functionwith amaximum

at 𝜔max =
√

𝜔
2
0 −

Γ2

2
and full-width-at-half-maximum FWHM ≈

Γ.
This analysis can be extended to current correlation functions

by considering (4), giving the following solutions

b(𝜔) = B 2Γ𝜔2

(𝜔2 − 𝜔
2
0)

2 + (Γ𝜔)2
. (18)

This is a peaked function with a maximum at 𝜔max = 𝜔0 and full-
width-at-half-maximum FWHM ≈ Γ. In the time domain this
function becomes

b(t) = Be−Γt∕2
(
cos𝜔et −

Γ
2𝜔e

sin𝜔et
)
, 𝜔0 >

Γ
2

b(t) = Be−Γt∕2
(
cosh𝜔et −

Γ
2𝜔e

sinh𝜔et
)
, 𝜔0 <

Γ
2

(19)

with three fit parameters B, Γ, and 𝜔0. While these expressions
are strictly valid for the longitudinal current correlations, we as-
sume the same functional form also when fitting the transverse
components. Since there are two transverse modes a sum of two
functions is needed (unless the transverse mode is degenerate),
giving us six fit parameters instead of three. The damping co-
efficient Γ is related to the phonon lifetime (also referred to as
relaxation or scattering time) 𝜏 as 𝜏 = 2∕Γ.

2.6. Fourier Transforms

It is often desirable to transform time dependent correlation
functions to the frequency domain. There are many different
methods for carrying out numerical Fourier transforms, window
functions can be applied and the signal can be zero padded to
obtain better accuracy. Since all time-dependent functions are in-
cluded in the output fromdynasor it is therefore possible to carry
out the Fourier transform in any which way. By default dynasor
will provide correlation functions also in the frequency domain
using Filon’s formula to carry out the transform as described in
appendix D of ref. [8]. We note that using window functions such
as a Fermi–Dirac function

h(t) = 1
e(t−t0)∕twidth + 1

(20)
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Figure 1. Internal workflow of dynasor. Text in red marks user inputs.
The time window, indicated in blue, is moved through the trajectory until
the specified maximum number of frames is reached.

works very well for preserving the important features but re-
duces the noise in the correlation functions. Here, t0 and twidth are
parameters that should be suitably chosen, given the relaxation
time of the correlation function.

3. Software Details

dynasor is distributed under on open source software license
(MIT) and its development is hosted on gitlab.[33] A compre-
hensive documentation written in sphinx[34] is included in the
distribution and is also available online.[35] Below some imple-
mentation aspects and inner workings of dynasor are outlined.

The workflow of dynasor is illustrated in Figure 1. The col-
lection of snapshots corresponding to a time window is parsed
from the MD trajectory, and for each snapshot the densities are
computed and then the correlation functions. This process is re-
peated until there are no more snapshots left in the trajectory or
the limit of numbers of snapshots to consider is met.

dynasor can read and parse trajectories in lammps dump for-
mat. If the libgmx library from the gromacs package is available,
dynasor can also read gromacs xtc-files. If vmd is installed,[27]

dynasor can use the molfile plugin to read other formats (with
some limitations) as well.

The time sampling can be adjusted via input parameters such
as the size of time window and the maximum number of snap-
shots to consider. q-point sampling is configured via four dif-
ferent parameters, controlling sampling style (isotropic or along
a path), the maximum q-vector to include, and the number
of q-points/q-bins. For multi-component systems an index file
(index_file) must be provided, indicating which atomic indices
corresponds to which atom types. Formore details about these in-
put parameters see the dynasor documentation or examples.[35]

The output data from dynasor consists of

• Partial intermediate scattering function F(q, t)
• Partial dynamical structure factor S(q,𝜔)
• Partial longitudinal and transverse partial current correlations
C(q, t) and C(q,𝜔)

• Partial van Hove function G(r, t)

• Partial self part of F(q, t) and S(q,𝜔)

This collection of data can be written as Python pickle-files or
matlab/octave .m files.

The computationally most demanding task in the process
pipeline, concerns the calculation of the Fourier transformed
densities, n(q, t) and j(q, t). This part is implemented in C and is
accelerated by parallelization using OpenMP[36] or OpenACC.[37]

Once the densities have been computed the averaging of the time
correlations is performed in Python.

4. Applications

We now turn to exemplary applications of dynasor to “real” ma-
terials and illustrate the information available in the correlation
functions for different systems. In all cases described below MD
simulations were carried out using the lammps package.[23] Fol-
lowing equilibration in either the canonical (NVT) or isothermal-
isobaric (NPT) ensemble using the Nosé–Hoover thermostat
and/or barostats, positions and velocities were sampled for about
one nanosecond in the microcanonical (NVE) ensemble in order
to avoid the thermostat/barostat influencing the dynamics and
thus the correlation functions.

When showing dispersion relations, we chose to plot𝜔0, rather
than 𝜔e, unless explicitly noted. The difference between 𝜔0 and
𝜔e is often small, but for system with strong damping there is a
clear difference as shall be discussed in the case of body-centered
cubic (BCC)-Ti (Section 4.3).

4.1. Solid (FCC) Aluminum

We first consider face-centered cubic (FCC)-Al since it is a rather
harmonic system, for which we can carry out meaningful com-
parisons with perturbative methods.

The atomic interactions in aluminum were modeled using an
embedded atom method potential for[38] and simulations were
carried out at 300 and 900 K using a supercell comprising 12 ×
12 × 12 conventional face-centered cubic unit cells. Frequencies
and lifetimes can be affected by finite-size effects.[39] We therefore
checked the convergence of our data by also analyzing smaller su-
percells down to 4 × 4 × 4 unit cells and found frequencies and
damping in the present case to vary by less than 0.05 meV at
300 K.

A comparison of the density of states (DOS) for FCC and liquid
Al (to be described in more detail in Section 4.2), computed via
Equation (2), shows obvious qualitative differences between the
solid and liquid phases (Figure 2). The DOS in the solid phase
vanishes at zero frequency and shows softening with increas-
ing temperature. By contrast the liquid DOS is finite at zero fre-
quency corresponding to diffusive motion while still exhibiting
structure at nonzero frequencies resembling solid behavior.

The phonon frequencies and lifetimes were extracted at a fixed
lattice parameter, a = 4.05Å, across the entire temperature range
in order to enable comparisonwith results from the harmonic ap-
proximation and first-order perturbation theory. The current cor-
relation functions were calculated and fitted in the time domain
using the procedure outlined in Section 2.5 using Equation (5)
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Figure 2. Vibrational density of states for aluminum at 300 K (solid), 900
K (solid), and 1200 K (liquid), computed from the velocity autocorrelation
function.
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Figure 3. Solid (FCC) aluminum at 900 K. Fits for the a) longitudinal and
b) transverse current correlations in the time domain for a q-point halfway
along the Γ − K − X path. The corresponding functions in the frequency
domain are shown for the c) longitudinal and d) transverse current corre-
lation functions.

for both the longitudinal and transverse current correlation func-
tions (Figure 3). The representation via the analytical functions in
the frequency domain alsomatches the Fourier transformed data
very well, providing further validation of the approach. While fit-
ting in the time domain is often easier when dealing with few
modes, the frequency domain becomes preferable when many
modes are present since they are more clearly separated along
the 𝜔 axis.

By extending the fitting procedure to all q-points in the su-
percell, one obtains the full phonon dispersion (Figure 4). In
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Figure 4. Phonon dispersion of solid (FCC) aluminum from MD simula-
tions at 300 K and in the harmonic (0 K) approximation.

X Γ L
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
am

pi
ng

Γ
(m

eV
)

MD LA

MD TA

PT LA

PT TA

Figure 5. Phonon damping (inverse lifetime) in solid (FCC) aluminum at
300 K from MD simulations (via dynasor) and first-order perturbation
theory (PT) via phono3py.

the present case, the phonon dispersion at 300 K closely agrees
with the harmonic (zero Kelvin) phonon dispersion obtained via
phonopy,[13] as expected given the weak anharmonicity in FCC-
Al.

The phonon lifetimes calculated using dynasor and phono3py
are shown along Γ − X and Γ − L at 300 K in Figure 5. Here, Γ ob-
tained from dynasor by fitting to Equation (5) is shown together
with the damping obtained from phono3py. The latter has been
multiplied by a factor of four to accommodate the different defi-
nitions. The phonon lifetime is given by

𝜏 = 2
Γdynasor

= 1
2Γphono3py

(21)

and hence for consistency we compare Γdynasor with 4Γphono3py.
The lifetimes are long, consistent with weak anharmonicity.

The agreement between dynasor and phono3py is good, both
qualitatively and quantitatively. This is expected for low tem-
peratures where first-order perturbation theory captures most
of the relevant anharmonic contributions to the lifetimes. As
temperature increases higher-order terms become increasingly
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Figure 6. Phonon damping (inverse lifetime) in solid aluminum fromMD
simulations (via dynasor) and first-order perturbation theory (PT), via
phono3py, for the LA and TA modes at a) L and b) X as a function of
temperature.

important and the lifetimes obtained via first-order perturba-
tion theory deviate more and more strongly from those obtained
from MD simulations, which include scattering to all orders
(Figure 6).

One might intuitively expect the inclusion of higher-order FC
terms to lead to a systematic increase in damping (equivalent to a
shortening of the lifetimes). The comparison between phono3py
and the MD results, however, shows for some modes the oppo-
site behavior. This can be explained by recalling that scattering
also leads to a shift of the frequencies with temperature, which
changes the geometry of the scattering events, making it difficult
to develop a simple intuitive picture for the sign of the change.
We also note that while the difference between a perturbative and
a self-consistent treatment of the lifetimes is small in Al due to its
low degree of anharmonicity, it is often much more pronounced
in strongly anharmonic systems as shown explicitly in, for exam-
ple, refs. [40,41].

4.2. Liquid Aluminum

To illustrate the application of dynasor for analyzing liquid
phases, we now consider liquid aluminum, which was simulated
using the same potential as for its solid counterpart[38] and using
the same number of atoms (6912). We carried out simulations
at 1200 K with isotropic q-space sampling, yielding a structure
factor (Figure 7a) in good agreement with literature data.[42] To
illustrate the calculated intermediate scattering function, F(q, t),
and dynamical structure factor, S(q,𝜔), two slices are shown for
q = 5.05 nm−1 and q = 9.90 nm−1 in Figure 7b,c). The behavior

observed corresponds to a diffusion (gas-like) part and a vibra-
tional (solid-like) part[43] In the time domain this corresponds to
a decaying function and damped oscillator function, respectively,
whereas in the frequency domain it corresponds to a decaying
function that is nonzero at 𝜔 = 0 and a peak function, respec-
tively.

The full q − 𝜔 plane is visualized in Figure 8 for S(q,𝜔),
CL(q,𝜔) and CT (q,𝜔). Clear dispersion relations can be observed,
which are in agreement with both experimental measurements
and computer simulations.[42] We note that the longitudinal dis-
persion, which can be seen in both S(q,𝜔) and CL(q,𝜔), is more
distinct in the latter as it does not contain the diffusive (gas-like)
part. Since resolution deteriorates for very low q-values, due to
the finite size of the MD simulation, the x-axis has been cut at
q = 2.5 nm−1.

4.3. BCC Titanium

Having established the basic procedure for analyzing phonon dis-
persion and lifetimes for a rather harmonic system such as FCC-
Al, we can now turn to a material, for which perturbative anal-
yses fail altogether, namely the BCC phase of titanium. While
this phase is the most stable for temperatures between 1155 and
1943 K, the BCC structure is dynamically unstable at zero Kelvin,
leading to harmonic phonon modes with imaginary frequencies.
BCC-Ti therefore provides a particular interesting test case with
very pronounced anharmonicity and a strongly temperature de-
pendent phonon dispersion that has already been extensively in-
vestigated experimentally.[1] The modes for which these effects
are most pronounced are related to the BCC-hexagonal-closed
packed (HCP) (TA1 at N-point) and the BCC-𝜔 transition (LA
alongH-P direction).[1] Further, BCC-Ti exhibits spontaneous de-
fect formation and migration,[44] which complicates its analysis
with lattice dynamics approaches.

The atomic interactions were described using a modified
embedded-atom-method potential,[45] which accurately repro-
duces the different phases. MD simulations were carried out
using 12 × 12 × 12 conventional BCC unit cells. The system
was first equilibrated in isothermal-isobaric (NPT) ensemble
in order to obtain the correct lattice parameter after which
the correlation functions were sampled in the microcanonical
(NVE) ensemble.

Extraction of the phonon dispersion and lifetimes proceeded
in the same fashion as for the case of FCC-Al. As a result of the
strong anharmonicity the correlation functions exhibit, however,
much more asymmetric shapes that clearly deviate from simple
Lorentzian line shapes. The phonon dispersion at 1400 K (in the
middle of the stability range of the BCC phase) clearly shows this
strong damping, especially near the N-point and along the H-
P direction (Figure 9a). The comparison with the harmonic dis-
persion further demonstrates the strong renormalization of the
phonon modes by temperature, which not only leads to very pro-
nounced shifts in the frequencies but also affects the shape of the
dispersion, as is most apparent for the lower transverse acoustic
(TA) mode along the H-P direction.

Given the importance of the TA1 mode at the N-point for the
BCC-HCP transition,[1] we analyzed the temperature depen-
dence of the transverse current correlation function at this point
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in more detail (Figure 9b). The results agrees very well with
experimental work[1] both with respect to slope and absolute
magnitude (Figure 9c). This illustrates how the dynamics of
strongly anharmonic modes in the strongly and over-damped
limits can be readily extracted using dynasor. The analysis
also clarifies the distinction between 𝜔e and 𝜔0 that becomes
apparent for strongly damped modes.

4.4. Liquid Sodium Chloride

Lastly a liquid two-component system, molten sodium chloride
(NaCl), is studied in order to illustrate how the partial correlation
functions can be used. Some useful linear combinations of the
partial correlation functions are the charge and mass correlation,

defined as

Scharge(q,𝜔) =
∑
i

∑
j

QiQjSij(q,𝜔)
/∑

i

∑
j

|QiQj|

Smass(q,𝜔) =
∑
i

∑
j

mimjSij(q,𝜔)
/∑

i

∑
j

mimj

(22)

where i, j represent the atom types, mi and Qi are respectively
mass and charge of species i. These linear combination are pos-
sible not only for S(q,𝜔) but for all correlation functions in both
frequency and time domain. Commonly acoustic type modes are
revealed inmass-mass correlations whereas charge-charge corre-
lation can be used to investigate optical modes.

A Born–Mayer–Huggins style potential was used together
with a Coulombic term as implemented in the pair style
born/coul/long in lammps[23] with the parameters reported by
Lewis and Singer.[46] MD simulation were first carried out in the
NPT and then the NVE ensemble for systems comprising 4096
atoms at 1200 K.

The static charge and mass structure factor is shown in
Figure 10. The charge and mass current correlations computed
from (8) are visualized in the q − 𝜔 space in Figure 11. In the
charge correlation function a clear longitudinal and a weak trans-
verse optical mode are visible, while in themass correlation func-
tion the acoustic modes can be seen.

5. Conclusions

In this paper, we have presented the dynasor package, which is
designed to aid in the analysis of dynamical correlation functions
in particular in fully or partially crystalline systems, although it is
equally applicable to fully disordered systems. We have demon-
strated its usage via a few simple examples, including mono-
elemental solids and liquids as well as a two component liquid.
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Figure 11. a,c) Charge and b,d) mass longitudinal (top) and transverse (bottom) current correlations for liquid sodium chloride at 1200 K. q-points are
cut below 2.5 nm−1 due to the poor resolution beyond that point.
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For all these systems, current-correlation functions are shown to
be very effective for analyzing the dynamics and for extracting
properties such as phonon frequencies and lifetimes.

In the case FCC-Al, for which direct comparison with standard
lattice dynamical analysis techniques is possible, we demonstrate
excellent agreement at low temperatures for both frequencies
and lifetimes. At higher temperatures the deviation between MD
results and perturbative treatments increases. This is a reflection
of the limitations of the latter approach, which is typically termi-
nated after the third-order[15,47] or (rarely) the fourth-order expan-
sion term.[40,48–50] In contrast, MD simulations capture phonon
processes to all orders. Thereby they yield the variation of both
frequencies and lifetimes with temperature without the need to
resort to further approximations.

Further, we demonstrate the extraction of the temperature de-
pendence of phonon dispersion and lifetimes for a metastable
crystalline material (BCC-Ti), for which perturbative treatments
are not applicable. Here, the results show good agreement with
with inelastic neutron scattering experiments.[1]

The present approach of extraction dynamical correlation func-
tions from MD simulations via dynasor thus complements lat-
tice dynamics techniques[4,15,51] and is essential, for example,
when studying the vibrational properties of materials with large
unit cells, low symmetry and/or strong anharmonicity, such as
metastable crystals, systems with defects including surfaces and
interfaces as well as amorphous and liquid systems.
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