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Real-time time-dependent density functional theory (rt-TDDFT) is a well-established method for
studying the dynamic response of matter in the femtosecond or optical range. In this method,
the Kohn-Sham (KS) wave functions are propagated forward in time, and in principle, one can
extract any observable at any given time. Alternatively, by taking a Fourier transform, spectroscopic
quantities can be extracted. There are many publicly available codes implementing rt-TDDFT,
which differ in their numeric solution of the KS equations, their available exchange-correlation
functionals, and in their analysis capabilities. For users of rt-TDDFT, this is an inconvenient
situation because they may need to use a numerical method that is available in one code, but an
analysis method available in another. Here, we introduce rhodent, a modular Python package for
processing the output of rt-TDDFT calculations. Our package can be used to calculate hot-carrier
distributions, energies, induced densities, and dipole moments, and various decompositions thereof.
In its current version, rhodent handles calculation results from the gpaw code, but can readily be
extended to support other rt-TDDFT codes. Additionally, under the assumption of linear response,
rhodent can be used to calculate the response to a narrow-band laser, from the response to a
broad-band perturbation, greatly speeding up the analysis of frequency-dependent excitations. We
demonstrate the capabilities of rhodent via a set of examples, for systems consisting of Al and Ag
clusters and organic molecules.

I. INTRODUCTION

Real-time time-dependent density functional theory
(rt-TDDFT) is a well-established method for studying
the response of electronic systems [1, 2]. It has been used
for spectroscopy calculations [3–10], including circular
dichroism [11, 12], X-rays [13], non-linear spectroscopy
[14], and high-harmonic generation [15–17], as well as to
study electron [18–23] and spin dynamics [24] on fem-
tosecond timescales. In essence, one simply takes the
ground state calculated with Kohn-Sham (KS)-density
functional theory (DFT) [25, 26] and numerically propa-
gates the single-particle Schrödinger equation forward in
time, under the influence of something driving the sys-
tem out of the ground state, typically an external electric
field. There are various codes implementing rt-TDDFT,
including gpaw [27], octopus [28, 29], turbomole [30],
Siesta [31], and cp2k [32]. These codes differ in imple-
mentation details and numerical representations of the
KS wave functions.

There is, however, a need for modular libraries [33].
It may be desirable for some users to employ one code,
due to its numerical implementation details, while us-
ing the analysis capabilities of another. Without modu-
lar libraries, the only solution to this problem is for the
developer to either port the analysis capabilities or the
numerical implementation to the other code. Here, we
introduce rhodent – a Python package for processing
the response from rt-TDDFT calculations. In its current
version, calculation outputs from gpaw are supported,
but the modular design of rhodent prepares it for fu-
ture integration with other programs. rhodent is open
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source and comes with proper unit- and integration tests,
easing development, even for external contributors. An
extensive documentation is available online [34].

II. PROGRAM OVERVIEW

The rhodent package is written in Python and de-
signed in a modular and object-oriented fashion. The key
components are the Response and Calculator objects.
The Response class allows reading output files generated
in a previous rt-TDDFT calculation (outside rhodent),
and transforms the response into the appropriate form
for rhodent, either in the time or frequency domain.
There are several implemented Response classes, for use
with different rt-TDDFT output files. The Calculator
is responsible for computing the observables at various
times in the simulation, or the Fourier transform thereof.
Several Calculator classes are available.

The modular structure of rhodent opens up the pos-
sibility to, with relatively little effort, extend the func-
tionality of the code. In order to interface rhodent to
another rt-TDDFT code than gpaw, which is currently
supported, a new Response class needs to be added. Sim-
ilarly, in order to compute a new type of observable, one
in principle only needs to implement a new Calculator.

III. IMPLEMENTATION AND THEORY

The central quantity that rhodent works with is the
time-dependent KS density matrix in the basis of ground-
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state KS orbitals

ρnn′(t) =∑
k

fk

∫
ψ∗
n′(r, 0)ψk(r, t)dr

∫
ψ∗
k(r

′, t)ψn(r
′, 0)dr′,

(1)

where ψk(r, t) are the time-dependent KS wave functions
and fk their occupation numbers (including a spin degen-
eracy of 2). In particular, we are interested in the induced
density matrix δρnn′(t) = ρnn′(t) − ρnn′(0). This quan-
tity contains all information about the system response to
some time-dependent perturbation v̂(t), and is obtained
from an rt-TDDFT calculation (e.g., using gpaw). We
note here that, since rhodent currently is implemented
for non-periodic and spin-paired systems, the only quan-
tum number of the KS orbitals is n. We are restricted to
fixed-atom calculations, so the time-dependence comes
only from electronic degrees of freedom.

A. Obtaining the response

In rhodent, we can work with the response in the
time domain, which is obtained directly from the rt-
TDDFT calculation, or in the frequency domain. For
the latter, we define the normalized Fourier transform

δρnn′(ω)

v(ω)
=

∫∞
0
δρnn′(t)eiωtdt∫∞
0
v(t)eiωtdt

, (2)

where v(t) is the scalar amplitude of the perturbation,
and the lower bound on the integrals can be taken to be
zero, because the integrands are zero before this time.
This quantity is related to the Casida eigenvectors and
gives similar information as the solution of the Casida
equation [35].

1. In the frequency domain

In practice, the rt-TDDFT calculation results in sam-
ples of δρ(t) on a finite grid of N times tj = j∆t. We then
approximate δρnn′(ω) by the discrete Fourier transform

δρnn′(ω) ≈ ∆t
∑N−1

j=0 δρia(tj)e
iωtj . (3)

A common choice is to perform the rt-TDDFT calcula-
tion using a so-called δ-kick, where v(t) = Kδ(t) and the
Fourier transform v(ω) = K is exactly constant. For all
other kinds of perturbations, we approximate

v(ω) ≈ ∆t
∑N−1

j=0 v(tj)e
iωtj . (4)

The finite simulation length results in a convolution of
the true Fourier transform δρnn′(ω) by a sinc-shape, lead-
ing to a noisy spectrum. A common remedy is to arti-
ficially dampen the response function, forcing it to zero

before the end of the simulation. In rhodent, Gaus-
sian broadening is implemented, where the delta-kick re-
sponse is multiplied by a Gaussian envelope of width σ

δρnn′(ω;σ) ≈ ∆t
∑N−1

j=0 δρia(tj)e
−σ2t2j/2eiωtj . (5)

This is equivalent to convoluting the noisy δρia(ω) with
a Gaussian e−ω2/2σ2 in the frequency domain.

2. In the time domain through the convolution trick

The electron-hole part of the induced density matrix
ρia, where fi > fa is linear in the perturbation [36],
meaning that for sufficiently weak perturbations v̂ there
is a linear response regime where

δρia(t) =

∫ t

0

χ̂ia(t− t′)v̂(t′)dt′, (6)

or equivalently, in the frequency domain,

δρia(ω) = χ̂ia(ω)v̂(ω), (7)

where χ̂ia is a response function describing the response
of matrix element δρia to v̂. By convention, we use in-
dices i and a to denote occupied and unoccupied ground
state orbitals (equivalent to holes and electrons), respec-
tively. Using rhodent, we can exploit this linearity to
compute the response δρ′ia to perturbation v̂′ knowing
the response to δρia to perturbation v̂, without perform-
ing another rt-TDDFT calculation.

δρ′ia(ω) = χ̂(ω)v̂′(ω) (8)

= δρia(ω)
v′(ω)

v(ω)
. (9)

We are restricted to perturbations of the same spatial
shape, where the onset of v′(t) is not earlier in time
than v(t), and where the spectrum of v(ω) covers v′(ω)
entirely. The response in the time domain can be ob-
tained by carrying out an inverse Fourier transformation
of Eq. (9).

In practice, quantities are available on a finite grid
of N times tj = j∆t. We then take a discrete Fourier
transform of the induced density matrix and both per-
turbations on the grid of N time instances

δρ̂k,ia =
∑N−1

j=0 δρia(tj)e
iωktj (10)

v̂k =
∑N−1

j=0 δv(tj)e
iωktj (11)

v̂′k =
∑N−1

j=0 δv′(tj)e
iωktj . (12)

The chosen frequencies ωk = 2πk/(∆tN ′) correspond to
a grid of N ′ times (N ′ is at least 2N), which is equiva-
lent to padding the data with zeros after the end of the
simulation. This is necessary to prevent circular correla-
tion (see Sect. A). We obtain the induced density matrix
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to the new perturbation as the inverse discrete Fourier
transform of Eq. (9)

δρ′ia(tj) =
1

N ′

N−1∑
k=0

δρ̂k,ia · v̂′k
v̂k

e−iωktj . (13)

When constructing the density matrix from the time-
dependent wave functions file, it is important to write the
wave functions at every time step, if a δ-kick was used.
Otherwise, if the wave functions are written at a sparse
interval ∆t there will be aliasing in the Fourier spectrum
above the Nyquist frequency 1/2∆t.

This behavior can be alleviated by using different tem-
poral shapes. For example, a sinc-shaped pulse (Fig. 1)

v(t) = s0
sin(ωcut(t− t0))

ωcut(t− t0)
, t > 0 (14)

has the Fourier transform

v(ω) = s0
eiωt0

ωcut
rect

(
ω

2πωcut

)
, (15)

where the rectangular function rect(x) is equal to 1 for
0 < x < 1 and 0 otherwise. In principle, this pulse
does not induce any response above the cutoff frequency
and allows saving the time-dependent wave functions file
using a sparse interval.

However, in finite simulations, v(ω) is effectively con-
voluted with a sinc function leading to a smooth cutoff
as v(t) does not fit in the simulation window in its en-
tirety. Choosing t0, one should strike a balance between
fitting as much as possible of v(t) in the simulation win-
dow (leading to a sharper cut-off) and perturbing the
system with a sufficiently strong field early on in the
perturbation (leading to better numerical stability). In
particular, it is a judicious choice to let the offset be an
integer and a quarter offset of the time between oscilla-
tions t0 = (n+ 1/4)/(2πωcut) so that the pulse starts at
a local maximum.

3. Constructing the KS density matrix

Currently, rhodent provides an interface to the linear
combination of atomic orbitals (LCAO) implementation
of rt-TDDFT in gpaw [4, 27, 37]. In this implementa-
tion, the KS wave functions are represented as the linear
combination

ψn(r, t) =
∑
µ

Cnµ(t)Φµ(r), (16)

where Φµ(r) are atom-centered orbitals (typically a few
orbitals for each atom) and only the coefficients Cnµ are
time-dependent.
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FIG. 1. Sinc-shaped pulse with cutoff ℏωcut = 8 eV and offset
t0 = (5 + 1/4)/(2πωcut) in the time and frequency domain.
Choosing a multiple of an integer plus one quarter ensures
that the pulse is finite at the beginning of the simulation.

4. Time-dependent wave functions file

In gpaw, the time-dependent coefficients Cnµ can
be written to file periodically during time propagation.
From this file, we can construct the KS density matrix
in the LCAO basis

ρµν(t) =
∑
k

C∗
kν(t)fkCkν(t). (17)

Combining Eq. (1) and Eq. (17), we find the basis trans-
formation matrix Pnµ =

∑
ν Cnµ(0)Sνµ with the overlap

integral Sµν =
∫
Φ∗

ν(r)Φµ(r)dr. Then the induced den-
sity matrix in the basis of ground state KS orbitals is

δρnn′(t) =
∑
µν

P ∗
n′ν [ρµν(t)− ρµν(0)]Pnµ. (18)

5. Fourier transform of induced KS density matrix.

gpaw also supports building the Fourier transform
δρµν(ω) =

∫∞
0

[ρµν(t) − ρµν(0)]e
iωtdt on the fly during

time propagation on a grid of predefined frequencies [35].
Having saved this quantity to file, rhodent can read it
and transform the density matrix to the basis of ground
state KS orbitals as

ρnn′(ω) =
∑
µν

P ∗
n′νρµν(ω)Pnµ. (19)

6. Reading and writing numpy binary files

The construction of the density matrix from different
sources, and transformations between time and frequency
domain, are time and memory intensive. In particular,
memory usage can be limiting in parallel execution as,
for example, the transformation matrix Pnµ is duplicated
on every process. Therefore, rhodent allows writing
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the density matrix in the KS basis to a NumPy binary
file on disk after every transformation. The files can be
read in order to continue with another transformation
(for example, the pulse convolution outlined in the next
section), or simply to compute observables.

B. Calculating observables

In rhodent Calculators are used to evaluate observ-
ables, which can be computed using the full response
δρia, including:

• The density in the time domain, or the Fourier
transform thereof.

• The dipole moment in the time domain, or its
Fourier transform (the polarizability in the fre-
quency domain).

• Stored energy in the system in the time domain.

• Electron and hole occupations, i.e., hot carrier
(HC) distributions, in the time domain.

Additionally, a density of states calculator, which only
relies on ground state information, and a spectrum cal-
culator, which only needs a time-dependent dipole mo-
ment file, are implemented. For analysis purposes, the
observables can be decomposed either by the energies or
spatial confinement of occupied and unoccupied states i
and a. For the latter, we use the Voronoi cell of an atom,
which is the set of all points in space closer to that atom
than to any other, to define the Voronoi weights

wproj
nn′ =

∫
Voronoi cell

ψ∗
n′(r, 0)ψn(r, 0)dr. (20)

In the following, we use Hartree atomic units.

Density

The induced charge density is obtained from δρia as

δn(r) = −
∑
ia′

ψ∗
a(r, 0)ψi(r, 0)δρia. (21)

Because the electron-electron and hole-hole parts of the
KS density matrix (δρnn′ where fn = fn′) are quadratic
in perturbation, the electron-hole part dominates. Using
that ρia = ρ∗ai and that the KS orbitals are real, we can
then write

δn(r) = −2

fi>fa∑
ia

ψa(r, 0)ψi(r, 0)Re δρia. (22)

An energy filter can be supplied to rhodent to include
only a subset of transitions in the sum. For example, one

could want to include only transitions to electrons above
εlow in energy

δnfilter(r) = −2

fi>fa
εa>εlow∑

ia

ψa(r, 0)ψi(r, 0)Re δρia. (23)

Dipole moment

The induced dipole moment (dipole moment minus the
static part) is

δµ = −2

fi>fa∑
ia

µiaRe δρia, (24)

where

µia =

∫
ψ∗
a(r, 0)rψi(r, 0)dr. (25)

We can use rhodent to calculate the induced dipole
Eq. (24), the induced dipole projected on Voronoi weights
of occupied and unoccupied states for a projection on one
or several atoms

δµocc→unocc,ia = −2

fi>fa∑
ia

µiaRe δρiaw
proj,occ
ii wproj,unocc

aa ,

(26)

or the dipole or projected dipole as a transition contri-
bution map (TCM) [38]

−2

fi>fa∑
ia

µiaRe δρiaG(εocc − εi)G(εunocc − εa) (27)

−2

fi>fa∑
ia

µiaRe δρiaw
proj,occ
ii wproj,unocc

G(εocc − εi)G(εunocc − εa).

(28)

The TCM enables illustrative analyses of matrices in the
basis of ground state KS orbitals, by broadening them
onto energy axes using Gaussians

G(ε− εn) =
1√
2πσ2

exp

(
− (εi − ε)

2

2σ2

)
. (29)

For a perturbation corresponding to a spatially con-
stant electric field polarized in the x direction

v̂(t) = v(t)x, (30)

the normalized Fourier transform of the induced dipole
moment gives one column of the polarizability

αx(ω) =

∫∞
0
δµ(t)eiωtdt

v(ω)
. (31)
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In order to construct the full polarizability tensor, three
rt-TDDFT calculations with orthogonal polarization di-
rections along x, y, and z are needed

α(ω) =
[
αx(ω) αy(ω) αz(ω)

]
. (32)

The optical absorption spectrum, expressed as the os-
cillator strength function, is related to the polarizability
as

Sx(ω) =
2ω

π
Im αxx(ω). (33)

This quantity obeys the sum rule that its integral∫∞
0
S(ω)dω equals the number of electrons in the sys-

tem. The same kind of decomposition is available in the
frequency domain as in the time domain. For example,
we can construct the TCM [38] for the photoabsorption
cross section

−4ω

π

fi>fa∑
ia

µia

Im [Re δρia] (ω)

v(ω)
G(εocc − εi)G(εunocc − εa)

(34)

Stored energy

In KS DFT, the total energy Etot can be partitioned
into the kinetic energy T , the potential energy due to the
Hartree and exchange-correlation (XC) potential EHxc,
and the external energy. Using perturbation expansions
up to second order [36] we can write the decomposition
of the energy stored in the system

Etot(t) = Etot(0) + δT (t) + δEHxc(t) + Efield(t), (35)

where the first term is the total energy of the ground
state and the last term is the external energy due to the
electric field of the perturbation

Efield(t) = −δµ(t) · êv(t). (36)

Here, we assume that the electric field of the perturbation
is spatially constant and polarized in ê direction. The
change in kinetic and Hartree-exchange-correlation (Hxc)
energies can be decomposed into contributions from all
electron-hole transitions

δT (t) + δEHxc(t) =

fi>fa∑
ia

Eia (37)

δEHxc(t) =

fi>fa∑
ia

EHxc
ia , (38)

where

Eia =
1

2
[piaq̇ia − qiaṗia − viaqia] (39)

EHxc
ia = −1

2

[
ωiaq

2
ia − qiaṗia − viaqia

]
(40)

are calculated from the following quantities and their
time derivatives

pia =
2 Im δρia√

2fia
(41)

qia =
2 Re δρia√

2fia
(42)

fia = fa − fi (43)
via =

√
2fiaµia · êv(t). (44)

We can also calculate the rate of energy change using
higher derivatives

Ėia =
1

2
[piaq̈ia − qiap̈ia − viaq̇ia − v̇iaqia] . (45)

For energies, we can compute Voronoi projections anal-
ogously to Eq. (26), and perform energy filtering based
on the energy of pairs ia. For example, we can compute
the total and Hxc energy above a threshold εlow

δEtot(t) =

fi>fa
εa−εi>εlow∑

ia

Eia (46)

δEHxc(t) =

fi>fa
εa−εi>εlow∑

ia

EHxc
ia . (47)

Similarly, we can compute TCMs analogously to Eq. (27)
and Eq. (28).

Hot carriers

The equal-occupation-numbers part (fn = fn′) of the
induced density matrix is quadratic in the perturbation
[36], and can be obtained from the electron-hole part

δρnn′(t) = δρelectrons
nn′ (t)− δρholes

nn′ (t), (48)
where

δρholes
ii′ =

1

2

fi>fa∑
a

pi′apia + qiaqi′a (49)

δρelectrons
aa′ =

1

2

fi>fa∑
i

piapia′ + qiaqia′ . (50)

The purely electron-electron (δρaa′ , fa = fa′ = 2) and
hole-hole parts (δρii′ , fi = fi′ = 0) of the KS density
matrix are equal to δρelectrons

aa′ and δρholes
aa′ , respectively,

but for the partially occupied states 0 < fn = fn′ < 2
both terms in Eq. (48) are non-zero.

Hot-carrier distributions are calculated by convolution
of δρii′ (holes) and δρaa′ (electrons) with Gaussian broad-
ening functions on the energy grid.

P holes(ε) =
∑
i

δρiiG(ε− εi) (51)

P electrons(ε) =
∑
a

δρaaG(ε− εa). (52)
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We can also project hot-carrier distributions according
to the Voronoi weights

P proj,holes(ε) =
∑
ii′

δρii′w
proj
ii′ G(ε− εi) (53)

P proj,electrons(ε) =
∑
aa′

δρaa′wproj
aa′ G(ε− εa). (54)

Optical spectrum and densities of state

Optical response calculations are a routine task in rt-
TDDFT since the calculations by Yabana and Bertsch
[3]. For spectroscopic applications, the dipolar response
of the matter system due to a dipolar external field is of
interest, as it is the only non-vanishing contribution in
the far field.

d(ω) = α(ω)Eext(ω), (55)
or, equivalently, in the time domain

d(t) =

∫ t

0

α(t− t′)Eext(t
′)dt′. (56)

Finally, we can compute the total density of states
(DOS) ∑

k

G(ε− εk) (57)

and the projected density of states (PDOS) as∑
k

G(ε− εk)w
proj
kk , (58)

where wproj
kk are the Voronoi weights given by Eq. (20).

IV. EXAMPLES

In this section, we study three plasmonic systems to
demonstrate the capabilities of rhodent. The calcula-
tion workflow is as follows: For each system, we first com-
pute the electronic ground state within DFT using LCAO
basis sets in gpaw. Then we perform an rt-TDDFT cal-
culation using gpaw, propagating the ground state in
time under an external perturbation. We simulate the
dynamics for 30 fs, which is enough to resolve the forma-
tion and subsequent dephasing of the localized surface
plasmon resonance (LSPR). A propagation time step of
10 as yields converged results. We apply a sufficiently
weak perturbation to only probe the linear-response do-
main. By choosing a sinc-shaped (Eq. (14)) perturbation
in the time domain, we avoid exciting high frequency
components of the response, which allows us to write
a wave function trajectory to file at a relatively sparse
interval, without risking aliasing. This file is read by
rhodent to calculate the response. Further information
concerning the DFT and rt-TDDFT calculations can be
found in Sect. VI.
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FIG. 2. (a) Absorption spectrum of the Al NP. (b) Transition
contribution map (TCM) for the absorption of the Al NP at
the frequency ℏω = 7.6 eV (indicated in panel (a)). Energies
are given with respect to the Fermi level. The diagonal line is
drawn over resonant electron-hole transitions, i.e., those with
an energy difference equal to ℏω. There are no significant
contributions to photoabsorption from resonant transitions.
Instead, the main contributions are from transitions near the
Fermi level.

A. Aluminum nanoparticle

As an initial example, we consider a plasmonic 201-
atom Al nanoparticle (NP), with a diameter of 1.6 nm.
An in-depth analysis of this system can be found in
Ref. [10]. We perform one rt-TDDFT calculation, us-
ing a sinc-pulse with a cutoff of 16 eV, and write the
wave function trajectory to disk at an interval of 100 as
(Nyquist frequency of 20.7 eV). Due to the symmetry
of the NP, its response is isotropic, and one polarization
direction is enough to probe the entire response.

Analysis in the frequency domain

Using the dipole moment file from the rt-TDDFT cal-
culation, and Eq. (33), we construct a photoabsorption
spectrum (Fig. 2a) for the system. The main feature in
the spectrum is a peak at 7.6 eV. We attribute the peak
to the LSPR, which is a collective electronic excitation
[39, 40]. We can gain insight about the microscopic origin
of this feature by constructing the TCM to the absorp-
tion, according to Eq. (34). This calculation requires the
full response of the system, i.e., the wave function trajec-
tory. Visualizing the contributions as a TCM (Fig. 2b),
we see that many individual electron-hole pairs near the
Fermi level collectively contribute to the absorption. We
also compute the DOS, using Eq. (57), and plot it to-
gether with the TCM. Despite the energy difference be-
tween most involved electron and hole states being less
than 3 to 4 eV or so, they are excited at 7.6 eV, thanks to
their collective coupling through Coulomb interactions.
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FIG. 3. Time-evolution of energy stored in the Al NP excited
by a laser pulse resonant to the LSPR. The total energy is
decomposed into Hxc contributions and kinetic contributions.
An alternative decomposition is into energy of resonant and
non-resonant transitions. The potential energy due to the
external electric field (not included in the total), the pulse,
and the induced dipole moment are also plotted in the figure.

Analysis in the time domain

Now we consider the response of the Al NP to a Gaus-
sian laser pulse. We consider a spatially constant electric
field

Epulse(t) = E0 cos(ω0(t− t0)) exp(−(t− t0)
2/τ2), (59)

choosing the strength |E0| = 51µV/Å, an envelope cen-
tered at t0 = 10 fs, and τ = 2.19 fs, giving a full width
at half-maximum (FWHM) of about 5.2 fs in the time
domain and 0.7 eV in the frequency domain. Thanks
to the pulse convolution functionality in rhodent (see
Sect. III A 2), we do not need to perform any new rt-
TDDFT calculations, which is the most expensive part
of the simulation workflow. By appropriately setting up
the Response object, the pulse convolution is performed
before calculating observables.

We excite the system at the LSPR (ℏω0 = 7.6 eV), and
evaluate the time-dependence of the energy stored in the
system (Fig. 3). As the pulse is turned on, the system re-
sponds with a dipole moment µ that lags roughly π/2 in
phase after the electric field, corresponding to resonant
response (absorption), and peaks in amplitude a few os-
cillations after the maximum of the pulse. Therefore, the
energy contribution associated with the pulse (Eq. (36))
oscillates around zero at twice the pulse frequency.

The total energy increases during the entire duration
of the pulse until it reaches a steady value. Having ac-
cess to the full response, we can partition the total energy

into kinetic and Hxc contributions, δT (t) and δEHxc(t),
see Eq. (37) and Eq. (38). We can see how energy is peri-
odically redistributed between the former and the latter,
at a frequency matching the pulse. Increasingly more en-
ergy is stored in kinetic contributions, while the amount
of Hxc energy periodically reaches zero. The Hxc contri-
butions persist for a few fs after the disappearance of the
pulse, so we interpret this as the lifetime of the LSPR.
Alternatively, we can partition the total energy into res-
onant and non-resonant contributions, by the distinction
that the eigenvalue difference of resonant electron-hole
pairs should be |ℏωia − ℏω0| < 1.4 eV. This tells us
that the number of non-resonant transitions rises and
falls smoothly, with only small oscillations, during the
lifetime of the LSPR.

For even deeper insight into the data, we can con-
struct TCMs for the energy contributions at selected
times (Fig. 4). At the time instance marked (1) in Fig. 4a,
when the Hxc contributions are at a maximum, we see
both resonant and non-resonant transitions in the total
energy (Fig. 4b), and only non-resonant transitions in
the Hxc contribution (Fig. 4c). After one pulse cycle, at
time instance (2), there are no Hxc contributions, but
the same non-resonant transitions persist in the total en-
ergy (Fig. 4d). We should note here that these are the
same transitions that are visible in the absorption TCM
(Fig. 2b). It is now clear that these transitions make
up the LSPR, and that they oscillate between kinetic
and potential energy during its lifetime. After the decay
of the pulse, the plasmon dephases into resonant tran-
sitions, known as HCs. At time instance (3) only such
transitions remain (Fig. 4e).

B. Aluminum nanoparticle with benzene molecules

The next example system is another structure from
Ref. [10], made up of an Al NP identical to the previous
structure, and two benzene molecules. The molecules
are placed on opposite sides at a distance of 3Å from the
faces of the NP. The molecules are oriented such that the
line through the molecules and the NP is parallel with
the transition dipoles of the lowest bright excitations of
the molecules. The system is no longer isotropic, so we
constrain our analysis to excitation polarized along this
axis. We perform a new rt-TDDFT calculation, with the
same parameters as for the bare Al NP.

Analysis in the frequency domain

We calculate the photoabsorption spectrum (Fig. 5a),
and find two peaks. One peak at 7.6 eV is very simi-
lar to the LSPR peak of the bare Al NP, but the other
at 6.9 eV is both much larger in prominence and red-
shifted by about 0.2 eV compared to the peak of the
bare molecules. This is a characteristic of strong cou-
pling, where the underlying excitations (LSPR of the NP
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is written out as a fraction of the sum of all transitions at the
same frequency.

and the molecular excitation) exchange energy with each
other at a faster or comparable rate to the lifetime of the
excitations [41]. The two resonances are known as the
LP and UP.

We decompose the absorption TCMs into NP-like and
molecular transitions, using the Voronoi decomposition
Eq. (26). In particular, we attribute transitions from oc-
cupied NP-states into any unoccupied state as the former,
and transitions from occupied molecular states to any un-
occupied state as the latter, because unoccupied states
tend to be more of mixed character compared to occupied
states. In Fig. 5b–e, we plot the projected TCMs together
with the DOS (Eq. (57)) on the unoccupied energy axes,
and the PDOS (Eq. (58)) for the NP/molecule on the oc-
cupied energy axes. At the UP frequency ℏω0 = 7.6 eV,
we find that the NP decomposition of the TCM (Fig. 5b)
consists of the same excitations near the Fermi level that

we attributed to the LSPR in the bare Al NP. Mean-
while, the molecular decomposition of the TCM (Fig. 5c)
consists of a single excitation from the benzene highest
occupied molecular orbital (HOMO) to the lowest unoc-
cupied molecular orbital (LUMO). The molecular tran-
sition is contributing destructively to the absorption at
the frequency of the UP, meaning that the molecular
dipole is directed opposite to the NP dipole. At the LP
frequency ℏω0 = 6.9 eV, the TCM also consists of plas-
monic transitions in the NP decomposition (Fig. 5d) and
the single molecular excitation in the molecular decom-
position (Fig. 5e). The difference is that for the LP, the
LSPR and molecular excitation couple constructively. A
configuration where the dipoles are parallel intuitively
leads to a lower energy. The LP has significant molec-
ular character, as 14.3% of the absorption comes from
the molecular transition, while the UP is almost entirely
LSPR-like (the destructive contribution of the molecule
is only 2.0%).

Analysis in the time domain

Now we consider the time evolution of the dipole mo-
ment and energies after excitation by a Gaussian laser
pulse. We excite the system with a pulse covering both
peaks, with parameters ℏω0 = 7.25 eV, t0 = 5 fs, and
τ = 1.10 fs (giving a FWHM of about 2.6 fs in the time
domain and 1.4 eV in the frequency domain). We de-
compose the energies and dipoles in the same way as for
the earlier frequency domain analysis, and find that a
strong oscillating dipole first forms in the NP, then in
the molecules, and then in the NP again (Fig. 6). These
are Rabi oscillations, with 2-3 fs in between the maxima.
Oscillations in the Hxc energy are visible in the NP and
molecules during the same times as oscillations in the
dipole. After 20 fs of simulation time, only kinetic en-
ergy remains (in the form of HCs), with a 92.3/7.7%
division between the NP and molecules.
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C. Silver nanoparticle with CO molecule

As a final example, we consider a metal with valence
d-electrons. We set up a 201-atom Ag NP (nearly the
same diameter and shape as the Al NP), and place a
CO molecule at a distance of 3Å from the (111) on-top
site. Detailed analysis of this system can be found in
Ref. [23] We perform yet another rt-TDDFT calculation,
with a polarization direction along the bond axis of the
molecule. As for the Al systems, we use a time step of
10 as and a total simulation length of 30 fs. Because the
relevant resonances are lower for this system compared to
the Al NP, we use a sinc-pulse with a cutoff of 8 eV. This
allows us to write the wave function trajectory to disk at
an interval of 200 as (Nyquist frequency of 10.3 eV).

Analysis in the frequency domain

We calculate the photoabsorption spectrum (Fig. 7a)
and identify the LSPR peak at 3.8 eV. Unlike the Al–
benzene system we studied previously, the first excita-
tion of the CO molecule is far from the LSPR and its
presence has a negligible effect on the absorption spec-
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FIG. 7. (a) Absorption spectrum of the Ag NP and CO
molecule. For this system, the molecule does not contribute
to the absorption significantly. (b) Transition contribution
map (TCM) for the absorption of the same system.

trum. We construct a TCM for the absorption spectrum
(Fig. 7b) and see many excitations near the Fermi level
constructively coupling at the LSPR frequency. A new
feature, not found in the Al systems, are the destructive
contributions involving transitions from the d-band edge
(about 4 eV below the Fermi level) to unoccupied lev-
els. These transitions are excited at the same time as the
LSPR, with their dipoles opposite. Thus they screen the
plasmon, contributing to a much lower resonance energy
(3.8 eV) compared to the Al NP (7.6 eV).

Analysis in the time domain

Once again, we calculate the response to a Gaussian
laser pulse. We choose the parameters ℏω0 = 3.8 eV,
t0 = 10 fs, and τ = 2.19 fs (FWHM 7.3 fs in the time
domain and 0.7 eV in the frequency domain) in order to
cover the LSPR peak. For this system, we focus on the
time after the dephasing of the plasmon. We compute
the average of the hot hole (HH) and hot electron (HE)
distributions (Fig. 8a) during the last 5 fs of the simu-
lation, using Eq. (51) and Eq. (52). We see that HCs
are created in the NP, with energies spanning from 0
to the pulse frequency (or negative pulse frequency, for
holes). As we saw in the energy TCM for the Al-system
(Fig. 4e), HCs present after the dephasing of the plas-
mon are found on the diagonal εa − εi = ℏω0, where εa
and εi are the energies of the electron and hole respec-
tively. We also see this in that the HE distribution looks
like the HH distribution, shifted upwards in energy by
the pulse energy, except for some minor shifts due to the
finite width of the pulse. At the Fermi level, there are
both excited electrons and holes, due to the presence of
partially occupied states in the ground state calculation.

For the Ag NP + CO molecule system, the molecular
levels are hybridized with the metal states. The LUMO
is split into several levels, around 1 to 2 eV above the
Fermi level (Fig. 8b; top axes), while the HOMO is too
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far below the Fermi level to allow for excitations at the
present pulse energy. Therefore, we can expect some
HEs to form in the molecule but not any HHs. Indeed,
computing the HC distribution projected on the molecule
(Eq. (53) and Eq. (54)) confirms that electrons are ex-
cited in the molecule in all branches of the hybridized
LUMO (Fig. 8b). Interestingly, there is a delicate in-
terplay between the coupling of each possible HC to the
LSPR and the energetic alignment to the pulse that de-
termines in which hybridized level most electrons are ex-
cited. This has been exploited in [23] to increase the
amount of charge transfer.

Using rhodent, we can, without much additional ef-
fort, compute the HC distributions for many different
pulses at once. In Fig. 8c, we plot the total number of
excited electrons in the system, as well as the number
of excited electrons in the molecule, by pulse frequency.
The total number of electrons is related to the amount
of energy absorbed, which can be deduced from the ab-
sorption spectrum pulse frequency roughly like the ab-
sorption spectrum, as all the energy absorbed turns into
HCs. For the number of electrons in the molecule, there
are, however, several local maxima.

V. CONCLUSIONS AND OUTLOOK

rhodent is a Python package for post-processing the
response of rt-TDDFT calculations. It can be used to
obtain, e.g., induced dipole moments and densities, the
stored energy and HC distributions, as well as spatial and

energetic projections thereof. Induced dipole moments
and densities can also be computed in the frequency do-
main (the former being related to optical spectra). Ad-
ditionally, since rt-TDDFT probes the linear response
function when the external perturbation is sufficiently
weak, rhodent can quickly compute the response to
any time-dependent perturbation in the linear response
regime, from just one rt-TDDFT calculation. In the lin-
ear response regime, we can also exploit the structure of
the density matrix to compute energies and HC distribu-
tions in the system.

Currently, rhodent supports reading output files from
calculations done using gpaw. However, thanks to the
modular structure of the rhodent code, with a clear
separation between the construction of response and the
computation of observables, support for other rt-TDDFT
softwares can be readily added. On a similar note, only
calculations done in the LCAO basis are currently sup-
ported. For LCAO calculations, we can transform the KS
density matrix to the basis of ground state KS orbitals
without any loss of information, and still have a quan-
tity of tractable size. For, e.g., uniform grid or plane-
wave based calculations, the number of basis functions is
much larger, and the basis of KS orbitals would have to
be truncated.

VI. COMPUTATIONAL DETAILS

The open-source gpaw [27] code package was used for
the DFT and rt-TDDFT calculations. The calculations
were done in the projector augmented wave (PAW) [42]
formalism using LCAO basis sets [37]; the pvalence [4]
basis set, which is optimized to represent bound unoccu-
pied states, was used for the Ag species, and the double-
zeta polarized (dzp) basis set for all other species. The
PBE [43, 44] (for the Al and Al + benzene calculations)
and Gritsenko-van Leeuwen-van Lenthe-Baerends-solid-
correlation (GLLB-sc) [45, 46] (for the Ag + CO calcu-
lations) XC-functionals, utilizing the Libxc [47] library,
were used in gpaw. For the Al and Al + benzene calcu-
lations, a simulation cell of 28.8Å × 28.8Å × 43.2Å was
used. For the Ag + CO calculations, a simulation cell
of 32.0Å × 32.0Å × 35.2Å was used. In the simulation
cell, wave functions were represented with a grid spac-
ing of 0.2Å, and XC and Coulomb potentials with a grid
spacing of 0.1Å. Additional analytic moment corrections
[48] centered at the NP were added to the Coulomb po-
tential. Fermi-Dirac occupation number smearing with
width 0.05 eV was used. The self-consistent loop was
stopped when the integral of the difference between two
subsequent densities was less than 1× 10−12. Pulay [49]-
mixing was used to accelerate the ground state conver-
gence.
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Appendix A: The convolution trick in finite
simulations

In the linear response regime, we have that (dropping
indices ia from the notation in the main text)

δρ(t) =

∫ t

0

χ(t′)v(t− t′)dt′, (A1)

where we assume that the perturbation v(t) is zero before
time zero, and the response is causal χ(t) = 0 for t < 0.
We can then work in the frequency domain

δρ(ω) = χ(ω)v(ω), (A2)

where the Fourier transform is defined

δρ(ω) =

∫ ∞

−∞
δρ(t)eiωtdt, (A3)

and likewise for χ(ω) and v(ω). As the Fourier transform
is defined as an integration with infinite limits, and our
simulations are finite, we need to reformulate the above
relations in terms of finite integrations. Here, we derive a
frequency domain formula for quantities sampled in the
time window 0 < t < T .

First, we define the zero-padded quantity

v(0)(t) =

{
v(t) , 0 < t < T

0 , T < t < T ′ , (A4)

which we take to be periodic with the period T ′. Next,
the crucial assumption is that T ′ is at least twice the
length of T . Then, for 0 < t < T , we can swap the per-
turbation by the zero-padded perturbation, and extend
the limits of the convolution Eq. (A1)

δρ(t) =

∫ T

0

χ(t′)v(0)(t− t′)dt′. (A5)

This holds because the added integral is zero∫ T

t

χ(t′) v(0)(t− t′)︸ ︷︷ ︸
=0

dt′ = 0. (A6)

We can now expand the zero-padded perturbation in
a Fourier series of periodicity T ′

v(0)(t) =
1

T ′

∞∑
k=−∞

v̂
(0)
k e−iωkt, (A7)

where ωk = 2πk/T ′ and the Fourier coefficients

v̂
(0)
k =

∫ T ′

0

v(0)(t)eiωktdt =

∫ T

0

v(t)eiωktdt (A8)

only require integration over the true perturbation in the
window 0 < t < T . Inserting the expansion of v(0) into
Eq. (A5), we get

δρ(t) =
1

T ′

∞∑
k=−∞

v̂
(0)
k e−iωkt

∫ T

0

χ(t′)eiωkt
′
dt′ (A9)

=
1

T ′

∞∑
k=−∞

χ̂
(0)
k v̂

(0)
k e−iωkt, (A10)

where we have defined the Fourier coefficients of the zero-
padded response function

χ̂
(0)
k =

∫ T

0

χ(t)eiωktdt. (A11)

We identify Eq. (A10) as a Fourier series for δρ(t), valid in
the simulation time window 0 < t < T , with the Fourier
coefficients

δρ̂k = χ̂
(0)
k v̂

(0)
k . (A12)

These coefficients are not, in general, equal to the coeffi-
cients of the zero-padded induced density matrix

δρ̂
(0)
k =

∫ T

0

δρ(t)eiωktdt, (A13)

but the Fourier series using δρ̂k and δρ̂(0)k are equal inside
the simulation window. The Fourier series Eq. (A10) is
not, in general, zero outside the simulation time window
0 < t < T .

Now, we consider a different pulse v′(t) leading to a
different response (new quantities denoted by primes)

δρ′(t) =

∫ t

0

χ(t′)v′(t− t′)dt′, (A14)

with Fourier coefficients defined

v̂
′(0)
k =

∫ T

0

v′(t)eiωktdt, (A15)

https://doi.org/10.5281/zenodo.16746428
https://doi.org/10.5281/zenodo.16746428
https://doi.org/10.5281/zenodo.13332634
https://doi.org/10.5281/zenodo.13332634
https://rhodent.materialsmodeling.org
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and, as before, the Fourier coefficients δρ̂′k = χ̂
(0)
k v̂

′(0)
k

reproduce δρ′(t) in the simulation time window 0 < t <
T .

Now we require that the Fourier coefficients of the new
pulse are non-zero for every non-zero coefficient of the old
pulse, so that we can write

v
′(0)
k = K

(0)
k v

(0)
k , (A16)

which is equivalent (according to the circular correlation
theorem) to the pulses being related by the convolution

v′(0)(t) =

∫ T ′

0

K(0)(t′)v(0)(t− t′)dt′, (A17)

where K(0)(t) is some zero-padded function and K(0)
k its

Fourier coefficients. This means that the onset of the
new pulse must be no later in time than the onset of the
old pulse and introduce no new frequencies.

Then the Fourier series of the new response can be
written

δρ̂′k = χ̂
(0)
k K

(0)
k v̂

(0)
k = K

(0)
k δρ̂k, (A18)

which is also equivalent to a convolution with K(0). Be-
cause we are only interested in the response δρ′(t) during
the simulation time 0 < t < T , and K(0) is zero-padded,

we can thus swap δρ̂k for δρ̂(0)k and calculate the new
response as the Fourier series

δρ′(t) =
1

T ′

∞∑
k=−∞

δρ̂
(0)
k

v̂
′(0)
k

v̂
(0)
k

e−iωkt. (A19)

We have used that Kk = v̂
′(0)
k /v̂

(0)
k for every non-zero

value of v̂′(0)k .
In practice, we have sampled δρ(t) and v(t) on a grid

of N times tj = j∆t with time step ∆t = T/N ′. Then
the Fourier coefficients are approximated as

δρ̂k = ∆t

N−1∑
j=0

δρ(tj)e
iωktj

 (A20)

and

δρ(0)(tj) =
1

∆t

 1

N ′

N ′−1∑
k=0

δρ̂ke
−iωktj

 , (A21)

where the terms inside the brackets are the discrete
Fourier transform and inverse discrete Fourier transform
respectively, and N ′ ≥ 2N . The approximation is good
if the perturbation does not have any response above the
Nyquist frequency ω = 2π/(2∆t); otherwise, aliasing ef-
fects are seen.
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