
The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

GPUMD: A package for constructing accurate
machine-learned potentials and performing
highly efficient atomistic simulations

Cite as: J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617
Submitted: 29 June 2022 • Accepted: 24 August 2022 •
Published Online: 20 September 2022

Zheyong Fan,1,a) Yanzhou Wang,2 ,3 Penghua Ying,4 Keke Song,3 Junjie Wang,5 Yong Wang,5

Zezhu Zeng,6 Ke Xu,7 Eric Lindgren,8 J. Magnus Rahm,8 Alexander J. Gabourie,9 Jiahui Liu,3

Haikuan Dong,1 ,3 Jianyang Wu,7 Yue Chen,6 Zheng Zhong,4 Jian Sun,5,b) Paul Erhart,8,c)

Yanjing Su,3,d) and Tapio Ala-Nissila2 ,10

AFFILIATIONS
1College of Physical Science and Technology, Bohai University, Jinzhou 121013, People’s Republic of China
2MSP Group, QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto,
Espoo, Finland

3Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing,
Beijing 100083, China

4School of Science, Harbin Institute of Technology, Shenzhen 518055, People’s Republic of China
5National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced
Microstructures, Nanjing University, Nanjing 210093, China

6Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
7Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and

Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005,
People’s Republic of China

8Chalmers University of Technology, Department of Physics, 41926 Gothenburg, Sweden
9Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA

10Interdisciplinary Centre for Mathematical Modelling, Department of Mathematical Sciences, Loughborough University,
Loughborough, Leicestershire LE11 3TU, United Kingdom

Note: This paper is part of the JCP Special Topic on Software for Atomistic Machine Learning.
a)Author to whom correspondence should be addressed: brucenju@gmail.com
b)Electronic mail: jiansun@nju.edu.cn
c)Electronic mail: erhart@chalmers.se
d)Electronic mail: yjsu@ustb.edu.cn

ABSTRACT
We present our latest advancements of machine-learned potentials (MLPs) based on the neuroevolution potential (NEP) framework intro-
duced in Fan et al. [Phys. Rev. B 104, 104309 (2021)] and their implementation in the open-source package GPUMD. We increase the accuracy
of NEP models both by improving the radial functions in the atomic-environment descriptor using a linear combination of Chebyshev
basis functions and by extending the angular descriptor with some four-body and five-body contributions as in the atomic cluster expan-
sion approach. We also detail our efficient implementation of the NEP approach in graphics processing units as well as our workflow for
the construction of NEP models and demonstrate their application in large-scale atomistic simulations. By comparing to state-of-the-art
MLPs, we show that the NEP approach not only achieves above-average accuracy but also is far more computationally efficient. These results
demonstrate that the GPUMD package is a promising tool for solving challenging problems requiring highly accurate, large-scale atomistic
simulations. To enable the construction of MLPs using a minimal training set, we propose an active-learning scheme based on the latent

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-1

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0106617
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0106617
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0106617&domain=pdf&date_stamp=2022-September-20
https://doi.org/10.1063/5.0106617
https://orcid.org/0000-0002-2253-8210
https://orcid.org/0000-0002-5758-2369
https://orcid.org/0000-0003-1411-3324
https://orcid.org/0000-0001-5126-4928
https://orcid.org/0000-0001-5254-5297
https://orcid.org/0000-0002-8549-6839
https://orcid.org/0000-0001-8057-4546
https://orcid.org/0000-0001-9870-0467
https://orcid.org/0000-0001-5811-6936
https://orcid.org/0000-0001-5293-7098
https://orcid.org/0000-0001-6172-9100
https://orcid.org/0000-0002-2516-6061
https://orcid.org/0000-0002-3210-3181
mailto:brucenju@gmail.com
mailto:jiansun@nju.edu.cn
mailto:erhart@chalmers.se
mailto:yjsu@ustb.edu.cn

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

space of a pre-trained NEP model. Finally, we introduce three separate Python packages, viz., GPYUMD, CALORINE, and PYNEP, that enable
the integration of GPUMD into Python workflows.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0106617

I. INTRODUCTION
Machine-learned classical potentials1–7 have shown great

promise in enabling accurate atomistic simulations far beyond
the space and time scales that can be achieved using quantum-
mechanical calculations. Many open-source computer packages for
machine-learned potentials (MLPs) have been published, including
QUIP-GAP,8–10 SNAP,11 AMP,12 AENET,13,14 ANI,15 SCHNET,16

DEEPMD-KIT,17–19 TENSORMOL,20 PHYSNET,21 MEGNET,22

TURBOGAP,23 SGDML,24 N2P2,25 SIMPLE-NN,26 PANNA,27 FCHL,28

PINN,29 MLIP,30,31 REANN,32 TABGAP,33 PYXTAL-FF,34 PYTHON-
ACE,35,36 and KLIFF.37 However, most existing implementations of
MLPs (TABGAP33 is a notable exception) have a computational
speed of about 1 × 103 atom step/s using one typical central
processing unit (CPU) core, which is about two to three orders
of magnitude slower than typical empirical potentials such as the
Tersoff potential.38 Therefore, even though MLPs are already faster
than quantum-mechanical methods, it is still desirable to speed up
MLPs as much as possible.

One approach to speed up MLPs is to use a huge number of
CPUs and/or graphics processing units (GPUs) through message-
passing information parallelization. For example, using 27 360 V100
GPUs and the same number of CPU cores, the deep potential
(DP) approach17–19 has been used to simulate a 127-million-atom
aluminum system with a speed of about 1.23 × 109 atom step/s.39

However, such huge amounts of computational resources are not
available to most researchers. More importantly, the performance
of DP per V100 GPU is only about 4.5 × 104 atom step/s, which is
about ten times slower than an empirical embedded atom method
(EAM) potential40 with a single typical CPU core.

A more economical approach is to optimize the formulation
and implementation of the MLP itself so that it can attain a high
computational speed using a reasonable amount of computational
resources available to most researchers. To this end, we have devel-
oped a MLP called neuroevolution potential (NEP)41,42 within the
GPUMD package43,44 that can achieve a computational speed of about
1 × 107 atom step/s using a single V100 GPU, which is about ten
times faster than the empirical Tersoff potential on a single typical
CPU core.

In this paper, we present recent developments of the NEP
approach that further improve its accuracy without reducing the
efficiency. Specifically, we improve the radial functions in the
atomic-environment descriptor by using a combination of basis
functions, and add angular descriptor components with high-
order correlations. The improved radial functions are better at
distinguishing different atom types and lead to higher accuracy in
multicomponent systems. The added angular descriptor compo-
nents with high-order correlations make the atomic-environment
descriptor more complete and help to increase the regression
accuracy.

Using a number of systems, including MgAlCu alloy, silicon
with various phases, the azobenzene molecule, and carbon with

various phases, we demonstrate the accuracy and efficiency of
the latest NEP as implemented in the GPUMD package. We
compare with other state-of-the-art MLPs, including DP,17–19

Gaussian approximation potential (GAP),8 moment tensor
potential (MTP),30,31 recursive embedded-atom neural network
(REANN),32,45 and atomic cluster expansion (ACE).46–48 Through
these comprehensive comparisons, we show that the NEP imple-
mentation in GPUMD can achieve a computational speed that is
far superior to other MLPs, under the condition of achieving an
above-average accuracy. We present the algorithms for the efficient
GPU implementation of NEP in great detail. Using a single GPU,
such as an A100, one can use GPUMD to simulate up to 10 × 106

atoms on nanosecond time scales, which can only be achieved
by using a huge amount of computational resources with other
publicly available codes. The GPUMD package makes large-scale,
high-accuracy atomistic simulations available to a wide community
instead of only a small number of institutions. In addition to these
high-efficiency atomistic simulations, we also propose an effective
active-learning scheme based on the latent space of the NEP model
that can greatly reduce the computational burden of preparing
training data.

Finally, we introduce the workflow for constructing and using
NEPs through concrete examples in atomistic simulations of various
materials properties, including lattice constant, elastic constants,
stress–strain relation during tensile loading, structural properties
during a melt–quench–anneal process, diffusion coefficient, and
thermal properties of amorphous structures. We also describe inter-
facing GPUMD to Python via the GPYUMD, CALORINE, and PYNEP
packages.

II. THEORETICAL FORMULATIONS
OF THE NEP APPROACH

The first NEP, called NEP1, was proposed in Ref. 41. An
improved version, called NEP2, is presented in Ref. 42. In the present
paper, we further refine the NEP approach and introduce NEP3. In
this section, we present NEP3 and discuss the differences to NEP1
and NEP2.

A. The neural network model
Following Behler and Parrinello,49 the site energy of atom i is

taken as a function of the descriptor vector with Ndes components,
Ui(q) = Ui({qi

ν}
Ndes
ν=1). We use a feedforward neural network with a

single hidden layer with Nneu neurons to model this function,

Ui =
Nneu

∑
μ=1

w(1)μ tanh(
Ndes

∑
ν=1

w(0)μν qi
ν − b(0)μ) − b(1), (1)

where tanh(x) is the activation function in the hidden layer, w(0)

is the connection weight matrix from the input layer (descriptor

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0106617

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

vector) to the hidden layer, w(1) is the connection weight vector
from the hidden layer to the output node, which is the energy U i,
b(0) is the bias vector in the hidden layer, and b(1) is the bias for
node U i. The total number of parameters in the neural network
is thus (Ndes + 2)Nneu + 1. The descriptor vector is formed by
juxtaposition of a number of components, including those with
radial (distance) information only, which are called radial descriptor
components, and those with both radial and angular information,
which are called angular descriptor components. The descriptor is
one of the most important aspects in MLPs.50,51 We discuss the radial
and angular descriptor components below.

B. Radial descriptor components
There are nR

max + 1 radial descriptor components and they are
defined as

qi
n =∑

j≠i
gn(rij) with 0 ≤ n ≤ nR

max, (2)

where the summation runs over all the neighbors of atom i within
a certain cutoff distance. The functions gn(rij) depend on the
distance rij only and are, therefore, called the radial functions. In
NEP3, they are defined as a linear combination of NR

bas + 1 basis

functions { f k(rij)}
NR

bas
k=0 ,

gn(rij) =

NR
bas

∑
k=0

cij
nk fk(rij), (3)

with

f k(rij) =
1
2
[Tk(2(rij/rR

c − 1)
2
− 1) + 1] f c(rij). (4)

Both nR
max and NR

bas are tunable hyperparameters in NEP3, which,
along with other ones, will be listed in Sec. II H 2. In Sec. III B,
we will use a few examples to illustrate the judicious choice of the
various hyperparameters in typical applications. Here, Tk(x) is the
kth-order Chebyshev polynomial of the first kind and fc(rij) is the
cutoff function defined as

f c(rij) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
2
[1 + cos(π

rij

rR
c
)], rij ≤ rR

c ;

0, rij > rR
c .

(5)

Here, rR
c is the cutoff distance of the radial descriptor components.

The expansion coefficients cij
nk depend on n and k and also on

the types of atoms i and j. Due to the summation over neighbors,
the radial descriptor components defined above are invariant with
respect to permutation of atoms of the same type.

If the material considered has Ntyp atom types, the number
of cij

nk coefficients for the radial descriptor components is
N2

typ(nR
max + 1)(NR

bas + 1). In NEP2, each radial function is simply
a basis function and cij

nk is reduced to δnkcnij, where δnk is the
Kronecker symbol and cnij is defined in Ref. 42. In NEP2 and NEP3,

these coefficients are trainable (similar to the parameters in the
neural network), while in NEP1, we have used fixed coefficients
similar to previous works.14,52 In Ref. 42, we have shown that
NEP2 is much more accurate than NEP1 for multicomponent
systems. In this paper, we will show that the accuracy of NEP3
for multicomponent systems is further improved as compared to
NEP2.

C. Angular descriptor components
In NEP1 and NEP2, the angular descriptor components {qi

nl}

are taken as (0 ≤ n ≤ nA
max and 1 ≤ l ≤ l3b

max) follows:

qi
nl =

2l + 1
4π ∑j≠i

∑
k≠i

gn(rij)gn(rik)Pl(cos θijk), (6)

where Pl(cos θijk) is the Legendre polynomial of order l and θijk is
the angle formed by the ij and ik bonds. The radial functions gn(rij)

have the same forms as in Eq. (3), but they can have a different
cutoff distance rA

c and a different basis size NA
bas than those in the

radial descriptor components. Usually, it is beneficial to use rA
c < rR

c ,
assuming that there is no directional dependence of the descriptor
on some neighboring atoms that are sufficiently far away from
the central atom. This reflects the physical intuition that interac-
tion strength decreases both with distance and order. The radial
descriptor components are relatively cheap to evaluate and one can,
thus, use a relatively large radial cutoff distance rR

c (also relatively
large nR

max and NR
bas) combined with a relatively small angular cutoff

distance rA
c (also relatively small nA

max and NA
bas) to achieve a good

balance between accuracy and speed. Note that message-passing
could effectively increase the interaction range but is not nec-
essarily an efficient way of describing long-range interactions.53

Using a relatively large cutoff for the radial descriptor compo-
nents is generally a more efficient way of incorporating long-
range interactions, such as van der Waals (vdW) and screened
Coulomb interactions, although it is incapable of describing
genuine long-range interactions such as unscreened Coulomb
interactions.

Expression (6) is not efficient for numerical evaluation due to
the double summation over neighbors. An equivalent form that is
more efficient for numerical evaluation can be obtained by using the
addition theorem of the spherical harmonics as

qi
nl =

l

∑
m=−l
(−1)mAi

nlmAi
nl(−m) =

l

∑
m=0
(2 − δ0l)∣A

i
nlm∣

2, (7)

where

Ai
nlm =∑

j≠i
gn(rij)Ylm(θij, ϕij). (8)

Here, Y lm(θij, ϕij) are the spherical harmonics as a function of the
polar angle θij and the azimuthal angle ϕij for the position difference
vector rij ≡ rj − ri from atom i to atom j. In Eq. (7), we have used
the property Anl(−m) = (−1)mA∗nlm, which follows from the property
Yl(−m) = (−1)mY∗lm.

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

The angular descriptor components above are usually known as
three-body ones as in the ACE approach,46 although all the descrip-
tor components are many-body in nature. For simplicity, we will
use the ACE terminology. Higher-order angular descriptor compo-
nents can be similarly constructed.46 In NEP3, we add the following
four-body descriptor components (1 ≤ l1 ≤ l2 ≤ l3 ≤ l4b

max):

qi
nl1 l2 l3 =

l1
∑

m1=−l1

l2
∑

m2=−l2

l3
∑

m3=−l3

⎛
⎜
⎝

l1 l2 l3

m1 m2 m3

⎞
⎟
⎠

Ai
nl1m1

Ai
nl2m2

Ai
nl3m3

, (9)

and the following five-body ones (1 ≤ l1 ≤ l2 ≤ l3 ≤ l4 ≤ l5b
max):

qi
nl1 l2 l3 l4 =

l1
∑

m1=−l1

l2
∑

m2=−l2

l3
∑

m3=−l3

l4
∑

m4=−l4

⎡
⎢
⎢
⎢
⎢
⎢
⎣

l1 l2 l3 l4

m1 m2 m3 m4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

× Ai
nl1m1

Ai
nl2m2

Ai
nl3m3

Ai
nl4m4

, (10)

where (l1 l2 l3
m1 m2 m3

) are Wigner 3j symbols and46

⎡
⎢
⎢
⎢
⎢
⎢
⎣

l1 l2 l3 l4

m1 m2 m3 m4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

min{∣l1+l2 ∣,∣l3+l4 ∣}

∑
L=max{∣l1−l2 ∣,∣l3−l4 ∣}

L

∑
M=−L

(−1)M

×
⎛
⎜
⎝

L l1 l2

−M m1 m2

⎞
⎟
⎠

⎛
⎜
⎝

L l3 l4

M m3 m4

⎞
⎟
⎠

. (11)

We can consider higher-order terms,46 but to keep a balance
between accuracy and speed, we only consider those up to fifth
order. Recent work suggests that four-body interactions are diffi-
cult to learn using only three-body correlations54 and that, using
only up to four-body correlations, they can still yield identical
results for different configurations of simple molecules.55 One can
formally achieve completeness in the MTP formalism,30 the ACE
formalism,46,48 and other related ones,56–58 but in practice, there
is always a truncation of the descriptor size and a balance must
be struck between accuracy and speed. This balance is one of
the most important guidelines for the development of NEP in
GPUMD.

D. Explicit expressions for the angular
descriptor components

The angular descriptor components are quite complicated and
care must be taken to achieve an efficient implementation. There
have been some implementations of the ACE approach combined
with linear regression, where it has been found that recursive
evaluation can lead to much higher efficiency.35,36,48 In our GPU
implementation of NEP3 with the ACE-like descriptor components,
we find it crucial to derive the relevant expressions as explicitly as
possible as it allows us to reduce the number of terms to be evaluated,
thanks to symmetry considerations.

To facilitate the following presentation, we define a series
of summations that are used to express the angular descriptor
components (0 ≤ n ≤ nA

max and 0 ≤ k ≤ 23),

Sn,k =∑
j≠i

gn(rij)

rn
ij

bk(xij, yij, zij). (12)

The functions bk(xij, yij, zij) here are zij, xij, yij, 3z2
ij − r2

ij, xijzij,
yijzij, x2

ij − y2
ij, 2xijyij, (5z2

ij − 3r2
ij)zij, (5z2

ij − r2
ij)xij, (5z2

ij − r2
ij)yij,

(x2
ij − y2

ij)zij, 2xijyijzij, (x2
ij − 3y2

ij)xij, (3x2
ij − y2

ij)yij, (35z2
ij − 30r2

ij)z
2
ij

+ 3r4
ij, (7z2

ij − 3r2
ij)xijzij, (7z2

ij − 3r2
ij)yijzij, (7z2

ij − r2
ij)(x

2
ij − y2

ij),
(7z2

ij − r2
ij)2xijyij, (x2

ij − 3y2
ij)xijzij, (3x2

ij − y2
ij)yijzij, (x2

ij − y2
ij)

2
− 4x2

ijy
2
ij,

and 4(x2
ij − y2

ij)xijyij from k = 0 to k = 23. With these summations,
we can write the three-body angular descriptor components up to
l3b
max = 4 explicitly as

qi
n1 =

1
4

3
π

S2
n,0 + 2

1
4

3
2π
(S2

n,1 + S2
n,2) ≡

2

∑
k=0

C3b
k S2

n,k, (13)

qi
n2 =

1
16

5
π

S2
n,3 + 2

1
4

15
2π
(S2

n,4 + S2
n,5) + 2

1
16

15
2π
(S2

n,6 + S2
n,7)

≡
7

∑
k=3

C3b
k S2

n,k, (14)

qi
n3 =

1
16

7
π

S2
n,8 + 2

1
64

21
π
(S2

n,9 + S2
n,10)

+ 2
1

16
105
2π
(S2

n,11 + S2
n,12) + 2

1
64

35
π
(S2

n,13 + S2
n,14)

≡
14

∑
k=8

C3b
k S2

n,k; (15)

qi
n4 =

9
256

1
π

S2
n,15 + 2

9
64

5
π
(S2

n,16 + S2
n,17)

+ 2
9

64
5

2π
(S2

n,18 + S2
n,19) + 2

9
64

35
π
(S2

n,20 + S2
n,21)

+ 2
9

256
35
2π
(S2

n,22 + S2
n,23) ≡

23

∑
k=15

C3b
k S2

n,k, (16)

whereby we defined the three-body coefficients {C3b
k }

23
k=0.

For four-body angular descriptor components, we only con-
sider the case of l1 = l2 = l3 and up to l4b

max = 2. It turns out that
qi

n111 = qi
n333 = 0. Therefore, there is no difference between l4b

max = 2
and l4b

max = 3. Then, we only have the case of l1 = l2 = l3 = 2,

qi
n222 = −

√
2

35
Ai

n20Ai
n20Ai

n20 + 6

√
1

70
Ai

n20Ai
n21Ai

n2(−1)

+ 6

√
2

35
Ai

n20Ai
n22Ai

n2(−2) − 6

√
3

35
Ai

n21Ai
n21Ai

n2(−2). (17)

The root-rational-fraction package59 has been used to obtain analyti-
cal expressions of the various Wigner 3j symbols. With some algebra,
we have

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

qi
n222 = −

√
2

35
⎛

⎝

1
4

√
5
π
⎞

⎠

3

S3
n,3 − 6

√
1

70
⎛

⎝

1
4

√
5
π
⎞

⎠

⎛

⎝

1
2

√
15
2π
⎞

⎠

2

× Sn,3(S2
n,4 + S2

n,5) + 6

√
2

35
⎛

⎝

1
4

√
5
π
⎞

⎠

⎛

⎝

1
4

√
15
2π
⎞

⎠

2

× Sn,3(S2
n,6 + S2

n,7) + 6

√
3

35
⎛

⎝

1
2

√
15
2π
⎞

⎠

2
⎛

⎝

1
4

√
15
2π
⎞

⎠

× Sn,6(S2
n,5 − S2

n,4) − 12

√
3

35
⎛

⎝

1
2

√
15
2π
⎞

⎠

2
⎛

⎝

1
4

√
15
2π
⎞

⎠

× Sn,4Sn,5Sn,7

≡ C4b
0 S3

n,3 + C4b
1 Sn,3(S2

n,4 + S2
n,5) + C4b

2 Sn,3(S2
n,6 + S2

n,7)

+ C4b
3 Sn,6(S2

n,5 − S2
n,4) + C4b

4 Sn,4Sn,5Sn,7, (18)

whereby we defined the four-body coefficients {C4b
k }

4
k=0.

For five-body descriptors, we only consider up to l1 = l2 = l3
= l4 = 1,

qi
n1111 =

7
15
(Ai

n10)
4
−

28
15
(Ai

n10)
2
Ai

n11Ai
n1(−1) +

28
15
(Ai

n11)
2
(Ai

n1(−1))
2

=
21

80π2 S4
n,0 +

21
40π2 S2

n,0(S
2
n,1 + S2

n,2) +
21

80π2 (S
2
n,1 + S2

n,2)
2

≡ C5b
0 S4

n,0 + C5b
1 S2

n,0(S
2
n,1 + S2

n,2) + C5b
2 (S

2
n,1 + S2

n,2)
2, (19)

whereby we defined the five-body coefficients {C5b
k }

2
k=0.

In our implementation, the three-body coefficients {C3b
k }

23
k=0,

four-body coefficients {C4b
k }

4
k=0, and five-body coefficients {C5b

k }
2
k=0

are pre-computed. This is crucial for obtaining high computational
performance.

We can now enumerate the descriptor vector length. There are
(nR

max + 1) radial descriptor components, (nA
max + 1)l3b

max three-body
descriptor components, (nA

max + 1) four-body descriptor compo-
nents, and (nA

max + 1) five-body descriptor components. Therefore,
we have

Ndes = (n
R
max + 1) + (nA

max + 1)(l3b
max + 2) (20)

in NEP3 if we include both the four-body and the five-body
descriptor components.

E. Force, virial, and heat current expressions
As stressed in Ref. 44, we need to derive an explicit expression

of the partial force60 for an efficient GPU implementation.
The partial force is

∂Ui

∂rij
=

nR
max

∑
n=0

∂Ui

∂qi
n

∂qi
n

∂rij
+

nA
max

∑
n=0

l3b
max

∑
l=1

∂Ui

∂qi
nl

∂qi
nl

∂rij

+

nA
max

∑
n=0

l4b
max

∑
l=1

∂Ui

∂qi
nlll

∂qi
nlll

∂rij
+

nA
max

∑
n=0

l5b
max

∑
l=1

∂Ui

∂qi
nllll

∂qi
nllll

∂rij
. (21)

Because all the relevant functions here are analytical, it is
straightforward to derive explicit expressions for all the partial
derivatives in the equation above.

With the partial force available, the total force acting on atom
i from atom j can be computed as60

Fij =
∂Ui

∂rij
−
∂Uj

∂rji
, (22)

which respects Newton’s third law, Fij = −Fji. The total force acting
on atom i from all the neighboring atoms is, thus,

Fi =∑
j≠i

Fij. (23)

From the partial force, one can define the per-atom virial,60,61

Wi =∑
j≠i

rij ⊗
∂Uj

∂rji
. (24)

By contracting the per-atom virial above with the velocity vi, one
can then obtain the per-atom heat current,60,61

J i =Wi ⋅ vi =∑
j≠i
(rij ⊗

∂Uj

∂rji
) ⋅ vi =∑

j≠i
rij(

∂Uj

∂rji
⋅ vi). (25)

The total heat current in the system is the sum of the per-atom
contributions,

J =∑
i

J i =∑
i
∑
j≠i

rij(
∂Uj

∂rji
⋅ vi). (26)

By an exchange of dummy indices, we can also write Eq. (26) as

J = −∑
i
∑
j≠i

rij(
∂Ui

∂rij
⋅ vj). (27)

Both Eqs. (26) and (27) can be used in the Green–Kubo method for
thermal conductivity calculations, but Eq. (26) is a more convenient
form for the homogeneous nonequilibrium molecular dynamics
(HNEMD) method and the related spectral decomposition method,
as it does not involve the velocities vj of the neighboring atoms j for
a given atom i.

The heat current expressions above apply to all the interatomic
potentials implemented in GPUMD. In all the cases, the validity of
the heat current expressions has been numerically confirmed in
terms of energy conservation.62–65 Equation (27) has been recently
used in an on-the-fly MLP.66 Since the only assumptions for the
derivations60 of these expressions are the locality properties of the
interatomic potentials, our heat current expressions generally apply
to the multi-body cluster potentials as considered in Ref. 67, as we
show in Appendix A.

F. Loss function and training algorithm
We use the separable natural evolution strategy (SNES)68 to

optimize the free parameters in NEP. We denote a set of parameters

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

as a vector z, whose dimension is the total number of parameters
Npar. In NEP1,

Npar = (Ndes + 2)Nneu + 1, (28)

which is the same for both single-component and multicomponent
systems. In NEP2, we added trainable parameters to the descriptor
for multicomponent systems, and we have

Npar = (Ndes + 2)Nneu + 1 +N2
typ(n

R
max + nA

max + 2) (29)

if Ntyp > 1 and the same Npar as in NEP1 if Ntyp = 1. In NEP3, the
number of trainable parameters in the descriptor is increased for
both single and multicomponent systems and we have

Npar = (Ndes + 2)Nneu + 1 +N2
typ(n

R
max + 1)(NR

bas + 1)

+N2
typ(n

A
max + 1)(NA

bas + 1). (30)

We can formally express the loss function as a function of the free
parameters,

L = L(z), (31)

and express the training process as a real-valued optimization
problem,

z∗ = arg min
z

L(z), (32)

where z∗ is an optimal set of parameters.
The total loss function is defined as a weighted sum of all these

individual loss functions,

L(z) = λe(
1

Nstr
∑

Nstr

n=1 (U
NEP
(n, z) −U tar

(n))
2
)

1/2

+ λf(
1

3N∑
N
i=1 (F

NEP
i (z) − Ftar

i)
2
)

1/2

+ λv
⎛

⎝

1
6Nstr

∑
Nstr

n=1∑
μν
(WNEP

μν (n, z) −Wtar
μν (n))

2⎞

⎠

1/2

+ λ1
1

Npar

Npar

∑
n=1
∣zn∣ + λ2(

1
Npar
∑

Npar

n=1 z2
n)

1/2

, (33)

where Nstr is the number of structures in the training dataset (if
using a full batch) or the number of structures in a mini-batch
and N is the total number of atoms in these structures. UNEP

(n, z)
and WNEP

μν (n, z) are per-atom energy and virial tensor predicted
by the NEP with parameters z for the nth structure, and FNEP

i (z)
is the predicted force for the ith atom. U tar

(n), Wtar
μν (n), and Ftar

i
are the corresponding target values. That is, the loss functions for
energy, force, and virial are defined as their root mean square errors
(RMSEs) between the current NEP predictions and the target values.
The last two terms represent ℓ1 and ℓ2 regularization. The weights λe,
λf, λv, λ1, and λ2 are tunable hyperparameters. When calculating the
loss function, we use the following units: eV/atom for energy and
virial and eV/Å for force components.

The SNES68 we use for optimizing Eq. (33) is a principled
approach to real-valued evolutionary optimization by following the
natural gradient of the loss function to update a search distribution
(a mean value and a variance for each trainable parameter) for a
population of solutions. It is a derivative-free black-box optimizer
and, thus, does not require the loss function to have any analytical
property. An explicit workflow of the training algorithm has been
presented in Ref. 41.

G. GPU implementation
The NEP approach is implemented in the open-source GPUMD

package, which is a general-purpose molecular dynamics (MD) sim-
ulation package fully implemented on GPUs. It currently supports
only Nvidia GPUs and the programming language is CUDA C++. In
this section as well as Appendix B, we present the detailed algorithms
for our CUDA implementation of the NEP approach.

Similar to many other MLPs, NEP is a many-body poten-
tial and is very similar to empirical many-body potentials such as
the EAM potential40 and the Tersoff potential.38 Specifically, the
radial descriptor part resembles an EAM potential and the angu-
lar descriptor part resembles a Tersoff potential. Therefore, our
CUDA implementation of the NEP approach follows the established
efficient scheme for empirical many-body potentials.44

The overall strategy of our CUDA implementation of the NEP
approach is to use a few CUDA kernels only, which ensures a high
degree of parallelism and high arithmetic intensity, both of which
are crucial for achieving high performance in CUDA programming.
In all the CUDA kernels, one CUDA thread is assigned to one atom,
i.e., there is a one-to-one correspondence between atoms and CUDA
threads. The descriptor vector and the various per-atom quantities,
including the site energy, force, and virial for one atom, are all calcu-
lated within one CUDA thread. This also includes the application of
the neural network as represented by Eq. (1). Appendix B1 shows the
CUDA __device__ function (to be called in the first CUDA kernel
function as discussed below) evaluating Eq. (1) as well as {∂Ui/∂qi

ν}.
One can see that the feedforward neural network used here is an
analytical multivariable scalar function.

The evaluation of NEP related quantities (energy, force, and
virial) requires four CUDA kernels only:

1. The first CUDA kernel calculates the whole descriptor vec-
tor and applies the neural network to obtain the site energy
and the derivatives of the energy with respect to the descriptor
components, see Algorithm 1 in Appendix B.

2. The second CUDA kernel calculates the force and virial
related to the radial descriptor components, see Algorithm 2
in Appendix B.

3. The third CUDA kernel calculates the partial force related
to the angular descriptor components, see Algorithm 3 in
Appendix B.

4. The fourth CUDA kernel calculates the force and virial related
to the angular descriptor components, see Algorithm 4 in
Appendix B.

In these CUDA kernels, the inputs and outputs related to the
atoms (position, energy, force, and virial) are all in double precision,
but the internal calculations within the CUDA kernels are mostly
in single precision. This is an effective mixed-precision approach

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

capable of maintaining a good balance between accuracy and effi-
ciency that has been adopted in many other GPU-accelerated
atomistic simulation packages.69–71

H. Training and using NEPs
1. Overview of the GPUMD package

The GPUMD package43,44 can be used to train NEPs and use
them in atomistic simulations. GPUMD can be compiled and used
in both Linux and Windows, provided that a CUDA development
environment and a CUDA-enabled GPU are available. After compi-
lation, one obtains the nep and gpumd executable, which can be used
to train and use NEPs, respectively. Figure 1 provides a schematic
overview of the workflow of training and using NEPs.

The GPUMD package started from a minimal CUDA code
implementing only simple pairwise potentials and thermal conduc-
tivity calculations.43 Gradually, empirical many-body potentials
were implemented using the unique formalism we proposed,44,60

including the Tersoff 38 and Tersoff-like72 potentials, the Stillinger–
Weber potential,73 and EAM potentials.40 Recently, support was also
added for machine-learned force constant potentials constructed
using the HIPHIVE package.74,65 The most recent additions are the
various versions of NEP as developed in the previous papers41,42 as
well as the current one.

Apart from supporting the above important interatomic poten-
tials, GPUMD also supports many statistical ensembles, includ-
ing the NVE (microcanonical), NVT (isothermal), and NPT
(isothermal–isobaric) ensembles. For the NVT ensemble, it has
options for the Berendsen thermostat,75 the Nosé–Hoover chain
thermostat,76–78 the Bussi–Donadio–Parrinello thermostat,79 and
the Langevin thermostat in different flavors.80,81 For the NPT
ensemble, GPUMD supports the classical Berendsen barostat75 and
the recently proposed stochastic cell-rescaling barostat by Bernetti
and Bussi.82

GPUMD has been mainly used to study thermal transport. It
supports the equilibrium MD method based on the Green–Kubo
relation,83,84 the nonequilibrium MD method using two or more
thermostats (preferably the Langevin thermostats85), and the
HNEMD method using a homogeneous driving force.86,87 The ther-
mal transport coefficients, either thermal conductance or thermal
conductivity, can be decomposed both spatially and spectrally.61,63,87

GPUMD has been used to establish the best practices85,88 in MD
simulations of thermal transport. It has also been used to study
the particular thermal transport properties of specific materials,
including various two-dimensional (2D) materials,64,89–103 vdW
structures based on 2D materials,104–110 and quasi-one-dimensional
materials.111–113 There are applications focused on revealing unique
phonon transport mechanisms.114–121 The high efficiency of GPUMD

FIG. 1. The GPUMD package includes
two executables, viz., gpumd and nep,
which are represented by the two black
boxes. The nep program can be used for
training NEP models and the gpumd pro-
gram can be used to perform atomistic
simulations using the trained potentials.
See text for details.

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

also enabled high-throughput thermal transport simulations that
were used as training/testing data for machine learning models of
interfacial thermal transport.122

Although previous studies using GPUMD have been mostly
focused on thermal transport properties, GPUMD has already been
developed into a general-purpose atomistic simulation package. In
Sec. V, we will showcase a series of typical atomistic simulations
using a NEP model for carbon systems trained in this paper.

2. Training a NEP model
To train a NEP model, one needs to prepare three input files:

train.xyz, test.xyz, and nep.in. The first two contain the training and
the testing data, respectively. The files train.xyz and test.xyz have the
same data format, the only difference being that the data in train.xyz
will be used for training and those in test.xyz will be used for testing.
The file train.xyz (test.xyz) contains the following data: the number
of structures in the training (testing) set, the reference energy,
reference virial tensor (optional), and cell metric for each structure,
as well as the chemical symbol, position vector, and reference force
vector for each atom in each structure. For the specific data format,
we refer the reader to the GPUMD manual.

The file nep.in contains hyperparameters that define the NEP
model and control the training process. In this file, one can choose
the NEP version (currently NEP2 or NEP3), specify the number
of atom types and their chemical symbols, the cutoff distances rR

c
and rA

c , the radial function parameters (nR
max, nA

max, NR
bas, and NA

bas),
the angular expansion parameters (l3b

max, l4b
max, and l5b

max), the weights
for the different terms in the loss function (λe, λf, λv, λ1, and λ2),
the number of neurons Nneu in the hidden layer of the neural
network, the batch size Nbat (number of structures in one batch), the
population size Npop, and the number of generations Ngen in the
SNES training algorithm. Details concerning the nep.in file are
presented in the GPUMD manual.

During the training process, predicted energy, force, virial
values, the various terms of the loss function (both for the training
and the testing datasets), the potential file, and a file used for
restarting are continuously updated. Further details concerning the
output files of the nep executable can be found in the GPUMD
manual.

3. Using a NEP
The potential file nep.txt contains all the information that

constitutes a NEP model and can be used directly as an input to
the gpumd executable for running atomistic simulations. To use
the gpumd executable, one needs to prepare another input file,
run.in, which specifies the simulation process. Several examples are
presented in Sec. V below.

III. PERFORMANCE OF NEP MODELS
A. NEP3 vs NEP2

In this section, we demonstrate the workflow of using the nep
executable to train NEPs and show the enhanced accuracy of NEP3
compared to NEP2 due to the improved radial functions. Here, we
use the MgAlCu alloy system, which has been studied previously
using a DP.123 There are 141 409 structures and we used 90% of this
set for training and 10% for testing. There are tools in the GPUMD

package for preparing the required train.xyz and test.xyz input
files for the nep executable.

The other input file needed for the nep executable is nep.in. For
our test using NEP2, this file reads as follows:

For our test using NEP3, it reads as follows:

The only differences between the hyperparameters used for
NEP2 and NEP3 are related to the radial functions. For NEP2, we
use nR

max = 15 and nA
max = 10. For NEP3, we use nR

max = NR
bas = 12 and

nA
max = NA

bas = 8. The reason for using smaller nR
max and nA

max values
in NEP3 compared to NEP2 is that one radial function in NEP3
is a linear combination of a few basis functions, while one radial
function in NEP2 is simply one basis function. Even in this case,
NEP3 can achieve a noticeably higher accuracy than NEP2, as shown
in Table I. With these parameters, NEP3 still has a computational

TABLE I. RMSEs for energies, forces, and virials for the MgAlCu alloy system using
NEP2 and NEP3.

RMSE NEP2 NEP3

Energies (meV/atom) 11 10
Forces (meV/Å) 68 63
Virials (meV/atom) 43 41

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Evolution of the various terms in the loss function (33) with respect to
the generation in the SNES68 training algorithm for the MgAlCu training and test
datasets.123

speed similar to that of NEP2 in MD simulations, reaching about
1.5 × 107 atom step/s using one A100 GPU.

The nep executable produces a number of output files that can
be used to examine the training/testing results in detail. Figure 2
shows the training and testing RMSEs as well as the loss function
related to the regularization (from the loss.out file). The training
RMSEs exhibits oscillations because of the use of mini-batches (with
a batch size of 1000). The test RMSEs closely follow the training
RMSEs, which indicates the very good interpolation capability of
NEP. In other words, there is no sign of over-fitting. As shown in
Ref. 41, a proper regularization is crucial to prevent possible
over-fitting in NEP models. Figure 3 shows the results from the
force_test.out file. We can see that both NEP2 and NEP3 achieve
a rather high level of accuracy here.

FIG. 3. Forces from NEP2 and NEP3 models against the target DFT values for
the MgAlCu test set. The solid line represents the identity function that serves as
a guide to the eye.

B. Comparison of NEP3 with other MLPs
1. A general-purpose silicon dataset

We use the general-purpose silicon training dataset from Ref.
124 to test convergence with respect to some hyperparameters and
compare the results from an implementation of the ACE.48 This
dataset consists of 2475 structures, including bulk crystal struc-
tures, sp2 bonded structures, dimers, liquid structures, amorphous
structures, diamond structures with surfaces or vacancies, and
several other defective structures. Every structure has an energy, but
not all the structures have virial data. For details on the reference
density functional theory (DFT) calculations, the reader is referred
to Ref. 124.

We use the same cutoff distance of 5 Å for the radial and
angular parts and set nR

max = nA
max = NR

bas = NA
bas = 10. We consider

using three-body descriptor components only (l3b
max = 4, l4b

max = 0,
l5b
max = 0), using both three-body and four-body descriptor com-

ponents (l3b
max = 4, l4b

max = 2, l5b
max = 0), and using up to five-body

descriptor components (l3b
max = 4, l4b

max = 2, l5b
max = 1). Other com-

mon hyperparameters are as follows: λ1 = λ2 = 0.05, λe = 1, λf = 1,
λv = 0.1, Nneu = 50, Nbat = full, Npop = 50, and Ngen = 3 × 105.

Figure 4 shows the force RMSE vs the computational cost of
force evaluation for NEP models and previous results for an imple-
mentation48 of the ACE potential46 based on linear regression. While
the ACE potential shows a strong dependence of the accuracy on the
maximum correlation order of the angular descriptor components,
our NEP shows a much weaker dependence, although consider-
ing four-body and five-body correlations indeed helps to increase
the accuracy to some degree. With three-body descriptor compo-
nents only, the ACE potential has a force RMSE above 1 eV/Å,

FIG. 4. Force RMSE against computational cost for NEP models for silicon com-
pared to an implementation of the ACE approach (the faster recursive approach
as in Ref. 48). A serial C++ implementation of the NEP approach has been tested
using an Intel i7-8750H CPU @ 2.2 GHz. For comparison, the ACE potential was
implemented in Julia and tested using an Intel i7-7820HQ CPU @ 2.9 GHz.48

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

while the three-body NEP model already achieves an accuracy of
about 0.1 eV/Å. To achieve the same accuracy as the NEP models,
one needs to consider up to six-body descriptor components in the
ACE approach. The reason for the relative faster convergence of the
accuracy with respect to the correlation order for the NEP models
compared to the ACE model is probably due to the use of a neural
network as the regression method instead of linear regression as
used in the ACE approach. Using linear regression, the descriptor
needs to be rather complete, which can easily lead to more than 104

descriptor components,48 while the descriptor vector lengths range
from 55 to 77 in the present NEP models. With a reduced descriptor
length, the completeness48 of the descriptor will be reduced to some
degree, but the incompleteness of the descriptor can be (partially)
compensated by the neural network and the overall computational
cost at a given target accuracy can be lower than using a large num-
ber of descriptor components and linear regression. Indeed, within
the framework of N-body iterative contraction of equivariants
(NICE), nonlinear neural network regression has been shown to be
able to achieve higher accuracy than linear regression at least in the
limit of large training set size,125 using a descriptor up to the same
level of the N-body correlation.

2. Azobenzene molecule
Our next example is the largest molecule, azobenzene, in the

MD17 dataset.126 This dataset has been revised later127 to ensure
more strict convergence in the DFT calculations, which is referred
to as the revised MD17 dataset (rMD17). Here, we use the first
train–test split as reported in rMD17,127 with 1000 training struc-
tures and 1000 testing structures randomly chosen from a MD
trajectory at 500 K. There are, thus, 1000 target energies and 72
000 target force components in the training dataset but there are no
target virials.

As we have confirmed that adding four-body and five-body
descriptor components can lead to higher accuracy, here we use
l3b
max = 4, l4b

max = 2, l5b
max = 1 and consider different values of the radial

function hyperparameters. For simplicity, we set nR
max = NR

bas and
nA

max = NA
bas and consider the following combinations of parameters:

(nR
max, nA

max) = (6, 4), (9, 6), (12, 8), and (15, 10). The other hyper-
parameters are rR

c = 6 Å, rA
c = 4 Å, λ1 = λ2 = 0.02, λe = 1, λf = 1,

λv = 0, Nneu = 50, Nbat = full, Npop = 50, and Ngen = 106.
Figure 5 shows the force mean absolute error (MAE) vs the

computational cost of force evaluation for our NEP and some other
MLPs as reported in Ref. 47, including ANI,15 GAP,8 sGDML,24 and
a linear-regression based ACE potential47 (similar to but not iden-
tical to the one in Ref. 48). With increasing nR

max and nA
max, both the

accuracy and computational cost increase quickly. With nR
max = 15

and nA
max = 10, the NEP approach achieves an accuracy between ANI

and GAP, but it is more than one order of magnitude faster than
ANI and more than two orders of magnitude faster than GAP. At
this level of accuracy, the NEP models are also faster than the linear-
ACE potentials, while the linear-ACE potentials can reach higher
accuracy with further increased cost. Similar to the case of silicon,
we propose that the superior cost effectiveness of the NEP models as
compared to the linear-ACE potentials is due to the much smaller
descriptor vector size in NEP, which ranges from 32 to 82 in the
NEP models, but from 1700 to 122 000 in the linear-ACE potentials
for the test cases in Fig. 5.

FIG. 5. Force MAE against computational cost from NEP models and several other
MLPs for azobenzene as reported in Ref. 47. To be consistent with Ref. 47, we
tested our serial C++ code using an Intel Xeon Gold 5218 @ 2.3 GHz.

3. Carbon dataset
In this section, we use the training and test datasets for

the carbon system with various phases10 to compare the NEP
approach with other MLPs in terms of accuracy, speed, and mem-
ory usage. The MLPs to be compared include DP,17 GAP,8 MTP,30

and REANN.45 The training dataset comprises 4080 structures in
total, including bulk crystal structures, bulk liquid and amorphous
structures, amorphous surfaces, and isolated dimer structures. The
testing dataset comprises 450 structures similar to those in the train-
ing dataset, but excluding the dimer ones. There are 256 628 and
28 337 atoms in the training and testing datasets, respectively. Each
structure has one target energy and each atom has three target
force components. Some structures also have target virials. For more
details on the datasets, see Ref. 10.

In the case of the NEP approach, we used the NEP3 form
and considered two sets of hyperparameters. In the first one, we
set rR

c = 4.2 Å, rA
c = 3.7 Å, nR

max = NR
bas = 10, nA

max = NA
bas = 8, l3b

max = 4,
l4b
max = 2, l5b

max = 1, λ1 = λ2 = 0.05, λe = 1, λf = 1, λv = 0.1, Nneu = 100,
Nbat = full, Npop = 50, and Ngen = 5 × 105. This model is labelled
“NEP (4.2 Å)” in Table II. In the second one, we make the fol-
lowing changes as compared to the first one: rR

c = 3.7 Å, rA
c = 3.2 Å,

l5b
max = 0, and Nneu = 50. This model is labelled “NEP (3.7 Å)” in

Table II.
For DP, we used the DEEPMD-KIT package17 and the smooth

edition.19 We trained two versions of DP: one using the se_a descrip-
tor (with a cutoff of 6 Å) only and the other using a combination
of se_e2_a (with a cutoff of 6 Å) and se_e3 (with a cutoff of
3.8 Å). These two versions are labeled “DP (se2)” and “DP(se2+se3)”
in Table II, respectively. The size of the embedding net is
(25, 50, 100) for the se_a and se_e2_a descriptors and (20, 40, 80)
for the se_e3 descriptor, and the size of the fitting net is
(240, 240, 240). The learning rate decreases exponentially from 10−3

to 10−8. The weighting parameters for energy, force, and virial have a
starting value of 0.02, 1000, and 0.01, respectively, which are linearly
changed to 1, 1, and 0.1 during the training process. The number of
training steps is 107, which is sufficiently large.

For GAP,8,10 we directly took the results from Ref. 10. The
nmax and lmax for the smooth overlap of atomic positions (SOAP)

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE II. Performance comparison between NEP models and other MLPs for the
carbon test set from Ref. 10. Energy RMSE ΔE and virial RMSE ΔW are in units
of meV/atom while the force RMSE ΔF is in units of meV/Å. Computational speed
is measured in atom step/ms. Nmax is the maximum number of atoms that can be
simulated using one V100 GPU for the three GPU-accelerated codes. For GAP8,10

and MTP,30,31 72 Intel Xeon-Gold 6240 CPU cores were used. For DP17 after
compression, NEP and REANN,32,45 a 32 GB V100 GPU was used.

MLP ΔE ΔF ΔW Speed Nmax

GAP 46 1100 NA 6.1 NA

DP (se2) 80 1100 250 290 240 × 103

DP (se2+se3) 44 800 170 150 220 × 103

MTP (4 Å) 36 650 180 110 NA
MTP (5 Å) 35 630 200 61 NA
MTP (6 Å) 35 650 220 27 NA

NEP (4.2 Å) 42 690 160 3600 10 000 × 103

NEP (3.7 Å) 44 700 170 4600 12 000 × 103

REANN (3 Å) 41 700 NA 280 290 × 103

REANN (4 Å) 31 640 NA 170 180 × 103

REANN (6 Å) 28 670 NA 62 64 × 103

descriptor were both set to 8.10 There were also separate
low-dimensional two-body and three-body components in this
GAP.10

For MTP,30 we used the MLIP package.31 The descriptor level
of the MTP is set to 22. We considered three cutoff distances, viz.,
4, 5, and 6 Å, labeled “MTP (4 Å),” “MTP (5 Å),” and “MTP (6 Å),”
respectively, in Table II.

For REANN,45 we used the REANN package.32 We considered
three cutoff distances, viz., 3, 4, and 6 Å, labeled “REANN (3 Å),”
“REANN (4 Å),” and “REANN (6 Å),” respectively, in Table II. The
weighting parameter for energy is kept at 1 and that for force is
decreased from 10 to 0.5 during the training process. A batch size
of 32 is used (we have tried to use a larger batch size and it turned
out to exceed the memory limit of a 32 GB V100). The sizes of the
neural networks for both the atom energy and the orbital coefficients
are (64, 64). The learning rate decreases exponentially from 10−3 to
10−7. The number of training epochs is 104.

For all MLPs, we list the RMSEs for energies, forces, and virials
(calculated from six independent components) in Table II. The MTP
and REANN models show the best accuracy in energies and forces,
and GAP and DP the worst. The accuracy of the NEP models is close
to those of MTP and REANN. The virial RMSE is missing for GAP
as no predicted virial data have been provided.10 It is also missing
for REANN because the virial has not been formulated in this MLP.
For the MLPs with available virial data, the NEP models achieve the
highest accuracy. Therefore, we can say that the NEP models at least
have an above-average accuracy for this carbon dataset.

With the accuracy comparison results in mind, we next
compare the computational performance in realistic atomistic
simulations. Here, we run MD simulations for a cubic cell of
diamond in the isothermal ensemble at 300 K for 100 steps and
output some basic thermodynamic properties every ten steps. Based

FIG. 6. Force RMSE against computational cost from NEP models and other MLPs
for the carbon dataset from Ref. 10.

on the MD simulations, we measure the computational speed as the
product of the number of atoms and the number of steps divided
by the total wall time used. Three of the MLPs (DP, REANN, NEP)
have been implemented on GPUs and we, thus, use an Nvidia
V100 GPU for the test. For the other two MLPs for which there
are only CPU versions available (GAP and MTP), we use 72 Intel
Xeon-Gold 6240 cores. The CPU and GPU resources might have
unequal financial costs, but one can make suitable conversions of
the results presented here to other computational environments.
For the CPU-based MLPs, MTP shows much higher computational
speed than GAP, which is consistent with previous tests.30 For the
GPU-based MLPs, DP (after model compression) and REANN have
comparable speed, while the NEP models are more than one order of
magnitude faster. Figure 6 shows that the NEP models substantially
lower the Pareto front of accuracy-versus-cost that can be achieved
by the other MLPs.

Interestingly, the GPU memory usage seems to be correlated
to the computational speed: The maximum number of atoms Nmax
that can be simulated using one V100 GPU is roughly proportional
to the computational speed. This comparison highlights the superior
computational performance of the NEP approach as implemented
in GPUMD in terms of both computational speed and memory
efficiency, which is crucial for tackling challenging applications that
require large-scale and long-time atomistic simulations.

IV. ACTIVE LEARNING BASED ON THE LATENT SPACE
Apart from regression accuracy and MD speed, training data

preparation is an important aspect of MLPs. Because quantum-
mechanical calculations are usually time-consuming, it is desirable
to construct a minimal training dataset for a given application.
One strategy for achieving this is to use active learning (AL),
which uses query criteria to determine whether or not a new
training sample should be included into an existing training set to
improve the model accuracy and generalization capability. Many
AL schemes have been proposed for MLPs, including the ensemble
(or query-by-committee) method,128–130 the dropout method,131

methods based on feature-space distance measuring132 and entropy
maximization in the descriptor space,133 and methods based on

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

optimal design.134,135 Here, we propose an AL scheme based on the
latent space of a pre-trained NEP model. This AL scheme has been
inspired by the work of Janet et al.,136 who have shown that distance
in the latent space provides a good quantitative uncertainty metric
to be used in an AL scheme.

There is no unique definition of the latent space. Here, we
define it as an Nneu-dimensional space spanned by the vectors
whose components are the product of the states of the hidden-layer
neurons and the connection weights between them and the out-
put layer. To compute the latent space vector for a structure, one
must train a NEP model first, but this can be achieved by using
a small initial training dataset. Then, one can use the pre-trained
NEP model to compute the latent space vectors for many structures,
either those in the training dataset or new ones that have no target
values (energy, forces, and virials) yet. This allows one to generate
target values (via quantum-mechanical calculations) for a number
of structures that have relatively large distances to existing points
in the latent space. This procedure can be iterated by updating the
training dataset and the NEP model in alternating fashion. During
this process, the existing NEP model can be used to create the new
structures to be examined, using various sampling techniques in
atomistic simulations.

We take the carbon dataset as a concrete example to illus-
trate the idea outlined above. To this end, suppose we only have
200 structures randomly selected out of the 4080 ones in the orig-
inal training dataset. We first train an initial NEP using these 200
structures, adopting the same hyperparameters as used for the NEP
(4.2 Å) model in Table II. Assuming that we have obtained the
remaining structures as in the original training dataset by various
means, we then compute the latent space vectors for all the 4080
structures. One can define a distance in the high-dimensional latent
space, but it turns out that the high dimension can be effectively
reduced using principal component (PC) analysis. The explained
variance ratios of the first 30 PCs are shown in Fig. 7. The first
two leading PCs contribute more than 70% to the total dimensions,
allowing us to visualize the distribution of structures in a 2D PC
space, as shown in Fig. 8. It can be seen that both dimers and crystals
(with or without defects) occupy a small area in the PC space. On
the other hand, both bulk and surface amorphous/liquid structures

FIG. 7. Normalized explained variance ratio of the first 30 principal components
calculated from the 4080 structures in the original training dataset10 based on the
initial NEP model trained using 200 structures.

FIG. 8. Distribution of the 4080 carbon structures in the full training dataset10 in
the 2D principal component (PC) space (spanned by PC 1 and PC 2) as reduced
from the latent space that was constructed using the initial NEP model trained
using 200 structures. (a) Bulk amorphous/liquid structures, (b) crystals including
sp2 graphite and sp3 diamond structures, (c) dimers, and (d) surface amor-
phous structures. The color bar represents the density of structures in the 2D PC
space.

occupy large areas that are almost overlapping. Furthermore, the
high density part in Fig. 8(a) indicates that there are relatively more
bulk amorphous and liquid structures in the full training dataset.

Based on these observations, we construct a new training
dataset that includes all the dimers (30 in total) and crystals (356
in total), and 400 bulk amorphous/liquid structures obtained by
farthest-point sampling. Using these 786 structures, we train a new
NEP model using the same hyperparameters as for the NEP (4.2 Å)
model in Sec. III B 3. The energy, force, and virial RMSEs from this
NEP model are 45, 700, and 190 meV/atom, respectively, for the
same test dataset as used in Sec. III B 3, which are very close to those
for the NEP model trained using the full training dataset. Figure 9
shows that the AL-based NEP model indeed performs very well in
the various predicted values. This is a notable result since we have
not included a single surface amorphous structure into the training
dataset for the AL-based NEP model. This shows that the distance
in the latent space (and the reduced PC space) indeed provides
a reliable metric for selecting new samples for the construction of
accurate and transferable MLPs. The present results also indicate
that the NEP approach is quite data efficient, which we attribute
to the relatively simple neural network model and the inclusion of
regularization terms in the loss function. As a further demonstration
of the reliability of the AL-based NEP model, we show in Sec. V
below that it performs equally well as the NEP model trained against

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 9. (a) Energy, (b) force, and (c) virial values from the NEP models for car-
bon constructed using the full training dataset (4080 structures, labeled “Full”)
and the training dataset constructed based on active learning (786 structures,
labeled “Active”), in comparison to the DFT reference data for the test dataset
(450 structures).10

the full training dataset in an MD simulation covering a large range
of temperatures.

V. EXAMPLES FOR APPLICATIONS OF NEP MODELS
In this section, we demonstrate the application of NEP models

in atomistic simulations. To this end, we employ the NEP (4.2 Å)
model from Table II, if not stated otherwise.

A. Lattice constant
We begin with a simple static calculation and determine

the zero-temperature lattice constant of diamond by calculating a
cohesive energy curve. The run.in input file reads as follows:

TABLE III. Structural and elastic properties of diamond from the NEP (4.2 Å) model
in comparison to GAP and DFT-LDA results.10

DFT-LDA GAP NEP (4.2 Å)

a (Å) 3.532 3.539 3.530
C11 (GPa) 1101 1090 1134
C12 (GPa) 148 112 153
C44 (GPa) 592 594 605

The potential keyword specifies the NEP model to be used
and the compure_cohesive keyword is used to invoke the cohe-
sive energy calculation. The lattice constant thus obtained is 3.530
Å, which is very close to the DFT reference value obtained using the
local density approximation (LDA), see Table III.

B. Elastic constants
Next, we compute the zero-temperature elastic constants, for

which the run.in input file reads as follows:

Here, the compute_elastic keyword is used to initiate the
calculation of the three independent elastic constant components
(C11, C12, and C44) using the energy–strain relation with ±1% strain
values. The computed elastic constants are presented in Table III.
The elastic constants from the NEP model are within 4% of the
reference DFT-LDA values. For comparison, the C12 value from
GAP is about 24% smaller than the reference DFT-LDA value. We
note that including virial information during training is crucial for
obtaining accurate elastic properties, as can be seen from Fig. 10. In
other words, fitting to energy and force data alone does not guar-
antee an accurate description of virials. Since the calculation of the
heat current involves virial terms, see Eq. (25), this is also important

FIG. 10. Virial values from the NEP models in comparison with DFT-LDA data for
the carbon dataset.10

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-13

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

for heat transport applications, as has already been pointed out by
Shimamura et al.137

C. Quenching
The carbon dataset10 is particularly suitable for studying liq-

uid and amorphous carbon.10,138,139 In this example, we use a
melt–quench–anneal protocol similar to that used in Ref. 10 (but
with ten times longer simulation time for the relaxation at each tem-
perature and an extra relaxation at 1000 K) to generate amorphous
carbon. The run.in file reads as follows:

The initial simulation model is a cubic diamond supercell
containing 64 000 atoms with a mass density of 3.0 g cm−3. The sys-
tem is first quickly melted at 9000 K and then relaxed at 5000 K, fol-
lowed by a quick quenching from 5000 to 1000 K and further relax-
ation at 1000 and 300 K. Here, the Langevin thermostat80 is used
to control the temperature. The evolution of temperature and the
ratio of sp3-bonded atoms as a function of simulation time are pre-
sented in Figs. 11(a) and 11(b). The radial and angular distribution
functions g(r) and g(θ) at 5000 and 300 K in Figs. 11(c) and 11(d)
show that the system is in liquid and amorphous–solid states, respec-
tively. We also performed the same MD simulation using the NEP
model trained with the AL scheme in Sec. IV, and we can see
that it gives almost identical results as those from the NEP model
trained using the full training dataset. This further demonstrates the
effectiveness of our AL scheme based on the latent space.

D. Self-diffusion coefficient
To better distinguish between the liquid and amorphous states,

we calculate the self-diffusion coefficient (SDC) for the carbon
system at 5000 and 300 K.

The relevant part of the run.in file reads as follows:

The SDC can be computed either from the mean square dis-
placement based on the Einstein relation or from the VAC based
on the Green–Kubo relation. We used the VAC approach here. The
VAC is defined as

C(τ) =
1

3N∑i
⟨vi(0) ⋅ vi(τ)⟩, (34)

and the running SDC is computed according to the following
Green–Kubo relation:

D(t) = ∫
t

0
dτC(τ). (35)

The computation of the SDC is invoked by the compute_sdc
keyword. The VAC and SDC are shown in Fig. 12. For both temper-
atures, the SDC shows a transition regime (as signified by the bump
in the curves) within a short correlation time followed by a fully
diffusive regime, which has a constant value. The system at 300 K
has a zero SDC, which is expected for a solid state, while the system
at 5000 K has a finite SDC of 1.334(3) Å2/ps and is a liquid.

E. Density of states and heat capacity
of amorphous carbon

After obtaining amorphous carbon structures, we further study
their thermal properties. In this example, we calculate the vibra-
tional density of states (VDOS) for an amorphous carbon structure
and then obtain the heat capacity with quantum corrections. The
relevant part in the run.in file reads as follows:

The VDOS ρ(ω) is calculated from the VAC140 and is invoked
by the compute_dos keyword. The VAC and VDOS are normalized
to 3N, where N is the number of atoms. The per-atom heat capacity
with quantum corrections at the temperature T is then calculated as

C(T) =
1
N∫

∞

0

dω
2π

ρ(ω)
x2ex

(ex − 1)2 , (36)

where x = hω/kBT is the ratio of the vibrational energy hω and the
thermal energy kBT (Fig. 13).

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 11. (a) Temperature and (b) ratio of sp3 bonded atoms as a function of simulation time as obtained using the NEP (4.2 Å) model. (c) Radial and (d) angular distribution
functions at 5000 and 300 K.

FIG. 12. (a) VAC and (b) running SDC as a function of correlation time for liquid
carbon at 5000 K and amorphous carbon at 300 K as obtained using the NEP
(4.2 Å) model. The results of five independent simulations are presented, but they
are very close to each other.

FIG. 13. (a) VDOS of amorphous carbon with a density of 3.0 g cm−3 at 300 K as
obtained using the NEP (4.2 Å) model. (b) Heat capacity with quantum corrections
calculated from the VDOS via Eq. (36).

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-15

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

F. Thermal conductivity of amorphous carbon
In this example, we calculate the thermal conductivity of our

amorphous carbon samples using the HNEMD method and the
related spectral decomposition method.61,87 The relevant part in the
run.in file reads as follows:

The HNEMD simulation is invoked by the compute_hnemd
keyword and the spectral decomposition is invoked by the
compute_shc keyword. Thermal conductivity calculations usually
require a lot of data to reduce the statistical uncertainty. To this
end, we perform a number of independent runs using the above
inputs. In GPUMD, the velocities are automatically initialized with
different pseudo-random number seeds for different runs. Using
the efficient HNEMD method, five independent runs (each with a
production time of 2 ns) are sufficient to achieve high accuracy
(small error bounds), as can be seen from Fig. 14(a). The thermal
conductivity of the amorphous carbon structure (with a mass density
of 3.0 g cm−3) at 300 K is determined to be 5.1(1) W m−1 K−1, where

FIG. 14. (a) Thermal conductivity of amorphous carbon as calculated from the
HNEMD method using the NEP (4.2 Å) model. The thin solid lines are from five
independent runs (each with an independent initial configuration) and the thick
solid line is their average. The dashed lines represent the error bounds. (b) Clas-
sical and quantum-corrected spectral thermal conductivity as a function of the
vibrational frequency.

the statistical error is calculated as the standard error.141 The thermal
conductivity calculated in this way is the classical value. For disor-
dered materials, the thermal conductivity can be quantum corrected
in a way similar to the quantum correction of the heat capacity.142

To achieve this, we first calculate the classical spectral thermal
conductivity61,87 κc

(ω) and include quantum corrections to obtain
κq
(ω) as follows:

κq
(ω) = κc

(ω)
x2ex

(ex − 1)2 , (37)

where x = hω/kBT. Both κc
(ω) and κq

(ω) at 300 K are shown in
Fig. 14(b). The quantum-corrected thermal conductivity at 300 K is
3.2(1) W m−1 K−1. A more systematic investigation of the thermal
transport properties in disordered carbon systems will be presented
elsewhere.

G. Tensile loading of amorphous carbon
Here, we use MD simulations to study the fracture of amor-

phous carbon containing 64 000 atoms with a density of 3.0 g cm−3

under uniaxial tensile loading. The relevant part of the run.in input
file reads as follows:

The Bussi–Donadio–Parrinello thermostat79 and the
Bernetti–Bussi barostat82 were used to control the temperature
and the pressure components in the transverse (x and y) directions.
The deform keyword was used to deform the simulation box in the
z direction with a strain rate of 2 × 108 s−1 for 2 ns, reaching up
to a strain of 0.4. Based on the output thermodynamic quantities
(using the dump_thermo keyword) and the trajectory (using the
dump_position keyword), we can obtain the stress–strain relation
and identify three representative snapshots of the fracture process
as shown in Fig. 15. The fracture is ductile with an ultimate strength
of about 25.0(1) GPa at a strain of about 0.1. After this point, crack
initiates and grows with increasing strain, finally leading to visible
void defects at a strain of 0.4.

The latent space as discussed in Sec. IV can be used to check
the reliability of the tensile loading simulations. Based on the latent
space of the NEP (4.2 Å) model, both the structures sampled from
the trajectories of the tensile loading simulations and all those in the
training dataset can be represented in a 2D PC space, as shown in
Fig. 16(a). It is clear that all the structures sampled from the tensile
loading simulations of the amorphous carbon are well within the
region spanned by the training dataset. However, if we perform
tensile loading simulations of crystalline diamond, the structures
close to the fracture point are located outside of the region spanned
by the training dataset. These results indicate that it is reliable
to use the NEP (4.2 Å) model to study the fracture properties of
amorphous carbon, while extra training samples are needed to

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-16

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 15. Stress–strain relation from a uniaxial tensile loading simulation of amor-
phous carbon with a density of 3.0 g cm−3 using the NEP (4.2 Å) model for carbon.
The three curves correspond to three independent simulations. Three snapshots
sampled at strains of 0.2, 0.3, and 0.4 during one simulation are shown as insets.
The atoms in the snapshots are colored based on their atomic volumetric strain
values using the OVITO package.143

reliably describe the fracture properties of crystalline diamond. We
note by passing that using the descriptor space as shown in Fig. 16(b)
fails to detect the stretched diamond structures that are identified to
be distinct from all the structures in the training dataset according to
the latent space. This comparison indicates that the latent space can
distinguish the structures more unambiguously. Indeed, the descrip-
tor space might contain redundant features and by passing from the
descriptor space (the input layer of the neural network) to the latent

space (the hidden layer), some redundant features can be eliminated,
particularly owing to the application of the ℓ1 regularization.

VI. INTERFACE TO OTHER CODES
A few Python packages have been developed to work with

GPUMD and are briefly presented below. See the Data availability
statement for the links of codes and documentations.

A. The GPYUMD package
To help GPUMD users generate input and process output files,

we have developed a Python interface implemented in the GPYUMD
package. Reading, preparing, and writing simulation model files
is facilitated by the GpumdAtoms class. This class extends the
Atoms class from the popular Atomic Simulation Environment
(ASE) Python package144 to include GPUMD-specific properties. A
simple example of writing a simulation model file is as follows:

The GpumdAtoms class also supports adding grouping meth-
ods, sorting atoms by group or type, generating basis and k-point
files for phonon calculations, and more.

The GPYUMD package also has a Simulation class that can be
used to generate a valid simulation protocol. To do so, in addition
to checking each keyword parameter, it verifies that group selec-
tions in each keyword and atom ordering in the simulation model
file are consistent. As a simple demonstration, continuing from our

FIG. 16. Distribution of the training structures and some structures sampled from the tensile loading simulations in the 2D PC space (spanned by PC 1 and PC 2) as reduced
from (a) the latent space and (b) the descriptor space. Note that each point here represents a structure, while each point in Fig. 8 represents an atom and the NEP models
used to generate Fig. 8 and the current one are different. A–D denote the points with the maximum strain in the tensile loading simulations.

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-17

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

previous code snippet, we can create a simple simulation protocol as
follows:

The output files of GPUMD can be read and processed using
simple GPYUMD functions, such as load_thermo() for thermody-
namic quantity outputs and load_kappa() for thermal conductivity
data from the HNEMD method. These functions return the data in
convenient formats for data exploration in interactive environments
such as Jupyter Notebooks.

B. The CALORINE package
To provide a deeper integration of GPUMD within a Python

workflow, we also provide the Python package CALORINE. This
section provides some examples for the functionality of this package.
A full documentation including extended examples and tutorials can
be found at https://calorine.materialsmodeling.org/.

1. ASE calculator
The CALORINE package extends the functionality of ASE,

implementing an ASE Calculator class, which lets users calcu-
late energies, forces, and stresses with a NEP model directly from
Python. Under the hood, this calculator writes and reads the GPUMD
input and output files. A minimal script reads as follows:

This approach can, for example, greatly simplify the calcula-
tion of a large number of predefined structures, and it provides
access to various complex structural relaxation schemes available
in ASE.

2. Interface to GPUMD

CALORINE also interfaces directly to GPUMD using a PYBIND11
C++ interface. This enables easy access to the data structures asso-
ciated with the NEP implementation in GPUMD. At the moment,
the interface exposes a function for calculating the descriptors for
an ASE Atoms object, as well as a CPU-only ASE Calculator. The
CPU-only calculator enables using a trained NEP model on com-
puter systems without a GPU. An example script for accessing the
NEP descriptors for a structure and using the CPU-only calculator
is given below.

C. The PYNEP package

We also developed a Python package PYNEP to facilitate the
AL process with a pre-trained NEP model. It also provides an
ASE Calculator to calculate the properties of an Atoms object,
including energy, forces, stress, descriptors, and latent descrip-
tors. A simple example script for calculating these properties is as
follows:

With the descriptors or the latent descriptors available, we
can select structures with different sampling methods. An example
script for selecting structures using the farthest-point sampling is as
follows:

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-18

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://calorine.materialsmodeling.org/

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

VII. SUMMARY AND CONCLUSIONS
In summary, we have presented and reviewed the various

features of the open-source GPUMD package, with a focus on
recent developments that have enabled the generation and use of
accurate and efficient NEP MLPs.41,42 Two improvements on the
atomic-environment descriptor have been introduced: one is to
change the radial functions from Chebyshev basis functions to linear
combinations of the basis functions and the other is to extend
the angular descriptor components by considering some four-body
and five-body contributions as in the ACE approach.46 Both of
these extensions are shown to improve the accuracy of NEP models
further.

We have used a diverse set of materials to demonstrate that
the NEP approach can achieve an above-average accuracy com-
pared to many other state-of-the-art MLPs. In addition, NEP models
can achieve a far superior computational efficiency: Typical NEP
models are more than one order of magnitude faster than other
MLPs and similarly more memory efficient. The high efficiency of
NEP models originates from many aspects, including a reasonably
small descriptor dimension (usually smaller than 100) combined
with a simple neural network model with a single hidden layer, care-
fully derived expressions of the descriptor components, a balanced
choice of the radial and angular cutoff distances, and finally a care-
fully optimized GPU implementation. We present our algorithms in
detail in Appendix B. The latent space in the simple neural network
model of NEP models also allows us to construct an effective AL
scheme that can be used to greatly reduce the computational efforts
in the preparation of training data.

Apart from being highly efficient, GPUMD is also user-friendly.
It can both be used as a standalone package and be integrated with
other packages such as ASE144 via the GPYUMD, CALORINE, and
PYNEP Python packages. The use of an efficient derivative-free opti-
mization algorithm (SNES) greatly simplifies the implementation
and excludes the dependence of GPUMD on any third-party machine
learning libraries, making the installation of GPUMD effortless.

Finally, the NEP models trained using the nep executable can
be directly used by the gpumd executable to perform atomistic
simulations of various materials properties. To demonstrate the
range of properties, length, and time scales that can be accessed via

this approach, we have presented a series of examples using a NEP
model trained using a standard carbon dataset.10

One of the disadvantages of GPUMD is that it is still not very
feature-rich (as compared to similar packages such as LAMMPS71).
However, its open-source nature and the well-designed GPU-
acceleration framework have been attracting more and more devel-
opers with diverse backgrounds who are enriching the features of
GPUMD at a fast pace.

ACKNOWLEDGMENTS
Z.F. acknowledges support from the National Natural Science

Foundation of China (NSFC) (Grant No. 11974059). Y.W., K.S., J.L.,
and H.D. acknowledge the support from the National Key Research
and Development Program of China (Grant No. 2018YFB0704300).
The work at Nanjing University (by J.J.W., Y.W., and J.S.) is
partially supported by the NSFC (Grant Nos. 12125404, 11974162,
and 11834006) and the Fundamental Research Funds for the Central
Universities. The calculations performed in Nanjing University
were carried out using supercomputers at the High Performance
Computing Center of Collaborative Innovation Center of Advanced
Microstructures, the high-performance supercomputing center of
Nanjing University. P.Y. and Z.Z. acknowledge support from the
NSFC (Grant No. 11932005). T.A.-N. has been supported in part
by the Academy of Finland through its QTF Centre of Excellence
program (Grant No. 312298) and Technology Industries of Fin-
land Centennial Foundation Future Makers grant. Z.Z. and Y.C.
gratefully acknowledge the research computing facilities offered by
ITS, HKU. J.M.R., E.L., and P.E. acknowledge support from the
Swedish Research Council (Grant Nos. 2018-06482, 2020-04935,
and 2021-05072) and the Swedish Foundation for Strategic Research
(SSF) via the SwedNess program (Grant No. GSn15-0008) as well as
computational resources provided by the Swedish National Infras-
tructure for Computing (SNIC) at NSC, C3SE, and PDC partially
funded by the Swedish Research Council (Grant No. 2018-05973).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Zheyong Fan: Conceptualization (equal); Data curation (equal);
Formal analysis (equal); Investigation (equal); Methodology
(equal); Software (equal); Validation (equal); Visualization (equal);
Writing – original draft (equal); Writing – review & editing (equal).
Yanzhou Wang: Data curation (equal); Formal analysis (equal);
Investigation (equal); Validation (equal); Visualization (equal);
Writing – original draft (equal); Writing – review & editing (equal).
Penghua Ying: Data curation (equal); Formal analysis (equal);
Investigation (equal); Validation (equal); Visualization (equal);
Writing – original draft (equal); Writing – review & editing (equal).-
Keke Song: Data curation (equal); Formal analysis (equal); Investi-
gation (equal); Validation (equal); Visualization (equal); Writing –
original draft (equal); Writing – review & editing (equal). Junjie
Wang: Data curation (equal); Formal analysis (equal); Investigation
(equal); Software (equal); Validation (equal); Visualization (equal);

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-19

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Writing – original draft (equal); Writing – review & editing (equal).
Yong Wang: Data curation (equal); Formal analysis (equal); Inves-
tigation (equal); Software (equal); Validation (equal); Visualization
(equal); Writing – original draft (equal); Writing – review & editing
(equal). Zezhu Zeng: Data curation (equal); Formal analysis (equal);
Investigation (equal); Validation (equal); Visualization (equal);
Writing – original draft (equal); Writing – review & editing (equal).
Ke Xu: Data curation (equal); Formal analysis (equal); Investigation
(equal); Validation (equal); Visualization (equal); Writing – original
draft (equal); Writing – review & editing (equal). Eric Lindgren:
Data curation (equal); Formal analysis (equal); Investigation (equal);
Software (equal); Validation (equal); Writing – original draft
(equal); Writing – review & editing (equal). J. Magnus Rahm: Data
curation (equal); Formal analysis (equal); Investigation (equal);
Software (equal); Validation (equal); Writing – original draft
(equal); Writing – review & editing (equal). Alexander J. Gabourie:
Data curation (equal); Formal analysis (equal); Investigation
(equal); Software (equal); Validation (equal); Writing – original
draft (equal); Writing – review & editing (equal). Jiahui Liu: Data
curation (equal); Formal analysis (equal); Investigation (equal);
Validation (equal); Visualization (equal); Writing – original draft
(equal); Writing – review & editing (equal). Haikuan Dong: Data
curation (equal); Formal analysis (equal); Investigation (equal);
Validation (equal); Visualization (equal); Writing – original draft
(equal); Writing – review & editing (equal). Jianyang Wu: Resources
(equal); Supervision (equal); Writing – original draft (equal);
Writing – review & editing (equal). Yue Chen: Resources (equal);
Supervision (equal); Writing – original draft (equal); Writing –
review & editing (equal). Zheng Zhong: Resources (equal); Super-
vision (equal); Writing – original draft (equal); Writing – review &
editing (equal). Jian Sun: Resources (equal); Supervision (equal);
Writing – original draft (equal); Writing – review & editing (equal).
Paul Erhart: Resources (equal); Software (equal); Supervision
(equal); Writing – original draft (equal); Writing – review &
editing (equal). Yanjing Su: Resources (equal); Supervision (equal);
Writing – original draft (equal); Writing – review & editing
(equal). Tapio Ala-Nissila: Resources (equal); Supervision (equal);
Writing – original draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY

The training and testing results using the various MLPs as
presented in Secs. III and IV are freely available via Zenodo.145

The input and output files for the GPUMD examples presented in
Sec. V are included in the GPUMD package (https://github.com/
brucefan1983/GPUMD).

The source code and documentation for GPUMD are available
at https://github.com/brucefan1983/GPUMD and https://gpumd.
zheyongfan.org/, respectively.

The source code and documentation for GPYUMD are available
at https://github.com/AlexGabourie/gpyumd and https://gpyumd.
readthedocs.io/, respectively.

The source code and documentation for CALORINE are avail-
able at https://gitlab.com/materials-modeling/calorine and https://
calorine.materialsmodeling.org/, respectively.

The source code and documentation for PYNEP are avail-
able at https://github.com/bigd4/PyNEP and https://pynep.readthe
docs.io/, respectively.

APPENDIX A: SOME DERIVATIONS ON THE HEAT
CURRENT EXPRESSIONS

Here, we show that the heat current expressions for the multi-
body potentials as considered in Ref. 67 are special cases of the
general expressions in our formulation. Without loss of generality,
we take the three-body potential as an example to show this.

Using the chain rule, we first rewrite Eq. (27) as

J = −∑
i
∑
j≠i

rij
∂Ui

∂rj
⋅ vj. (A1)

Boone et al.67 considered explicit m-body potentials (m = 2, 3, 4)
that are usually used in topological force fields for organics. For the
three-body potential considered therein, the site potential U i of atom
i is taken as the average of the potentials of the triplets it belongs to
(the first index denotes the central atom of a triplet),

Ui =
1
3∑k≠i
∑
l≠i
(Uikl +Ukli +Ulik). (A2)

Substituting Eq. (A2) into Eq. (A1), we have

J = −
1
3∑i
∑
j≠i
∑
k≠i
∑
l≠i

rij
∂(Uikl +Ukli +Ulik)

∂rj
⋅ vj. (A3)

Note that j cannot be i but could be k or l and we, thus, have

∂Uikl

∂rj
= δjk

∂Uijl

∂rj
+ δjl

∂Uikj

∂rj
(A4)

and similar expressions for ∂Ukli/∂rj and ∂U lik/∂rj. Following
Boone et al.,67 we can define

Fijl
j ≡ −

∂Uijl

∂rj
, (A5)

as the force acting on atom j from the triplet ijl. Then, we can write
Eq. (A3) as

J =
1
3∑i
∑
j≠i
∑
k≠i

rij(Fijk
j + Fikj

j + Fjki
j + Fkji

j + Fjik
j + Fkij

j) ⋅ vj. (A6)

By manipulating the dummy indices in the summation, it can be
written as

J =
1
3∑i
∑
j≠i
∑
k≠i
(rji + rki)F

ijk
i ⋅ vi

+ (rij + rkj)F
ijk
j ⋅ vj + (rik + rjk)F

ijk
k ⋅ vk, (A7)

which corresponds to Eq. (18d) in Ref. 67.

APPENDIX B: ALGORITHMS

In this appendix, we present the complete algorithms for eval-
uating the NEP energy, force, and virial expressions as implemented
in GPUMD. First, we list all the relevant quantities:

1. N is the total number of atoms.
2. NNR

i is the number of neighbors of atom i for the radial
descriptor components.

3. NNA
i is the number of neighbors of atom i for the angular

descriptor components.

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-20

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://github.com/brucefan1983/GPUMD
https://github.com/brucefan1983/GPUMD
https://github.com/brucefan1983/GPUMD
https://gpumd.zheyongfan.org/
https://gpumd.zheyongfan.org/
https://github.com/AlexGabourie/gpyumd
https://gpyumd.readthedocs.io/
https://gpyumd.readthedocs.io/
https://gitlab.com/materials-modeling/calorine
https://calorine.materialsmodeling.org/
https://calorine.materialsmodeling.org/
https://github.com/bigd4/PyNEP
https://pynep.readthedocs.io/
https://pynep.readthedocs.io/

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

4. NLR
im is the index of the mth neighbor of atom i for the radial

descriptor components.
5. NLA

im is the index of the mth neighbor of atom i for the angular
descriptor components.

6. {ri}
N−1
i=0 are the atom positions.

7. {Ui}
N−1
i=0 are the site energies.

8. {∂Ui/∂qi
ν}

N−1
i=0 are the derivatives of the site energies with

respect to the descriptor components.
9. {∂Ui/∂rij}

N−1
i=0 are the partial forces.

10. {Fi}
N−1
i=0 are the forces on the atoms.

11. {Wi}
N−1
i=0 are the virials on the atoms.

1. Application of the neural network
We use a simple feedforward neural network with a single hid-

den layer. We have done extensive tests and found that a single
hidden layer is sufficient to achieve high accuracy for NEP mod-
els and using more hidden layers only reduces computational
performance without a corresponding improvement in model accu-
racy. Using a single hidden layer, many variables can be defined
as registers instead of global memory or local memory in the
CUDA kernel, which are much more expensive to access. Therefore,
using a single hidden layer allows us to achieve a significantly
higher computational performance in the parallelism scheme we
adopted.

Listing 1. The function applying the feedforward neural
network to the input descriptor vector to obtain the site energy of an
atom and the derivative of the energy with respect to the descriptor
components.

The complete __device__ function applying the neural network
is presented in Listing 1. For the inputs, N_des is the dimension Ndes
of the descriptor vector, N_neu is the number of neurons Nneu in
the hidden layer, w0 is the weight matrix w(0), w1 is the weight vec-
tor w(1), b0 is the bias vector b(0) in the hidden layer, b1 is the bias
b(1) in the output node, and q is the descriptor vector qi. For the out-
puts, energy is the site energy U i and energy_derivative is the
derivative of the site energy with respect to the descriptor compo-
nents ∂Ui/∂qi

ν. Note that we do not need to calculate the derivative
of the energy (and other related quantities such as force and virial)
with respect to the neural network parameters, as required in the
conventional gradient-descent approach. In our evolutionary algo-
rithm approach, there is no need to calculate the derivative of the loss
function with respect to any parameters. Therefore, our implemen-
tation is very simple regarding the neural network part; particularly,
we do not make GPUMD dependent on any third-party package. This
makes the installation of GPUMD very simple and straightforward.

2. Energy and derivative of energy with respect
to descriptor

In the first CUDA kernel (see Algorithm 1), the thread
associated with atom i calculates the whole descriptor vector qi and

ALGORITHM 1. Pseudo-code of the CUDA kernel for evaluating the descriptor vec-
tor qi

ν, the per-atom energy Ui , and the derivatives of the energy with respect the
descriptor components ∂Ui/∂qi

ν.

1 Assign atom i to CUDA thread i
2 if i < N then
3 Read position ri for atom i from global memory
4 for m = 0 to NNR

i − 1 do
5 j← NLR

im
6 Read in rj from global memory and calculate rij
7 rij ←minimum image of rij
8 Calculate the radial functions gn(rij) according to Eq. (3)
9 Accumulate the radial descriptor components

according to Eq. (2)
10 end
11 for n = 0 to nA

max do
12 for m = 0 to NNA

i − 1 do
13 j← NLA

im
14 Read in rj from global memory and calculate rij
15 rij ←minimum image of rij
16 Calculate the radial functions gn(rij) according to

Eq. (3) but with rR
c changed to rA

c
17 Accumulate the summations Sn,k according to Eq. (12)
18 end
19 Calculate the angular descriptor components for the

current n according to the equations in Sec. II D.
20 Save the summations Sn,k for the current n to global

memory for later use.
21 end
22 Apply the neural network model to get the energy U i and

energy derivatives ∂Ui/∂qi
ν from the descriptor qi

ν and save
them to global memory.

23 end

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-21

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

ALGORITHM 2. Pseudo-code of the CUDA kernel for evaluating the force and virial
from the radial descriptor components.

1 Assign atom i to CUDA thread i.
2 if i < N then
3 Read position ri for atom i from global memory
4 for m = 0 to NNR

i − 1 do
5 j← NLR

im.
6 Read in rj from global memory and calculate rij.
7 rij ←minimum image of rij.
8 Calculate the partial force ∂U i/∂rij related to the radial

descriptor components, i.e., the first term on the right
hand side of Eq. (21).

9 Similarly calculate the partial force ∂U j/∂rji.
10 Accumulate the force Fi on atom i according to

Eqs. (22) and (23).
11 Accumulate the virial Wi on atom i according to Eq. (24).
12 end
13 end

calls the __device__ function in Listing 1 to obtain the energy U i
and the derivatives ∂Ui/∂qi

ν. The derivatives will be used in the next
two CUDA kernels.

3. Force and virial from the radial descriptor
components

In the second CUDA kernel (see Algorithm 2), the thread
associated with atom i first calculates the partial forces ∂U i/∂rij
and ∂U j/∂rji related to the radial descriptor components and then
accumulates the force Fi and virial Wi on atom i. For the radial
descriptor components, ∂U i/∂rij and ∂U j/∂rji only differ a little; it
is, thus, a good choice to calculate both within the CUDA kernel.
This algorithm is very similar to that for EAM potentials40 (which
is an angular-independent many-body potential) as implemented in
GPUMD.

ALGORITHM 3. Pseudo-code of the CUDA kernel for evaluating the partial forces
∂Ui/∂r ij for all atoms i and all neighbors j of i from the angular descriptor
components.

1 Assign atom i to CUDA thread i
2 if i < N then
3 Read position ri for atom i from global memory
4 for m = 0 to NNA

i − 1 do
5 j← NLA

im

6 Read in rj from global memory and calculate rij
7 rij ←minimum image of rij
8 Calculate the partial force ∂U i/∂rij related to the

angular descriptor components, i.e., the last three
terms on the right hand side of Eq. (21).

9 Save the partial force ∂U i/∂rij to global memory for
later use.

10 end
11 end

ALGORITHM 4. Pseudo-code of the CUDA kernel for evaluating the force and virial
from the angular descriptor components.

1 Assign atom i to CUDA thread i.
2 if i < N then
3 Read position ri for atom i from global memory
4 for m = 0 to NNA

i − 1 do
5 j← NLA

im.
6 Read in rj from global memory and calculate rij.
7 rij ←minimum image of rij.
8 Read in the partial force ∂U i/∂rij related to the angular

descriptor components from global memory.
9 Similarly read in U j/∂rji from global memory with

some index manipulations.
10 Accumulate the force Fi on atom i according to
10 Eqs. (22) and (23).
11 Accumulate the virial Wi on atom i according to Eq. (24).
12 end
13 end

4. Partial forces from the angular descriptor
components

In the third CUDA kernel (see Algorithm 3), the thread asso-
ciated with atom i calculates the partial forces ∂U i/∂rij related to
the angular descriptor components and saves them to global mem-
ory, which is then used in the next CUDA kernel. For the angular
descriptor components, ∂U i/∂rij and ∂U j/∂rji differ a lot and it
is, thus, more efficient to use a two-kernel approach: (1) using
one CUDA kernel (the current one) to calculate the partial forces
{∂U i/∂rij} for all atom pairs (within the angular cutoff) and save
them to global memory and (2) then using another CUDA kernel
(the next one) to consume them.

5. Force and virial from the angular partial forces
After obtaining the partial force {∂U i/∂rij} related to the angu-

lar descriptor components, we use a CUDA kernel (see Algorithm 4)
to accumulate the corresponding force and virial. In this kernel, we
load the partial forces ∂U i/∂rij and ∂U j/∂rji, which are related to
each other by an exchange of atom indices i and j. Then, we accumu-
late the force Fi on atom i according to Eqs. (22) and (23) and accu-
mulate the virial Wi on atom i according to Eq. (24). This is a general
CUDA kernel used in the GPUMD package for all the angular-
dependent many-body potentials, such as the Stillinger–Weber73

and Tersoff potentials.38

REFERENCES
1J. Behler, “Perspective: Machine learning potentials for atomistic simulations,”
J. Chem. Phys. 145, 170901 (2016).
2V. L. Deringer, M. A. Caro, and G. Csányi, “Machine learning interatomic
potentials as emerging tools for materials science,” Adv. Mater. 31, 1902765
(2019).
3T. Mueller, A. Hernandez, and C. Wang, “Machine learning for interatomic
potential models,” J. Chem. Phys. 152, 050902 (2020).
4F. Noé, A. Tkatchenko, K.-R. Müller, and C. Clementi, “Machine learning for
molecular simulation,” Annu. Rev. Phys. Chem. 71, 361–390 (2020).

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-22

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.4966192
https://doi.org/10.1002/adma.201902765
https://doi.org/10.1063/1.5126336
https://doi.org/10.1146/annurev-physchem-042018-052331

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

5A. M. Miksch, T. Morawietz, J. Kästner, A. Urban, and N. Artrith, “Strategies for
the construction of machine-learning potentials for accurate and efficient atomic-
scale simulations,” Mach. Learn.: Sci. Technol. 2, 031001 (2021).
6Y. Mishin, “Machine-learning interatomic potentials for materials science,” Acta
Mater. 214, 116980 (2021).
7O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky, K. T. Schütt, A.
Tkatchenko, and K.-R. Müller, “Machine learning force fields,” Chem. Rev. 121,
10142–10186 (2021).
8A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, “Gaussian approximation
potentials: The accuracy of quantum mechanics, without the electrons,” Phys. Rev.
Lett. 104, 136403 (2010).
9A. P. Bartók, R. Kondor, and G. Csányi, “On representing chemical
environments,” Phys. Rev. B 87, 184115 (2013).
10V. L. Deringer and G. Csányi, “Machine learning based interatomic potential
for amorphous carbon,” Phys. Rev. B 95, 094203 (2017).
11A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker, “Spectral
neighbor analysis method for automated generation of quantum-accurate inter-
atomic potentials,” J. Comput. Phys. 285, 316–330 (2015).
12A. Khorshidi and A. A. Peterson, “Amp: A modular approach to machine
learning in atomistic simulations,” Comput. Phys. Commun. 207, 310–324 (2016).
13N. Artrith and A. Urban, “An implementation of artificial neural-network
potentials for atomistic materials simulations: Performance for TiO2,” Comput.
Mater. Sci. 114, 135–150 (2016).
14N. Artrith, A. Urban, and G. Ceder, “Efficient and accurate machine-learning
interpolation of atomic energies in compositions with many species,” Phys. Rev. B
96, 014112 (2017).
15J. S. Smith, O. Isayev, and A. E. Roitberg, “ANI-1: An extensible neural net-
work potential with DFT accuracy at force field computational cost,” Chem. Sci.
8, 3192–3203 (2017).
16K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller,
“SchNet–A deep learning architecture for molecules and materials,” J. Chem.
Phys. 148, 241722 (2018).
17H. Wang, L. Zhang, J. Han, and W. E, “DeePMD-kit: A deep learning pack-
age for many-body potential energy representation and molecular dynamics,”
Comput. Phys. Commun. 228, 178–184 (2018).
18L. Zhang, J. Han, H. Wang, R. Car, and W. E, “Deep potential molecular
dynamics: A scalable model with the accuracy of quantum mechanics,” Phys. Rev.
Lett. 120, 143001 (2018).
19L. Zhang, J. Han, H. Wang, W. A. Saidi, R. Car, and W. E, “End-to-end sym-
metry preserving inter-atomic potential energy model for finite and extended
systems,” in Advances in Neural Information Processing Systems, edited by
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (Curran Assoc. Inc., 2018), Vol. 31.
20K. Yao, J. E. Herr, D. Toth, R. Mckintyre, and J. Parkhill, “The TensorMol-0.1
model chemistry: A neural network augmented with long-range physics,” Chem.
Sci. 9, 2261–2269 (2018).
21O. T. Unke and M. Meuwly, “PhysNet: A neural network for predicting ener-
gies, forces, dipole moments, and partial charges,” J. Chem. Theory Comput. 15,
3678–3693 (2019).
22C. Chen, W. Ye, Y. Zuo, C. Zheng, and S. P. Ong, “Graph networks as a uni-
versal machine learning framework for molecules and crystals,” Chem. Mater. 31,
3564–3572 (2019).
23M. A. Caro, “Optimizing many-body atomic descriptors for enhanced com-
putational performance of machine learning based interatomic potentials,”
Phys. Rev. B 100, 024112 (2019).
24S. Chmiela, H. E. Sauceda, I. Poltavsky, K.-R. Müller, and A. Tkatchenko,
“sGDML: Constructing accurate and data efficient molecular force fields using
machine learning,” Comput. Phys. Commun. 240, 38–45 (2019).
25A. Singraber, J. Behler, and C. Dellago, “Library-based LAMMPS implementa-
tion of high-dimensional neural network potentials,” J. Chem. Theory Comput.
15, 1827–1840 (2019).
26K. Lee, D. Yoo, W. Jeong, and S. Han, “SIMPLE-NN: An efficient package for
training and executing neural-network interatomic potentials,” Comput. Phys.
Commun. 242, 95–103 (2019).
27R. Lot, F. Pellegrini, Y. Shaidu, and E. Küçükbenli, “PANNA: Properties from
artificial neural network architectures,” Comput. Phys. Commun. 256, 107402
(2020).

28A. S. Christensen, L. A. Bratholm, F. A. Faber, and O. Anatole von Lilienfeld,
“FCHL revisited: Faster and more accurate quantum machine learning,” J. Chem.
Phys. 152, 044107 (2020).
29Y. Shao, M. Hellström, P. D. Mitev, L. Knijff, and C. Zhang, “PiNN: A Python
library for building atomic neural networks of molecules and materials,” J. Chem.
Inf. Model. 60, 1184–1193 (2020).
30A. V. Shapeev, “Moment tensor potentials: A class of systematically improvable
interatomic potentials,” Multiscale Model. Simul. 14, 1153–1173 (2016).
31I. S. Novikov, K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev, “The MLIP
package: Moment tensor potentials with MPI and active learning,” Mach. Learn.:
Sci. Technol. 2, 025002 (2021).
32Y. Zhang, J. Xia, and B. Jiang, “REANN: A PyTorch-based end-to-end multi-
functional deep neural network package for molecular, reactive, and periodic
systems,” J. Chem. Phys. 156, 114801 (2022).
33J. Byggmästar, K. Nordlund, and F. Djurabekova, “Modeling refractory high-
entropy alloys with efficient machine-learned interatomic potentials: Defects and
segregation,” Phys. Rev. B 104, 104101 (2021).
34H. Yanxon, D. Zagaceta, B. Tang, D. S. Matteson, and Q. Zhu, “PyXtal_FF: A
Python library for automated force field generation,” Mach. Learn.: Sci. Technol.
2, 027001 (2021).
35Y. Lysogorskiy, C. van der Oord, A. Bochkarev, S. Menon, M. Rinaldi, T. Ham-
merschmidt, M. Mrovec, A. Thompson, G. Csányi, C. Ortner et al., “Performant
implementation of the atomic cluster expansion (PACE) and application to copper
and silicon,” npj Comput. Mater. 7, 97 (2021).
36A. Bochkarev, Y. Lysogorskiy, S. Menon, M. Qamar, M. Mrovec, and R. Drautz,
“Efficient parametrization of the atomic cluster expansion,” Phys. Rev. Mater.
6, 013804 (2022).
37M. Wen, Y. Afshar, R. S. Elliott, and E. B. Tadmor, “KLIFF: A framework to
develop physics-based and machine learning interatomic potentials,” Comput.
Phys. Commun. 272, 108218 (2022).
38J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multi-
component systems,” Phys. Rev. B 39, 5566–5568 (1989).
39W. Jia, H. Wang, M. Chen, D. Lu, L. Lin, R. Car, W. E, and L. Zhang, “Pushing
the limit of molecular dynamics with ab initio accuracy to 100 million atoms
with machine learning,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’20 (IEEE Press,
2020).
40M. S. Daw and M. I. Baskes, “Embedded-atom method: Derivation and appli-
cation to impurities, surfaces, and other defects in metals,” Phys. Rev. B 29,
6443–6453 (1984).
41Z. Fan, Z. Zeng, C. Zhang, Y. Wang, K. Song, H. Dong, Y. Chen, and T. Ala-
Nissila, “Neuroevolution machine learning potentials: Combining high accuracy
and low cost in atomistic simulations and application to heat transport,” Phys.
Rev. B 104, 104309 (2021).
42Z. Fan, “Improving the accuracy of the neuroevolution machine learning
potential for multi-component systems,” J. Phys.: Condens. Matter 34, 125902
(2022).
43Z. Fan, T. Siro, and A. Harju, “Accelerated molecular dynamics force evalua-
tion on graphics processing units for thermal conductivity calculations,” Comput.
Phys. Commun. 184, 1414–1425 (2013).
44Z. Fan, W. Chen, V. Vierimaa, and A. Harju, “Efficient molecular dynamics
simulations with many-body potentials on graphics processing units,” Comput.
Phys. Commun. 218, 10–16 (2017).
45Y. Zhang, J. Xia, and B. Jiang, “Physically motivated recursively embedded atom
neural networks: Incorporating local completeness and nonlocality,” Phys. Rev.
Lett. 127, 156002 (2021).
46R. Drautz, “Atomic cluster expansion for accurate and transferable interatomic
potentials,” Phys. Rev. B 99, 014104 (2019).
47D. P. Kovács, C. van der Oord, J. Kucera, A. E. A. Allen, D. J. Cole, C. Ortner,
and G. Csányi, “Linear atomic cluster expansion force fields for organic molecules:
Beyond RMSE,” J. Chem. Theory Comput. 17, 7696–7711 (2021).
48G. Dusson, M. Bachmayr, G. Csányi, R. Drautz, S. Etter, C. van der Oord,
and C. Ortner, “Atomic cluster expansion: Completeness, efficiency and stability,”
J. Comput. Phys. 454, 110946 (2022).
49J. Behler and M. Parrinello, “Generalized neural-network representation of
high-dimensional potential-energy surfaces,” Phys. Rev. Lett. 98, 146401 (2007).

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-23

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1088/2632-2153/abfd96
https://doi.org/10.1016/j.actamat.2021.116980
https://doi.org/10.1016/j.actamat.2021.116980
https://doi.org/10.1021/acs.chemrev.0c01111
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1103/physrevb.87.184115
https://doi.org/10.1103/physrevb.95.094203
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1016/j.cpc.2016.05.010
https://doi.org/10.1016/j.commatsci.2015.11.047
https://doi.org/10.1016/j.commatsci.2015.11.047
https://doi.org/10.1103/physrevb.96.014112
https://doi.org/10.1039/c6sc05720a
https://doi.org/10.1063/1.5019779
https://doi.org/10.1063/1.5019779
https://doi.org/10.1016/j.cpc.2018.03.016
https://doi.org/10.1103/physrevlett.120.143001
https://doi.org/10.1103/physrevlett.120.143001
https://doi.org/10.1039/c7sc04934j
https://doi.org/10.1039/c7sc04934j
https://doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1021/acs.chemmater.9b01294
https://doi.org/10.1103/physrevb.100.024112
https://doi.org/10.1016/j.cpc.2019.02.007
https://doi.org/10.1021/acs.jctc.8b00770
https://doi.org/10.1016/j.cpc.2019.04.014
https://doi.org/10.1016/j.cpc.2019.04.014
https://doi.org/10.1016/j.cpc.2020.107402
https://doi.org/10.1063/1.5126701
https://doi.org/10.1063/1.5126701
https://doi.org/10.1021/acs.jcim.9b00994
https://doi.org/10.1021/acs.jcim.9b00994
https://doi.org/10.1137/15m1054183
https://doi.org/10.1088/2632-2153/abc9fe
https://doi.org/10.1088/2632-2153/abc9fe
https://doi.org/10.1063/5.0080766
https://doi.org/10.1103/physrevb.104.104101
https://doi.org/10.1088/2632-2153/abc940
https://doi.org/10.1038/s41524-021-00559-9
https://doi.org/10.1103/physrevmaterials.6.013804
https://doi.org/10.1016/j.cpc.2021.108218
https://doi.org/10.1016/j.cpc.2021.108218
https://doi.org/10.1103/physrevb.39.5566
https://doi.org/10.1103/physrevb.29.6443
https://doi.org/10.1103/physrevb.104.104309
https://doi.org/10.1103/physrevb.104.104309
https://doi.org/10.1088/1361-648x/ac462b
https://doi.org/10.1016/j.cpc.2013.01.008
https://doi.org/10.1016/j.cpc.2013.01.008
https://doi.org/10.1016/j.cpc.2017.05.003
https://doi.org/10.1016/j.cpc.2017.05.003
https://doi.org/10.1103/physrevlett.127.156002
https://doi.org/10.1103/physrevlett.127.156002
https://doi.org/10.1103/physrevb.99.014104
https://doi.org/10.1021/acs.jctc.1c00647
https://doi.org/10.1016/j.jcp.2022.110946
https://doi.org/10.1103/physrevlett.98.146401

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

50F. Musil, A. Grisafi, A. P. Bartók, C. Ortner, G. Csányi, and M. Ceriotti,
“Physics-inspired structural representations for molecules and materials,” Chem.
Rev. 121, 9759–9815 (2021).
51M. F. Langer, A. Goeßmann, and M. Rupp, “Representations of molecules
and materials for interpolation of quantum-mechanical simulations via machine
learning,” npj Comput. Mater. 8, 41 (2022).
52M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, and P. Marquetand,
“wACSF–Weighted atom-centered symmetry functions as descriptors in machine
learning potentials,” J. Chem. Phys. 148, 241709 (2018).
53J. Nigam, S. Pozdnyakov, G. Fraux, and M. Ceriotti, “Unified theory of
atom-centered representations and message-passing machine-learning schemes,”
J. Chem. Phys. 156, 204115 (2022).
54B. Parsaeifard and S. Goedecker, “Manifolds of quasi-constant SOAP and ACSF
fingerprints and the resulting failure to machine learn four-body interactions,”
J. Chem. Phys. 156, 034302 (2022).
55S. N. Pozdnyakov, M. J. Willatt, A. P. Bartók, C. Ortner, G. Csányi, and M.
Ceriotti, “Incompleteness of atomic structure representations,” Phys. Rev. Lett.
125, 166001 (2020).
56A. Glielmo, C. Zeni, and A. De Vita, “Efficient nonparametric n-body force
fields from machine learning,” Phys. Rev. B 97, 184307 (2018).
57M. J. Willatt, F. Musil, and M. Ceriotti, “Atom-density representations for
machine learning,” J. Chem. Phys. 150, 154110 (2019).
58M. Uhrin, “Through the eyes of a descriptor: Constructing complete, invertible
descriptions of atomic environments,” Phys. Rev. B 104, 144110 (2021).
59A. Stone and C. Wood, “Root-rational-fraction package for exact calculation of
vector-coupling coefficients,” Comput. Phys. Commun. 21, 195–205 (1980).
60Z. Fan, L. F. C. Pereira, H.-Q. Wang, J.-C. Zheng, D. Donadio, and A. Harju,
“Force and heat current formulas for many-body potentials in molecular dynamics
simulations with applications to thermal conductivity calculations,” Phys. Rev. B
92, 094301 (2015).
61A. J. Gabourie, Z. Fan, T. Ala-Nissila, and E. Pop, “Spectral decomposi-
tion of thermal conductivity: Comparing velocity decomposition methods in
homogeneous molecular dynamics simulations,” Phys. Rev. B 103, 205421
(2021).
62M. Gill-Comeau and L. J. Lewis, “Heat conductivity in graphene and related
materials: A time-domain modal analysis,” Phys. Rev. B 92, 195404 (2015).
63Z. Fan, L. F. C. Pereira, P. Hirvonen, M. M. Ervasti, K. R. Elder, D. Dona-
dio, T. Ala-Nissila, and A. Harju, “Thermal conductivity decomposition in
two-dimensional materials: Application to graphene,” Phys. Rev. B 95, 144309
(2017).
64K. Xu, Z. Fan, J. Zhang, N. Wei, and T. Ala-Nissila, “Thermal transport
properties of single-layer black phosphorus from extensive molecular dynamics
simulations,” Modell. Simul. Mater. Sci. Eng. 26, 085001 (2018).
65J. Brorsson, A. Hashemi, Z. Fan, E. Fransson, F. Eriksson, T. Ala-Nissila,
A. V. Krasheninnikov, H.-P. Komsa, and P. Erhart, “Efficient calculation of the lat-
tice thermal conductivity by atomistic simulations with ab initio accuracy,” Adv.
Theory Simul. 5, 2100217 (2022).
66C. Verdi, F. Karsai, P. Liu, R. Jinnouchi, and G. Kresse, “Thermal trans-
port and phase transitions of zirconia by on-the-fly machine-learned interatomic
potentials,” npj Comput. Mater. 7, 156 (2021).
67P. Boone, H. Babaei, and C. E. Wilmer, “Heat flux for many-body interactions:
Corrections to LAMMPS,” J. Chem. Theory Comput. 15, 5579–5587 (2019).
68T. Schaul, T. Glasmachers, and J. Schmidhuber, “High dimensions and heavy
tails for natural evolution strategies,” in Proceedings of the 13th Annual Con-
ference on Genetic and Evolutionary Computation, GECCO ’11 (Association for
Computing Machinery, New York, USA, 2011), pp. 845–852.
69J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose molec-
ular dynamics simulations fully implemented on graphics processing units,”
J. Comput. Phys. 227, 5342–5359 (2008).
70S. Páll, A. Zhmurov, P. Bauer, M. Abraham, M. Lundborg, A. Gray, B. Hess,
and E. Lindahl, “Heterogeneous parallelization and acceleration of molecular
dynamics simulations in GROMACS,” J. Chem. Phys. 153, 134110 (2020).
71A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown,
P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan,
M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, “LAMMPS—A flexible

simulation tool for particle-based materials modeling at the atomic, meso, and
continuum scales,” Comput. Phys. Commun. 271, 108171 (2022).
72Z. Fan, Y. Wang, X. Gu, P. Qian, Y. Su, and T. Ala-Nissila, “A minimal Tersoff
potential for diamond silicon with improved descriptions of elastic and phonon
transport properties,” J. Phys.: Condens. Matter 32, 135901 (2019).
73F. H. Stillinger and T. A. Weber, “Computer simulation of local order in
condensed phases of silicon,” Phys. Rev. B 31, 5262–5271 (1985).
74F. Eriksson, E. Fransson, and P. Erhart, “The hiPhive package for the extrac-
tion of high-order force constants by machine learning,” Adv. Theory Simul. 2,
1800184 (2019).
75H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R.
Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys. 81,
3684–3690 (1984).
76S. Nosé, “A unified formulation of the constant temperature molecular
dynamics methods,” J. Chem. Phys. 81, 511–519 (1984).
77W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,”
Phys. Rev. A 31, 1695–1697 (1985).
78G. J. Martyna, M. L. Klein, and M. Tuckerman, “Nosé-Hoover chains: The
canonical ensemble via continuous dynamics,” J. Chem. Phys. 97, 2635–2643
(1992).
79G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling through velocity
rescaling,” J. Chem. Phys. 126, 014101 (2007).
80G. Bussi and M. Parrinello, “Accurate sampling using Langevin dynamics,”
Phys. Rev. E 75, 056707 (2007).
81B. Leimkuhler and C. Matthews, “Robust and efficient configurational molecu-
lar sampling via Langevin dynamics,” J. Chem. Phys. 138, 174102 (2013).
82M. Bernetti and G. Bussi, “Pressure control using stochastic cell rescaling,”
J. Chem. Phys. 153, 114107 (2020).
83M. S. Green, “Markoff random processes and the statistical mechanics of time-
dependent phenomena. II. Irreversible processes in fluids,” J. Chem. Phys. 22,
398–413 (1954).
84R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General the-
ory and simple applications to magnetic and conduction problems,” J. Phys. Soc.
Jpn. 12, 570–586 (1957).
85Z. Li, S. Xiong, C. Sievers, Y. Hu, Z. Fan, N. Wei, H. Bao, S. Chen, D.
Donadio, and T. Ala-Nissila, “Influence of thermostatting on nonequilibrium
molecular dynamics simulations of heat conduction in solids,” J. Chem. Phys. 151,
234105 (2019).
86D. J. Evans, “Homogeneous NEMD algorithm for thermal conductivity—
Application of non-canonical linear response theory,” Phys. Lett. A 91, 457–460
(1982).
87Z. Fan, H. Dong, A. Harju, and T. Ala-Nissila, “Homogeneous nonequilibrium
molecular dynamics method for heat transport and spectral decomposition with
many-body potentials,” Phys. Rev. B 99, 064308 (2019).
88H. Dong, Z. Fan, L. Shi, A. Harju, and T. Ala-Nissila, “Equivalence of the
equilibrium and the nonequilibrium molecular dynamics methods for thermal
conductivity calculations: From bulk to nanowire silicon,” Phys. Rev. B 97, 094305
(2018).
89B. Mortazavi, Z. Fan, L. F. C. Pereira, A. Harju, and T. Rabczuk, “Amorphized
graphene: A stiff material with low thermal conductivity,” Carbon 103, 318–326
(2016).
90K. Azizi, P. Hirvonen, Z. Fan, A. Harju, K. R. Elder, T. Ala-Nissila, and S.
M. V. Allaei, “Kapitza thermal resistance across individual grain boundaries in
graphene,” Carbon 125, 384–390 (2017).
91Z. Fan, P. Hirvonen, L. F. C. Pereira, M. M. Ervasti, K. R. Elder, D. Donadio,
A. Harju, and T. Ala-Nissila, “Bimodal grain-size scaling of thermal transport in
polycrystalline graphene from large-scale molecular dynamics simulations,” Nano
Lett. 17, 5919–5924 (2017).
92B. Mortazavi, A. Lherbier, Z. Fan, A. Harju, T. Rabczuk, and J.-C. Charlier,
“Thermal and electronic transport characteristics of highly stretchable graphene
kirigami,” Nanoscale 9, 16329–16341 (2017).
93B. Mortazavi, M. Makaremi, M. Shahrokhi, Z. Fan, and T. Rabczuk,
“N-graphdiyne two-dimensional nanomaterials: Semiconductors with low ther-
mal conductivity and high stretchability,” Carbon 137, 57–67 (2018).

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-24

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1021/acs.chemrev.1c00021
https://doi.org/10.1021/acs.chemrev.1c00021
https://doi.org/10.1038/s41524-022-00721-x
https://doi.org/10.1063/1.5019667
https://doi.org/10.1063/5.0087042
https://doi.org/10.1063/5.0070488
https://doi.org/10.1103/physrevlett.125.166001
https://doi.org/10.1103/physrevb.97.184307
https://doi.org/10.1063/1.5090481
https://doi.org/10.1103/physrevb.104.144110
https://doi.org/10.1016/0010-4655(80)90040-5
https://doi.org/10.1103/physrevb.92.094301
https://doi.org/10.1103/physrevb.103.205421
https://doi.org/10.1103/physrevb.92.195404
https://doi.org/10.1103/physrevb.95.144309
https://doi.org/10.1088/1361-651x/aae180
https://doi.org/10.1002/adts.202100217
https://doi.org/10.1002/adts.202100217
https://doi.org/10.1038/s41524-021-00630-5
https://doi.org/10.1021/acs.jctc.9b00252
https://doi.org/10.1016/j.jcp.2008.01.047
https://doi.org/10.1063/5.0018516
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1088/1361-648x/ab5c5f
https://doi.org/10.1103/physrevb.31.5262
https://doi.org/10.1002/adts.201800184
https://doi.org/10.1063/1.448118
https://doi.org/10.1063/1.447334
https://doi.org/10.1103/physreva.31.1695
https://doi.org/10.1063/1.463940
https://doi.org/10.1063/1.2408420
https://doi.org/10.1103/PhysRevE.75.056707
https://doi.org/10.1063/1.4802990
https://doi.org/10.1063/5.0020514
https://doi.org/10.1063/1.1740082
https://doi.org/10.1143/jpsj.12.570
https://doi.org/10.1143/jpsj.12.570
https://doi.org/10.1063/1.5132543
https://doi.org/10.1016/0375-9601(82)90748-4
https://doi.org/10.1103/physrevb.99.064308
https://doi.org/10.1103/physrevb.97.094305
https://doi.org/10.1016/j.carbon.2016.03.007
https://doi.org/10.1016/j.carbon.2017.09.059
https://doi.org/10.1021/acs.nanolett.7b01742
https://doi.org/10.1021/acs.nanolett.7b01742
https://doi.org/10.1039/c7nr05231f
https://doi.org/10.1016/j.carbon.2018.04.090

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

94H. Dong, P. Hirvonen, Z. Fan, and T. Ala-Nissila, “Heat transport in pristine
and polycrystalline single-layer hexagonal boron nitride,” Phys. Chem. Chem.
Phys. 20, 24602–24612 (2018).
95K. Xu, A. J. Gabourie, A. Hashemi, Z. Fan, N. Wei, A. B. Farimani, H.-P. Komsa,
A. V. Krasheninnikov, E. Pop, and T. Ala-Nissila, “Thermal transport in MoS2
from molecular dynamics using different empirical potentials,” Phys. Rev. B 99,
054303 (2019).
96X. Gu, Z. Fan, H. Bao, and C. Y. Zhao, “Revisiting phonon-phonon scattering
in single-layer graphene,” Phys. Rev. B 100, 064306 (2019).
97X. Wu and Q. Han, “Thermal conductivity of monolayer hexagonal boron
nitride: From defective to amorphous,” Comput. Mater. Sci. 184, 109938
(2020).
98X. Wu and Q. Han, “Thermal conductivity of defective graphene: An efficient
molecular dynamics study based on graphics processing units,” Nanotechnology
31, 215708 (2020).
99X. Wu and Q. Han, “Semidefective graphene/h-BN in-plane heterostruc-
tures: Enhancing interface thermal conductance by topological defects,” J. Phys.
Chem. C 125, 2748–2760 (2021).
100X. Wu and Q. Han, “Thermal transport in pristine and defective two-
dimensional polyaniline (C3N),” Int. J. Heat Mass Transfer 173, 121235
(2021).
101H. Dong, P. Hirvonen, Z. Fan, P. Qian, Y. Su, and T. Ala-Nissila, “Heat
transport across graphene/hexagonal-BN tilted grain boundaries from phase-field
crystal model and molecular dynamics simulations,” J. Appl. Phys. 130, 235102
(2021).
102P. Ying, T. Liang, Y. Du, J. Zhang, X. Zeng, and Z. Zhong, “Thermal transport
in planar sp2-hybridized carbon allotropes: A comparative study of biphenylene
network, pentaheptite and graphene,” Int. J. Heat Mass Transfer 183, 122060
(2022).
103W. Sha and F. Guo, “Thermal transport in two-dimensional carbon nitrides: A
comparative molecular dynamics study,” Carbon Trends 7, 100161 (2022).
104A. Rajabpour, Z. Fan, and S. M. Vaez Allaei, “Inter-layer and intra-layer heat
transfer in bilayer/monolayer graphene van der Waals heterostructure: Is there a
Kapitza resistance analogous?,” Appl. Phys. Lett. 112, 233104 (2018).
105A. J. Gabourie, S. V. Suryavanshi, A. B. Farimani, and E. Pop, “Reduced thermal
conductivity of supported and encased monolayer and bilayer MoS2,” 2D Mater.
8, 011001 (2020).
106S. E. Kim, F. Mujid, A. Rai, F. Eriksson, J. Suh, P. Poddar, A. Ray, C. Park, E.
Fransson, Y. Zhong, D. A. Muller, P. Erhart, D. G. Cahill, and J. Park, “Extremely
anisotropic van der Waals thermal conductors,” Nature 597, 660–665 (2021).
107X. Wu and Q. Han, “Phonon thermal transport across multilayer
graphene/hexagonal boron nitride van der Waals heterostructures,” ACS Appl.
Mater. Interfaces 13, 32564–32578 (2021).
108X. Wu and Q. Han, “Transition from incoherent to coherent phonon thermal
transport across graphene/h-BN van der Waals superlattices,” Int. J. Heat Mass
Transfer 184, 122390 (2022).
109X. Wu and Q. Han, “Maximum thermal conductivity of multilayer graphene
with periodic two-dimensional empty space,” Int. J. Heat Mass Transfer 191,
122829 (2022).
110H. Feng, K. Zhang, X. Wang, G. Zhang, and X. Guo, “Thermal transport of
bilayer graphene: A homogeneous nonequilibrium molecular dynamics study,”
Phys. Scr. 97, 045704 (2022).
111H. Dong, Z. Fan, P. Qian, T. Ala-Nissila, and Y. Su, “Thermal conductivity
reduction in carbon nanotube by fullerene encapsulation: A molecular dynamics
study,” Carbon 161, 800–808 (2020).
112G. Barbalinardo, Z. Chen, H. Dong, Z. Fan, and D. Donadio, “Ultrahigh con-
vergent thermal conductivity of carbon nanotubes from comprehensive atomistic
modeling,” Phys. Rev. Lett. 127, 025902 (2021).
113T. Liang, K. Xu, M. Han, Y. Yao, Z. Zhang, X. Zeng, J. Xu, and J. Wu,
“Abnormally high thermal conductivity in fivefold twinned diamond nanowires,”
Mater. Today Phys. 25, 100705 (2022).
114L. Isaeva, G. Barbalinardo, D. Donadio, and S. Baroni, “Modeling heat trans-
port in crystals and glasses from a unified lattice-dynamical approach,” Nat.
Commun. 10, 3853 (2019).
115B. Fu, K. D. Parrish, H.-Y. Kim, G. Tang, and A. J. H. McGaughey, “Phonon
confinement and transport in ultrathin films,” Phys. Rev. B 101, 045417 (2020).

116Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, “Generalized
decay law for particlelike and wavelike thermal phonons,” Phys. Rev. B 103,
184307 (2021).
117H. Wang, Y. Cheng, Z. Fan, Y. Guo, Z. Zhang, M. Bescond, M. Nomura, T.
Ala-Nissila, S. Volz, and S. Xiong, “Anomalous thermal conductivity enhance-
ment in low dimensional resonant nanostructures due to imperfections,”
Nanoscale 13, 10010–10015 (2021).
118H. Dong, S. Xiong, Z. Fan, P. Qian, Y. Su, and T. Ala-Nissila, “Interpretation
of apparent thermal conductivity in finite systems from equilibrium molecular
dynamics simulations,” Phys. Rev. B 103, 035417 (2021).
119N. W. Lundgren, G. Barbalinardo, and D. Donadio, “Mode localization and
suppressed heat transport in amorphous alloys,” Phys. Rev. B 103, 024204
(2021).
120K. Li, Y. Cheng, H. Wang, Y. Guo, Z. Zhang, M. Bescond, M. Nomura,
S. Volz, X. Zhang, and S. Xiong, “Phonon resonant effect in silicon membranes
with different crystallographic orientations,” Int. J. Heat Mass Transfer 183,
122144 (2022).
121H. Dong, Z. Fan, P. Qian, and Y. Su, “Exactly equivalent thermal conductiv-
ity in finite systems from equilibrium and nonequilibrium molecular dynamics
simulations,” Physica E 144, 115410 (2022).
122S. Jin, Z. Zhang, Y. Guo, J. Chen, M. Nomura, and S. Volz, “Optimization
of interfacial thermal transport in Si/Ge heterostructure driven by machine
learning,” Int. J. Heat Mass Transfer 182, 122014 (2022).
123W. Jiang, Y. Zhang, L. Zhang, and H. Wang, “Accurate Deep Potential model
for the Al–Cu–Mg alloy in the full concentration space,” Chin. Phys. B 30, 050706
(2021).
124A. P. Bartók, J. Kermode, N. Bernstein, and G. Csányi, “Machine learning
a general-purpose interatomic potential for silicon,” Phys. Rev. X 8, 041048
(2018).
125J. Nigam, S. Pozdnyakov, and M. Ceriotti, “Recursive evaluation and itera-
tive contraction of N-body equivariant features,” J. Chem. Phys. 153, 121101
(2020).
126S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and K.-R.
Müller, “Machine learning of accurate energy-conserving molecular force fields,”
Sci. Adv. 3, e1603015 (2017).
127A. S. Christensen and O. A. von Lilienfeld, “On the role of gradients for
machine learning of molecular energies and forces,” Mach. Learn.: Sci. Technol. 1,
045018 (2020).
128M. Gastegger, J. Behler, and P. Marquetand, “Machine learning molecu-
lar dynamics for the simulation of infrared spectra,” Chem. Sci. 8, 6924–6935
(2017).
129J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev, and A. E. Roitberg, “Less is
more: Sampling chemical space with active learning,” J. Chem. Phys. 148, 241733
(2018).
130L. Zhang, D.-Y. Lin, H. Wang, R. Car, and W. E, “Active learning of uniformly
accurate interatomic potentials for materials simulation,” Phys. Rev. Mater. 3,
023804 (2019).
131M. Wen and E. B. Tadmor, “Uncertainty quantification in molecular sim-
ulations with dropout neural network potentials,” npj Comput. Mater. 6, 124
(2020).
132C. Schran, J. Behler, and D. Marx, “Automated fitting of neural network poten-
tials at coupled cluster accuracy: Protonated water clusters as testing ground,”
J. Chem. Theory Comput. 16, 88–99 (2020).
133M. Karabin and D. Perez, “An entropy-maximization approach to automated
training set generation for interatomic potentials,” J. Chem. Phys. 153, 094110
(2020).
134E. V. Podryabinkin and A. V. Shapeev, “Active learning of linearly
parametrized interatomic potentials,” Comput. Mater. Sci. 140, 171–180
(2017).
135V. Zaverkin and J. Kästner, “Exploration of transferable and uniformly accu-
rate neural network interatomic potentials using optimal experimental design,”
Mach. Learn.: Sci. Technol. 2, 035009 (2021).

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-25

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1039/c8cp05159c
https://doi.org/10.1039/c8cp05159c
https://doi.org/10.1103/physrevb.99.054303
https://doi.org/10.1103/physrevb.100.064306
https://doi.org/10.1016/j.commatsci.2020.109938
https://doi.org/10.1088/1361-6528/ab73bc
https://doi.org/10.1021/acs.jpcc.0c10387
https://doi.org/10.1021/acs.jpcc.0c10387
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121235
https://doi.org/10.1063/5.0069134
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122060
https://doi.org/10.1016/j.cartre.2022.100161
https://doi.org/10.1063/1.5025604
https://doi.org/10.1088/2053-1583/aba4ed
https://doi.org/10.1038/s41586-021-03867-8
https://doi.org/10.1021/acsami.1c08275
https://doi.org/10.1021/acsami.1c08275
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122390
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122390
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122829
https://doi.org/10.1088/1402-4896/ac5af0
https://doi.org/10.1016/j.carbon.2020.01.114
https://doi.org/10.1103/PhysRevLett.127.025902
https://doi.org/10.1016/j.mtphys.2022.100705
https://doi.org/10.1038/s41467-019-11572-4
https://doi.org/10.1038/s41467-019-11572-4
https://doi.org/10.1103/physrevb.101.045417
https://doi.org/10.1103/physrevb.103.184307
https://doi.org/10.1039/d1nr01679b
https://doi.org/10.1103/physrevb.103.035417
https://doi.org/10.1103/physrevb.103.024204
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122144
https://doi.org/10.1016/j.physe.2022.115410
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122014
https://doi.org/10.1088/1674-1056/abf134
https://doi.org/10.1103/physrevx.8.041048
https://doi.org/10.1063/5.0021116
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1088/2632-2153/abba6f
https://doi.org/10.1039/c7sc02267k
https://doi.org/10.1063/1.5023802
https://doi.org/10.1103/physrevmaterials.3.023804
https://doi.org/10.1038/s41524-020-00390-8
https://doi.org/10.1021/acs.jctc.9b00805
https://doi.org/10.1063/5.0013059
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1088/2632-2153/abe294

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

136J. P. Janet, C. Duan, T. Yang, A. Nandy, and H. J. Kulik, “A quantitative uncer-
tainty metric controls error in neural network-driven chemical discovery,” Chem.
Sci. 10, 7913–7922 (2019).
137K. Shimamura, Y. Takeshita, S. Fukushima, A. Koura, and F. Shimojo,
“Computational and training requirements for interatomic potential based on
artificial neural network for estimating low thermal conductivity of silver
chalcogenides,” J. Chem. Phys. 153, 234301 (2020).
138M. A. Caro, V. L. Deringer, J. Koskinen, T. Laurila, and G. Csányi, “Growth
mechanism and origin of high sp3 content in tetrahedral amorphous carbon,”
Phys. Rev. Lett. 120, 166101 (2018).
139Y. Wang, Z. Fan, P. Qian, T. Ala-Nissila, and M. A. Caro, “Structure and pore
size distribution in nanoporous carbon,” Chem. Mater. 34, 617–628 (2022).
140J. M. Dickey and A. Paskin, “Computer simulation of the lattice dynamics of
solids,” Phys. Rev. 188, 1407–1418 (1969).
141J. M. Haile, Molecular Dynamics Simulation: Elementary Methods (John Wiley
& Sons, 1992).

142X. Gu, Z. Fan, and H. Bao, “Thermal conductivity prediction by atomistic sim-
ulation methods: Recent advances and detailed comparison,” J. Appl. Phys. 130,
210902 (2021).
143A. Stukowski, “Visualization and analysis of atomistic simulation data with
OVITO—The Open Visualization Tool,” Modell. Simul. Mater. Sci. Eng. 18,
015012 (2009).
144A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M.
Dułak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings,
P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S.
Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Ros-
tgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen,
M. Walter, Z. Zeng, and K. W. Jacobsen, “The atomic simulation environment—A
Python library for working with atoms,” J. Phys.: Condens. Matter 29, 273002
(2017).
145Z. Fan (2022). “GPUMD: A package for constructing accurate machine-
learned potentials and performing highly efficient atomistic simulations,”
Zenodo.10.5281/zenodo.6548090.

J. Chem. Phys. 157, 114801 (2022); doi: 10.1063/5.0106617 157, 114801-26

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1039/c9sc02298h
https://doi.org/10.1039/c9sc02298h
https://doi.org/10.1063/5.0027058
https://doi.org/10.1103/physrevlett.120.166101
https://doi.org/10.1021/acs.chemmater.1c03279
https://doi.org/10.1103/physrev.188.1407
https://doi.org/10.1063/5.0069175
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/1361-648x/aa680e
Zenodo.10.5281/zenodo.6548090

