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The efficient extraction of force constants (FCs) is crucial for the analysis of
many thermodynamic materials properties. Approaches based on the
systematic enumeration of finite differences scale poorly with system size and
can rarely extend beyond third order when input data is obtained from
first-principles calculations. Methods based on parameter fitting in the spirit
of interatomic potentials, on the other hand, can extract FC parameters from
semi-random configurations of high information density and advanced
regularized regression methods can recover physical solutions from a limited
amount of data. Here, the HIPHIVE Python package, that enables the
construction of force constant models up to arbitrary order is presented.
HIPHIVE exploits crystal symmetries to reduce the number of free parameters
and then employs advanced machine learning algorithms to extract the

force constants. Depending on the problem at hand, both over and
underdetermined systems are handled efficiently. The FCs can be

example, the body-centered cubic phase of
the group IV elements (Ti, Zr, Hf) or the
cubic phase of zirconia.l! In more gen-
eral terms, phonon—phonon coupling must
be taken into account, which leads to fi-
nite phonon lifetimes and temperature-
dependent frequencies.

Formally, the analysis of vibrational ma-
terial properties requires a set of force con-
stants (FCs), which allows the computa-
tion of atomic forces solely based on the
displacements of atoms from their refer-
ence positions. The harmonic approxima-
tion requires only knowledge of the second-
order FCs, which can be readily extracted
using software packages such as pHoNOPY."?
Third-order FCs, which are required, for

subsequently analyzed directly and or be used to carry out, for example,
molecular dynamics simulations. The utility of this approach is demonstrated
via several examples including ideal and defective monolayers of MoS; as well

as bulk nickel.

1. Introduction

The vibrational properties of solids are pivotal for a large num-
ber of physical phenomena, including phase stability and ther-
mal conduction. In crystalline solids, the vibrational motion of
the atoms is periodic and commonly described using phonons—
quasi-particles that represent collective excitations of the lattice.
At the first level of approximation, phonons can be obtained
within the harmonic limit, which implies noninteracting quasi-
particles with infinite lifetimes. This approach, along with its
so-called quasi-harmonic extension, already provides a wealth of
information. There are, however, countless examples where an-
harmonic effects are crucial and must be accounted for in order
to capture the correct physical behavior of a system. Notable ex-
amples include the lattice contribution to the thermal conduc-
tivity or the vibrational stabilization of metastable phases, for
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example, for computing the thermal con-
ductivity to the lowest permissible order of
permutation theory, can be constructed us-
ing, for example, pHONO3PY,"®) sHENGBTE,
ALMABTE,P! and aarr-arrow.fa system-
atic enumeration of atomic displacements,
while reference forces are usually obtained
using density functional theory (DFT) calculations. It is also pos-
sible to obtain FCs from density functional perturbation theory
calculations as implemented, for example, in the ainiT”! and
QUANTUM-ESPRESSO packages.® The latter approach is, however,
commonly limited to second- and third-order FCs as the com-
putation of higher-order terms, by power of the 2n + 1 theorem
(see e.g., ref. [9]), would require knowledge of second and higher-
order derivatives of the wave function, which are not commonly
available in these codes. FCs beyond third-order are required to
describe, for example, metastable systems or the temperature de-
pendence of phonon modes. The number of degrees of freedoms
(DOFs) in higher-order FCs increases exponentially with the in-
teraction range and the latter are hence increasingly difficult to
extract by enumeration schemes. Alternatively, one can employ
regression schemes,%!! as implemented in the ALAMODE!!?
and TDEP codes.® They employ use linear least-square fitting
and thus require the number of input forces to exceed the num-
ber of parameters, that is, they solve an overdetermined prob-
lem. More recently, techniques based on compressive sensing*
have been proposed!’>*8l that can also efficiently solve underdeter-
mined systems.

Here, we introduce the H1pHIVE Python package, which allows
one to efficiently obtain high-order FCs both in large systems
and systems with low-symmetry. HIPHIVE can take advantage of
various powerful machine learning algorithms for FC extraction
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via scikiT-LEARN'? and it can be readily interfaced with a large
number of electronic structure codes via the atomic simulation
environment (ASE) package.”! This enables a flexible workflow
with easy access to various advanced optimization techniques
some of which are designed to find sparse solutions!*?! that
reflect the short-range nature of the FCs. If the input configu-
rations are constructed sensibly, this approach requires a much
smaller number of input configurations and thus consider-
ably reduces the computational effort, the overwhelming part of
which is usually associated with DFT calculations. This approach
becomes genuinely advantageous for obtaining second-order
FCs in large and/or low symmetry systems (defects, interfaces,
surfaces, large unit cells, etc.) and high-order FCs, for which a
strict enumeration scheme quickly leads to a dramatic increase
in the number of force calculations.

FCs can be post-processed in a number of ways including anal-
ysis via pHONOPY and PHONO3PY as well as molecular dynamics
(MD) simulations via ASE. An extensive user guide is available
online,?? which includes a basic tutorial as well as a number of
advanced examples. The package is maintained under an open
source license on GITLAB and can be installed from the PyP1
index.

The remainder of this paper is organized as follows. The next
section provides a concise summary of FC expansions, which sets
up a description of algorithmic and methodological aspects in
Section 3 as well as the HipHIVE workflow in Section 4. Possible
applications are finally illustrated by several examples in Section
5.

2. Force Constants

This section provides a brief introduction to FC expansions. The
similarities between an FC and a cluster expansion are described
and the effect of crystal symmetries is demonstrated. Finally,
the constraints due to translational and rotational symmetry are
summarized.

2.1. Basics

The potential energy V of a solid can be represented by a Taylor
expansion of the potential energy surface (PES) in ionic displace-
ments u = R — R, away from the equilibrium positions R,

1 1 .,
V= Vot Ol + oo uiu] + o uulul + .

where the FEinstein summation convention applies and

oo 2V g PV
L= : ij _W etc.

®;, @;j, ... are the FCs corresponding to increasing orders of the
expansion. Latin indices i indicate the atomic labels, where the
summation is over an infinite crystal lattice, while Greek indices
o run over the Cartesian coordinates x, y, z. V; is a constant term,
which is commonly ignored when dealing with lattice dynamics.
The first-order FC is also often dropped since the expansion in
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Figure 1. Examples for one-body (singlet; red), two-body (pair; green), and
three-body (triplet; blue) clusters. Dark colors indicate representative clus-
ter whereas lighter colors represent symmetry equivalent clusters that be-
long to the associated orbit. While the two-body clusters shown here are re-
lated by a simple fourfold rotation, the three-body clusters can be mapped
onto each by the application of a fourfold rotation combined with a mirror
operation.

displacements can be made around an equilibrium lattice con-
figuration with vanishing forces. These two terms are important
for some applications but here are considered zero. Truncating
the potential after the second-order term results in the conven-
tional harmonic phonon theory, which is analytically solvable and
widely used.?324

The forces can be written in terms of the FCs as

1
Fit = =0 u] — SO ujuy — .. (1)

Crucially, this expression that takes the functional form of an in-
teratomic many-body potential is linear in the FCs, which will
become relevant in Section 3.

The number of DOFs in the FC expansion scales exponen-
tially with O(N"), where N is the number of atomic sites of
the supercell and #» is the order after which the expansion is
truncated. The number of independent parameters is, however,
much smaller due to the symmetries of the underlying lattice as
well as constraints due to the conservation of linear and angular
momentum.' The number of numerically relevant parameters is
smaller still due to the decay of the FCs with interaction distance,
order, and finite many-body interactions.

2.2. Clusters

To represent the FCs and their inherent symmetries, it is con-
venient to consider clusters of sites (ij...), each of which can
be assigned a size, taken, for example, as the largest distance
between any two sites in the cluster. The FCs correspond to in-
teractions between the sites forming a cluster; for example, the
term ®;jy, describes a fourth-order interaction in the three-body
cluster (ijk). Clusters can be categorized based on the number of
sites they comprise and accordingly there are one-body (singlet),
two-body (pair), and n-body (many-body) clusters (Figure 1). In
general, a cluster of order n is a multiset of order (or cardinality)
n consisting of up to n different atoms. As a result of the locality
of the interactions, one commonly truncates the FC expansion
both in size, order, and cluster size. It is thus possible to create,
for example, a non-central, short ranged, anharmonic pair poten-
tial or a long ranged harmonic pair potential with short ranged
anharmonic many-body corrections.
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2.3. Symmetries

The FCs obey a number of symmetries, the most fundamental of
which stems from the requirement that the differentiation of the
total energy and thus ® must be invariant under a simultaneous
permutation P of atomic and Cartesian indices

af... P(ap...
cbi_ﬁ.. = q)PEif.}..]) (2)

The FCs must further comply with the symmetry of the un-
derlying lattice as expressed by the associated spacegroup. Each
symmetry operation S consists of a (possibly improper) rotation
R and a translation T. If application of S maps a cluster (ij ...)
onto another cluster (i'j’. . .), the FCs corresponding to these two
clusters are related to each other according to

o =) RR (3)
Clusters, which can be transformed into each other as a result of
the application of such a symmetry operation, are said to belong
to the same orbit (Figure 1) and the associated FC parameters are
related by the respective symmetry operation. The lattice symme-
try can thus be used to reduce the number of free parameters by
grouping clusters in orbits.

Furthermore, a symmetry operation that maps a cluster onto
itself implies a reduction in the number of internal DOFs in the
FCs

- S
o =@ “TIRCRY )
where P can be a permutation, for example, a mapping of the
indices (ij) onto (ji). Section 3 addresses how these constraints
are imposed in practice.

2.4. Constraints

The conservation of linear momentum constrains the FCs
further leading to a set of translational (acoustic)) sum rules.

> =0 )

which apply for all Cartesian indices independently.?’]

Rotational invariance is generally harder to enforce than trans-
lational invariance. This is partly due to subtle difficulties that
arise when combining periodic boundary conditions with a ro-
tationally invariant expansion around equilibrium.?’! Many au-
thors have described and proposed rotational sum rules.?*26-°]
In general, it is recognized that the conservation of angular mo-
mentum leads to a set of rotational sum rules that relate force
constants of order n and n + 1 as!!®2¥

’

q>oz1...o/wa’an + q>§1---dn+1wan+1a’ra

/ !
o o oo
[} w + ... ; ;
y i1ein Oy i1edng1 y ing1

iy

=0  (6)

where o is a generator of infinitesimal rotations with the same
representation as the Levi-Civita symbol and r{ denotes the posi-
tion vector of atom i.

Adv. Theory Simul. 2019, 1800184

1800184 (3 of 11)

www.advtheorysimul.com

Orbits Clusters Parameters
10* E T T T L
F Order E
. i
3 3 E
@ F—A— 2 ]
5 102 3 E

s} E

(®) F o
10! ¢ 3
100 L 1 1 |

0 4 8 0 4 8 0 4 8

Cutoff (A) Cutoff (A) Cutoff (A)

Figure 2. a) Number of unique types of clusters, b) total number of clus-
ters per primitive cell, and c) number of unknown parameters in FCC alu-
minum as a function of the cutoff radius imposed during construction of
the cluster space.

To simplify things, we only consider the two simplest sum
rules derived by Born and Huang?’ and apply them to second-
order FCs. The Born-Huang sum rule reads

Ly _ oV
<I>U r;= <I>U ri (7)
which is a truncation of Equation (6), whereas the Huang invari-
ance imposes

apy.s yé a b
> friry =)oy ®)
ij ij

where r;; is the distance vector between the equilibrium positions
of atoms i and j.

These two constraints do not suffice to render the expansion
fully rotationally invariant and thus MD simulations can poten-
tially behave unphysical. As shown below, they do, however, en-
force the correct dispersion relation near the I'-point, which is
crucial for, for example, 2D materials.’)

Even with the application of symmetry and sum rules the num-
ber of orbits increases rapidly with cutoff and order (Figure 2).
Since each orbit is associated with several parameters, the total
number of parameters increases even more quickly. As a result
for systems with low symmetry, large unit cells, and high orders,
the number of model DOFs can easily outnumber the number
available reference forces leading to underdetermined problem
as discussed below.

3. Methodology

This section will start with a concise overview of the com-
putational methods used when implementing the framework
described above. In the subsequent subsections, each step is
described in more detail.

The cluster space represents a fundamental element of the
algorithm implemented in HIPHIVE. It comprises information
concerning

® the clusters that an atom in the primitive cell can be part of
given the cutoff,
® the organization of clusters into orbits,
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® the FC for each orbit (relative to a representative cluster of that
orbit),

® the free parameters allowed by symmetry in each FC, and

® the constraints imposed on the free parameters by transla-
tional and rotational invariance.

The cluster space thus contains all the information needed
to construct the template FCs for any supercell of the same
structure.

The information is generated by the following procedure,
which requires user input in the form of a structure (defined by
cell metric, basis, and chemical species) as well as a set of cutoff
radii per order.

1. Find all applicable symmetry operations for the input struc-
ture using, for example, spGrLB.*

2. Enumerate all possible sites in periodic images of the primi-
tive cell located at the origin (zero-cell) that reside within the
specified cutoff relative to any atom in the center cell.

3. Construct all possible clusters, which contain at least one site
in the zero-cell and are consistent with the cutoff.

4. Apply symmetry operations and establish the symmetry rela-
tions between clusters; group the clusters into orbits.

5. Use the symmetry operations that map the representative
cluster of an orbit onto itself to reduce the FCs into reduced
components that obey the symmetries.

6. Finally, construct the system of equations describing the sum
rules and find the solution space satisfying the constraints.

The cluster space can then be used together with a supercell
with displaced atoms to create the so-called sensing matrix, which
relates the free parameters to the resulting forces.

3.1. Clusters and Orbits

Finding the possible clusters in a structure can be done in several
ways. Keep in mind that even though a lower-order cluster (e.g.,
0-0-3-7) might be invariant under a symmetry, a higher-order
cluster involving the same atoms (e.g., 0-3-3-7-7) need not be in-
variant under the same symmetry. One simple way to generate
clusters is to generate all possible unique multisets of increas-
ing cardinality with elements drawn from the atom enumeration
of the periodic images. To decide if the cluster (multiset) should
be kept, all atoms must be within the cutoff distance from each
other and it must contain at least one atom in the zero-cell.

The symmetry operations can now be used to categorize the
clusters into orbits, each of which contains a representative clus-
ter. All other clusters in the orbit are related to the representative
(prototype) cluster by a symmetry operation together with a per-
mutation. If during the categorization process a symmetry maps
a cluster onto a permutation of itself, it can be used to reduce the
number of free components in the FC as described below.

3.2. Cluster Symmetries and Invariant Bases

If a representative cluster is symmetric under a set of crys-
tal symmetries {S;}, the corresponding representative FC must
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obey the same symmetries. Using multi-index notation -* =

{-'fjﬁ , fﬁy, ...}, the problem of finding valid solutions can be trans-
formed into an eigenvalue problem by flattening the tensors

(DA — q)A’ EP(A/)A (9)

The eigenvectors, after back-transformation, are then solutions ¢
to the original Equation (4), which form an invariant basis with
respect to the symmetries of the cluster. An FC associated with
the respective cluster that fulfills the symmetry can then be con-
structed as a linear combination of these basis functions

b = Z(lp(pp
p

(10)

where a, represents the parameters that must be found by op-
timization (see below) and cannot be determined by symmetry
alone and the basis elements ¢ we denote as eigentensors. Equa-
tion (9) can in principle be solved by any suitable algorithm. It is,
however, preferable to work in scaled coordinates since then the
rotation matrices are integer matrices allowing one to use an op-
timized algorithm. This has some additional advantages includ-
ing exact precision and conservation of sparsity, that is, a 3 x 3
matrix with nine unknowns can be decomposed into nine dense
3 x 3 matrices or nine sparse 3 x 3 matrices with only one ele-
ment per matrix.

3.3. Translational Sum Rules

While the parametrization obtained after enforcing the crystal
symmetries could in principle be used as the final parametriza-
tion of the model, the resulting FCs are not guaranteed to be
translational or rotational invariant. The constraints due to sum
rules can be enforced by projecting the parameters onto a sub-
space of the parameter space (i.e., the nullspace of Equation (5))
that fulfills the sum rule. As noted below, this method is used in
HIPHIVE to enforce the rotational sum rules.

Sum rules can also be applied via re-parametrization by only
considering linear combinations of parameter vectors, which
span the aforementioned nullspace of the sum rule. HIPHIVE
adopts this approach to enforce the translational sum rules us-
ing integer arithmetics via sympy to create the nullspace.’!
The corresponding constraint matrix is constructed as described
below.

Let © denote an orbit and Ty, the combined rotation and per-
mutation operation that maps the representative cluster cg onto
a cluster ¢ belonging to the same orbit. Then, together with Equa-
tion (10) the sum rule Equation (5) can be written as

Zi Z@ Zp ap@‘/’;(f Tg(fj)aﬁ =0 Vj...af... (11)
— Ctransa —_ 0

where C"™" is the translational constraint matrix. Interpreting
pO as a multi-index, the equation above represents a system of
linear equations in the parameters a,q. The solutions to this sys-
tem are referred to as constraint vectors A, ; and specify how
the parameters a,o must be related in order to fulfill the sum
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rules
Gpo = Apo,ibi

where 3 is the new parameters guaranteed to fulfill the transla-
tional sum rules.

3.4. Sensing Matrix

To extract the independent parameters, the so-called sensing (or
fit) matrix M must be constructed for each input structure. This
matrix, which depends on the 3 N,;-dimensional displacement
vector u, relates the 3 N,,-dimensional vector of predicted forces
f to the N,,,-dimensional parameter vector @

f(u,a) = M(u)a (12)

where N and N, denote the number of atoms in the supercell
and the number of parameters, respectively. This form is possible
due to Equation (1), which has the form of an interatomic poten-
tial with tunable parameters. The crucial step here is to recognize
that the forces f are linearly related to the FC parameters @ for
given displacements u. The FCs in turn are linearly dependent on
the FC parameters via the crystal symmetries and the FC param-
eters associated with the orbits, where the parameters are either
the true expansion parameters associated with the orbits or the
constrained parameters that include the translational sum rules.

3.5. Rotational Sum Rules

In principle, the procedure used to enforce the translational sum
rules can also be employed to apply the rotational sum rules.
Since the rotational sum rules involve the positions of the lattice
sites (which can assume any real value) the algorithm to extract
the nullspace must, however, be numerically very robust. Alter-
natively, one can project a previously determined parametrization
onto the correct subspace while maintaining lattice symmetries
and translational invariance, which is the approach adopted here.
The sum rules, for example,

ol — @/l =0
are constructed and flattened to a column in a new constraint ma-
trix. This is repeated for all parameters @ leading to a Nyyim X Npar
matrix where Nprim 18 the number of atoms in the primitive cell
times 3* and N, is equal to the number of independent param-
eters after the enforcement (re-parametrization) of the transla-
tional sum rules. The sum rules using this new constraint matrix
C™" and the parameters @ is written analogous to the translational
sum rules as

Crota‘ — 0
Given a solution @, the above is in general not fulfilled. Let us

assume C™'d = d, where d is a vector describing how well the
sum rule is fulfilled. Now, we want to find a correction A4 to
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@, which is as small as possible and ensures the sum rules are
fulfilled

C™'(@ + AG) =0 (13)

Thus, we have a new problem, that is, to find A@ such that
IC™AG + d|| < & while | AG|| < &,, where &; are numerical tol-
erance parameters. This problem can be solved efficiently by, for
example, ridge regression using the £,-norm.

3.6. Reference Structures

Extracting FCs requires a set of structures with reference forces
that are most commonly obtained from DFT calculations. The
compilation of these structures depends on the intended usage.
In the present context, we are usually faced with FC extraction in
one of the following situations.

1. FCs to be used in lattice dynamics theory (phonon frequen-
cies, lifetimes, etc. and derived properties such as harmonic
free energy and thermal conductivity)

2. FCs to be used as an interatomic potential in, for example,
MD simulations for sampling strongly anharmonic PESs

3. effective lower-order FCs directly fitted to a MD trajectory

In the last case, structure selection is trivial as the MD trajec-
tory naturally delivers the structures of interest. The other two
scenarios require, however, more attention.

In case (i), often only second- and third-order FCs are of in-
terest. For this purpose, we have found “rattled” structures to
work well, which can be obtained by imposing displacements
drawn from a Gaussian distribution. Displacement amplitudes
of 2 0.01-0.05 A commonly yield accurate force constants, which
is comparable to the default displacement amplitude of 0.01 A
used, for example, by prHONOPY.

When using the rattle approach, we have found that it can be-
come difficult to untangle the force contribution if higher or-
ders are contributing to the forces. This leads to higher-order
contributions effectively being included in the fitted force con-
stants thus reducing their accuracy. Therefore, even if the goal
is to extract only second or third-order FCs, it is beneficial to in-
clude terms corresponding to the respective higher order (third
or fourth-order) during FCs extraction.

In case (ii), it is more difficult to produce good training struc-
tures without any prior knowledge of the PES. When construct-
ing reference structures for a fourth, sixth, or even higher-order
model, rather large displacements must be included in training
set. Here, the rattle method with standard deviations of = 0.1 A
will fail as it commonly leads to some very short interatomic dis-
tances with huge repulsive forces. This can be overcome using
a Monte Carlo (MC) approach, which aims to produce large ran-
dom displacement while preserving interatomic distances. A ran-
domly selected atom is displaced by a small amount and the new
position is accepted with probability

1 dmin - dthrcshold) ]
P=_letf| ———— | +1
2 [ ( dyidth
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where d.,;, is the new minimum distance to any another atom,
Ainreshold 18 a user defined threshold for interatomic distances, and
dwiar acts as an effective temperature typically of order ~ 0.1A.

There is, however, a more elegant and physically sensible ap-
proach. Using some rough estimate for the second-order FCs,
one can obtain a set of normal modes, which can be subsequently
randomly populated with an average energy of k3 T/2 to generate
a physically sensible displacement pattern*%

u = ZkBTZi\X/;:\/—an;cos(ZnUg)
m o

where W is the polarization vector of mode s, and Q and U
are uniform random numbers between zero and one. This ap-
proach can be used to generate displacements corresponding to
specific temperatures as shown, for example, in ref. [33]. The ini-
tial second-order FCs can, for example, be obtained from a fit
to a minimal set of rattled structures with a small displacement
amplitude.

These two methods allow one to generate sensible training
structures with large displacements with minimal knowledge of
the reference PES. While we have found these methods to work
very well in most cases, it is of course also possible to improve
models iteratively.

4. Workflow

The approach outlined above has been implemented in the
Python package HipHIVE. The latter also provides functionality
for performing related tasks such as fitting and validation, can
be interfaced with other Python packages such as, for example,
proNopY?! and scikiT-LEarRN.!) The following subsections de-
scribed the key steps involved in creating a force constant poten-
tial (FCP) (Figure 3).

4.1. Cluster Space

To build an FCP, one must create a cluster space object based on
a prototype structure and a set of cutoffs, which specify the max-
imum interaction range considered for each order. As described
in Section 3, the cluster space compiles the information needed
to completely specify the clusters and eigentensors of any super-
cell based on a certain primitive cell. The cluster space is associ-
ated with a number of free parameters, which can be extracted by
fitting to forces obtained by pseudo-random displacements for a
number of supercell structures.

4.2. Structure Container

In order to fit the parameters, one requires a set of reference
forces and displacements for some structures. The reference
structures should span the configuration space of interest and
for computational reasons, it is desirable to use as few structures
as possible (see Section 3.6).
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Figure 3. Overview of HIPHIVE workflow. Square orange nodes represent
data supplied by a user. Blue ellipses represent HiPHIVE objects. Green
squares represent output data that can be used directly or processed fur-
ther using other packages or programs.

HIPHIVE can handle any combination of structures as long as
they share the same equivalent primitive cell. For convenience, all
configurations available for training and validation are compiled
into a structure container. Upon addition of a structure, its corre-
sponding sensing matrix is constructed as described in Section 3.
The structure container then provides functionality for selecting
subsets of structures in the form of sensing matrices and target
forces suitable for training and validation.

4.3. Training and Validation

Having constructed cluster space and structure container, one
can train the associated parameters. This involves solving a set
of linear equations, which can be readily achieved by a number
of linear regression techniques. The equation system can be over
or underdetermined and in both cases some form of regulariza-
tion is useful since the solution is often sparse and/or the data
contains noise originating from the input data or the truncation
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of the cluster space. The validity of the solution can be assessed by
cross validation techniques including, e.g., shuffle-split or k-fold.

HIPHIVE supports a number of popular regularized training
and validation techniques via the scikiT-LEARN machine learn-
ing library. This includes, for example, methods such as least
absolute shrinkage and selection operator (LASSO), automatic
relevance detection regression (ARDR), singular-value decom-
position, elastic net, Bayesian-ridge regression, and recursive
feature elimination. There is also functionality for generating
ensembles of models. Further training/validation protocols can
be readily implemented thanks to the modular structure of the
approach.

4.4, Force Constant Potential

Once the free parameters have been obtained, the cluster space
can be transformed into an FCP. During this step, it is also pos-
sible to enforce rotational sum rules. The FCP enables calculat-
ing the FCs in any supercell compatible with the original primi-
tive cell.

The final FCs can be analyzed using pHONOPY to obtain, for ex-
ample, phonon dispersions or thermodynamic quantities in the
(quasi-)harmonic approximation. It is also possible to compute
transport properties using, for example, PHONO3PY or SHENGBTE
or to carry out MD simulations via an ASE calculator.

5. Applications

5.1. Phonon Dispersion of Monolayer-MoS,

2D materials such as graphene are attracting a lot of interest due
their exceptional properties. As a result of their dimensionality,
they exhibit a quadratic dispersion of one of the transverse acous-
tic modes near the I'-point.?’! This is in contrast to (3D) bulk
materials, for which all acoustic branches exhibit a linear dis-
persion in the center of the Brillouin zone. It has been shown
that in order for this behavior to be captured correctly, the FCs
must fulfill crystal symmetry, translational invariance, as well as
rotational invariance conditions.l”! This provides an opportunity
for demonstrating the impact of the rotational sum rules on the
phonon dispersion.

Here, we consider a monolayer of the transition metal
dichalcogenide (TMD) MoS,, which belongs to space group
P6m2 (International Tables of Crystallography number 187). In-
put configurations were generated by imposing random dis-
placements on ideal supercells comprising up to 300 atoms
(equivalent to 10 x 10 x 1 unit cells). The average displacement
amplitudes for these configurations were approximately 0.008 A
leading to average forces of 170 meV A~! and maximum forces
of about 1.1 eV A~!. Reference forces were obtained from DFT
calculations using the projector augmented wave method®>3% as
implemented in vaspl*”! and the vdW-DF-cx method, which com-
bines semi-local exchange with nonlocal correlation.’®**#! The
latter has been previously shown to perform very well with re-
gard to the description of both structural and thermal properties
of TMDs.*!l The Brillouin zone was sampled using Monkhorst-
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Pack k-point grids equivalent to a 16 x 16 x 1 mesh relative to
the primitive cell, except for the 300-atom cells, which were sam-
pled using only the I'-point. The plane-wave energy cutoff was
set to 260 eV, a finer grid was employed for evaluating the forces,
and the reciprocal projection scheme was used throughout.
FCPs were constructed using second-order cutoffs of up to
15 A and including third-order terms up to a range of 3.0 A. The
latter procedure was found to stabilize the convergence of the
second-order terms. For the largest supercell (300 atoms) and cut-
off radius 15 A, one obtains 319 parameters. Parameters were op-
timized by conventional least-squares regression. For validation,
the phonon dispersion was also computed using pHONOPY.?!
The phonon dispersion obtained using HipHIVE with all in-
variance conditions imposed is virtually indistinguishable from
the one generated by pHoNoOPY (Figure 4a). Here, the lowermost
transverse acoustic branch clearly exhibits a quadratic disper-
sion. If the rotational sum rules are deactivated, the dispersion
is almost unchanged safe for the emergence of a small imagi-
nary pocket in the immediate vicinity of the Brillouin center (Fig-
ure 4b), and thus does not yield a quadratic dispersion. As noted
in ref. [25], this seemingly small error can have a pronounced
effect whenever the acoustic modes contribute substantially to a
property, as in the case of, for example, the thermal conductivity.
This example also enables us to illustrate the effect of supercell
size on the phonon dispersion and thus effectively the range of
the FCs (Figure 4c). Convergence is achieved at a cutoff of just
over 9 A equivalent to a supercell size of 6 x 6 x 1 (108 atoms).

5.2. Thermal Conductivity of Monolayer-MoS,

Since modeling the thermal conductivity requires both accu-
rate second- and third-order FCs, it thereby provides a viable
test for the extraction of the higher-order FCs. The in-plane
thermal conductivity of MoS; has been studied extensively both
experimentally*~*! and computationally,**#6#’ and thus consti-
tutes a good test case.

We used 192-atom (8 x 8 x 1) supercells and generated struc-
tures for reference force calculations by rattling using an average
displacement of 0.048 A. Reference DFT calculations were car-
ried out using the same computational parameters as for the ideal
monolayer, yielding an average (maximum) force of 993 mev A~
(4.84 eV A1),

The cluster space was constructed using cutoffs of 10.0, 6.5,
and 3.5 A for second, third, and fourth-order terms, respectively,
yielding 133 orbits, 2209 clusters, and 2004 parameters. FCP pa-
rameters were determined using recursive feature elimination
with ¢,-minimization. During training and validation, the set of
reference forces was split at ratio of 4 to 1 into training and test
sets, whereas the final FCPs were obtained by fitting against all
available data.

The thermal conductivity was evaluated in the framework of
phonon Boltzmann transport theory in the relaxation time ap-
proximation using the pHONO3PY") code. The integration of the
Brillouin was carried out using the tetrahedron method and
a 40 x 40 x 1 g-point mesh. For clarity of the analysis, only
phonon—phonon scattering was considered as a rate-limiting pro-
cess. Reference calculations were carried out including pairs up
to a distance of 5.9 A.
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The root-mean-square error (RMSE) over the validation set
quickly drops with the number of structures in the reference set
(Figure 5), levelling out at a value of about 1.5 meV A~! from
about 15 structures onward. The thermal conductivity converges
slightly more slowly as it requires about 20 to 25 configurations
to achieve a converged result (Figure 5b). Most importantly,
the converged values are in very good agreement with the
reference data from pHONO3PY over the entire temperature
range (Figure 5c), demonstrating the accuracy of the extracted
FCs.

Crucially, this result was achieved at a fraction of the compu-
tational cost. The equivalent pHONO3PY calculations require 441
configurations for a cutoff of 5.9 A (571 configurations using a
cutoff of 6.5 A). In the case of sHENGBTE, ¥ the numbers are
somewhat smaller but still comparable in magnitude (324 struc-
tures for a cutoff of 5.9 A). By contrast, HIPHIVE required only 20
to 25 configurations to reach a converged result.

5.3. Sulfur Vacancy in Monolayer-MoS,
Defects in general and sulfur vacancies, in particular, are present

in comparably large numbers in monolayers of MoS,*® and they
can have a very pronounced effect on the thermal conductivity.*!
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To analyze this effect, one requires the second-order FCs matrix
of a defect supercell, which enables one to evaluate the perturba-
tion matrix connecting the ideal and defective systems. Due to the
size of a defect configuration and its low symmetry, computing
the FCs using the enumeration approach alluded to above com-
monly requires a large number of individual displacement/force
calculations. Here, we demonstrate that this number can be con-
siderably reduced using mipHIVE and advanced linear regres-
sion techniques.

The sulfur vacancy was described using a 192-atom super-
cell (8 x 8 x 1 unit cells), which has been found above to yield
well-converged FCs in the case of the ideal monolayer. Reference
DFT calculations were carried out using the same computational
parameters as for the ideal monolayer. Structures for reference
force calculations were generated by rattling using an average
displacement of 0.016 A, with an average (maximum) force of
330 meV/A (1.02 eV A~'). The cluster space was constructed us-
ing cutoffs of 9.0 and 3.0 A for second and third-order terms,
respectively, yielding 1670 orbits, 9376 clusters, and 13 030 pa-
rameters. FCP parameters were determined using ARDR with a
)-threshold of 10* and without standardization. During training
and validation, the set of reference forces was split at a ratio of
4 to 1 into training and test sets, whereas the final FCPs were
obtained by fitting against all available data.
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The RMSE converges rather quickly with the number of struc-
tures (Figure 6a). Already for about 25-30 structures, the RMSE
for the force components in the test set relative to the DFT ref-
erence calculations is only about 3 meV A~', where the PHONOPY
analysis required 215 individual DFT calculations. This conver-
gence behavior also translates to the mean absolute error (MAE)
and RMSE over the frequencies (Figure 6b) as well as the overall
phonon dispersion.

The regression produces sparse models as evident from the
fraction of nonzero parameters, which remains below 70%
(green triangles in Figure 6a). This is in line with physical intu-
ition, according to which FCs ought to decay rather quickly with
interaction distance and order.

5.4. Molecular Dynamics Simulations of Nickel

Anharmonic FCPs can in principle be sampled using MD simu-
lations, which provide access to dynamic properties including, for
example, dynamical structure factors, velocity auto-correlation
functions, and free energies."” As illustrated in the following,
HIPHIVE enables such simulations by providing an ASE calcula-
tor class that merely requires a set of FCs as input.

A fourth-order FCP was created for bulk Ni using cutoff radii
of 5.0, 4.0, and 4.0 A for second, third, and fourth-order terms,
respectively, corresponding to 171 clusters in the unit cell. The
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Table 1. Number of orbits and parameters (in brackets) by order and body.

One-body Two-body Three-body Four-body
Second order 1 U 4 (12) - -
Third order 0 ) 2 ®) 2 (14) -
Fourth order 1 @) 4 (29) 3 (75) 3 (40)
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Figure 7. Atomic mean-square displacement in FCC Ni as a function of
temperature as obtained within the harmonic approximation as well as
from MD simulations based on the original potential (EMT) and a fourth-
order Hamiltonian.

associated cluster space contained 20 unique orbits (5, 4, and 11
for second-, third-, and fourth-order, respectively) with interac-
tions up to the fourth nearest neighbor for the pairs, leading to
119 free parameters.

Training data comprised five structures with 256 atoms (4 x
4 x 4 conventional unit cells) for a total of 3840 force compo-
nents. The structures were obtained by applying displacements
randomly drawn from a normal distribution, modified to avoid
interatomic distances shorter than 2.3 A. The resulting aver-
age atomic displacement were about 0.13 A. Reference forces
were obtained using an effective medium theory model as im-
plemented in ASE.?% The parameters of the model were trained
by standard least-squares fitting as the system is heavily overde-
termined (Table 1).

The integration of the equations of motion was carried out us-
ing functionality provided by ASE while HirHIVE was used to
provide an interaction model in the form of an ASE calculator
object. Simulations were carried out using an 864-atom super-
cell (6 x 6 x 6 conventional unit cells). The equations of motion
were integrated for 50 ps using a time step of 5 fs at temperatures
300, 600, 900, 1200, and 1500 K using a Langevin thermostat.

The atomic mean-square displacements computed using the
full fourth-order FCP as well as using only the second-order
FCs are practically identical to those obtained using the effec-
tive medium theory model at low temperatures (Figure 7). At
higher temperatures where anharmonic effects are more impor-
tant, the second-order model yields a systematic error whereas
the fourth-order model remains very accurate. Very close to the
melting point even the fourth-order model starts to deviate from
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the exact solution, which is due to even higher-order terms be-
coming relevant at these temperatures.

6. Conclusions and Outlook

Second and higher-order FC are fundamental to the descrip-
tion of the thermodynamics of materials. Here, we have intro-
duced the upHIVE package that enables their efficient extraction
from first-principles calculations using regression techniques
with regularization. The implementation take advantage of sym-
metry and sum rules in order to constrain the number of DOFs
and is computationally efficient. Potential applications have been
illustrated by several examples including ideal and defective sys-
tems, phonon analysis as well as dynamic simulations.

The package is designed for integration in various workflows
including, for example, applications in high-throughput calcula-
tions, as it can be readily interfaced with a large number of elec-
tronic structure codes via ASE and machine learning techniques
via scikrT-LEARN. The flexibility of the interface also enables one
to systematically explore the efficacy of different optimization al-
gorithms for the construction of FCPs and the compilation of
databases of such models for future use.
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