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We investigate the basic quantum-mechanical processes behind the nonproportional response of scintillators to
incident radiation responsible for reduced resolution. For this purpose, we conduct a comparative first-principles
study of quasiparticle spectra on the basis of the G0W0 approximation as well as absorption spectra and excitonic
properties by solving the Bethe-Salpeter equation for two important systems, NaI and SrI2. The former is a
standard scintillator material with well-documented nonproportionality, while the latter has recently been found
to exhibit a very proportional response. We predict band gaps for NaI and SrI2 of 5.5 and 5.2 eV, respectively,
in good agreement with experiment. Furthermore, we obtain binding energies for the ground state excitons of
216 meV for NaI and 195 ± 25 meV for SrI2. We analyze the degree of exciton anisotropy and spatial extent by
means of a coarse-grained electron-hole pair-correlation function. Thereby, it is shown that the excitons in NaI
differ strongly from those in SrI2 in terms of structure and symmetry, even if their binding energies are similar.
Furthermore, we show that quite unexpectedly the spatial extents of the highly-anisotropic low-energy excitons
in SrI2 in fact exceed those in NaI by a factor of two to three in terms of the full width at half maxima of the
electron-hole pair-correlation function.
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I. INTRODUCTION

The ability to detect high-energy radiation is crucial for
applications in high-energy physics, medicine, as well as
homeland security [1,2]. For these applications, one frequently
relies on scintillators, which are materials that convert high-
energy radiation into low-energy photons. By correlating the
number of photons generated during a short time interval with
the energy of an incident radiation quantum, it is possible to
deduce the energy spectrum of the incoming signal. Provided
the energy resolution is sufficiently high, this, in principle,
allows identification of the radiation source. The energy
resolution that is achievable using classical scintillators such
as NaI and CsI is, however, limited and does not meet the
requirements for radioactive isotope identification [3].

An analysis of counting statistics demonstrates that reso-
lution improves with an increase in luminosity, which usually
results from a higher conversion efficiency, i.e., relatively more
photons are generated per incident energy. Yet the resolution
of most scintillators is significantly worse than what can be
expected based on their respective luminosities [4]. During
the last decades it has been established that this discrepancy
can be traced to the nonlinear response of the material to the
energy of the incident radiation quantum, which accordingly
has been studied intensively [5–9].

While the fundamental physical mechanisms from track
creation to final photon emission are understood at least on
a qualitative level, the relative importance of each of these
events is still unclear. In spite of several recent promising
attempts to resolve this situation [10–14], there is currently
no established numerical framework that has successfully
combined the aforementioned physical mechanisms into a
predictive model. One of the major reasons is the enormous
complexity and uncertainty connected with thermalization
and transport of excitation carriers (primarily electron, holes,

and excitons) as well as their respective contributions to the
response of the system.

Existing models [10–14] typically rely on a number of
physical parameters, such as dielectric function, migration
barriers of self-trapped excitons, electron, and hole mobilities,
defect trapping rates, as well as Auger recombination rates of
free carriers and excitonic states. Since at least some of these
quantities are notoriously difficult to measure experimentally,
parameter-free electronic-structure calculations are very valu-
able for providing not only physical insight but input data
for such models. They also serve to complement and guide
experimental efforts. The impact of electronic properties such
as fundamental band gaps and charge carrier mobilities has
recently been studied for a number of scintillating materials
[15,16]. There remains, however, a pronounced gap in our
knowledge and understanding of both quantities and processes
that relate to the interaction of charge carriers and excitations,
specifically excitonic effects. This is at least in part because
the methods required to access these effects come with a
significant computational burden.

Two materials that are known to be very promising for
scintillator applications are LaBr3:Ce (see, e.g., Ref. [17])
and SrI2:Eu (see, e.g., Refs. [18–21]), both of which exhibit
very high luminosity and significantly improved energy
resolution compared to NaI. While LaBr3 has already been
characterized rather extensively both experimentally [4,22–24]
and theoretically [24–30], information on the properties of
SrI2, in particular, its electronic structure, is sparse [31]. Even
fundamental quantities such as the band gap are still to be
determined consistently and the influence of excitonic and
polaronic effects is entirely unknown at this point. Yet, a
deeper understanding of this material is crucial since properties
such as the band gap, exciton binding energies, and dielectric
functions constitute essential building blocks for any theoret-
ical study of, e.g., free carrier transport, polaron formation,

1098-0121/2014/89(7)/075132(9) 075132-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.075132
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and migration, as well as Auger recombination. In addition,
they represent important parameters for the interpretation of
experimental data.

The objective of the present work is to alleviate this
situation by providing predictions for electronic and optical
properties on the basis of modern theoretical spectroscopy
techniques. We specifically aim at accurately describing band
structures and densities of states (including fundamental band
gaps), optical absorption spectra, exciton binding energies, and
exciton localization. In order to assess the reliability of our
parameter-free simulations and to put our results in context,
we also carry out calculations for the classic scintillator NaI,
for which extensive experimental data are available.

The remainder of this paper is organized as follows.
In Sec. II A, we summarize the computational approach
employed in this work. A convenient decomposition of the
six-dimensional exciton wave function into single-particle
densities and an envelope function is introduced in Sec. II B.
Results for band structure, dielectric properties, and absorption
spectra are presented in Secs. III A and III B. Exciton binding
energies as well as an analysis of their spatial extent are the
subject of Secs. III C and III D. Finally, we summarize the
results and discuss them in the context of the scintillation
properties of NaI and SrI2 in Sec. IV.

II. THEORETICAL APPROACH

Since this work aims at a precise description of electronic
structure as well as optical properties, it requires techniques
beyond standard density functional theory (DFT). Specifically,
it is essential to employ computational schemes that are
capable of describing quasiparticle (QP) and excitonic effects.
To this end, we use a combination of DFT and G0W0

calculations [32] to describe single-particle excitations that
govern band structures and densities of states. Two-particle
(electron-hole) excitations have to be taken into account when
computing exciton binding energies, dielectric functions, and
optical absorption spectra. This is achieved by solving the
Bethe-Salpeter equation (BSE) for the optical polarization
function [33,34].

A. Computational parameters

In this work, we use experimental values for the crys-
tallographic geometries. Sodium iodide adopts the rocksalt
structure with a lattice constant of 6.48 Å. SrI2 belongs
to space-group Pbca (No. 61 in the International Tables of
Crystallography, Ref. [35]). Its unit cell contains 24 atoms
with nine internal degrees of freedom. The experimentally
determined lattice parameters are a = 15.22 Å, b = 8.22 Å,
and c = 7.90 Å with the following internal coordinates: Sr on
Wyckoff site 8c (x = 0.1105, y = 0.4505, z = 0.2764), I(1)
on Wyckoff site 8c (x = 0.2020, y = 0.1077, z = 0.1630),
and I(2) on Wyckoff site 8c (x = −0.0341, y = 0.2682,
z = 0.0054) [36].

All calculations were carried out using the projector-
augmented wave method to describe the electron-ion inter-
action [37,38]. We used a plane-wave expansion for the
wave functions with a cutoff energy of 228 eV for both
materials. DFT and G0W0 electronic structures were generated

using the Vienna ab initio simulation package [39–43]. The
corresponding BSE implementation has been discussed in
Refs. [44–46].

For NaI and SrI2, we use the generalized-gradient ap-
proximation [47] and the local-density approximation [48],
respectively, to represent exchange-correlation effects at the
DFT level. Brillouin-zone (BZ) integrations for both DFT
and G0W0 calculations were carried out by summing over
�-centered 6 × 6 × 6 Monkhorst-Pack [49] (MP) grids in the
case of NaI. For SrI2, the density of states (DOS) was computed
on the DFT level using a 6 × 11 × 11 �-centered MP k-point
grid, while the band structure was obtained on the basis of a 4 ×
7 × 7 mesh. Calculations of G0W0 QP energies were carried
out for several k-point grids up to �-centered 3 × 4 × 4 and
up to 2880 bands were included in the calculations to achieve
convergence of the dielectric function entering the screened
interaction W . Spin-orbit coupling (SOC) was taken into
account using the projector-augmented wave implementation
described in Ref. [30]. Based on convergence tests we estimate
that these computational parameters yield QP shifts around
the band edges that are converged to within 50 meV for both
materials.

In order to describe optical properties, we calculated
dielectric functions using regular MP meshes of 16 × 16 × 16
and 4 × 6 × 6 k points for NaI and SrI2, respectively. For a
more efficient sampling of the BZ, each grid was displaced
by a small random vector. For NaI and SrI2, we used 32 and
48 conduction bands, respectively. In addition, the number
of Kohn-Sham states contributing to the BSE Hamiltonian
is limited by the BSE cutoff energy, which specifies the
maximum noninteracting electron-hole pair energy that is
taken into account. Here we used a BSE cutoff energy
of at least 13.0 and 5.0 eV for NaI and SrI2 to set up
the excitonic Hamiltonian from independent electron-hole
pairs. The screened Coulomb interaction W was constructed
assuming the q-diagonal model function of Bechstedt et al.
[50] and static electronic dielectric constants of 3.69 and 4.58
as obtained for NaI and SrI2 on the DFT level.

The Coulomb singularity present in the BSE Hamiltonian
effectively prevents accurate one-shot calculations of exciton
binding energies for a given k-point mesh [45,51]. This is
somewhat alleviated by the introduction of so-called singu-
larity corrections. Still present implementations are left with
error terms that are proportional to the inverse number of k
points. Therefore the most efficient scheme currently consists
of extrapolating calculated binding energies for a number of
k-point grids to the continuum limit [45]. We sample the BZ
using both regular and hybrid k-point meshes as defined in
Ref. [45]. For NaI, we employed regular �-centered grids
up to 21 × 21 × 21 as well as 113 : 63 : x3 hybrid grids with
x = {22,25 2

3 ,29 1
3 ,33}. For SrI2 the finest regular meshes we

used were 7 × 9 × 9, 5 × 11 × 11, and 3 × 13 × 13 and, in
addition, we employed hybrid meshes of 5 × 5 × 5 : 4 × 2 ×
2 : x with x = {5 × 15 × 15,5 × 20 × 20,5 × 25 × 25} for
finer sampling around the � point in the ky and kz directions.

B. Electron-hole densities

The electron-hole separation of a free exciton is readily
obtained within the effective mass approximation for a
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two-band model [52]. In cases where this approximation is
not applicable, the BSE wave functions must be analyzed
instead. To this end, Dvorak et al. have computed the relative
distribution of the electron around the hole as well as spread
and localization lengths by a straightforward integration of the
full excitonic wave function [53]. The BSE wave functions
and electron hole distribution function are, however, six-
dimensional functions of the electron and hole coordinates,
which renders the problem, at least computationally, more
involved. Furthermore, when discussing the spatial distribution
of electrons or holes, a charge density (or wave function) is
usually constructed by fixing the electron (hole) at the position
of an atom belonging to the conduction (valence) band edge
[54–57]. This choice is though somewhat arbitrary since the
Bloch states may be strongly hybridized. To alleviate this
problem and to avoid the representation of a density over the
entire Born-von-Kármán cell on a dense Cartesian mesh in
the case of calculating the electron-hole separation, we follow
another route.

The electron-hole pair distribution function ρ(re,rh) speci-
fies the probability of simultaneously finding an electron at re

and a hole at rh. In the single-particle band picture, we thus
can write

ρ(re,rh) = ρe(re)ρh(rh). (1)

In this approximation, both electron and hole can be com-
pletely delocalized over the entire crystal. However, since
electron and hole are coupled through the Coulomb interaction
the distribution function assumes a more complex form:

ρ(re,rh) = ρe(re)ρh(rh)geh(re,rh), (2)

where geh represents the explicit pair correlation between
electron and hole. Thus, given an electron at re, the probability
of finding a hole at rh is ρh(rh)geh(re,rh). In the following, we
will derive explicit expressions for the excitonic single-particle
densities and an approximate correlation function that turns out
to be solely a function of the electron-hole separation. Thereby
we will obtain a partitioning of the pair distribution function
into two single-particle cell-periodic densities, representing
the local variations of electron and hole densities, as well as
an associated pair distribution function that is coarse-grained
over each periodic cell.

The exciton wave function can be represented in terms of
electron and hole coordinates via the amplitude [58,59]

χj (re,rh) = 〈N ; 0|ψ̂†(re)ψ̂(rh)|N ; j 〉, (3)

where |N ; j 〉 is the j th excited state of the N -electron system,
and ψ̂(r) and ψ̂†(r) are the standard annihilation and creation
operators acting on coordinate r , respectively. Translated into
the basis of Bloch orbitals this becomes

χj (re,rh) =
∑
kcv

A
j

kcvφ
∗
kv(rh)φkc(re), (4)

where the coefficients A
j

kcv are the eigenvectors of the BSE
matrix. Therefore we can write the associated electron-hole
density as

ρ
j

eh(re,rh) =
∑
kcv

∑
k′c′v′

A
j∗
kcvA

j

k′c′v′

×φkv(rh)φ∗
kc(re)φ∗

k′v′ (rh)φk′c′ (re). (5)

By integrating over either the electron or hole coordinate
we obtain the cell-periodic hole and electron charge densities,
respectively,

ρj
e (re) =

∑
k

∑
cc′

φ∗
kc(re)φk′c′(re)

∑
v

A
j∗
kcvA

j

kc′v, (6a)

ρ
j

h(rh) =
∑

k

∑
vv′

φkv(rh)φ∗
k′v′(rh)

∑
c

A
j∗
kcvA

j

kcv′ . (6b)

We note that the electron-hole density of the entire
N -electron system can be written as ρj = ρ0 + ρ

j
e − ρ

j

h ,
where ρ0 is the ground state charge density. This can be
seen by expanding the N -electron exciton wave function
χj (r1, . . . ,rN ) = 〈r1, . . . ,rN |N ; j 〉 into Slater determinants.

Returning to the question of electron-hole separation, we
again consider the two-particle density of Eq. (5) and make
the variable substitution re/h = r ′

e/h + Re/h, where now r ′
e/h

is constrained to one unit cell and Re/h denotes a lattice vector.
By integrating the resulting two-particle density over r ′

e and
r ′

h we obtain a coarse-grained pair distribution function:

g̃
j

eh(Re,Rh) =
∑
kcv

∑
k′c′v′

A
j∗
kcvA

j

k′c′v′ exp[i(k′ − k) · (Re − Rh)]

× I ∗
kv,k′v′Ikc,k′c′ , (7)

where Ikn,k′n′ = ∫
d rφ∗

kn(r)φk′n′(r) is an integral over one unit
cell only. Also note that g̃eh of Eq. (7) is only a function of
the electron-hole separation Re − Rh and thus resembles an
envelope function. As a result, we can approximately write the
electron-hole pair distribution function as

ρ
j

eh(re + Rr ,rh + Rh) ≈ ρj
e (re)ρj

h(rh )̃gj

eh(Re − Rh). (8)

In this simplified picture, we can therefore write the exciton
pair distribution function as an envelope function g̃eh mod-
ulated by the product of two periodic single-particle charge
densities, ρ

j
e and ρ

j

h . This formulation is quite reminiscent
of the Wannier-Mott ansatz, where the electron and the
hole carriers are assumed to be completely delocalized and
homogeneously distributed in space:

ρWM
eh (re,rh) = ρeρhg

WM
eh (re − rh). (9)

For the Wannier-Mott exciton, the excitonic localization is
strictly reflected in the electron-hole distribution function
gWM(re − rh). Equation (8) generalizes the Wannier-Mott
ansatz by allowing the electron and the hole carrier densities
to have structure representative of their interaction with the
underlying periodic lattice. This is important for understanding
excitons in complex crystal structures such as in SrI2, as well as
when coupling to phonons leads to self-trapping of excitons. At
the same time, the excitonic effects are represented in Eq. (8) in
a coarse-grained sense by the envelope function g̃

j

eh(Re − Rh).
Equation (8) thus constitutes a valuable tool for separating
electron-phonon coupling from purely excitonic binding that
leads to formation of localized electron-hole pairs in arbitrarily
complex systems.
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FIG. 1. (Color online) (a) NaI nonrelativistic QP energies from
G0W0 (empty circles) superimposed on DFT + � band structure
(colored lines). The spin-orbit split valence bands are shown by black
lines and filled squares. (b) Partial density of states for NaI as obtained
from DFT + � calculations.

III. RESULTS

A. QP band structures

In the case of NaI, DFT calculations yield a band gap of
3.7 eV. This value reduces to 3.4 eV when SOC is taken into
account, which is considerably less than experimental values
that lie in the range between 5.8 and 6.3 eV [60,61]. The G0W0

band gap is 5.8 eV without and 5.4 eV with SOC in much
better agreement with experiment, see Fig. 1. The major effect
of SOC is to cause a splitting of the I 5p band by about 0.9 eV
at the � point. The G0W0 value is thus in reasonable agreement
with experimentally reported values of the band gap. One must
bear in mind though that the values reported in Refs. [60,61]
are derived from optical absorption measurements and thus
involve a correction for excitonic effects, which introduce an
additional uncertainty.

The partial DOS of SrI2 is shown in Fig. 2 calculated both
without and with SOC taken into account. The uppermost
valence band is composed almost exclusively of I 5p states
whereas the conduction band is dominated by Sr 4d states
with a contribution from Sr 5s states at the bottom of the
conduction band. The largest change due to SOC is a splitting
of 1.15 eV observed for the Sr 4p states that lie between
−15.8 and −17.0 eV below the valence-band maximum. The
band gap decreases by 0.3 eV upon inclusion of SOC due to
a shift of the valence-band maximum (VBM). Otherwise, the
structure of both valence and lower conduction-band states
is largely preserved. Figure 2(c) demonstrates that there are
no qualitative changes in going from DFT to G0W0 within a
band manifold. The valence-band width increases from 2.86
to 3.00 eV and the band gap from 3.7 to 5.5 eV. The band
characters and their ordering are only weakly affected and, as
a result, a rigid upward shift (a scissor correction, referred to
as DFT + � from hereon) of the DFT conduction band yields
reasonable agreement between DFT and DFT + G0W0 QP
energies. This is demonstrated in Fig. 2(d), which shows QP
energies from G0W0 superimposed on a DFT band structure.

Due to the prohibitive computational cost, SOC effects
were not taken into account on the G0W0 level for SrI2.
Our calculations for NaI as well as LaBr3 (see Ref. [30]),
however, show that DFT and GW yield similar results for
SOC induced shifts. We therefore can employ the band gap
reduction calculated on the DFT level [compare Figs. 2(a) and
2(b)] to estimate the SOC corrected band gap of SrI2 as 5.2 eV.
This compares well with present experimental estimates for
the fundamental band gap, which range from 5.1 and 5.8 eV
[62,63].

B. Dielectric functions and absorption spectra

We now address two-particle excitations and optical prop-
erties based on the dielectric function. As discussed above,
the good agreement between DFT + G0W0 and rigidly shifted
DFT band structures (DFT + �) enables us to use the latter as
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FIG. 2. (Color online) Partial density of states for SrI2 obtained from DFT calculations (a) without and (b) with spin-orbit coupling. The
major change upon the inclusion of SOC effects is an upward shift of the valence-band edge by 0.3 eV, which is indicated by the gray bar in
panel (b). (c) QP energy shifts from G0W0 calculations with respect to initial DFT eigenenergies. (d) QP energies from G0W0 superimposed
onto DFT + � band structure. The two different sets of G0W0 QP energies correspond to �-centered k-point grids with (1) 2 × 2 × 2 and
(2) 3 × 4 × 4 divisions, respectively.
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FIG. 3. (Color online) (a) Imaginary part of the dielectric func-
tion and (b) absorption spectrum for NaI. The vertical arrow
indicates the fundamental QP band gap (excluding SOC effects).
The experimental absorption data are taken from Ref. [60].

the starting point for the BSE calculation. In this work, we use
values of 2.03 and 1.82 eV for the rigid shift � for NaI and
SrI2, respectively.

We first study the spectroscopic properties of NaI by com-
paring the imaginary part of the dielectric function computed
using DFT + � to the one obtained from BSE calculations.
Figure 3 reveals a pronounced peak with large oscillator
strength near the absorption onset related to an excitonic bound
state, which is not captured by the single-particle DFT picture
approximation. Overall, the BSE result exhibits a pronounced
redistribution of peak weights leading to structural changes in
the dielectric function. One also notices a red shift of the entire
spectrum in going from DFT + � to BSE. These features
are attributed to excitonic effects and are also apparent in
the predicted absorption spectrum, which was calculated from
the dielectric function as described in Ref. [64] and is shown
in Fig. 3(b) along with experimental data recorded at 10 K
[60]. The BSE spectrum is overall in good agreement with the
experimental data, in particular if compared to the DFT + �

result. The most pronounced difference occurs between 6.5 and
7.5 eV where the experimental spectrum exhibits two peaks
whereas there is only one distinct feature in the BSE data.

On the basis of the similarity between the absorption
spectra of gaseous xenon and the iodide ion Teegarden and
Baldini [60] proposed that the two lowest peaks, which
are separated by approximately 1 eV, originate from the
spin-orbit split 5p6s atomic state. In fact the separation of
the two features is comparable to the spin-orbit splitting of
0.9 eV calculated for the I 4p band on a DFT/G0W0 level
[see Fig. 2(a)]. Unfortunately, SOC is currently not included
in our BSE calculations and thus we cannot directly assess this
assignment. It should, however, be noted that the separation of
the second and third peak in the experimental spectrum, which
overlap with a single peak in the BSE spectrum, also exhibit a
separation of about 0.9 eV.

Figure 4 displays the imaginary part of the calculated
dielectric function as well as excitation spectra [63] for SrI2

at the DFT + � and BSE levels [65]. Our calculations show
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FIG. 4. (Color online) (a) Imaginary part of the dielectric func-
tion and (b) absorption spectrum for SrI2; (b) also shows the excitation
spectra recorded by Pankratov et al. (Ref. [63]). The vertical arrow
indicates the fundamental QP band gap (excluding SOC effects).

that in spite of its anisotropic crystal structure SrI2 exhibits a
virtually isotropic optical response as previously reported by
Singh on the basis of DFT calculations [28]. As in the case
of NaI, the BSE spectra show a strong redshift with respect
to DFT + � and a redistribution of spectral weight due to
excitonic effects. The absorption spectra are rather featureless
but clearly the onset of absorption is below the fundamental
QP band gap and a shoulder is apparent around 5.5 eV.
The latter feature is corroborated by experimental emission
spectra [63].

C. Exciton binding energies

As mentioned in Sec. II A the slow convergence of exciton
binding energies with k-point sampling requires an extrap-
olation scheme [45] the applicability of which is contingent
upon reaching the linear regime. We illustrate this approach
for NaI in Fig. 5, where it can be seen that linear behavior
is not quite accomplished for regular meshes containing as
many as 21 × 21 × 21 k points. However, denser sampling
was possible by using hybrid k-point meshes [45] that are well
suited in the case of a material with approximately parabolic
bands. This denser sampling justifies a linear fit of the exciton
binding energy (see Fig. 5) and extrapolation yields a value for
the lowest excitonic bound state of 216 meV. This number is
in good agreement with experimental measurements at 80 K,
which yield a binding energy of 240 meV [66].

As illustrated in Fig. 2(d), the band structure of SrI2 is
much more complicated than the one for NaI. The minimum
of the lowest conduction band is less pronounced and, as a
consequence, a large number of very flat conduction bands lie
within a small energy range and are likely to contribute to the
lowest excitonic states. This situation is further exacerbated
by the large number of very shallow valence bands with
several extrema that are energetically close [see Fig. 2(d)]
and, hence, are also expected to contribute to the formation of
the lowest excitonic states. In addition, unlike NaI, SrI2 is not
of cubic symmetry, hence, the exciton localization is generally
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FIG. 5. (Color online) Convergence of binding energy of lowest
exciton state for NaI.

anisotropic, an aspect that will be explored in more detail
below. This situation motivates the application of anisotropic
k-point meshes when converging exciton binding energies
using both regular (empty symbols in Fig. 6) and hybrid grids
(filled symbols in Fig. 6).

Due to the symmetry of the states that are involved, the
lowest bound exciton state corresponds to an optically (dipole)
forbidden transition. In Fig. 6, we show the dependence of
the binding energy on k-point sampling for this state as well
as for the first states that are dipole allowed for x-polarized
(E||x) and z-polarized (E||z) light, respectively. The most
highly converged data point in Fig. 6 corresponds to 685 k
points in the full BZ and requires setting up and (iteratively)
diagonalizing a BSE matrix with a rank of over 140 000. We
extract binding energies by linear extrapolation [45] based on
the two most highly converged data points for the data sets
corresponding to nx

k = 3 and 5 as indicated in Fig. 6.
In this fashion, we obtain a binding energy of 195 ±

25 meV for the dipole forbidden state from separate fits to
regular and hybrid meshes, where the error estimate is based on
the deviation between the fits. For the dipole allowed excitons,
we obtain binding energies of 180 ± 20 meV (x-polarized)
and 190 ± 25 meV (z-polarized). These values are in rough
agreement with the estimate of 260 meV obtained by Pankratov
et al. based on the effective mass approximation [63]. Note,
however, that this agreement should be considered rather
fortuitous due to the strong anisotropy of the hole effective
mass tensor. The analysis of the excitonic wave functions in the
following section will provide further evidence for anisotropic
excitonic properties.

D. Exciton densities and electron-hole separation

The cell-periodic electron and hole densities [see Eqs. (6a)
and (6b)] for the three degenerate exciton ground-state states
in NaI are spherically centered around iodine atoms, reflecting
the fact that the heavy hole bands are almost exclusively
formed from iodine p-states. The conduction bands of NaI
are strongly hybridized and thus it is not entirely obvious
that also the electron will localize on iodine atoms. This
picture is, however, corroborated by visualizing the electron

0.10

0.15

0.20

0.25

B
in

di
ng

 e
ne

rg
y 

(e
V

)

Eb = 195 ± 25 meV

nk
x = 3

nk
x = 5

nk
x = 7

(a) dipole forbidden

0.10

0.15

0.20

0.25

B
in

di
ng

 e
ne

rg
y 

(e
V

)

Eb = 180 ± 20 meV

nk
x = 3

nk
x = 5

nk
x = 7

(b) dipole allowed, polarized along x

0.10

0.15

0.20

0.25

0.0 0.1 0.2 0.3

B
in

di
ng

 e
ne

rg
y 

(e
V

)

Linear k−point density 1/nk
y = 1/nk

z

Eb = 190 ± 25 meV

nk
x = 3

nk
x = 5

nk
x = 7SrI2

(c) dipole allowed, polarized along z

FIG. 6. (Color online) Convergence of exciton binding energies
in SrI2 from BSE with respect to k-point sampling for (a) dipole
forbidden and (b), (c) dipole allowed transitions. Empty and filled
symbols denote binding energies calculated using standard and hybrid
meshes, respectively. Arrows and gray bars indicate extrapolated
binding energies and associated error estimates.

charge density of the exciton with the hole placed at an
iodine atom as shown in Fig. 7(a). The exciton ground state
envelope function shown in Fig. 7(a) is spherically symmetric
as well. The deviations from spherical symmetry at large
electron-hole separation that are apparent in Fig. 7(a) are an
artifact of finite k-point sampling and the periodic boundary
conditions applied in our calculations. Fitting the envelope
function to the charge density of a 1s hydrogenlike wave
function ρ(r) ∝ exp(−2r/a) yields a Bohr radius (defined as
the most probable electron-hole distance) of a = 9.3 Å for
a 143 �-centered MP grid. This corresponds to an exciton
binding energy of 210 meV in very good agreement with the
extrapolated value of 216 meV obtained above. Thus it is no
surprise that for NaI also the effective mass approximation is
reasonably accurate yielding a binding energy of 256 meV.

Figure 8 illustrates the relation between the envelope
function g̃eh(r) introduced in Eqs. (7) and (8) and the
electron-hole density ρeh(re,rh) in the case of NaI. While
the latter exhibits fluctuations that obey the lattice periodicity,
the envelope function is smooth and decays monotonically and
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FIG. 7. (Color online) (a) The logarithm of the electron-hole density ρeh(re,rh) defined in Eq. (5) for the exciton ground state state of
NaI in a {110} plane assuming the hole is located at an iodine site, i.e., rh = 0. The black bar indicates the lattice constant. Also shown are
logarithmic contour maps of the envelope function g̃eh(r) defined in Eq. (7) for (b) the ground-state exciton of NaI and (c) and (d) the lowest
lying dipole forbidden exciton state of SrI2 in projected onto (001) and (100).

exponentially. The lattice periodicity enters in Eq. (8) via the
excitonic single-particle densities ρe(re) and ρh(rh).

SrI2 again proves itself much more complex and appears
to be not well suited for a simple description in terms of the
effective mass equation. The hole and electron densities of
the three states discussed in the previous section are displayed
in Fig. 9. In the dipole forbidden and x-polarized states, the
electron densities exhibit s-like maxima centered on all atoms
with equal amplitude, whereas the Sr 4d-character dominates
in the z-polarized case. Note that the exciton single particle
densities shown in Figs. 9(a)–9(c) does not simply coincide
with the single-particle density of the lowest lying conduction-
band state at �, which primarily exhibits Sr 5s character.

The hole densities shown in Figs. 9(d)–9(f) display I p

character for all three considered states. It is noteworthy that
the dipole forbidden state only has appreciable hole density
around iodine atoms belonging to the I(2) set of Wyckoff sites
(compare Sec. II A) as shown in Fig. 9(d). The same behavior
is observed for other dipole forbidden states. In the dipole
allowed excitons, we find hole densities of equal amplitude on
all iodide atoms.

The envelope functions for the SrI2 excitons discussed here
differ from those of NaI in several aspects: (i) they do not
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FIG. 8. (Color online) Envelope function g̃eh(r) and exciton elec-
tron density ρeh(r,0) for NaI as defined in Eqs. (7) and (5) projected
onto 〈100〉 direction with the hole placed on an iodine (rh + Rh = 0).
The vertical dotted lines indicate the lattice spacing (a0 = 6.480 Å).

display hydrogenic [ρ(r) ∝ exp(−2r/a)] density dependence,
at least not in the vicinity of the center of mass. Rather,
by fitting several different functional types, an ellipsoidal
Gaussian function was judged to most closely reproduce the
BSE result. In principle, it might be possible to benchmark
our results against the eigenvalues of the anisotropic effective
mass equation [67,68]. This is, however, beyond the scope

FIG. 9. (Color online) Excitonic single-particle (a)–(c) electron
ρe(re) and (d)–(f) hole densities ρh(rh) according to Eqs. (6a) and (6b)
for the lowest energy dipole forbidden, x-polarized, and z-polarized
excitons in SrI2. Small purple and large green spheres indicate I and
Sr ions, respectively.
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of the present work. (ii) Because of the crystal symmetry
the envelope functions in SrI2 is anisotropic as illustrated in
Figs. 7(c) and 7(d). For the dipole forbidden state, the best fit
resulted in anisotropic full width at half maxima (FWHM) of
21, 17, and 21 Å in the x, y, and z directions, respectively.
(iii) The effective Bohr radius of 9.3 Å for NaI corresponds to
a FWHM of 6.4 Å. As a result, despite the apparent dominance
of the localized Sr 4d states of the conduction bands, the lowest
lying SrI2 excitons have a spread, which is about two to three
times larger than the 1s exciton in NaI. This is solely due to
the single s-like minimum at the � point [see top panel of
Fig. 2(d)].

IV. SUMMARY AND CONCLUSION

In this work, we have studied from first principles, single
and two-particle excitations in two prototypical scintillator
materials, NaI and SrI2. This was motivated by the need
to understand the role of free excitons in scintillator non-
proportionality. The two systems were judiciously chosen
to represent two significantly different responses to incident
radiation. NaI is a standard scintillator material with strongly
nonlinear dependence of light yield as a function of incoming
photon/electron energy, while SrI2 has recently been discov-
ered to have excellent proportionality.

On the basis of DFT and G0W0 calculations, we obtained
rather similar band gaps of 5.5 and 5.2 eV for NaI and SrI2,
respectively. The dielectric functions of NaI and SrI2 displayed
significant red shift of the oscillator strengths due to excitonic
effects. As a result, the optical spectra calculated from BSE
deviate substantially both in intensity and structure from the
single-particle RPA spectra calculated with DFT + � over the
energy range considered in this study, i.e., up to approximately
6 eV above the conduction-band edge. Although the difference
is expected to diminish at high energies, these results highlight
the need for incorporating excitonic effects in the dielectric
models used in the study of carrier and exciton generation by
the photoelectrons during the cascade.

Almost all models for scintillation require knowledge of the
binding energy of excitons, which determines their population
relative to free carriers at very early times <1 ps after the
impact of the ionizing radiation. In this regard, the main result

of this work is that the calculated ground-state exciton binding
energies fall in the range between 200 and 220 meV for both
NaI and SrI2. Hence the superior energy resolution of SrI2

cannot be directly correlated with the population of the free
excitons.

To study localization and spatial structure of excitons, we
introduced a decomposition of the six-dimensional exciton
wave function into a product of single-particle densities and
an envelope function. In the case of NaI, we obtained a
perfectly spherical envelope function, which can be fit very
well assuming a hydrogenlike wave function. The binding
energy obtained in this way is in good agreement with
the values obtained directly from BSE calculations and via
the effective mass approximation, which is expected given the
hydrogen-like character of the excitonic ground state.

The SrI2 low-energy excitons revealed more complex
character, which could not be fitted using simple hydrogenic
wave functions. The envelope function was found to possess
anisotropic first moments in accord with its anisotropic
effective mass tensor. More surprising is the finding that
excitonic wave functions in SrI2 are more extended than in NaI,
which suggests that nonradiative exciton-exciton annihilation
mediated by exchange is stronger in SrI2. This is unexpected as
such processes contribute to stronger nonproportional response
in conventional models of scintillation. This study thus calls
for more detailed investigation of the temporal evolution of
carrier density during early stages of scintillation from first
principles, and considering the relative importance of free
versus self-trapped excitons in scintillator nonproportionality.
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