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An apparent quirk of mathematics draws on a symmetry and resolves the issue of how to determine
the equilibrium shape of crystals of two-dimensional materials with asymmetric terminations.

The striking geometrical simplicity of naturally occur-
ring minerals has inspired human imagination for millen-
nia, suggesting the emergence of order in an otherwise
seemingly amorphous world. The appearance of spinel,
quartz or topaz crystals that exhibit faceting visible to
the naked eye is the direct result of the arrangement of
the atoms inside these materials on a (crystal) lattice.
The latter can be terminated in countless distinct ways,
yet each surface formed by such a cut is associated with
a different energy cost. As shown already by Gibbs [1]
and Curie [2], the equilibrium shape of a crystallite is the
one that minimizes the total surface energy. A formal ge-
ometric procedure to determine the shape given by this
condition was introduced by Wulff [3] and later proven
for example by Laue [4]. The Wulff construction has
been extremely successful for understanding the shapes
of both two and three-dimensional materials, all the way
from the macroscopic to the nanoscale [5], as one has to
approach the sub-10 nm size regime in order to observe
deviations [6].
In the two-dimensional equilibrium shape, the distance

from one point inside the crystal to each edge is propor-
tional to the edge energy in that direction, in the same
fashion as for the three-dimensional Wulff construction.
Thus, knowledge of the direction-dependent edge energy
is necessary to construct the equilibrium shape. Nowa-
days, edge energies are routinely calculated with den-
sity functional theory by comparing the energy of rib-
bons with the fully periodic system. For crystals lacking
symmetry, however, such ribbons will always expose two
symmetrically inequivalent edges with potentially differ-
ent energetics, and density functional theory calculations
can only provide the average energy of two such edges.
In fact, Cahn and coworkers pointed out already in the
1970s that in some such cases, edge energies even escape
a proper definition and cannot be determined, even in
principle [7]. It appears as though the construction de-
vised by Wulff is of no use when searching for equilibrium
shapes of crystals with low symmetry.
Now, writing in Nature Computational Science,

Luqing Wang and colleagues demonstrate how the lack
of a definition of edge energies in low-symmetry crystals
can be circumvented when constructing the equilibrium
shape [8]. The approach turns out to be pleasantly sim-
ple: just assume values for edge energies that are oth-
erwise undefined. As long as these “auxiliary energies”
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FIG. 1. A simple example of a Wulff construction for an
asymmetric crystal. (a) If facets with normals x and −x are
inequivalent, only their sum can be calculated using a ribbon.
(b) As long as this sum and any other well-defined edge ener-
gies are respected, we can make an ansatz for the undefined
energies and obtain a Wulff construction. A different ansatz
merely leads to a translated version of the same shape having
different distances dx and d−x but the same sum dx + d−x.

fulfill all well-defined relationships between the edge en-
ergies, a valid equilibrium shape will result. A simple
example is illustrated in Figure 1. If the crystal edges
with normals x and −x are inequivalent, only the sum
of their edge energies, γ−x + γx, can be calculated us-
ing a ribbon (Figure 1a). A Wulff construction can still
be made by assuming a value for, say, γx, because this
choice only leads to a translation of the resulting shape.
The only physically well-defined energy, namely the sum
γ−x + γx, corresponds to the total distance dx + d−x,
which remains unchanged when γx is varied (Figure 1b).
In other words, Wulff constructions with undefined edge
energies are possible because one shape corresponds to
an infinite set of possible surface energies. Thus, an ap-
parent quirk of mathematics draws on a symmetry and
beautifully resolves, as happens so often in nature. This
insight is crucial as the asymmetric edge character of
many two-dimensional materials of current and potential
future interest, including cases as diverse as SnS, GeAs2,
VOBr2, and LiBH4, has so far prevented a systematic
analysis of their equilibrium shapes and edges.

The ability to construct equilibrium shapes of two-
dimensional materials is not only of academic interest
but has immediate applications. The edges of transition
metal dichalcogenides for example are known to exhibit
different electronic properties depending on orientation
and termination [9], which can be exploited, for exam-
ple, in catalysis [10]. Edges can also support plasmonic
modes with a strong impact on the optical properties
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of flakes of two-dimensional materials [11]. All of these
properties become amenable to tuning if the edge struc-
ture and composition can be consciously controlled. This
is where the ability to predict equilibrium shapes can
make a strong impact. Future research can now for ex-
ample address how the environment or the segregation of
dopants or alloyants impacts edge energetics and hence
the shapes of flakes, leading the way to further expanding
the potential and impact of two-dimensional materials.
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