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Abstract

Films of layered substances like WSe2 can exhibit a reduction in the out-of-plane

thermal conductivity by more than one order of magnitude compared to the bulk,

effectively beating the glass limit [Science 2007, 315, 351]. Here, we investigate the

microscopic contributions that govern this behavior within the framework of Boltzmann

transport theory informed by first-principles calculations. To quantitatively reproduce

both the magnitude and the temperature dependence of the experimental data one must

account for both phonon confinement effects (softening and localization) and interlayer

scattering. Both stacking order and layer spacing are shown to have a pronounced

effect on the thermal conductivity that could be exploited to tune the balance between

electrical and thermal conductivity.
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1 Introduction

The ability to manipulate the thermal conductivity is crucial in various contexts including

refrigeration, heat insulation, thermoelectric energy recovery, as well as rapid heat dissipa-

tion. Nanostructuring is a very powerful tool for tuning thermal conductivity in particular

for ultra-low thermal conductors1–4 and thermoelectrics.5–7

Here we focus on one of these systems namely tungsten diselenide (WSe2). It is a proto-

typical layered compound and a bulk crystalline example for a class of materials for which

the phrase van der Waals (vdW) solid has been coined.8 These materials are comprised of

two-dimensional sheets with strong mixed covalent-ionic bonding character, which are cou-

pled to each other by comparably weak vdW interactions9,10 and can be engineered to form

multilayers as well as heterostructures.11–13

As a result of the significant difference between intra and intersheet bonding character-

istics vdW materials exhibit strong anisotropy in many properties including the thermal

conductivity. The out-of-plane conductivity κ⊥ of e.g., WSe2, is already low for perfectly

crystalline material at a level of 1.5W/mK at room temperature.1 Chiritescu et al. demon-

strated that in films deposited at room temperature κ⊥ can be further reduced by up to a

factor of 30 compared to single crystalline material, yielding values considerably below the

theoretical limit.1,14,15 This dramatic reduction was attributed to the localization of lattice

vibrations due to a randomization of the stacking order of WSe2 sheets. In the present con-

tribution we explore this finding within the framework of Boltzmann transport theory and

first-principles calculations with the objective to discriminate the essential microscopic fac-

tors and quantify their respective contribution. Eventually, the goal is to identify pathways

for generalizing the approach to other materials.

From here on, the paper is organized as follows: The next section, describes our method-

ological approach and summarizes computational details. In Sect. 3, the effect of structure

on the out-of-plane thermal conductivity is investigated, specifically considering stacking se-

quence and homogeneous out-of-plane expansion. The changes in the phonon band structure
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that underlie the structural sensitivity of the conductivity are analyzed in Sect. 4. Based on

the data obtained in Sect. 3 a model is formulated in Sect. 5 that captures the experimen-

tally observed increase in average and variance of the interlayer spacing as well as interlayer

scattering. The final model is found to match the experimental data both in magnitude

and temperature dependence, and provides the basis for a discussion of the importance of

different microscopic mechanisms and their implications in Sect. 6.

2 Methodology

2.1 Calculation of thermal conductivity

We seek to resolve the microscopic factors that give rise to the drastic reduction in the

out-of-plane thermal conductivity κ⊥ observed experimentally. As WSe2 has a rather larger

band gap and the temperature range of interest is low, electronic contributions are negligible

whence we focus our attention entirely on the phononic (lattice) contribution. To obtain the

latter, we analyze κ⊥ within the framework of semi-classical Boltzmann transport theory,

which in the relaxation time approximation (RTA) yields the following expression for the

thermal conductivity tensor,16

καβ =
1

ΩNq

∑
iq

vα,i(q)vβ,i(q)τi(q, T )ci(q, T ). (1)

where Ω is the unit cell volume, Nq is the number of q-points in the summation, and vα,i(q) =

∂ωi/∂qα is the group velocity of mode i along Cartesian direction α at point q of the Brillouin

zone with ωi being the mode frequency. Both phonon frequencies and group velocities can

be derived from the second-order force constant matrix.17 The mode specific heat capacity

ci(q, T ) is given by

ci(q, T ) = kB
x2 expx

(1− expx)2
with x =

ℏωi(q)

kBT
. (2)
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The lifetime τi(q, T ) is limited by a number of scattering processes including e.g., phonon-

phonon, isotope mass variation, and disorder. According to the most simple approximation,

known as Matthiessen’s rule, their respective contributions are inversely additive, i.e. τ−1
tot =∑

k τ
−1
k .

Calculation of phonon-phonon scattering rates requires knowledge of not only the second

but also third-order force constants.18,19 This contribution has been previously addressed

using first-principles calculations for (ideal) bulk WSe2.
20 The phonon-phonon scattering

channel dominates only for relatively large single crystalline samples with a comparably low

defect density. It is therefore of minor importance in the present work, which is concerned

with the effect of structural defects and disorder on the thermal conductivity. For simplicity,

we therefore assume a mode and q-independent phonon-phonon scattering limited lifetime,

which follows a simple temperature dependence, τph−ph = αT−b, motivated by analytic the-

ory.21 Specifically, we choose b = 0.8 and α = 27 psKb, which reproduces the experimentally

measured out-of-plane conductivity, see Sect. 3 and Fig. 1.22

In Sects. 3 and 4, we will focus on structural effects on group velocities and frequen-

cies. We will return to the discussion of scattering channels, specifically in connection with

structural defects, in Sect. 5.

2.2 Computational details

Phonon dispersion relations were analyzed using the phonopy package23 based on force

constants obtained from density functional theory (DFT) calculations. The latter were

carried using the projector augmented wave method24 as implemented in the Vienna ab-

initio simulation package (vasp).25 We employed a plane wave energy cutoff of 290 eV an

sampled the Brillouin zone using Γ-centered 12 × 12 × 3 k-point grids with respect to the

primitive cell. The bulk of the force constant calculations were carried out using supercells

comprising 2× 2× 2 primitive unit cells. Convergence tests with systems composed of up to

6× 6× 3 unit cells showed no significant changes in the phonon dispersion.
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To assess the sensitivity of our results to the treatment of exchange-correlation effects we

used both the local density approximation (LDA) and the van der Waals density functional

(vdW-DF) method that captures non-local correlations.9,26–28 Our non-empirical vdW-DF

studies are based on the new consistent-exchange version (vdW-DF-cx)29 as implemented in

vasp.30,31

Table 1: Properties of tungsten diselenide from experiment (Refs. 32 and 33) and calculation.
The 0K data do not include zero-point vibrations. The in-plane and out-of-plane lattice
constants a and c are given in Å. zSe denotes the internal coordinate associated with Se. The
elastic constants c33 and c44 are given in GPa, and the temperature T in Kelvin.

Method T a c zSe c33 c44
LDA 0 3.249 12.819 0.620 52.5 21.2

300 3.250 12.832 0.620
vdW-DF-cx 0 3.280 13.014 0.620 57.3 21.1

300 3.282 13.061 0.621
Experiment 300 3.282 12.96 0.6211 52.1 18.6

As shown in Table 1, both LDA and vdW-DF-cx yield good agreement with experimental

data for bulk WSe2 with respect to crystallographic parameters and elastic constants. Here,

finite temperature effects were taken into account on the level of the quasi-harmonic approx-

imation. Note, that the good agreement obtained with the LDA functional for bulk WSe2 is

fortuitous9 as it is the result of error cancellation.34,35 This problem becomes apparent under

uniaxial expansion perpendicular to the layers as the LDA is incapable of reproducing the

correct asymptotic behavior and thus cannot be expected to properly describe the materials

response under these conditions. Unless noted otherwise, below we report results obtained

using the vdW-DF-cx functional.
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3 Out-of-plane conductivity and structure

3.1 Defect-free material

Figure 1 shows the calculated out-of-plane conductivity as a function of temperature for

different conditions in comparison with experiment. It represents the key results of the

present work and in the following sections, we will successively discuss the different data.
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Figure 1: Out-of-plane lattice thermal conductivity κ⊥ for various samples of WSe2 from
experiment (Ref. 1) and calculation. Blue circles and lines show the temperature dependence
of κ⊥ for ideal bulk material from experiment and calculation, respectively. Taking into
account the effect of out-of-plane expansion and stacking disorder on the group velocities
yields the κ⊥ data shown by the dashed green curve (vg limited). If only the effect of
interlayer scattering on the lifetime is included one obtains the green data range (τlayer
limited), where the upper and lower limits correspond to d = c = 13 Å and d = c/2 = 6.5 Å,
respectively. To reach the experimental range of κ⊥ obtained for disordered thin films (open
red symbols), one must account for both group velocity reduction and interlayer scattering
(yellow range, τlayer + vg limited). The minimal thermal conductivity that is predicted by
the model introduced in Ref. 14 is shown by the dotted gray line.

The perfectly crystalline (ideal) system represents the starting point for the study of

structural effects. As indicated above, in the present study we do not explicitly compute

phonon-phonon scattering rates. Instead we use a simple lifetime model (τph-ph = αT−b) that

is adjusted to reproduce the experimental single crystal data. The more important parameter

is the prefactor α while the b parameter has only a minor effect and values approximately

in the range 0.8 to 1.0 yield almost identical results.
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3.2 Stacking disorder
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Figure 2: (a) Overview of the different types of stacking disorder considered in this study.
The black boxes represent the respective unit cells. Out-of-plane thermal conductivity at
300K (b) for the stacking disorder models shown in (a) and (c) as a function of layer spacing.
The black solid curve in (b) shows the energy of the respective stacking sequence relative to
the ideal structure. ovito was used for structural analysis and visualization.36

To determine the impact of stacking disorder and layer separation on the out-of-plane

conductivity κ⊥, a number of different stacking faults were considered, which are illustrated

in Fig. 2(a). They were obtained by altering the number and specific sequence of WSe2 layers.

In the equilibrium structure the W atoms occupy Wyckoff sites 2c and thus form a hexagonal

closed packed37 lattice with successive layers along [0001] labeled A and B, respectively. The

Se atoms occupy Wyckoff sites 4f and form a sublattice, which follows the same stacking

sequence as the W sublattice except that each layer comprises two Se atoms that have the

same in-plane coordinate but are split along [0001]. In stacking sequence ABAC1 the W

atoms follow an ABAC sequence while the Se atoms remain in ABAB sequence. Conversely

in stacking sequence ABAC2 the Se atoms follow an ABAC pattern whereas the W atoms

maintain the ABAB order. The ABC1 stacking fault configuration comprises Se and W

atoms in ABC and ABB sequence, respectively, while in the ABC2 configuration the Se and

W patterns are swapped. Each configuration was fully relaxed prior to the computation

of the lattice thermal conductivity. For ABAC-type stacking, the calculations yield a very

small energy increase relative to the ground state of only 3meV/layer; slightly larger values
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of 12 and 30meV/layer are obtained for ABC1 and ABC2 stacking sequences.

Figure 2(b) shows the out-of-plane thermal conductivity that we have thus obtained for

different stacking sequences. This reveals a reduction of κ⊥ by 30 to 50%, which is still much

less than the factor of 30 observed experimentally.1 The effect of simple disorder in the

stacking disorder is of similar magnitude for all configurations and thus does not exhibit a

strong dependence on the number of affected layers. This can be expected since the interac-

tion between neighboring layers is already weak whence long-range coupling should be even

weaker. While our exploration of possible forms of stacking disorder is (computationally)

limited it therefore appears unlikely that a reduction by more than an order of magnitude

can be solely attributed to stacking disorder.

3.3 Interlayer separation

To proceed with our analysis it is relevant to revisit the information that is available from

experiments concerning the structure and chemistry of turbostratically deposited thin films

with ultralow thermal conductivity. The layer spacing obtained from X-ray diffraction is

on average about 1.9–2.6% larger than the value for bulk WSe2 (compare Table 1 and

Refs. 1,2). Cross-sectional transmission electron micrographs38 furthermore suggest a rather

pronounced variation in layer separation.

As the first step in the analysis of these effects, Fig. 2(c) shows the variation of the out-

of-plane conductivity κ⊥ with layer separation, which reveals an exponential dependence

with a reduction by a factor of 10 at 8% expansion. In these calculations the in-plane

lattice constant was kept fixed at its zero-stress equilibrium value. The figure also contains

equivalent data obtained for the ABAC1 stacking fault model as well as data for the other

stacking sequences corresponding to their respective equilibrium layer spacing. Ideal and

ABAC1 stacking exhibit a very similar dependence on layer spacing, suggesting that the

stacking disorder and out-of-plane lattice expansion are not strongly coupled and can be

considered additively. Furthermore, it is apparent that the variation among the non-ideal
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stacking sequences can at least partially be rationalized in terms of variations in the layer

spacing that result from full ionic relaxation.
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Figure 3: (a) Phonon dispersion relation for the fully relaxed equilibrium structure. The
color scale indicates the group velocity along the z-direction for the respective mode. (b)
Frequency dependence of the mode specific heat capacity. (c) Brillouin zone for space group
P63/mmc (International Tables of Crystallography no. 194, D4

6h, Ref. 39).

4 Analysis of phonon dispersion relations

From our results it is apparent that even a moderate interlayer expansion produces a con-

siderably larger reduction in the thermal conductivity than stacking disorder alone. As will

be elaborated below, the exponential dependence of κ⊥ on the layer spacing implies that one

does not require a strong increase in the average layer spacing in order to achieve a dramatic

reduction in κ⊥ but merely local variations in layer spacings. We will return to this aspect

in Sect. 5. First, we will address the microscopic mechanisms behind the reduction of κ⊥

and compare the calculated vibrational properties with experiment, where possible.
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Figure 4: (a–c) Phonon dispersion along Γ-A for three different values of the out-of-plane
expansion ε. The color scale indicates the group velocity along the z-direction. The colored
circles in (a) indicate the zone-center and boundary modes, whose atomic displacement pat-
terns (representing phonon polarization vectors) are shown in (d). These modes correspond
to rigid shifts of layers with respect to each other as illustrated by the arrows. Panel (e)
shows the dependence of the frequency of these modes on the out-of-plane expansion. The
stability limit of the material with respect to out-of-plane expansion is determined by the
breathing modes, whose frequencies become imaginary at approximately 11% when using
vdW-DF-cx (7% for LDA).

4.1 Accordion effect

To resolve the microscopic origin for the κ⊥ variation with layer separation, we analyzed the

relative contributions of different phonon modes and q-vectors to the summation in Eq. (1).

Figure 3(a) shows the phonon dispersion for the fully relaxed structure. As we assume the

relaxation time to be mode and q independent there are two terms that determine the con-

tribution of any given mode to the thermal conductivity. The heat capacity ci(T, q) depends

only on the frequency. As shown in Fig. 3(b), near room temperature this contribution is

already close to saturation, i.e. 1 kB per mode, for all available frequencies.

The most important term is therefore the group velocity vα,j(q) along [0001], which

is indicated by the color scale in Fig. 3(a). It is obvious that only modes with q-vector

components along [0001] have non-zero vα,j(q). The color-coding in Fig. 3(a) suggests that

the dominant contributions to κ⊥ stem from modes in the immediate vicinity of the Γ–A

direction. A close-up of this branch is shown in Fig. 4 (a) at the equilibrium layer spacing

as well as for out-of-plane expansions of (b) 4% and (c) 8%.

From Fig. 4(a) it is apparent that the main contribution to κ⊥ at the equilibrium layer
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separation stems from the longitudinal acoustic (LA) branch and, to a lesser extent, the

lowest longitudinal optical (LO) mode. The atomic displacement patterns associated with

these modes are shown in Fig. 4(d). With increasing layer separation the LA branch softens

while the LO branch localizes leading to a considerable drop in the group velocity. This is

further illustrated in Fig. 4(e), which shows the variation of the lowest energy zone-center and

boundary modes with layer spacing. The A2 breathing mode is a measure for the softness of

the LA branch whereas the difference between the B2
2g and A2 breathing modes is associated

with the localization of the lowest LO mode.

The stability limit of the material with respect to an expansion of the layer spacing is

determined by the breathing modes, as they are the first modes to become unstable at about

11% expansion according to vdW-DF-cx (7% from LDA), see Fig. 4(e). This demonstrates

that the material can tolerate a rather substantial level of expansion.

4.2 Comparison with experiment

The E2
2g shear mode is Raman active and its frequency has been experimentally measured

as 0.72THz (24 cm−1).33 We obtain values of 0.82THz (27 cm−1) and 0.75THz (25 cm−1)

from vdW-DF-cx and LDA calculations, respectively, where the latter value agrees with

previous calculations.33,40 Our calculations also agree well with experimental data for higher

frequency Raman modes41 as shown in Table 2

Table 2: Raman frequencies in cm−1 of bulk WSe2 from experiment and calculation.

Mode A1g E1
2g E1g E2

2g

Experiment (Ref. 33) 24
Experiment (Ref. 41) 253 250 178 25
LDA 255 249 177 25
vdW-DF-cx 250 243 173 27

The longitudinal sound velocity along [0001] is determined by the group velocity in the

long-wave limit, which gives about cl,[0001] = 2.0 km/s at the equilibrium layer spacing. This

value is related to the elastic constant c33 via cl,[0001] =
√
c33/ρ, where ρ is the mass density.
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The softening of the LA branch should therefore also be evident in the c33 elastic constant. In

fact, while an experimental value of c33 = 52GPa has been obtained for bulk WSe2,
33 a value

of only 25GPa was reported for WSe2 with ultra-low thermal conductivity.1 42 The observed

(average) softening of the materials is thus approximately consistent with our calculations,

which predict a reduction by one half for an expansion of about 3–4% for both vdW-DF-cx

and LDA.

5 Microscopic model for κ⊥ reduction

5.1 Variations in layer spacing

We are now in the position to provide a microscopic rationalization of the ultra-low thermal

conductivity in WSe2 films on the basis of our data. Recall that structural investigations of

these films indicate that lower thermal conductivity is correlated with a decreasing coherence

between crystallites in the films, a greater degree of misorientation,2,38 an increase in the

average layer spacing by 1.9–2.6% as well as a rather substantial variation in layer spacing

along the out-of-plane direction.43

We first formulate a simple model to describe the average out-of-plane thermal conduc-

tivity κ⊥ that results from a distribution in layer spacings. To approximate the experimental

structure let us consider a stack of layers as schematically depicted in Fig. 5(a) with a distri-

bution of layer spacings l1 = l0(1+ εi), where εi is the out-of-plane expansion relative to the

ideal single crystal layer spacing l0. The local thermal conductivity κ(εi) reflects the expan-

sion and Gi = κ(εi)[l0(1+εi)]
−1 characterizes the thermal conductance across the “interface”

between the i-th pair of layers.44 In perfect single-crystalline WSe2, the conductivity and

intersheet conductance are κ0 = κ(0) and G(0) = κ0/l0, respectively.

As there is very limited information on the distribution of the intersheet spacings except

for the average expansion1 ⟨ε⟩, we simply assume an exponential distribution45 f(ε > 0) =

µ−1 exp (−ε/µ), where the mean of the distribution µ represents the average out-of-plane
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expansion ⟨ε⟩ = µ. Figure 2(c) indicates an approximately exponential dependence of the

out-of-plane conductivity on ε for the case of homogeneous expansion. We therefore set

κ(ε)/κ0 = exp (−aε), where a = 25.5 gives a reasonable fit to our first-principles data.
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Figure 5: (a) One-dimensional model for a stack of WSe2 layers with a distribution of layer
spacings. The horizontal dashed lines indicate the “interfaces” between adjacent layers. (b)
Effective out-of-plane conductivity across a stack with an exponential distributions of layer
spacings as a function of the average out-of-plane expansion ⟨ε⟩ = µ. For reference, the
exponential dependence of κ⊥ obtained upon a homogeneous out-of-plane expansion, see
Fig. 2(c), is represented by the dotted gray line. The gray bar represents the range of the
experimentally observed average expansions (1.9–2.6%).

For a stack of N sheets the total thermal impedance is G−1
N =

∑
iG

−1
i , where Nl0(1 +

µ)GN must approach the average effective thermal conductivity ⟨κ⟩µ in the large-N limit.

Replacing the N -stack thermal impedance by the distribution average46

⟨
G−1

⟩
=

∫
dεG−1(ε)f(ε)

/∫
dεf(ε), (3)

we obtain ⟨κ⟩/κ0 = (⟨G−1⟩G(0))−1(1 + µ). Discarding the last small factor (1 + µ) but

keeping the expansion effects in the ensemble averaging then yields the relative out-of-plane

thermal conductivity as a function of the average expansion,

⟨κ⟩µ
κ0

=
1− aµ

1 + µ/(1− aµ)
. (4)
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which is shown in Fig. 5(b).

For an average out-of-plane expansion of 2.3% representing the experimentally observed

range of 1.9–2.6% that was discussed above, the model predicts a reduction of κ⊥ by approx-

imately 60% compared to the ideal structure. Stacking disorder causes a further reduction

as indicated by the dashed blue curve in Fig. 5(b). It is because of the variation of layer

spacings that the reduction predicted by the model is noticeably stronger than for the case

of a pure homogeneous expansion, which is shown for comparison by the dotted gray line,

also compare Fig. 2(c).

5.2 Lifetime limitation by interface scattering

Up to this point, the discussion has focused on structural effects on group velocities and

frequencies. According to the analysis in the previous section, an increase in the average

layer spacing along with local variations can explain a reduction of κ⊥ by about 60%, also

see Fig. 1 with stacking fault disorder having a slightly smaller effect. The temperature

dependence of the “vg limited” out-of-plane conductivity is indicated by the dashed green

curve in Fig. 1. The thus obtained reduction is still noticeably above both the minimal

conductivity model14 and the values obtained for disordered WSe2 films. This suggests that

yet another mechanism is at work.

In fact, the perturbation of the periodicity perpendicular to the layers due to stacking

faults and variations in layer spacing should not only affect the group velocities vg but also

limit the mean free path of phonon modes with out-of-plane components. This is equivalent

to the effect of boundary scattering17,47,48 and can be formally expressed in the form of

another lifetime,49

τlayer =
d

vg,⊥

1 + p

1− p
. (5)

Here, vg,⊥ is the projection of the group velocity on the out-of-plane direction, d represents
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the upper limit on the phonon mean free path,50 and p is a specularity parameter, which

ranges from 0 for a completely rough edge to 1 for a perfectly smooth edge. In the case of

a sample with perturbed periodicity and associated disorder, d should be comparable to the

layer spacing, i.e., approximately between 6.5 and 13 Å. In fact, combining phonon-phonon

scattering (τph-ph) and layer scattering (τlayer with p = 0) with the group velocity limited

thermal conductivity yields excellent agreement with the experimental data as shown by the

yellow shaded region in Fig. 1 (τlayer+vg limited), where the lower (upper) limit corresponds

to d = 6.5 Å (13 Å). Note that this calculation not only reproduces the experimental range

for κ⊥ at room temperature but, as a result of the temperature independence of τlayer, also

captures the experimental temperature dependence of κ⊥, which primarily derives from the

heat capacity, see Fig. 4(b).

It is important to point out that layer scattering alone cannot account for the experimental

observations as demonstrated by the green shaded region (τlayer limited). The latter can

actually be considered the “glass limit” for the bulk material, in which the phonon mean

free path is bound by the interatomic distance along the out-of-plane direction.

6 Discussion

The results and analysis presented in the previous sections allows us to provide a comprehen-

sive description of the experimentally observed reduction of κ⊥. The experimental character-

ization of WSe2 films with ultralow thermal conductivity has revealed a pronounced degree

of stacking disorder as well as an increase in not only the average layer spacing but also

its variance. On a microscopic level the lattice thermal conductivity is determined by the

group velocities vg and lifetimes τ of the phonons in the material, see Eq. (1). A reduction of

κ⊥ can thus result from mode localization and softening (reducing vg) as well as scattering

(limiting τ).

The effects of stacking disorder and layer expansion on vg were separately quantified in
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Sect. 3. Stacking disorder causes a reduction of κ⊥ due to localization and softening by

40–60%. While the homogeneous expansion of the out-of-plane separation gives rise to an

exponential decrease of κ⊥ it is not a realistic model for the structure of the material. The

experimentally observed variation in layer spacing was therefore described in Sect. 5 using

a simple analytic model for the distribution of layer spacings. Overall, the analysis suggests

that pure phonon localization and softening (“phonon confinement”, Refs. 51,52) can give

rise to a reduction of κ⊥ by a factor of 2 to 4, see Fig. 1.

The disorder in the WSe2 films furthermore imposes a limit on the phonon mean free path

in the out-of-plane direction, corresponding to an interface scattering limit on the lifetime τ .

The minimum layer spacing in the out-of-plane direction (i.e., half the out-of-plane lattice

constant, d ≈ c/2 in Eq. (5)) in combination with a completely rough interface/boundary

(p = 0) provides a lower bound for this scattering channel and effectively corresponds to the

“glass limit”.

To describe both the magnitude and the temperature dependence of the experimental

κ⊥, one must account for both the depression of group velocities and lifetimes assuming an

effective interface spacing of only one to two lattice spacings (6.5–13.0 Å). Models that rely

on phonon softening and localization only, are thus insufficient to describe the reduction of

κ⊥ in its entirety.53

The final value for κ⊥ is naturally dependent on τlayer as well as the effective reduction

of κ⊥, as indicated by the κ⊥ range shown in Fig. 1. This merely reflects the fact that

κ⊥ is sensitive to small structural variations among different samples as evident from the

experimental data.

It is interesting to note that the calculations presented in Sect. 3 demonstrate that a very

significant reduction by 40–60% is possible by simply manipulating the stacking sequence.

This effect can in principle be accomplished without introducing significant layer scattering

(which is primarily the result of layer disorder). Given the small energy cost of ABAC-type

stacking sequences and the recent advances in controlled deposition of vdW materials, this
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possibility might be in fact realizable. Such an approach would be very interesting with

respect to e.g., thermoelectric properties, for which one seeks to combine a relatively high

electrical conductivity with minimal lattice thermal conductivities.5 Electronic carriers typ-

ically have longer mean free paths than phonons and therefore should be less sensitive to

the stacking order. Nanostructuring is of course well established in thermoelectric materi-

als, primarily in the form of dopant, precipitate, and grain boundary engineering, see e.g.,

Ref. 7. Anisotropic structures offer additional and complementary possibilities as recently

demonstrated for tilted multilayer structures.54

An even more significant reduction of κ⊥ can be achieved by controlling the layer spacing.

The latter could in principle be affected by strain, intercalation or more generally defect

engineering. Further studies are in order to obtain a quantitative understanding of these

mechanisms.

7 Conclusions

In summary, in this paper we have shown that the experimentally observed dramatic reduc-

tion of the out-of-plane thermal conductivity in disordered WSe2 films can be quantitatively

explained by a combination of Boltzmann transport theory and first-principles calculations.

To explain the experimental result, one must account for the effect of disorder on both group

velocities (phonon softening and localization) and lifetimes (scattering channels), as these

mechanisms are individually insufficient to explain the experimental result. The results ob-

tained here are of general relevance with respect to layered materials as the mechanisms

described here are a result of variations in structure rather than chemistry. Finally, we note

that controlling stacking disorder and layer spacing without scattering can be a powerful

tool for manipulating phonon transport at least partly independently from charge-carrier

transport. The latter ability is of interest in the context of e.g., thermoelectric materials and

heat management.
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(26) Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Phys. Rev. Lett.

2004, 92, 246401.

(27) Thonhauser, T.; Cooper, V. R.; Li, S.; Puzder, A.; Hyldgaard, P.; Langreth, D. C.

Phys. Rev. B 2007, 76, 125112.

(28) Berland, K.; Cooper, V. R.; Lee, K.; Schöder, E.; Thonhauser, T.; Hyldgaard, P.;
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