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The dependence of the electrical conductivity on the oxygen partial pressure is calculated for the
prototypical perovskite BaTiO3 based on data obtained from first-principles calculations within
density functional theory. The equilibrium point defect concentrations are obtained via a
self-consistent determination of the electron chemical potential. This allows one to derive charge
carrier concentrations for a given temperature and chemical environment and eventually the
electrical conductivity. The calculations are in excellent agreement with experimental data if an
accidental acceptor dopant level of 1017 cm3 is assumed. It is shown that doubly charged oxygen
vacancies are accountable for the high-temperature n-type conduction under oxygen-poor
conditions. The high-temperature p-type conduction observed at large oxygen pressures is due to
barium vacancies and titanium-oxygen divacancies under Ti- and Ba-rich conditions, respectively.
Finally, the connection between the present approach and the mass-action law approach to point
defect thermodynamics is discussed. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2956327�

I. INTRODUCTION

Point defects control the functional properties of semi-
conductors and many insulators, but are usually difficult to
assess experimentally. If bulk properties like conductivity or
diffusivity are measured, it is necessary to introduce model
assumptions in order to relate the measured macroscopic
quantities to microscopic point defect properties. In contrast,
local probes such as electron spin resonance1,2 or positron
annihilation spectroscopy3 can provide very specific infor-
mation on point defect structures but are usually restricted to
certain electronic configurations �unpaired spins� or types of
defects �open volumes, vacancies�. In general, only by com-
bining several experimental probes a consistent description
of the defect chemistry in a given material can be obtained.4

To complicate things further, the correlation between defect
properties and any experimentally measured response is typi-
cally indirect and often prone to ambiguities.

Computational modeling techniques evolved rapidly in
recent years, in particular in the realm of first-principles cal-
culations. Among these methods schemes based on the
density-functional theory �DFT� are extremely popular as
they have become increasingly reliable and have been shown
to be capable of predicting various materials properties.
First-principles modeling is particularly attractive with re-
gard to point defects. It allows to obtain detailed information
about thermodynamic and kinetic properties �formation en-
ergies and volumes, migration barriers and entropies� as well
as the electronic structure which—at this level of detail—are
not available through experimental techniques �see, e.g.,
Refs. 5–8�. However, only in very few cases calculations of
point defect properties have been employed to derive macro-

scopically measurable quantities such as conductivities or
diffusivities �see e.g., Refs. 9 and 10�. It is, however, instru-
mental to develop these connections between calculation and
experiment in order to verify the underlying methods and to
establish their predictive power.

In the present contribution we demonstrate for the case
of BaTiO3 how theoretical data obtained from first-principles
calculations8 can be used to derive the dependence of the
electrical conductivity on the oxygen partial pressure. The
electrical conductivity is a technologically highly relevant
property, the understanding of which is at the very founda-
tion of device technology. The modeling of this property
described in the present paper provides the basis for future
work which should address, e.g., the role of kinetic effects,
extrinsic defects, or defect association.

Barium titanate is a prototypical ferroelectric material
with a paraelectric-ferroelectric transition temperature of 393
K. Its most important technological application is in thin-film
capacitors.11 In addition BaTiO3 serves as an end member in
several lead-free ferroelectric alloys,12 and is used—often in
combination with SrTiO3—to obtain tunable radio frequency
devices.13,14 Because of its technological importance it has
been extensively investigated, and a reliable, as well as ex-
tensive, database is available �see, e.g., Refs. 15–23�.
BaTiO3 is therefore not only a very interesting material for
theoretical investigations, but it provides also an excellent
testbed for carrying out a stringent comparison between cal-
culated and experimental data.

In the following we first introduce the thermodynamic
framework and the relevant equations of semiconductor
physics. Combining these equations we are able to determine
self-consistently for a given temperature and a given chemi-
cal environment: �1� the electron chemical potential, �2� thea�Electronic mail: paul.erhart@web.de.
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point defect concentrations, �3� the charge carrier concentra-
tions, and eventually �4� the electrical conductivity. In Sec.
III the results of the calculations are compared to high-
temperature experimental data and the dependence of the
conductivity on the oxygen partial pressure is analyzed in
terms of the point defect equilibria in the material. The
model is subsequently employed to extrapolate the materials
behavior to lower temperatures, where experimental mea-
surements are no longer available.

II. THERMODYNAMIC FORMALISM

A. Gibbs free energy of point defect formation

The Gibbs free energy of formation of a point defect in
charge state q can be consistently derived from thermody-
namic principles and depends on the chemical potentials �i

of the constituents �“the chemical environment”� and the
electron chemical potential �e as follows:24,25

�Gd = �Gdef − Ghost� − �
j

�nj� j + q�EVBM + �e� , �1�

where Gdef and Ghost are the Gibbs free energies of the sys-
tem with and without the defect, respectively. The difference
in the number of atoms of type i between these two systems
is denoted �nj and the sum runs over the elements present in
the system. It is convenient to separate the chemical potential
into the chemical potential of the ground state � j

0 and the
variation relative to the ground state chemical potential �� j,
i.e.,

� j = � j
0 + �� j . �2�

Finally, the position of the valence band, EVBM, defines the
reference of the energy scale for the electron chemical po-
tential, �e.

Knowledge of the defect formation energy allows one to
calculate the defect concentration as a function of tempera-
ture, which is given by

ci
d = ci

0 exp�−
�Gi

d

kBT
� , �3�

where ci
0 denotes the number of sites available for defects on

the respective sublattice per volume �e.g., the density of
barium sites in the case of barium vacancies�.

B. Charge neutrality condition: The intrinsic electron
chemical potential

The electron chemical potential �e, which appears in Eq.
�1�, is actually not a free parameter but fixed by the charge
neutrality condition4

ne + nA = nh + nD, �4�

which links the concentration of intrinsic electrons ne and
holes nh to the concentration of charge carriers induced by
acceptors nA and donors nD. As discussed in the following
each term in Eq. �4� is exponentially dependent on the elec-
tron chemical potential �e. Finding a solution of Eq. �4�
therefore yields the intrinsic �self-consistent� chemical poten-

tial for a given temperature and chemical environment �Sec.
II D�.

The intrinsic charge carrier concentrations are obtained
by integrating the number of unoccupied states up to the
valence band maximum �VBM� and the number of occupied
states above the conduction band minimum �CBM�,

ne��e� = �
CBM

�

D�E�f�E,�e�dE , �5a�

nh��e� = �
−�

VBM

D�E��1 − f�E,�e��dE , �5b�

where f�E ,�e�= 	1+exp��E−�e� /kBT�
−1 is the Fermi–Dirac
distribution.

The concentrations of point defect induced carriers are
obtained by summing the concentrations of acceptors and
donors

nD = �
i

donors

eqici
0 exp�−

�Gi
d

kBT
� , �6a�

nA = �
i

acceptors

eqici
0 exp�−

�Gi
d

kBT
� , �6b�

where e is the unit of charge and qi is the charge state of
defect i. Additional charge carriers contributed by dopants or
impurities �“accidental dopants”� can be simply added to nA

and nD, respectively. Their concentrations are given by

nD
ext = eqDcD

0,ext�1 − f�EG − ED,�e�� , �7�

nA
ext = eqAcA

0,ext�f�EA,�e�� , �8�

where ED and EA are the donor and acceptor equilibrium
transition levels measured with respect to the CBM and the
VBM, respectively, and cD

0,ext and cA
0,ext are the impurity con-

centrations.
Mathematically, it is possible that there is more than one

solution of the charge neutrality condition Eq. �4�. This can
occur, e.g., if some defect concentrations change as a func-
tion of temperature whereas some others are held constant. In
such a case the solution with the lowest Gibbs free energy is
selected. The difference of the Gibbs free energy with respect
to the equivalent defect-free reference system is obtained by
summing the formation energies of all defects in the system
minus the configurational entropy

�G � �
i

Ni�Gi
d − kBT ln � , �9�

where Ni denotes the number of defects of type i and �
denotes the number of possible configurations �compare
Chap. 3.3 of Ref. 4�.

C. Electrical conductivity

The electrical conductivity is obtained by summing over
all mobile charge carrying species4
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� = �
i

Biciqie , �10�

where Bi is the mobility, ci is the concentration per volume,
and qi is the charge number. Typically one distinguishes the
electronic and ionic contributions �=�el+�ion. According to
Eq. �10� the former is simply

�11�

where ne and nh are given by Eqs. �5a� and �5b� under the
constraint that the charge neutrality condition �4� is fulfilled.
Charge carrier mobilities subsume the contributions of all
possible scattering mechanisms—most importantly defects
and phonons—and are therefore very difficult to calculate. At
present we resort to experimental data instead. For the elec-
tron mobility we use the expression given in Ref. 17 which is
a fit to single crystal data from Seuter using the expression
given by Ihrig,26

Be = 8080
cm2 K3/2

s
T−3/2 exp�−

0.021 eV

kBT

 . �12�

For the hole mobility we follow Ref. 17 and assume Bh

�Be /2.
In order to obtain the ionic conductivity one can use

the Einstein–Smoluchowski relation Bi=eDi /kBT to
replace the defect mobility with the defect diffusivity
Di=D0 exp�−�Gi

m /kBT�, which yields

�ion = �
i

qie
2D0ci

kBT
exp�−

�Gi
m

kBT
� . �13�

For cubic crystals the prefactor is D0=6�0a0
2, where a0 is the

lattice constant and �0 is the attempt frequency. The latter
can be approximated by the lowest optical phonon frequency
which yields27 �0�5 THz and D0�10−3 cm /s2. The mi-
gration energies for intrinsic vacancies have been reported in
Ref. 8. Since both the migration entropy and the migration
volume are about a factor of magnitude smaller than the
formation entropy and volume, they can be safely neglected
in the present case, i.e., we can assume �Gi

m��Ei
m. Using

these data it is found that for the present material the ionic
contribution at elevated temperatures is about four orders of
magnitude smaller than the electronic contribution. In the
following we therefore consider the electronic part only.

D. Phase stability: Limitations on the chemical
potentials

The chemical potentials � j =� j
0+�� j, which appear in

Eq. �1�, are subject to several thermodynamic constraints.
First, they cannot become more positive than the chemical
potential of the reference phase, i.e., �� j �0, where the ref-
erence phase for oxygen is the O2 molecule, for barium the
body-centered-cubic crystal, and for titanium the hexagonal-
close-packed crystal. If any chemical potential reaches its
upper limit, the respective elemental ground state phase pre-
cipitates. Second, the chemical potentials of the constituting
elements are coupled by the requirement that8

��Ba + ��Ti + 3��O = �Hf�BaTiO3� , �14�

where �Hf�BaTiO3� is the formation energy of BaTiO3. Fur-
ther constraints result from the formation of competing
phases, namely

��Ba + ��O � �Hf�BaO� , �15a�

��Ti + 2��O � �Hf�TiO2� . �15b�

If all of these restrictions are included, one obtains the static
phase diagram for T=0 K depicted in Fig. 1. The outer tri-
angle follows from condition �14� while the lines separating
the BaTiO3, TiO2, and BaO phases result from Eqs. �15a�
and �15b�. The gray shaded area is the �0 K� stability range
of BaTiO3 with respect to BaO and TiO2.

Experimentally, the way to control the thermodynamic
boundary conditions is to use either BaO or TiO2 excess
during materials processing, and to vary the oxygen partial
pressure, pO2

, during processing and measurements. Adjust-
ing the excess of either Ba or Ti corresponds to constraining
the accessible range of chemical potentials to the lines A–D
�Ba-rich limit, equilibrium between BaO and BaTiO3� or
B–C �Ti-rich limit, equilibrium between TiO2 and BaTiO3�
in Fig. 1. Varying the oxygen partial pressure �i.e., to the
oxygen chemical potential� is equivalent to moving along
these lines where the extremal points A and B on one, and C
and D on the other side correspond to metal-rich �low pO2

�
and oxygen-rich �high pO2

� conditions, respectively.
While the formation energies calculated in Ref. 8 are

given as a function of the chemical potentials, experimen-
tally the conductivity is measured as a function of the oxy-
gen partial pressure. In order to compare the conductivities
as calculated for different chemical potentials with experi-
mental data, one must therefore convert between the oxygen
chemical potential and the oxygen partial pressure. The two
quantities are related according to28,29

FIG. 1. Phase diagram for cubic barium titanate at 0 K as determined from
density functional theory calculations �Ref. 8�. The area confined between
points A, B, C, and D is the chemical stability range of BaTiO3. The chemi-
cal potentials confined to the lines A–D and B–C are referred to as Ba and
Ti rich, respectively.

044315-3 P. Erhart and K. Albe J. Appl. Phys. 104, 044315 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



�O�T,pO2
� = �O�T,p0� +

1

2
kBT ln� pO2

p0 � , �16�

where pO2

0 denotes the reference pressure. We choose the
isolated oxygen dimer molecule as the 0 K reference state,
�O

0 �0 K, p0�= 1
2EO2

. For consistency with the experimental
data and following Ref. 28 we use the experimental value for
EO2

=−5.16 eV /dimer and the experimentally determined
temperature dependence of �O�T , pO2

0 � �Ref. 30�.
The phase diagram in Fig. 1 is strictly valid only at zero

temperature. At finite temperatures the construction would
have to be based on the free energies of formation instead.
The major effect arises from the differences between the vi-
brational entropies between the various relevant phases. With
the exception of oxygen all these phases are crystalline. The
entropies of crystalline solids are, however, much smaller

than the entropies of gases. By the far the most important
term is therefore the change of the free energy of the oxygen
reservoir, which is properly taken into account via Eq. �16�.
It is therefore admissible to use the phase diagram estab-
lished here also at finite temperatures.

E. Summary of algorithm

In summary computing the conductivity proceeds as fol-
lows: �i� The electron chemical potential is self-consistently
determined as described in Sec. II B for a fixed set of atomic
chemical potentials �see Sec. II D�. �ii� The concentrations of
the intrinsic charge carriers and the intrinsic defects are
evaluated using Eqs. �5a�, �5b�, �6a�, and �6b�. �iii� The con-
ductivity is calculated as described in Sec. II C and the oxy-
gen chemical potential is converted to an oxygen partial
pressure according to Eq. �16�. In the following we explicitly
assume that the material is always able to reach equilibrium,
which is a reasonable assumption at elevated temperatures.
Further computational details are given in the Appendix.

III. RESULTS AND DISCUSSION

A. Equilibrium conductivity at elevated temperatures

We have implemented the model described earlier and
used the formation energies from Ref. 8. A band gap of EG

=3.0 eV was employed which is 0.4 eV smaller than the 0
K-extrapolated band gap mimicking the shrinking of the
band gap with increasing temperature. The value of 3.0 eV
lies between the value obtained by temperature scaling of the
band gap reported by Wemple,31 which yields approximately
2.8 eV at 1400 K, and the values for the band gap discussed
by Chan et al.,17 which range between 3.0 and 3.4 eV. Both
undoped and weakly �“accidentally”� doped materials �nA

ext

=1017 cm−3 and 1018 cm−3� were considered. The calculated
equilibrium conductivity as a function of temperature, impu-
rity concentration, and oxygen partial pressure is shown in
Fig. 2. All curves display the shape characteristic for a tran-
sition from n-type �negative slope� to p-type �positive slope�
conduction.

1. Undoped material

First we consider an ideally pure material �nA
ext

=0 cm−3� under Ba-rich conditions �i.e., for chemical poten-
tials along A–D in Fig. 1� for which the thin dotted lines in
Fig. 2 are obtained. Throughout the n-type region a slope of
�1/6 is observed �compare the dashed line segments in Fig.
2�a��, which changes to 	1/6 in the p-type region. Analysis
of the defect concentrations �Fig. 3�a�� shows that in the
n-type region doubly charged oxygen vacancies are the
dominant defects which gives rise to a slope of �1/6. This
slope can also be derived if one treats the point defect equi-
libria in the material using the mass-action law approach.17,32

Starting from the point defect reaction

OO ↔ VO
·· + 2e� +

1

2
O2,

one obtains a mass-action law which links the oxygen partial
pressure, pO2

, to the concentration of doubly charged oxygen

FIG. 2. �Color online� �a� Calculated conductivity as a function of oxygen
chemical potential along the line A–D �i.e., for barium-rich conditions� in
Fig. 1. The results in the absence of any impurities nA=0 cm−3 are shown
by dotted lines; solid and dashed lines correspond to acceptor doping levels
of nA=1017 cm−3 and nA=1018 cm−3, respectively. �b� Comparison of cal-
culated �thick solid lines� and experimentally measured conductivity curves
�thin lines and symbols�. Experimental data from Refs. 15–18. For the cal-
culations in �b� an accidental acceptor doping level of nA=1017 cm−3 was
adopted.
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vacancies, �V
O
··�, and the concentration of electrons, ne,

KI = �V
O
··�ne

2pO2

1/2. �17�

Application of the Brouwer approximation �one defect domi-
nates the charge neutrality condition, Eq. �4�� for the oxygen
vacancies �V

O
··�=2ne then yields

ne 
 pO2

−1/6, �18�

which because of Eq. �11� leads to the same slope in the
conductivity.

In the p-type region �VTi−VO��� divacancies dominate,
leading to a slope of 	1/6. The latter can be derived using
the mass-action law approach as follows. The point defect
reaction

BaO +
1

2
O2 ↔ �VTi − VO��� + 2h· + BaTiO3

leads to

KII = ��VTi − VO����nh
2pO2

−1/2, �19�

which using the simplified charge neutrality condition ��VTi

−VO����=2nh yields

nh 
 pO2

+1/6. �20�

For clarification it should be pointed out that if the conduc-
tivity is plotted not against the oxygen partial pressure but
against the oxygen chemical potential the minima all occur at
the same chemical potential. The gradual shift of the minima
in Fig. 2 is thus merely a consequence of the temperature
dependence of the relation between the chemical potential
and the oxygen partial pressure described by Eq. �16�.

The self-consistently determined electron chemical po-
tential is shown in Fig. 4. At low oxygen partial pressures it
is located in the upper half of the band gap corresponding to
n-type material whereas for larger oxygen partial pressures
the electron chemical potential resides in the lower half of
the band gap. Figure 4 shows that for an ideally pure mate-
rial the pressure dependence of the electron chemical poten-
tial does not change with temperature. This observation con-
trasts with the temperature induced shift of the minimum of
the conductivity curves �Fig. 2�a��.

The temperature and pressure dependence of the conduc-
tivity as well as the electron chemical potential obtained un-
der Ti-rich conditions �i.e., for chemical potentials along the
line B–C in Fig. 1� very closely resemble the results under
Ba-rich conditions. In the n-type region doubly charged oxy-
gen vacancies are again the primary defects. In the p-type
region, however, doubly charged barium vacancies dominate.
Following a similar derivation as for the VTi−VO divacancies
�see e.g., Ref. 17� one again obtains a slope of 	1/6.

As demonstrated earlier the use of the mass-action law
and the Brouwer approximation allow one to deduce the
slope of the curves for situations in which one defect domi-
nates. Such an approach is, however, bound to fail in any
transition region or in regions where several point defects
have similar concentrations. This is, for example, the case
near the crossings of the lines in Fig. 3. This limitation is
avoided by using the full approach outlined in Sec. II which
furthermore does not require any presumptions with regard

FIG. 3. �Color online� Charge carrier and defect concentrations for �a� pure
and �b� accidentally acceptor doped material �nA

ext=1017 cm−3�.

FIG. 4. �Color online� Variation of the electron chemical potential with both
temperature and impurity concentration. The curves move downward, i.e., to
more p-type conditions, with decreasing temperature as well as increasing
impurity concentrations. The gray bars indicate the reduction of the band
gap at higher temperatures.
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to the prevalence of any particular defect reaction. In addi-
tion it allows one to obtain the concentrations of secondary
point defects which although they do not affect the charge
carrier concentrations still can impact the electronic proper-
ties through carrier scattering and trapping.

2. Weakly acceptor doped material

If under Ba-rich conditions a low concentration of ac-
ceptors is present in the material, one obtains the bold solid
lines in Fig. 2 �nA

ext=1017 cm−3�. For low oxygen partial
pressures and high temperatures they have a slope of �1/6 in
the n-type region just as in the undoped material. Again this
is due to positively charged oxygen vacancies as illustrated
in Fig. 3�b�. As the temperature is lowered and/or the oxygen
partial pressure rises, a transition to a slope of �1/4 is ob-
served. As shown in Fig. 3�b� this change corresponds to the
onset of extrinsic behavior, i.e., the dominant source for
holes are no longer intrinsic but extrinsic defects. In this case
the simplified charge neutrality condition reads �V

O
··�=2nA

ext

which if inserted into Eq. �17� also leads to a slope of 	1/4.
At higher oxygen partial pressures and higher temperatures
the slope changes to 	1/6—as in the ideal case—indicating
intrinsic behavior and dominance of VTi−VO divacancies. In
contrast, at lower temperatures a slope of 	1/4 is observed
which is consistent with extrinsic behavior.17

As shown in Fig. 4 the electron chemical potential as a
function of the oxygen partial pressure again displays a re-
duction of the slope for pressures �10−3 atm which results
from the coupling of the concentrations of intrinsic holes and
extrinsic defects which are of similar magnitude in this
range. For even larger oxygen partial pressures �outside the
range of Fig. 2 but visible in Fig. 3�b��, the concentration of
VTi−VO divacancies exceeds the concentration of extrinsic
acceptors and the slope of the conductivity curves reverts to
	1/6. The transition from n-type to p-type conduction cor-
relates with a significant variation of the electron chemical
potential over the band gap. In contrast to the case of an
ideally pure material, material which contains extrinsic de-
fects exhibits a marked temperature dependence of the elec-
tron chemical potential versus pressure curves. As the tem-
perature is reduced the electron chemical potential curves are
pushed downwards, which leads to the remarkable finding
that for a certain range of oxygen partial pressures, the elec-
tron chemical potential moves from the upper to the lower
half of the band gap as the temperature is lowered, indicating
a transition from n- to p-type conduction.

If the dopant concentration is further raised �thin dotted
lines in Fig. 2, nA

ext=1018 cm−3� extrinsic acceptors dominate
over the entire range of chemical potentials and a slope of
�1/4 �	1/4� is obtained throughout the n-type �p-type� re-
gion. The temperature dependence of the electron chemical
potential curves �Fig. 4� is even more pronounced than in the
case of nA

ext=1017 cm−3.
The entire situation is very similar if Ti-rich conditions

are imposed, the major difference being again the occurrence
of barium vacancies instead of VTi−VO divacancies in the
p-type region.

B. Comparison with experiment

The conductivity of both nominally undoped as well as
intentionally doped barium titanate has been repeatedly mea-
sured as a function of oxygen partial pressure and at elevated
temperatures.11,15–18,33,34 These studies provide a comprehen-
sive data set for comparing our calculations with experiment.
In Fig. 2�b� the results of several measurements are plotted
together with the curves calculated for a doping level of
nA

ext=1017 cm−3. The agreement is very good. The calcula-
tions reproduce the n-type / p-type transition, the temperature
dependence of the position of the minima, as well as the
changes in the slopes.

In order to explain the experimentally observed transi-
tion within the n-type region from a slope of �1/6 to a slope
of �1/4, two different models have been discussed: �i� The
most early studies proposed the transition to be related to a
change of the charge state of the oxygen vacancy.15 The mea-
surements could be reproduced using a model in which the
oxygen vacancy 	1/	2 transition level is located about 1.3
eV below the CBM and thus very close to the center of the
band gap. �ii� Most studies �see e.g., Refs. 16, 17, 34, and
35�, however, assume that even in the most carefully pre-
pared samples a background concentration of “accidental”
acceptor impurities is present which gives rise to the transi-
tion between the slopes.

The present calculations in conjunction with the DFT
data from Ref. 8 provide very strong evidence for the second
explanation. In order to obtain further support for this pic-
ture, we artificially pushed the 	2/	1 transition level, which
is located just 0.05 eV below the conduction band minimum,
toward the middle of the band gap by reducing the formation
energy of the singly charged oxygen vacancy. Thus the ob-
tained conductivity curves do indeed display a transition
from �
 pO2

−1/6 to �
 pO2

−1/4. However, in order to reproduce at
least approximately the experimental data the formation en-
ergy of VO

· had to be reduced by about 1 eV, which is sig-
nificantly larger than the error bar of the DFT calculations.

The p-type region within which the slope is positive is
dominated by acceptor defects. Since experimentally one ob-
serves a slope of about 	1/6 in this region, it has been
widely assumed that barium vacancies in charge state �2 are
responsible for this behavior. If one considers single vacan-
cies only the alternative intrinsic acceptor defect would be
the titanium vacancy, which occurs in charge state �4 and
thus would lead to a slope of 	1/5. The earlier discussion,
however, shows that at least under Ba-rich conditions the
dominant defect is the VTi−VO divacancy, which—
equivalent to the barium vacancy—gives rise to a slope of
	1/6. Thus, on the basis of the conductivity curves alone the
intrinsic acceptor defect cannot be determined unambigu-
ously.

C. Equilibrium defect concentrations

The validation of our calculations through comparison
with experimental data demonstrates the capacity of DFT
calculations and allows one to use the present calculations
for obtaining a more detailed picture of the thermodynamical
behavior of point defects in this material. We can thus deter-
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mine the prevalent intrinsic point defects depending on tem-
perature and oxygen partial pressure. The results obtained for
an ideally pure material are shown for Ba- and Ti-rich con-
ditions in Fig. 5. In this figure thick solid lines confine the
regions within which a certain defect prevails. The concen-
tration of the dominant defects is shown by the dashed lines
along which the concentration is constant.

The diagrams can be read as follows: Assume a material
is synthesized at 1400 K under Ba-rich conditions and an
oxygen partial pressure of 10−2 atm �point A in Fig. 5�b��.
The material contains an acceptor impurity concentration of
1016 cm−3. Under the synthesis conditions the dominant de-
fect is the oxygen vacancy in charge state 	2. The material
is subsequently annealed at a temperature of 1200 K while
keeping the oxygen partial pressure at 10−2 atm �point B in
Fig. 5�b��. Under these conditions the dominant defect is the
VTi−VO divacancy. If the material is cooled below about
1000 K, the dotted line in Fig. 5�b� indicates that the con-
centration of VTi−VO divacancies falls below 1016 cm−3

�point C in Fig. 5�b��. Therefore, at temperatures below 1000
K, the accidental acceptor dopants dominate the charge equi-
librium and the material displays extrinsic behavior �point D
in Fig. 5�b��. It is important to point out that this analysis is
strictly valid only in thermodynamic equilibrium.

IV. SUMMARY AND CONCLUSIONS

By combining thermodynamic considerations and sev-
eral basic relations of semiconductor physics we have ob-
tained a concise scheme for the modeling of electrical con-
ductivities on the basis of first-principles calculations.
Compared to “classical” defect models which are based on
mass-action laws to connect defect concentrations, the
present scheme requires a minimum number of approxima-
tions. In particular, it does not rely on any assumptions with
regard to the prevalence of any particular defect reaction or
defect.

We have applied this scheme to BaTiO3, which is impor-
tant both from the technological and the fundamental per-
spective, using a complete set of thermodynamic data on
intrinsic point defects obtained from density-functional
theory calculations. A numerical algorithm was implemented
for the self-consistent determination of the electron chemical
potential, which enabled an extensive analysis of the depen-
dence of the electrical conductivity on chemical environment
as well as temperature.

In agreement with earlier experimental studies our
analysis has shown that the n-type conductivity, which is
observed under low oxygen partial pressures, is due to dou-
bly charged oxygen vacancies. The p-type region, which is
observed at larger oxygen partial pressure, is caused by
barium vacancies and VTi−VO divacancies under Ti- and Ba-
rich conditions, respectively. It needs to be stressed that since
both of these defects occur in charge state �2 and therefore
lead to a slope of 	1/6 in the conductivity versus oxygen
partial pressure plot, they cannot be distinguished on the ba-
sis of the conductivity curves alone.

Our approach furthermore allows us to determine the
evolution of the defect concentrations under “true” equilib-
rium conditions, i.e., in the absence of any kinetic barriers.
We have employed this possibility to establish a point defect
“phase diagram” which displays the dominant intrinsic point
defect as a function of temperature and chemical environ-
ment.

The application of the scheme outlined in the present
paper demonstrates the predictive power of first-principles
calculations. It also constitutes the stepping stone for future
work which should address the effects of kinetic barriers and
implement a more complex treatment of extrinsic defects.
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APPENDIX: COMPUTATIONAL DETAILS

1. General remarks

The DFT calculations8 from which we obtain our input
data provide values for the energies of formation Ei. �The
formation energies given in Ref. 8 have been subjected to a
finite-size scaling procedure which has been shown in Ref. 7
to be equivalent to extrapolation to zero external pressure.�

FIG. 5. �Color online� Phase diagram illustrating the prevalent defects as a
function of temperature and oxygen partial temperature. The thick solid
lines separate the regions within which the indicated defects dominate. The
dotted and dashed lines connect points along which the concentration of the
dominant defect is constant �dash-dot-dot: 1018 cm−3, dash-dot: 1017 cm−3,
dotted: 1016 cm−3, dashed: 1015 cm−3�.
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In order to obtain the free energies of formation �Gi
f the

�vibrational� entropies of formation �Si
f and the formation

volumes �Vi
f are required,

�Gi
f = Ei

f − T�Si
f + p�Vi

f . �A1�

Since we are interested in ambient pressures �i.e., p�0� the
last term is virtually zero. It is in principle possible to deter-
mine the vibrational entropy but it requires very large super-
cells, which is computationally extremely demanding.37 In
the present work we, therefore, simply set all defect forma-
tion entropies to 3

2kB which at 1200 K amounts to a reduction
of the free energy of formation by 0.16 eV compared to the 0
K value.

2. Effect of band gap corrections

The formation energies in Ref. 8 were calculated within
density functional theory using the local density approxima-
tion. Since this calculation method is subject to a substantial
band gap underestimation, a correction scheme was applied
which implements a rigid shift of the conduction versus the
valence band states. In simple terms, the difference between
the experimental EG

exp and the calculated band gap EG
calc is

distributed between the valence and the conduction band
states,

�EG
err = EG

exp − EG
calc = �EVB + �ECB. �A2�

Unfortunately, the ratio of �EVB and �ECB is unknown.
Even the GW method,36 which in principle is capable of
providing this information and which works well for many
nonoxide materials, fails and yields a considerable overesti-
mation of the band gap.5 In Ref. 8 we therefore simply as-
signed the band gap error entirely to the conduction band,
�ECB=�EG

err, �EVB=0. This choice has neither an impact on
the location of the equilibrium transition levels nor on the
conclusions in Ref. 8. The values of �EVB and �ECB do,
however, affect the absolute values of the formation energies
and are therefore important in the present work.

By explicit calculation one can show that the effect of
shifting �EVB versus �ECB is equivalent to rigidly shifting
the conductivity curves in Fig. 2 �details later� along the
pressure axis. Neither the shape, the slopes, nor the magni-
tude of these curves are affected. We have therefore decided
to adjust the ratio of �EVB and �ECB such that the minimum
of the conductivity at the highest temperature considered
�1473 K� is located at the same oxygen partial pressure as in
the experiments. The final values are �EVB=0.45�EG

err

=0.76 eV and �ECB=0.55�EG
err=0.92 eV, which are actu-

ally of a very reasonable magnitude, considering that a rule

of thumb for many semiconductors is a ratio of 2:1 for
�ECB:�EVB. A shift of 0.1 eV in either direction amounts to
a shift in along the pressure axis by 10�2 atm. All data dis-
cussed in the following were obtained using the values for
�EVB and �ECB quoted before.
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