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The thermodynamic and kinetic properties of mono- and di-vacancy defects in cubic �para-electric�
barium titanate BaTiO3 are studied by means of density-functional theory calculations. It is
determined which vacancy types prevail for given thermodynamic boundary conditions. The
calculations confirm the established picture that vacancies occur in their nominal charge states
almost over the entire band gap. For the dominating range of the band gap the di-vacancy binding
energies are constant and negative. The system, therefore, strives to achieve a state in which, under
metal-rich �oxygen-rich� conditions, all metal �oxygen� vacancies are bound in di-vacancy clusters.
The migration barriers are calculated for mono-vacancies in different charge states. As oxygen
vacancies are found to readily migrate at typical growth temperatures, di-vacancies can be formed
at ease. The key results of the present study with respect to the thermodynamic behavior of mono-
and di-vacancies influence the initial defect distribution in the ferroelectric phases and therefore the
conditions for aging. © 2007 American Institute of Physics. �DOI: 10.1063/1.2801011�

I. INTRODUCTION

Barium titanate is a prototypical ferroelectric material.
At ambient pressure and temperatures above 393 K it as-
sumes a para-electric, cubic perovskite structure. At lower
temperatures a tetragonal distortion of the unit cell is ob-
served which gives rise to ferroelectricity. At even lower
temperatures further symmetry reductions lead to ferroelec-
tric orthorhombic and rhombohedral phases. The sequence of
phase transitions is the result of subtle structural and ener-
getic differences.1–4 Probably the most important technologi-
cal application of barium titanate is in thin-film capacitors.5

It also serves as an end member in several lead-free ferro-
electric alloys,6 and is used in combination with SrTiO3 to
obtain tunable rf devices.7 Because of its technological im-
portance and its standing as a prototypical ferroelectric,
barium titanate has been intensively investigated both experi-
mentally and theoretically.

Intrinsic and extrinsic point defects are of special impor-
tance in semiconductors as they control, to a great extent, the
electronic properties of these materials. In case of barium
titanate, this has motivated a considerable number of studies
which used conductivity5,8–13 and diffusivity13,14 measure-
ments to infer information about the point defect equilibria in
this material. It is further assumed that oxygen vacancies
play a key role in aging and fatigue of ferroelectric materials
by impeding domain wall motion or by acting as local dis-
turbances of the polarization �see e.g., Refs. 15–19�. For this
reason, oxygen vacancies and their associates have been in-
tensively studied experimentally �see e.g., Refs. 20–22� as
well as theoretically �see e.g., Refs. 23–32�.

Experimental investigation of point defect properties,
however, are usually restricted in that they either provide

bulk information �e.g., conductivity, diffusivity�, which cor-
responds to a macroscopic average over the sample and is
therefore defect unspecific, or very localized information
�e.g., electron spin resonance, positron annihilation spectros-
copy�, which is, however, restricted to certain charge states
�unpaired spin states� or types of defects �open volumes,
vacancies�.33 In general, the correlation between experimen-
tal data and specific defects is indirect and therefore poten-
tially ambiguous. Quantum mechanical calculations, on the
other hand, are capable of providing a very detailed picture
of individual defects and simultaneously sample a whole va-
riety of both different configurations and charge states. They
are therefore a very powerful tool for verifying model as-
sumptions and for providing fundamental insights into the
energetics of defects as well as their kinetic and electronic
properties.

The purpose of the present work is twofold. First, we
aim to verify the defect models which have been employed
to explain the experimental observations �in particular, con-
ductivity and diffusivity measurements�. Second, we explore
the formation of di-vacancies which—as argued earlier—is
an important ingredient for understanding the deterioration
of ferroelectric switchability. The calculations are carried out
for the cubic phase, which is the most stable phase at high
temperatures where most ceramics are processed and where
the initial defect distributions are installed.

II. METHODOLOGY

A. Computational setup

Calculations were carried out within density–functional
theory �DFT� using the Vienna ab initio simulation
package39–42 in combination with the projector-augmented
wave method to represent the ionic cores and core
electrons.43,44 In order to find the most suitable representa-
tion for the exchange-correlation functional preliminary cal-
culations were performed within the local-density approxi-
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mation �LDA�,45,46 as well as the generalized-gradient
approximation �GGA� in the Perdew–Burke–Ernzerhof
parameterization.47 We further considered the effect of treat-
ing the Ti 3s and Ti 3p electrons as semicore states. All
calculations were carried out with 20 k points for Brillouin
zone sampling and a plane wave cutoff energy of 500 eV. For
each setup the energy-volume curve of cubic barium titanate
was computed and the equilibrium lattice constant, cohesive
energy, bulk modulus and its pressure derivative were subse-
quently obtained from a fit to the Birch–Murnaghan equation
of state. Finally, the full band diagrams were calculated at the
respective zero pressure lattice constant.

The results of these preparatory calculations are com-
piled in Table I in comparison with experimental and theo-
retical data from literature. The influence of the Ti 3p and Ti
3s states on the properties included in this comparison is
very small. The most significant difference is the increase of
the cohesive energies by about 1% upon inclusion of the Ti
3s and Ti 3p electrons in the valence. Thus, while for some
properties the deep Ti 3s and Ti 3p can play a crucial role, in
the present context their effect is expected to be small. For
the sake of computational efficiency we did, therefore, not
include the Ti 3s and Ti 3p electrons in the valence.

The exchange-correlation functional, on the other hand,
has a more pronounced impact. Within the GGA the bulk
modulus is reasonably well reproduced, but the lattice con-
stant is overestimated while the opposite applies for the LDA
results. These findings are consistent with the results of pre-
vious studies.34,48,49 In the present study we have decided to
employ the LDA.

In order to determine the properties of the phases in
Table II we have employed the same computational settings
as for BaTiO3 but varied the number of k points for each

TABLE I. Bulk properties of cubic barium titanate as obtained from experiment and first-principles calculations. U.S.-PP: ultrasoft pseudopotentials;
FP-LAPW: full potential-linearized augmented plane waves; TB-LMTO: tight-binding linear muffin-tin orbitals; ASA: atomic sphere approximation; LDA:
local-density approximation; GGA: generalized-gradient approximation; PBE: Perdew-Burke-Ernzerhof parameterization of the GGA; Ec: cohesive energy
�eV/f.u.�; a0: lattice constant �Å�; V0: equilibrium volume �Å3/f.u.�; B, B�: bulk modulus �GPa� and its pressure derivative; EG

�−�: direct band gap at �-point
�eV�; EG

R−�: indirect band gap measured between points R and �; me
*, mh

*: effective electron �hole� mass at the �-point along �100� in units of the electron mass.

DFT �Literature� DFT �This work�

Ref. 34 Ref. 35 Ref. 35 Ref. 36 GG-PBE LDA
U.S.-PP FP-LAPW FP-LAPW TB-LMTO

Expt. GGA LDA GGA ASA, LDA Ti Ti 3p Ti 33s-3p Ti Ti 3p Ti 3s-3p

Ec −31.57a −37.92 −39.62 −39.98 −40.06 −43.84 −44.10 −44.11
a0 3.992 4.006 3.9 4.0 4.038 4.037 4.038 3.957 3.953 3.955
V0 64.28 61.0 62.5−65.2 65.84 65.79 65.84 61.98 61.79 61.86
B 173b 168 146 185−189 165 161 160 200 194 193
B� 4.5c 4.7 4.5 4.5 4.7 4.6 4.6

EG
�−� 3.27, 3.38d 1.8 1.85−1.9 1.2e 1.69 1.81 1.85 1.68 1.80 1.82

EG
R−� 1.56 1.66 1.69 1.62 1.71 1.73
me

* 1.16 1.16 1.16 1.01 1.00 1.01
16.7 15.8 15.6 13.5 12.8 12.7

mh
* 0.96 0.97 0.97 0.89 0.89 0.89

3.24 3.31 3.32 2.88 2.93 2.94

aAs cited in Ref. 34.
bAs cited in Ref. 35.
cFitted to Rose’s equation of state �Ref. 37�.
dReference 38, obtained from optical measurements on tetragonal barium titanate at room temperature.
eAt the experimental lattice constant.

TABLE II. Bulk properties of Ba, Ti and O and their compounds in their
respective ground-states. Experimental data from Refs. 64–66. Ec: cohesive
energy �eV/atom�; c /a: axial ratio; r0: dimer bond length �Å�; �Hf: en-
thalpy of formation �eV/f.u.�; other symbols as in Table I.

Experiment This work

Ba, body-centered cubic �Im3̄m, no. 229, A2�
Ec −1.87, −1.90 −1.12
a0 5.020 4.770
B 10 5.3

Ti, hexagonal-close packed �P63/mmc, no. 194, A3�
Ec −4.85 −8.53
a0 2.950 2.852

c /a 1.588 1.585
B 110 133

O, dimer
Ec −2.583 −4.79
r0 1.21 1.22

BaO, cesium chloride �Pm3̄m, no. 221, B2�
�Hf −5.68 −6.68
a0 5.496 3.281
B 96

BaO2 �I4/mmm, no. 139, C11b�
�Hf +0.95
a0 3.78−3.81 3.768

c /a 1.79 1.783
B 44

TiO2, rutile �P42/mnm, no. 139, C4�
�Hf −9.78 −10.93
a0 4.594 4.572

c /a 0.644 0.640
B 210 242

BaTiO3, cubic perovskite �Pm3̄m, no. 221, E21�
�Hf −20.84 −19.83
a0 3.996 3.957
B 162, 167 200

084111-2 P. Erhart and K. Albe J. Appl. Phys. 102, 084111 �2007�

Downloaded 30 Oct 2007 to 128.115.27.11. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



material such as to ensure a convergence of the total energy
better than 1 meV/unit cell. Energy–volume curves were
calculated for each of these structures allowing for full inter-
nal relaxation.

B. Defect calculations

1. Formation energies

The formation energy �ED
f of a defect in charge state q

is given by50–53

�ED
f = �ED − EH� + q�EVBM + EF� − �

i

�ni�i, �1�

where ED is the total energy of the defective system and EH

is the total energy of the perfect reference cell. The second
term describes the dependence on the Fermi level, EF, where
EVBM is the position of the valence band maximum. The
variation of the formation energy with the chemical poten-
tials of the constituents is given by the last term. The differ-
ence between the number of atoms of type i in the reference
cell with respect to the defective cell is denoted by �ni. The
chemical potential �i of constituent i can be rewritten as
�i=�i

bulk+��i where �i
bulk denotes the chemical potential of

the standard reference state and is equivalent to the cohesive
energy per atom �see Sec. III B�.

For the defect calculations we employed supercells with
40, 60, 90, and 135 atoms equivalent to 2�2�2 to 3�3

�3 unit cells. The formation energies given in Table III were
obtained by extrapolating the data calculated for different
supercell sizes to infinite dilution �see below�. We considered
both mono-vacancies �VO, VBa, VTi� as well as nearest-
neighbor di-vacancies �VBa−VO, VTi−VO� taking into ac-
count a variety of charge states �see Table III�. Due to their
size, it is reasonable to assume that host metal ion intersti-
tials have very large formation energies. This assumption is
supported by analytical potential calculations which have
found Frenkel defects to have much higher energies than
Schottky defects.54 In order to confirm these results we also
calculated the formation energies of all interstitials and anti-
sites in the neutral charge state. Under metal-rich conditions
the formation energies for interstitials and antisites are at
least 3.8 eV larger than for the lowest neutral vacancy. Under
oxygen-rich conditions the difference is smaller but even for
the most favorable case �O on Ti antisite at point D in Fig. 1�
the energy difference is at least 0.9 eV. In the following we
therefore neglect interstitials and antisites and focus exclu-
sively on vacancy defects. It should be pointed out that both
metal and oxygen interstitials can play important roles in
several other oxides with more open lattice structures �e.g.,
TiO2, ZnO, SnO2�. In the case of perovskite lattices the in-
terstitial sites are, however, much smaller and interstitials
lead to significant strains which cause large formation ener-
gies.

TABLE III. Formation energies of mono- and di-vacancies under the chemical conditions indicated in Fig. 1.
Note that if ��Ba and ��Ti are given ��O is uniquely determined by Eq. �4�. The charge state, q, of the defect
which determines the Fermi level dependence of the formation energies via Eq. �1� is given in the second
column. The number of electrons occupying conduction band states �ne� and holes occupying valence band
states �nh� are relevant for the band gap correction via Eq. �2� and are given in the third column where positive
and negative values indicate nh and −ne, respectively. All energies are given in units of eV. The finite-size
scaling extrapolation error is given in the last column.

Defect q ne,h X A C D Error

��Ba −4.78 −0.10 −8.90 −6.68
��Ti −6.02 0.00 −10.93 −13.15
��O −3.01 −6.58 0.00 0.00

VO 0 −2 5.21 1.64 8.22 8.22 �0.07�
+1 −1 2.08 −1.49 5.09 5.09 �0.14�
+2 0 −1.50 −5.07 1.51 1.51 �0.08�

VBa −2 +2 5.94 10.61 1.82 4.04 �0.05�
−1 +1 5.68 10.36 1.56 3.78 �0.03�
0 0 5.57 10.25 1.45 3.67 �0.02�

VBa−VO −2 −2 10.97 12.08 9.86 12.08 �0.14�
−1 −1 7.26 8.37 6.15 8.37 �0.14�
0 0 3.83 4.94 2.72 4.94 �0.13�

+1 +1 3.77 4.88 2.66 4.88 �0.11�
VTi −4 0 9.33 15.35 4.42 2.19 �0.15�

−3 +1 8.92 14.94 4.01 1.79 �0.10�
−2 +2 8.69 14.71 3.78 1.56 �0.11�
−1 +3 8.56 14.58 3.65 1.42 �0.08�
0 +4 8.53 14.55 3.62 1.40 �0.07�

VTi−VO −4 −2 13.24 15.70 11.35 9.12 �0.22�
−3 −1 9.46 11.91 7.56 5.34 �0.22�
−2 0 5.91 8.37 4.01 1.79 �0.21�
−1 +1 5.70 8.16 3.80 1.58 �0.13�
0 +2 5.64 8.10 3.74 1.52 �0.12�

+1 +3 5.66 8.12 3.76 1.54 �0.10�
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The Brillouin zone integrations were carried out using a
nonshifted 2�2�2 �-centered mesh which, depending on
the symmetry of the defect configuration, is equivalent to
4–6 k-points in the irreducible wedge of the Brillouin zone.
The plane wave cutoff energy was set to 500 eV.

DFT calculations of point defect formation energies in
semiconductors are subject to certain shortcomings, which in
order to obtain physically meaningful results must be prop-
erly taken into account.55,56 Although the band gap is typi-
cally underestimated, energy differences within the valence
band and conduction bands, respectively, are usually rather
well described. A simple correction of the band structure is,
therefore, obtained by rigidly shifting the valence band
��EVB� and the conduction band ��ECB� with respect to each
other. The correction energy is then given by

�Ebg = ne�ECB + nh�EVB. �2�

For a given defect and charge state the number of elec-
trons in the conduction band ne was determined by integrat-
ing the number of occupied conduction band states. The
number of holes in the valence band nh was similarly ob-
tained as the number of empty valence band states. It should
be noted that this correction only considers the effect of the
band gap error on the band energy and assumes rigid levels.
It does not take into account electronic relaxations which
occur if self-interaction effects are properly included.

As experimentally the band gap of cubic BaTiO3 cannot
be determined for T→0 K due to the ferroelectric phase
transition, we estimated its value by extrapolation of the data
at higher temperatures which yields EG

expt=3.4 eV �compare
Fig. 10 in Ref. 38�. In order to be able to correct for the
underestimation of the band gap, we further assumed the
offset of the calculated band structure to be restricted to the
conduction band, i.e., �EVB=0 and �ECB=EG

expt−EG
calc.

Due to the use of supercells elastic and electrostatic in-
teractions between the periodic images of the defects need to
be taken into account.55,57 Elastic interactions scale inversely

with the volume, O�V−1�, and therefore, have been corrected
using finite-size scaling. For charged defects electrostatic in-
teractions due to the net charge moment are present. The
corresponding correction term can be expressed in the form
of a multipole expansion.57 The leading term, which de-
scribes monopole–monopole interactions, scales with V−1/3

and can be calculated explicitly. The next term is due to
monopole–quadrupole interactions. It scales with V−1 and
can in principle also be evaluated explicitly. As it displays
the same scaling behavior as the elastic interactions, it is,
however, conveniently corrected using the same finite-size
scaling procedure.55,57,58 In addition, the latter approach has
the advantage to avoid ambiguities in the calculation of the
moments of the net charge distribution. It also allows to as-
sess the reliability of the correction by means of the error of
the linear extrapolation of the data. For strongly delocalized
excess charge distributions higher order terms might become
important which has, however, not been observed in the
present calculations.

As the magnitude of the electrostatic interactions in con-
densed matter is screened, the monopole–monopole correc-
tion term requires knowledge of the static dielectric constant.
For reasons of consistency the latter should be taken from
first-principles calculations as well. Using a similar approach
as in the present work Ghosez et al.3 obtained an average
value of �=57 for barium titanate,59 which was used in the
present work.

2. Transition energies

If the formation energies of a given defect in charge
states q1 and q2 are known, the thermal �equilibrium� transi-
tion level can be obtained according to

� = −
�ED

f �q1� − �ED
f �q2�

q1 − q2
, �3�

where �ED
f �q1� and �ED

f �q2� denote the formation energies
at the valence band maximum for charge states q1 and q2,
respectively.

3. Migration energies

The migration barriers for single vacancies �VO, VBa,
VTi� were calculated employing 40-atom supercells equiva-
lent to 2�2�2 unit cells. Brillouin zone integrations were
carried out using the same k-point grids as for the formation
energy calculations and the plane wave cutoff energy was
again 500 eV. In order to obtain the saddle points, we applied
the climbing image nudged elastic band method60,61 which
imposes a minimal number of constraints on the transition
path. Only jumps between nearest neighbor sites were con-
sidered.

Unlike formation energies migration energies are ob-
tained by calculating differences between configurations
which are structurally and electronically very similar. As dis-
cussed in detail in Ref. 62 the calculation of migration bar-
riers is, therefore, much less sensitive to the errors described
in the foregoing section. For this reason, comparably small

FIG. 1. Stability diagram for cubic barium titanate as determined from
density-functional theory calculations. The area confined between points A,
B, C, and D is the chemical stability range of BaTiO3. The line through
points C and D corresponds to maximally oxygen-rich conditions and an
oxygen chemical potential of ��O=0 eV. Along lines parallel to C–D the
oxygen chemical potential is constant. The most negative value of ��O

=�Hf /3=−6.61 eV is obtained in the upper right corner of the diagram.

084111-4 P. Erhart and K. Albe J. Appl. Phys. 102, 084111 �2007�

Downloaded 30 Oct 2007 to 128.115.27.11. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



supercells should be sufficient and due to the similar elec-
tronic structure band gap and potential corrections need not
be applied.

III. RESULTS

A. Band structure

In agreement with full potential-linearized augmented
plane wave35 and pseudopotential plane wave calculations,48

our results predict the valence band maximum �VBM� to be
located at the R-point. On the other hand, in previous tight-
binding linear muffin-tin orbitals calculations36 within the
atomic-sphere approximation the VBM was located at the
�-point. In all of these calculations the difference between
the highest occupied levels at R and � was calculated to be
on the order of 0.1 eV or less. The effective masses of elec-
trons and holes at the �-point, which can be used for instance
for a self-consistent determination of the Fermi level and the
charge carrier concentrations,63 are given in Table I.

B. Chemical potentials and stability diagram

In order to be able to derive defect formation energies
from total energy calculations, the thermodynamic reservoirs
need to be defined. This requires knowledge of the cohesive
energies of the constituents in their most stable conforma-
tion. Further, as the stability range of barium titanate is re-
stricted by the formation of competing phases such as TiO2

or BaO, the formation energies of these compounds have to
be computed as well �see Sec. II B 1�. The results of our
calculations of the fully relaxed structures are compiled in
Table II in comparison with experimental data. The overall
agreement with the reference data is good. In particular, the
calculated formation energies compare well with experimen-
tal data.

The range within which the chemical potentials of Ba,
Ti, and O can vary is restricted by the condition

��Ba + ��Ti + 3��O = �Hf�BaTiO3� , �4�

which determines the outer triangle in the phase diagram
shown in Fig. 1. Considering the compounds given in Table
II, the chemical potentials are further subject to the following
constraints:

��Ba + ��O � �Hf�BaO� ,

��Ba + 2��O � �Hf�BaO2� ,

��Ti + 2��O � �Hf�TiO2� .

They confine the stability range of BaTiO3 to the gray
shaded area in Fig. 1. Repeating this analysis with the ex-
perimental data gives a phase diagram in good agreement
with the calculated one.

C. Defect formation energies

The results of our calculations for the formation energies
are summarized in Table III which shows the formation en-
ergies of mono- and di-vacancies for a Fermi level at the
valence band maximum �EF=0 eV in Eq. �1�� and for four
representative combinations of chemical potentials, which
are indicated in Fig. 1. The variation with the Fermi level is
shown for the same four cases in Fig. 2. Due to the large
formation enthalpy of BaTiO3 the formation energies vary
strongly between the extremal points of the phase diagram.
In the metal-rich limit �along A–B� oxygen vacancies pre-
vail. They have comparably small formation energies and
therefore should be abundant defects. In both cases the for-
mation energies become negative for some Fermi level
which determines the so-called pinning energy, �pin. This im-
plies that under equilibrium conditions the material cannot
assume a Fermi level which is closer to the valence band
maximum than �pin.

67 In the oxygen-rich limit either barium
�point C� or titanium vacancies �point D� dominate. Fermi
level pinning now occurs in the vicinity of the conduction
band, which implies that the Fermi level cannot be pushed
arbitrarily close to the conduction band minimum.

The equilibrium defect transition levels can be deduced
from the formation energies using Eq. �3�. They are pre-
sented in an effective band scheme in Fig. 3. As vacancies
occur in their nominal charge states �V�i�, VBa� , VO

·· � almost
over the entire band gap, only the band edges are shown.
With regard to the effect of the band gap correction term
given by Eq. �2�, it turns out that if no band gap corrections
are applied the donor transition levels �q�0� are near the
calculated conduction band edge, whereas they are near the

FIG. 2. �Color online� Variation of defect formation energies with Fermi level for representative thermodynamic conditions indicated in Fig. 1. The numbers
indicate the charge states. Parallel lines correspond to identical charge states. The solid and dashed lines correspond to mono- and di-vacancies, respectively.
The arrows indicate the position of the Fermi level pinning energy under different conditions.
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experimental conduction band edge if the corrections are in-
cluded. This consistency indicates that the application of the
band gap correction described in Ref. 56 is reasonable in the
present case.

The location of the levels near the band edges is in
agreement with several models which have been developed
to reproduce the experimental data �see e.g., Refs. 8–12�. It
is evident from the extrapolation errors in Table III that typi-
cally DFT calculations cannot predict transition levels with
an accuracy better than approximately 0.1 eV. However, even
taking into account this limitation the present results show
clearly the intrinsic defect levels to be very close to the band
edges �	0.4 eV�. In particular, this applies for the titanium
vacancy for which, based on more simplistic calculations,
the defect level has been previously calculated to be located
−1.14 eV below the conduction band maximum.54 A finding
which is confuted by the present results.

The binding energy of a di-vacancy is given by the dif-
ference between its formation energy and the formation en-
ergies of the isolated mono-vacancies. It is therefore inde-
pendent of the chemical potentials. As charge transitions
occur only within about 0.4 eV of the band edges �see Fig.
3�, the Fermi level position has very little influence �see Fig.
4�. Over the widest range of the band gap the binding energy
of the VTi−VO–di-vacancy is Eb=−1.93 eV, whereas the
value for the VBa−VO–di-vacancy is Eb=−0.62 eV. Only
near the band edges the attraction is somewhat reduced.
Thus, the association of metal and oxygen vacancies is ener-
getically strongly favored, especially in the case of the VTi

−VO–di-vacancy.
Note that the formation energy of the

VBa−VO–di-vacancy is constant along lines which are paral-
lel to A–D in the phase diagram �Fig. 1� corresponding to the
reaction BaTiO3+ �VBa−VO�→TiO2. Equivalently, along
lines parallel to B–D the sum of the formation energies of
oxygen vacancies and VTi−VO–di-vacancies is constant,
�BaTiO3+ �VTi−VO�+VO→BaO�.

D. Migration energies

The calculated migration barriers are compiled in Table
IV. The smallest migration energies are obtained for oxygen
vacancies and display a weak charge state dependence. Ex-
perimentally the migration barrier for oxygen vacancies has
been determined to be �Hm=0.91 �Ref. 20�. The calculations
compare well with this value. In particular, the barrier for the
doubly positive charge state, in which the oxygen vacancy
should occur for a Fermi level in the middle of the band gap,
is in very good agreement with this reference value. We point
out that the migration barriers for the different charge states
of the oxygen vacancy are very similar to the values for
cubic lead titanate calculated by Park within DFT.28

Using the Einstein relation 6D
= �r2�, one can estimate
the temperature above which a defect becomes mobile by
determining the temperature for which 6D
 exceeds ��r2�min

�compare Refs. 62 and 68�. The prefactor for the defect dif-
fusivity can be approximated by the lowest optical phonon
mode at the �-point which gives �0	5 THz �Ref. 3�. If one
assumes a typical isochronal annealing time of 
=10 min
and a mean defect separation between ��r2�min=100 and
1000 nm, one arrives at the values which are given in the last
column of Table IV. Obviously the only defects, which are
fully mobile at typical processing temperatures, are oxygen

FIG. 3. Transition levels for mono- and di-vacancies in BaTiO3. Only the
band edges are shown. The dashed transition levels are positioned inside the
valence or the conduction bands �indicated by the light gray shaded areas�
and are only included for illustration. The dark gray shaded areas indicate
the sum of the extrapolation errors for each transition.

FIG. 4. �Color online� Binding energies for VBa−VO and VTi−VO di-
vacancies as a function of Fermi level. The kinks correspond to charge
transition points of the isolated defects �compare Fig. 2 and Fig. 3�.

TABLE IV. Calculated migration energies of mono-vacancies in units of
electron volts. The temperature ranges above which the defects become
mobile are given in the last column. The negative charge states of the tita-
nium vacancy were not considered as already the neutral charge state dis-
plays a huge barrier and, following the trends for the barium and oxygen
vacancies, the addition of electrons can only be expected to further increase
this value.

Defect Charge Barrier Onset of mobility �K�

VBa 0 5.82 �2500
−1 5.96 �2600
−2 6.00 �2600

VTi 0 9.84 �4300
VO 0 1.12 490−590

+1 0.97 420−510
+2 0.89 390−480

084111-6 P. Erhart and K. Albe J. Appl. Phys. 102, 084111 �2007�

Downloaded 30 Oct 2007 to 128.115.27.11. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



vacancies. In contrast, due to their very large activation bar-
riers, the migration of metal vacancies is much lower even at
temperatures close to the melting point �
1900 K, Ref. 65�.

IV. DISCUSSION

Experimentally, at low oxygen partial pressures �n-type
region� and high temperatures �
1300−1500 K� the depen-
dence between the electrical conductivity and the oxygen
partial pressure is found to be pO2

−1/6 which has been assigned
to doubly charged oxygen vacancies.8–12 In accordance the
present calculations predict oxygen vacancies to be by far the
most important defect under metal-rich conditions �low oxy-
gen partial pressure� and to occur in charge state 2+ almost
over the entire band gap. At somewhat lower temperatures
�	1300 K� a transition to a pO2

−1/4 dependence is observed. At
least two different explanations have been discussed in the
literature.8–10 Either �1� the charge state of the oxygen vacan-
cies changes from 2+ to 1+ or �2� accidental acceptor dop-
ants are present in the material. In order for the first expla-
nation to be valid, the 2+ /1+ transition level of the oxygen
vacancy should be located 1.3 eV below the conduction band
minimum.8 However, as the present calculations locate this
transition just 0.1 eV below the conduction band minimum,
they provide support for accidental acceptor doping as the
cause for the change in slope. In fact, a more detailed inves-
tigation of the relation between the conductivity and the oxy-
gen partial pressure shows that this mechanism can also ex-
plain the pO2

1/4 dependence observed for higher oxygen partial
pressures �pO2

�10−2 atm, p-type region�.63

The structural and energetic differences between the
para-electric, cubic phase, and the ferroelectric phases play a
crucial role in determining the magnitude and the tempera-
ture dependence of ferroelectricity. As BaTiO3 ceramics are
typically processed at temperatures above the cubic–
tetragonal phase transition �Tc=393 K� and as the onset of
mobility ranges given in Table IV exceed this temperature,
the point defect equilibria, which are established during cool-
ing should correspond to the cubic phase. In particular, ini-
tially �prior to aging, see Refs. 15 and 16� oxygen vacancies
should be rather randomly distributed over the symmetrically
inequivalent oxygen lattice sites, even if a clear energetic
preference exists for a particular lattice site �which is for
instance the case for “c-site” vacancies in tetragonal lead
titanate23,69�. In addition, due to the large energy barriers for
metal vacancy migration the distribution of barium and tita-
nium, which is established during growth, is expected to be
largely maintained if the material undergoes ferroelectric
phase transitions.

The binding energies for di-vacancies are negative and
large which implies a strong chemical driving force for their
formation. As the migration barriers for metal vacancies are
large, they are virtually immobile. In contrast, oxygen vacan-
cies are very mobile at temperatures �500 K. Thus, forma-
tion of di-vacancies should occur readily at typical growth
temperatures by metal vacancies “capturing” diffusing oxy-
gen vacancies.

Defect complexes such as di-vacancies or impurity-
vacancy associates carry a dipole moment �see e.g., Ref. 30

for a quantitative calculation�. On a cubic lattice different
orientations of these defect dipoles are energetically degen-
erate. In the presence of an electric field15,16 or for noncubic
lattices70 this degeneracy is, however, lifted �i.e., the energies
for di-vacancy pairs, e.g., oriented along the �001� and �100�
axes differs�. As argued previously, depending on the barri-
ers, the transition temperature and the cooling rate defect
dipoles might not have enough time to achieve the orienta-
tion with the lowest energy. As metal vacancies are rather
immobile, reorientation of these dipoles is much more likely
to occur by oxygen vacancy jumps. The gradual reorientation
of defect dipoles is then determined by the barrier for oxygen
vacancy jumps in the first neighborhood of metal vacancies.

V. CONCLUSIONS

The thermodynamics and kinetics of vacancy defects in
paraelectric cubic barium titanate have been studied by
means of density functional theory calculations. First, forma-
tion, binding and migration energies were derived properly
accounting for the shortcomings of the DFT method. The
binding energies of metal-oxygen di-vacancies are found to
be negative implying that in equilibrium under metal-rich
�oxygen-rich� conditions all metal �oxygen� vacancies are
bound in di-vacancy clusters. Although metal vacancies are
practically immobile at realistic conditions, oxygen vacan-
cies can readily migrate at typical growth temperatures. Di-
vacancies can, therefore, form if metal vacancies capture one
oxygen vacancy.

It is further confirmed that mono-vacancies occur in their
nominal �ionic� charge states �VTi�, VBa� , VO

·· � over the widest
range of the band gap. The dominant charge states for the
di-vacancies are �VTi−VO�� and �VBa−VO��. Intrinsic defect
levels are confined to a region within 
0.4 eV of the band
edges. This is partially at variance with earlier calculations
based on a more simplistic model, which suggested titanium
vacancies to act as hole traps.54

The temperatures at which defects are immobilized are
higher than or similar to the cubic–tetragonal phase transi-
tion temperature. The principal findings of the present study
with respect to the thermodynamic behavior of mono- and
di-vacancies are therefore also relevant for the initial defect
distribution in the ferroelectric phases.
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