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Correlation functions, such as static and dynamic structure factors, offer a versatile approach to
analyzing atomic-scale structure and dynamics. By having access to the full dynamics from atomistic
simulations, they serve as valuable tools for understanding material behavior. Experimentally,
material properties are commonly probed through scattering measurements, which also provide
access to static and dynamic structure factors. However, it is not trivial to decode these due to
complex interactions between atomic motion and the probe. Atomistic simulations can help bridge
this gap, allowing for detailed understanding of the underlying dynamics. In this paper, we illustrate
how correlation functions provide structural and dynamical insights from simulation and showcase
the strong agreement with experiment. To compute the correlation functions, we have updated the
Python package dynasor with a new interface and, importantly, added support for weighting the
computed quantities with form factors or cross sections, facilitating direct comparison with probe-
specific structure factors. Additionally, we have incorporated the spectral energy density method,
which offers an alternative view of the dispersion for crystalline systems, as well as functionality to
project atomic dynamics onto phonon modes, enabling detailed analysis of specific phonon modes
from atomistic simulation. We illustrate the capabilities of dynasor with diverse examples, ranging
from liquid Ni3Al to perovskites, and compare computed results with X-ray, electron and neutron
scattering experiments. This highlights how computed correlation functions can not only agree well
with experimental observations, but also provide deeper insight into the atomic-scale structure and
dynamics of a material.

I. INTRODUCTION

The analysis of atomic-scale structure and dynamics
is central in physics, chemistry, and materials science.
Molecular dynamics (MD) simulations offer a detailed
view into these atomic-level processes, providing trajec-
tories of atomic positions and velocities from which struc-
tural and dynamical properties can be computed.

A powerful approach for extracting physically mean-
ingful information from MD trajectories is through cor-
relation functions, which capture dynamical properties
in an interpretable form closely related to experimental
observables. Examples include static and dynamic struc-
ture factors, current correlations, spectral energy density
(SED), and mode projection autocorrelation functions
(ACFs). Unlike perturbative methods, MD-based cor-
relation functions can inherently capture the full poten-
tial energy surface, enabling their application not only to
crystalline but also to amorphous materials and liquids.

Experimentally, atomic structure and dynamics are of-
ten probed via scattering methods using electrons, neu-
trons, or X-rays. These techniques produce correlation
functions, in particular static and dynamic structure fac-
tors, but the raw data often requires theoretical modeling
for interpretation due to probe-specific interactions and
experimental limitations. MD simulations, with match-
ing temporal and spatial scales, serve as an ideal comple-

∗ erhart@chalmers.se

mentary tool, enabling direct comparisons between com-
putational predictions and experimental results.

A number of software packages have been developed to
calculate scattering patterns and spectra from MD tra-
jectories, including built-in modules within MD packages
like gromacs [1] and lammps [2], as well as special-
ized tools like nMoldyn [3–5], mdanse [6], Sassena
[7], freud [8] and LiquidLib [9]. However, many of
these packages specialize in particular scattering probes
or offer limited post-processing capabilities.

In response, we here introduce version 2.X of the dy-
nasor package. Compared to the 1.X release [10], the
package has been substantially upgraded and extended
to provide a fast and unified, Python-based interface ca-
pable of computing an even wider range of ACFs from
MD trajectories (Fig. 1). dynasor now supports probe-
specific weighting factors, including form factors and
scattering lengths, enabling accurate and flexible com-
putation of scattering patterns for multiple probe types.
Furthermore, advanced analysis such as mode projection
is integrated, facilitating deeper insights into underlying
dynamical processes. In the next section we summarize
the theoretical foundations underlying dynasor before
presenting several use cases that illustrate the various
functionalities applied to X-ray, electron, and neutron
probes. These examples complement the extensive doc-
umentation available online [11].
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FIG. 1. The dynasor workflow typically consists of three parts: input, computation of the correlation functions, and handling
of the output, which can include post-processing steps. The key component of the user input is a MD trajectory, which is
parsed via the ase- [12] or mdanalysis-based [13, 14] dynasor trajectory readers. In addition, a simulation cell or force
constants are required, depending on which correlation functions are to be computed. The efficient computation of correlation
functions is enabled by numba [15] and numpy [16]. Post-processing includes weighting of static and dynamic samples with
probe-specific weights (X-ray, neutron, electron form factors), and fitting correlation functions with the DHO model to extract
phonon frequencies and lifetimes. User input and dynasor data objects are indicated by rectangles and ovals, respectively.
Key dynasor functions are shown in lower-case monospaced font.

II. THEORETICAL BACKGROUND

This section briefly summarizes the theoretical foun-
dations of the methods implemented in dynasor. We
first introduce correlation functions [17, 18] as a general
framework for analyzing materials dynamics, before out-
lining the SED method [19], which is suited for analyz-
ing crystalline materials. Next, we describe the mode
projection technique [20–23], which provides detailed in-
sights into mode dynamics in both ordered and disor-
dered materials. Finally, we summarize potential post-
processing steps, including in particular the convolution
of the dynamic structure factor with form factors to gen-
erate probe-specific spectra.

A. Correlation Functions

The partial intermediate scattering function FAB(q, t)
is the spatial Fourier transform of the van Hove func-
tion, which describes the probability of finding a par-
ticle of type A at position r at time t, when there is
a particle of type B at position r′ at time 0, or vice
versa. FAB(q, t) can be expressed in terms of the spa-

tially Fourier-transformed particle density nA(q, t) as

FAB(q, t) =
1√

NANB

⟨nA(q, t)nB(−q, 0)⟩ .

Here, ⟨. . .⟩ indicates an ensemble average, or a time av-
erage if the system is ergodic, and Nx is the number of
particles of type x. For a MD simulation with classi-
cal dynamics, the particle density can be described by
nA(q, t) =

∑NA

i∈A eiq·ri(t), such that

FAB(q, t) =
1√

NANB

NA∑
i∈A

NB∑
j∈B

⟨exp [iq · (ri(t)− rj(0))]⟩ .

The total intermediate scattering function is obtained
as a weighted sum over the partial ones, e.g.,

F (q, t) =
NA

N
FAA(q, t) +

NB

N
FBB(q, t)

+
2
√
NANB

N
FAB(q, t)

for a two-component system, where N = NA + NB de-
notes the total number of atoms. In dynasor we in-
troduce new variables FAB(q, t) for convenience. These
can be viewed as relabeled partial intermediate scattering
functions, which collect everything related to the types
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A and B in separate variables such that the sum simpli-
fies to F (q, t) = FAA(q, t)+FAB(q, t)+FBB(q, t). This
means that the dynasor partial intermediate scattering
functions are

Fxy(q, t) =
(2− δxy)

N

√
NxNyFxy(q, t)

=
(2− δxy)

N

Nx∑
i∈x

Ny∑
j∈y

⟨exp [iq · (ri(t)− rj(0))]⟩ ,

where δxy is a Kronecker delta.
Furthermore, the total intermediate scattering func-

tion F (q, t) described above, which is the Fourier trans-
form of the probability density for finding the same or
any other particle, is commonly referred to as the co-
herent intermediate scattering function Fcoh(q, t). An
important subset of this is the incoherent (or self) part,
Fincoh(q, t), which is the Fourier transform of the prob-
ability density of finding the same particle at position r
at time t as was found at position r′ at time 0, i.e.,

Fincoh(q, t) =

Ntypes∑
A∈types

F incoh
AA (q, t)

=
1

N

Ntypes∑
A∈types

NA∑
i∈A

⟨exp [iq · (ri(t)− ri(0))]⟩

=
1

N

N∑
i

⟨exp [iq · (ri(t)− ri(0))]⟩ .

Fourier transforming the partial intermediate scatter-
ing function in time yields the partial dynamic structure
factor

SAB(q, ω) =

∫ ∞

−∞
FAB(q, t) e

−iwtdt.

From the peaks in SAB(q, ω) we can learn which modes
involve interactions between particles of types A and B,
and, e.g., distinguish between diffusional motion at low
frequencies and vibrational motion at higher frequencies.
The broadening of these peaks gives information about
the phonon lifetimes, which we return to in Sect. II D,
and the overall appearance of them can indicate whether
the motion is localized or not.

Analogously to the intermediate scattering function,
current correlations can be defined in terms of spa-
tially Fourier-transformed current densities, j(q, t) =∑N

i vi(t)eiq·ri(t), as

C(q, t) =
1

N
⟨j(q, t) · j(−q, 0)⟩

=
1

N
⟨jL(q, t) · jL(−q, 0)⟩︸ ︷︷ ︸

CL(q,t)

+

1

N
⟨jT (q, t) · jT (−q, 0)⟩︸ ︷︷ ︸

CT (q,t)

.

Here, we have used that j(q, t) = jL(q, t) + jT (q, t),
where the longitudinal current jL(q, t) is in the direction
of q and the transverse current jT (q, t) is perpendicular
to q. As with the intermediate scattering function, the
total current correlation C(q, t) is related to the corre-
sponding partials, CAB(q, t), via a direct sum. Fourier
transforming C(q, t) yields the frequency-dependent cur-
rent correlation C(q, ω), analogously to the relation be-
tween the intermediate scattering function and the dy-
namic structure factor. Due to the particle density and
current being related via ṅ(q, t) = iq ·j(q, t), current cor-
relations relate to the dynamic structure factor through

ω2S(q, ω) = q2CL(q, ω), (1)

meaning that some features can be easier to resolve in ei-
ther of these correlation functions. Furthermore, current
correlations can be interpreted as spatially-dependent
generalizations of the velocity autocorrelation function.
A closely related concept is the phonon SED [19], which
is a measure of the distribution of kinetic energy in the
(q, ω)-plane.

B. Spectral Energy Density

In systems where the atoms vibrate around equilibrium
positions, as is the case in many solids, the dynamics can
also be analyzed using the phonon SED method. Here,
we briefly present an overview of the theory underpinning
this method as implemented in dynasor. For a more
detailed description see, e.g., Ref. 19.

In the SED approach, the starting point is the perfect
crystalline lattice, with each atom i in its equilibrium
position r0i . By replacing the atomic index i with unit
cell index l and basis site index s, this yields the lattice
current

j0(q, t) =
∑
s

j0s(q, t) =
∑
s

∑
l

vs(l, t)eiq·r
0(l),

where j0s(q, t) is the partial lattice current for the atoms
at basis site s, and r0(l) is the position of unit cell l. The
corresponding partial lattice current correlation function
is

Ks(q, t) =
1

Nunit

ms

2

〈
j0s(q, t) · j

0
s(−q, 0)

〉
,

where Nunit = N/Nbasis is the number of unit cells, Nbasis
is the number of basis atoms in the primitive cell, and
ms is the mass of basis atom s. Summing over all basis
atoms, the total SED is

K(q, ω) =
∑
s

Ks(q, ω).

In comparison to the current correlations C(q, ω) from
the previous section, we see that K(q, ω) can be thought
of as a mass-weighted total lattice current correlation.
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Furthermore, we can note that the SED integrates to the
total kinetic energy of the system∫

K(q, ω)dω = Nbasis
3

2
kBT,

and that it is possible to decompose it spatially as
K(q, ω) = Kx(q, ω) + Ky(q, ω) + Kz(q, ω), similarly to
the decomposition of C(q, ω) into transversal and lon-
gitudinal components. Despite the SED method being
limited to crystalline systems, whereas the current corre-
lations C(q, ω) can be computed for any system, SED can
provide useful insights as it offers an alternative view of
the phonon dispersion, with each mode having the same
spectral weight.

C. Mode Projection

To gain further microscopic insight into the dynamics
from a MD simulation, the motions can be interpreted
in terms of the dynamics of phonon modes. This tech-
nique is often called mode projection or normal mode
decomposition, and it allows for understanding features
in the scattering spectra in terms of correlated motion,
which, in principle, can be linked to structural or elec-
tronic properties of the material. In particular, mode
projection links atomistic simulations to the theoretical
framework of lattice dynamics used to study vibrations
in crystals, and allows for extracting phonon properties
with the full anharmonicity included in the MD simu-
lation. Ideally a basis (phonon eigenmodes) should be
chosen to aid physical understanding, which could for
example be the zero-Kelvin modes from the harmonic
approximation, modes from a more symmetrical phase of
the material of interest, or modes from ideal versions of
subsystems in the material.

Several tools exist to perform mode projection, such
as dynaphopy [22] and modecode [23]. In the dyna-
sor implementation we emphasize the ease of use via the
Python interface, as well as the smooth integration with
other parts of the dynasor package.

In the remainder of this section, we provide a brief in-
troduction to the theory behind mode projection in the
framework of lattice dynamics. For a more extensive de-
scription, see, e.g., Refs. 20–23.

Consider the potential part of the harmonic Hamilto-
nian describing vibrations in a harmonic crystal

U =
1

2

∑
αβ

∑
ll′

∑
ss′

Φαβ
ss′(l, l

′)uα
s (l)u

β
s′(l

′).

Here, uα
s (l) is the displacement in direction α of the atom

at basis site s in the unit cell l, and Φ are harmonic
force constants. The Hamiltonian can alternatively be
expressed in terms of mode coordinates Qb(q) for band b
at q-point q as

U =
1

2

∑
qb

ω2
b (q)Qb(q)Qb(−q)

by transforming the displacements u to mode coordinates
Q using

uα
s (l) =

1√
Nunit

∑
qb

1
√
ms

Qb(q)W
α
sb(q)e

iq·rs(l)

=
∑
qb

Xα
sb(l, q)Qb(q),

(2)

where rs(l) is the position of the atom at basis site s
in unit cell l, X are eigenmodes, and W polarization
vectors. The polarization vectors are defined via the dy-
namical matrix

Dαβ
ss′(q) =

1
√
msms′

∑
l

Φαβ
ss′(0, l)e−iq·(rs(0)−rs′ (l))

=
∑
b

Wα
sb(q)ω

2
b (q)W

β
s′b(−q).

The new mode coordinates are in the form of lattice
waves

Qb(q) =
1√
Nunit

∑
sαl

√
msu

α
s (l)W

α
sb(−q)e−iq·rs(l). (3)

Similarly, we can define the mode momenta Pb(q) =

Q̇b(−q) and the mode force Ṗb(q).
The normal modes are typically constructed from the

harmonic force constants Φ, but in principle any in-
formed choice can be used. With the transformations
in Eq. (2) and (3), it is thus possible to freely change
coordinates back and forth between the atomic displace-
ments u and the phonon coordinates Q. This allows for
the projection of MD trajectories, containing u(t) (for
all s, α, l), onto the eigenmodes to obtain Q(t) (for all
b, q) in order to access a description of the dynamics in
terms of phonon modes. By analyzing the ACFs of the
time-dependent mode coordinates, FQ(t) = ⟨Q(0)Q∗(t)⟩,
mode momenta, and their Fourier transforms (analogous
to F (q, t), S(q, ω), C(q, t), and C(q, ω) for the atomic
motion described in Sect. II A) the renormalized frequen-
cies and lifetimes of the modes can be extracted using
DHO fitting [20], which is one of the ways to post-process
the computed correlation functions. Notably, mode pro-
jection is closely related to SED, as summing the veloc-
ity power spectra over band indices for a given q-point
would contain the same information as the SED for that
q-point [19]. In turn, as discussed previously, SED is
closely related to current correlations, which themselves
are related to dynamic structure factor Eq. (1).

Importantly, phonon mode projection can also be used
to gain insight into the structure of the system. For ex-
ample, in systems undergoing phase transitions driven
by soft phonon modes, the mode coordinates Q can serve
as order parameters to understand the phase transitions
better [24–26].
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D. Post-Processing

By post-processing the computed correlation func-
tions, additional information about the structure and dy-
namics can be obtained. There are several different tools
in dynasor that facilitate post-processing of the correla-
tion functions, e.g., weighting, which is crucial for com-
parison to experiment, DHO fitting to extract phonon
frequencies and lifetimes, and spherical averaging in q,
relevant for, e.g., liquid systems.

1. Weighting

The total dynamic structure factor S(q, ω) is obtained
through a weighted sum of the partial structure factors

S(q, ω) =
∑
A

∑
B

wA(q)wB(q)SAB(q, ω),

where the weights wα(q) can, e.g., be probe-specific form
factors or scattering lengths, to indicate the interaction
strengths between the probe and the atom types, or,
e.g., atom-specific masses or charges, which can be use-
ful to investigate acoustic or optical modes, respectively.
Computationally, when the weights wα(q) = wβ(q) = 1,
the total raw dynamic structure factor is obtained, con-
taining information about the full dynamics of the sys-
tem. Experimentally, the dynamic structure factor is
commonly probed in inelastic scattering experiments,
whereas the static structure factor S(q), given by the
intermediate scattering function at t = 0, is probed in
diffraction experiments. By using probe-specific weights
in dynasor, the computed structure factors can be di-
rectly compared to experimentally measured ones. For
X-rays and electrons the weights are so-called form fac-
tors, which depend on |q|, whereas the weights for neu-
trons are so-called neutron scattering lengths. When
comparing to experiment in the examples in this paper
we use the direct support for weighting implemented in
dynasor, with the weights being X-ray form factors from
[27, 28], neutron scattering lengths from [29], and elec-
tron form factors from [30, 31].

2. Damped Harmonic Oscillator Fitting

To extract phonon frequencies ω0 and lifetimes τ , dy-
namic structure factors, current correlations, SEDs, or
mode coordinate ACFs can be fitted using the analytical
expression for a DHO. This can be done by modeling,
e.g., the particle density n(q, t) as a DHO subject to a
stochastic force, so the relevant equation of motion is

ẍ(t) + Γẋ(t) + ω2
0x(t) = f(t),

where ω0 is the natural angular frequency of the oscillator
and Γ = 2/τ is the damping constant. Assuming that the

stochastic force, f(t), is white noise, the corresponding
positional autocorrelation reads

F̈DHO(t) + ΓḞDHO(t) + ω2
0F

DHO(t) = 0.

Setting FDHO(0) = A and ḞDHO(0) = 0 yields the solu-
tions

FDHO(t) =

{
Ae−t/τ (cosωet+

1
τωe

sinωet), ω0 > 1
τ

Ae−t/τ (coshωet+
1

τωe
sinhωet), ω0 < 1

τ

where ω0 > 1/τ is called the underdamped limit,
ω0 < 1/τ is called the overdamped limit, and ωe =√
ω2
0 − 1/τ2. With this analytical expression, it is pos-

sible to fit the intermediate scattering function F (q, t)
for each q, with the fit parameters being the phonon fre-
quency ω0, the damping factor Γ (or lifetime τ), and the
DHO amplitude A. Note that if multiple modes overlap,
a sum of DHOs should be fitted, with one term for each
phonon.

The fit could just as well be performed in frequency-
space by Fourier transforming FDHO(t), yielding

SDHO(ω) = A
2Γω2

0

(ω2 − ω2
0)

2 + (Γω)2
,

and fitting the dynamic structure factor S(q, ω) for a
particular q. Due to the density and velocity ACFs being
related through CDHO(t) = −F̈DHO(t), or, equivalently,
CDHO(ω) = −ω2SDHO(ω) the analytical expressions can
be used to fit the calculated current correlations as well.

On a final note, let us return to the assumption of the
stochastic force f(t) being white noise. The stochastic
force can be viewed as a model of the interaction be-
tween the mode being studied and other modes, so choos-
ing it to be white noise means that the thermal bath is
assumed to consist of a continuum of modes spanning
all frequencies, which interact equally with the mode of
interest. Deviations from the DHO model imply more
complex dynamics, which can show up as extra peaks or
wide backgrounds in the computed correlation functions.
This can suitably be analyzed by subtracting the DHO
spectrum from the corresponding structure factor or cur-
rent correlation. Remaining features are signs of, e.g.,
hybridization or other cases where the DHO model fails.

3. Spherical Averaging in q

There are several cases where it is advantageous to
spherically average the computed correlation functions.
When probing static structure factors, they are generally
measured as a function of the scattering angle 2θ, which
relates to q = |q| via

sin θ =
qλ

4π
, (4)

where λ is the wavelength of the probe. When com-
paring the static structure factor S(q) computed with
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dynasor to experimentally measured ones for powder
samples, we thus want to perform a spherical average
in q-space to obtain S(q). Furthermore, when report-
ing dynamic structure factors for liquids or amorphous
materials these are also often visualized as a function of
q, as the path through high-symmetry q-points used in
crystalline solids does not extend to these systems.

III. EXAMPLES

A. Crystalline and Liquid Ni3Al

In this initial example, we showcase basic usage of
dynasor by studying the structure and dynamics of
three different phases of a nickel aluminum alloy (Ni3Al).
These are the L12, randomly mixed, and liquid phases,
respectively, which allow for the illustration of differences
and similarities between working with ordered and disor-
dered crystalline as well as liquid systems. Furthermore,
we demonstrate the weighting of computed correlation
functions with X-ray form factors to allow for compari-
son to XRD experiment.

First, however, the details of the underlying MD sim-
ulations must be discussed. There are some important
considerations when generating MD trajectories for sub-
sequent use as dynasor input. In particular, the fre-
quency of writing atomic configurations to file (also of-
ten referred to as dump frequency), trajectory length,
and simulation cell size are of importance.

The dump frequency (together with the MD time step)
sets the highest resolvable frequency. This means that if
there are, e.g., hydrogen atoms in the system, the dump
frequency must be much higher than when there are only
heavier atoms present, to resolve the highest frequency as
dictated by Nyqvist’s theorem and to avoid FFT alias-
ing artifacts in the spectra. Here, for Ni3Al, a dump
frequency of 5 fs is used.

The trajectory length (together with the window size
in dynasor), on the other hand, sets the limit for the
lowest resolvable frequency. For this example, trajec-
tories of 1 ns were generated using gpumd [33], with
the machine-learned interatomic potential (MLIP) of the
neuroevolution potential (NEP) form from Ref. 34. For
each phase, 20 separate trajectories were generated, to
improve statistics by averaging over the trajectories. In
principle, this is the same as generating one 20 ns trajec-
tory and employing a dynasor window of 1 ns with no
overlap. Using multiple shorter trajectories is, however,
preferable from a computational point of view, as we do
not need to resolve any lower frequencies than the one set
by the 1 ns limit here, and the sampling of the potential
energy surface can be improved through multiple initial
conditions.

The cell size sets the limit for smallest available q. In
this example, cells with side lengths of 86–92Å (contain-
ing 55 296 atoms) were used, giving good resolution even
at small q. In general, these MD parameters should be

carefully considered and converged.

Structure: X-ray Diffraction

We begin by studying the structure of the two solid
(Ni3Al) phases as represented by the static structure fac-
tor, S(q) (Fig. 2a). When studying structure, we do not
have to bother with the considerations of sufficiently high
dump frequency in the MD, as discussed in the previous
section, because there is no time-dependence in the corre-
lation function. Therefore, 1000 frames from each of the
20 trajectories are used, with 25 fs between each frame, to
give a representative view of the structure of the material
and obtain nicely converged static structure factors. The
dashed vertical lines in Fig. 2a indicate the expected posi-
tion of the Bragg peaks for a face-centered cubic (FCC)
lattice, i.e., where all Miller indices are even or all are
odd, with a lattice constant of 3.5915Å. Both the L12
peaks and the mixed phase peaks arise exactly at these
q-values, as there is no atom type-specific information
in the raw structure factor calculation distinguishing the
Ni from the Al atoms, so it is only the underlying FCC
lattice that dictates the result. The relative peak intensi-
ties are as expected based on the multiplicities of each of
these Bragg peaks: 8×{111}, 6×{200}, 12×{220}, and
24 × {311}. The computed raw static structure factor
thus contains information about all resolved q-values.

Now to the atom type-specific information, which in
this case is introduced by weighting the static struc-
ture factor with X-ray form factors. These form factors
are q-dependent and vary with atom type, as they scale
with the number of electrons. When the static struc-
ture factors are weighted, we see a difference arise be-
tween the mixed and the L12 phase, as the latter ex-
hibits additional peaks (Fig. 2b). These emerging peaks
match those present in an XRD measurement of crys-
talline Ni3Al, illustrating good agreement between X-ray
form factor weighted S(q) and experiment. The peak po-
sitions for the experiment are slightly offset compared to
the calculated ones, owing to a minor difference in lattice
constant between computation and experiment. Differ-
ences in peak heights indicate that the measured system
is slightly off-stoichiometric, compared to the simulated
ideal L12 structure.

The total weighted L12 structure factor exhibits peaks
at the positions expected from a simple cubic (SC) sys-
tem, while the mixed phase only exhibits the FCC peaks.
This can be understood by investigating the unweighted
partial structure factors, readily obtained from the dy-
nasor calculation (Fig. 2c–e). The L12 aluminum sub-
lattice forms a SC structure with the same lattice con-
stant, as each unit cell only contains one Al atom, so
the partial Al–Al structure factor (Fig. 2c) has peaks
according to such a SC lattice. The randomly mixed
system does not exhibit this sublattice order, but over-
all the atoms still occupy a FCC lattice, so the FCC
peaks are visible. The same explanation holds for the
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FIG. 2. (a) Spherically averaged raw static structure factor, S(q), calculated with dynasor for L12 and mixed Ni3Al. The
dashed lines indicate the allowed peak positions in a face-centered cubic lattice (all Miller indices even or all odd). (b) X-ray
weighted spherically averaged static structure factors for the L12 and mixed phases, together with XRD data extracted from
Ref. 32. The dashed vertical lines indicate the allowed peak positions in a simple cubic lattice. The curves are slightly offset
to increase visibility of the smallest peaks. (c–e) Partial raw static structure factors for Al-Al (c), Ni-Ni (d) and Ni-Al (e) in
the L12 and mixed phases.

Ni–Ni partial structure factor, though an interesting ob-
servation can be made about the Ni–Al partial (Fig. 2e).
Here, we see that the non-FCC peaks are negative for the
L12 phase, exactly canceling the corresponding peaks in
the other partials when summed, such that the raw to-
tal structure factor only exhibits the expected FCC peaks
(Fig. 2a). When weighting with X-ray form factors, how-
ever, these three partials are weighted differently, such
that the negative peaks in the Ni–Al partial no longer
cancel the positive peaks in the other two, leading to a
result that matches experiment (Fig. 2b). Due to the
type of each atom being stored during MD, and the par-
tial correlations being readily available from dynasor,
we can thus know which parts of the system contribute
to each peak.

Dynamics: Current Correlations

To learn about the dynamics of the three different
phases of the Ni3Al alloy, we study the current cor-
relations, C(q, ω). As mentioned in Sect. II A, cur-
rent correlations can be viewed as spatially dependent
generalizations of the velocity ACF, which means that
mode-specific vibrational frequencies can be obtained by
computing C(q, ω). The phonon dispersion for the L12
phase of Ni3Al (Fig. 3a) is computed along a FCC high-
symmetry path, which reveals backfolding, e.g., along Γ–

X, due to a doubling of the unit cell. This dispersion,
based on current correlations, includes both longitudinal
and transverse modes, in contrast to computed dynamic
structure factors, which would only exhibit the longitu-
dinal modes following Eq. (1).

Comparing ordered (Fig. 3a) and disordered crystalline
(Fig. 3b) Ni3Al, we can furthermore note that the disor-
der causes a smearing of the sharp features in the disper-
sion of the L12 phase. Additionally, with this approach
to computing phonon dispersions, we also have access
to the dispersion relation for the liquid phase (Fig. 3d),
which is something that would be unobtainable with per-
turbative methods. At first glance, the liquid dispersion
might look very different from those for the solid phases
(Fig. 3ab). This is, however, due to C(q, ω) being spher-
ically averaged in q for the liquid, owing to its isotropic
nature. With this in mind, we can recognize that the liq-
uid dispersion is an even more smeared out version of the
solid dispersion, see, e.g., the similarity between the liq-
uid dispersion and the path between Γ and X (Fig. 3b).
On a more technical note, we can observe that there is no
intensity whatsoever close to q = 0 in the liquid disper-
sion, which is due to the finite size of the MD simulation
posing a limit on the smallest available q.

Returning to the current correlation functions for the
crystalline phases, there is, in fact, even more insight to
be gained from these simulations. As for the static struc-
ture factor, partials are readily available for dynamic
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FIG. 3. Current correlation C(q, ω) for (a) ordered crystalline Ni3Al, (b) disordered crystalline Ni3Al, and (d) liquid Ni3Al,
as well as (c) partial current correlations (Ni–Ni in red and Al–Al in blue) of ordered Ni3Al. Note that a face-centered cubic
high-symmetry path is used in (a–c).

structure factors and current correlations alike. Exam-
ples of partial current correlations for the L12 phase of
Ni3Al are shown in Fig. 3c. This immediately gives us
information about which contributions stem from Ni–Ni
interactions, and which stem from Al–Al interactions,
something that can be cumbersome to discern purely
from experimental spectra, especially for systems with
even more atomic species.

B. BaZrO3

In this example, we study the cubic oxide perovskite
BaZrO3 using the MLIP potential based on the NEP for-
malism developed in Ref. 35.

BaZrO3 has attracted much interest as it retains its
cubic structure down to 0K at ambient pressure [36–38],
while most perovskites have a non-cubic low temperature
phase. However, it is clear that the antiferrodistortive
out of phase tilting mode softens substantially with de-
creasing temperature [39, 40], giving rise to interesting
local correlations [35, 41]. To aid us in studying this
material, we weight the computed correlation functions
with electron form factors, allowing for comparison with
electron diffraction measurements, and exploit mode pro-
jection to gain more insight into the microscopic dynam-
ics giving rise to the unique low-temperature behavior of
BaZrO3.

Structure: Electron Diffraction

To gain insight into the temperature-dependence of the
structure of BaZrO3, diffuse scattering due to phonons
can be studied by monitoring the static structure fac-
tor, S(q), between the Bragg peaks. In Ref. 41 diffuse
scattering was measured by electron beam diffraction in
a 2D space spanned by q-vectors ⟨310⟩ and ⟨001⟩ such
that an R-point (⟨1.5, 0.5, 0.5⟩) sits in the middle. This
diffuse scattering was simulated in Ref. 35 and in Fig. 4
we reproduce the resulting electron form factor-weighted
S(q) for three temperatures: 40, 100, and 300K. The
simulated structure factors clearly show the emergence
of an intense broad peak at the R-point as temperature
decreases, which is in good agreement with experimental
results from Levin et al. [41]. With the aid of these sim-
ulations, it is understood that the emerging diffuse peak
arises from the soft octahedral tilt mode located at R due
to the frequency of this mode softening substantially as
temperature decreases [35].

Dynamics: Mode Projection

At room temperature, with the present MLIP, BaZrO3
undergoes a phase transition from the cubic to the tetrag-
onal structure for pressures around 16GPa, driven by
the soft tilt mode at the R-point [35]. This means that
the mode exhibits overdamped dynamics in the vicinity
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FIG. 4. Electron beam diffraction intensity, S(q), calculated
from MD simulations at a) 40K, b) 100K, and c) 300K, re-
produced from Ref. 35. Here, S(q) are evaluated for q-points
given by q = 2π

a
(3y, y, x). The center of the heatmaps corre-

sponds to the R-point, i.e. q = 2π
a
(3/2, 1/2, 1/2).

of the transition. In order to study this further, we em-
ploy mode projection at 300K and 15.6GPa for the cubic
phase, which requires harmonic force constants and MD
trajectories (Fig. 1). Additionally, we contrast the be-
havior of this overdamped mode by analyzing two other
normal modes.

First, the harmonic force constants are calculated at
the lattice-parameter corresponding to 15.6GPa at 300K
with phonopy [42, 43]. These are used to construct the
phonon dispersion and the phonon eigenvectors, visual-
ized in Fig. 5a where modes selected for the mode projec-
tion are highlighted. Note that while the R-point mode is
imaginary at 0K it is dynamically stabilized at conditions
(300K and 15.6GPa) considered here. MD simulations
are carried out in a 24× 24× 24 supercell (69 120 atoms)
with a timestep of 1 fs and a dump frequency of 5 fs.
Mode projection ACFs and power spectra are averaged
over about 50 ns in total.

The phonon mode coordinate Q(t) and momenta P (t)
are obtained via mode projection from the MD simu-
lations (Fig. 5b–g). Because the acoustic mode (A) is
the only selected mode that has an imaginary eigenmode
Xα

sb(l, q), only this mode has imaginary Q(t) and P (t)
(Fig. 5b,c). For mode A we see how the real and imag-
inary part oscillate much like a harmonic system, and
the momentum P is lagging behind the oscillation of
coordinate Q by about 1/4 of the period as expected
for a harmonic oscillator. The oscillations also appear
mostly harmonic for mode B (Fig. 5d,e), but with some

noise or irregularities, which indicates anharmonic fea-
tures. Lastly, mode C (Fig. 5f,g) does not follow a clear
oscillating pattern but rather exhibits the dynamics of
an overdamped mode [26].

To analyze the mode coordinates in a statistical man-
ner we compute their ACFs, ⟨Q(0)Q∗(t)⟩ / ⟨Q(0)Q∗(0)⟩
(Fig. 5h–j), and the corresponding Fourier transforms
(Fig. 5k–m). The ACF for mode A oscillates and de-
cays very slowly, indicating a long phonon lifetime. This
is also seen as a sharp peak in the frequency domain.
For mode B the ACF decays to zero after about 2 ps,
giving rise to a broader peak in the frequency domain.
Note that the ACF and spectra of Q and P are almost
identical for both mode A and mode B, as is expected
for weakly anharmonic modes, where ω0τ ≫ 1. Mode
C, however, behaves differently, as the ACF for Q de-
cays towards zero instead of oscillating, due to the mode
being overdamped, i.e., ω0τ < 1. The ACF for P also
deviates from that of Q, as is expected when the life-
time τ is similar to (or smaller than) one time period of
the oscillation with angular frequency ω0. Additionally,
the Fourier transform of Q does not exhibit a peak at a
non-zero frequency, but rather a peak centered around
zero. This is typical behavior of an overdamped mode,
where ω0τ < 1. While this mode is very anharmonic,
it is worthwhile to note that it is still almost perfectly
described by the DHO model in Sect. II D.

An additional benefit of phonon mode projection is
that isolation of degrees of freedom with different time-
scales can allow for improved sampling. For example, a
low-frequency phonon mode with a long lifetime (many
nanoseconds) requires very long MD simulations to sam-
ple properly, and if the material at hand contains light
atoms such as hydrogen, the trajectory must be sampled
approximately every 5 fs to avoid aliasing when comput-
ing other correlation functions such as SED or dynamic
structure factors. However, if the dynamics is projected
onto the low-frequency mode of interest, the analysis can
be carried out with a much lower MD dump frequency,
because the fast vibrations are not present in the relevant
time signals for the low-frequency mode.

Beyond the analysis carried out for these three modes
in BaZrO3, phonon mode projection can be employed
to understand detailed contributions to vibrational spec-
tra, e.g., in Raman spectra [45], or the heat transfer
and correlation between modes [23]. Having access to all
the phonon modes and easily being able to manipulate
them in atomic-scale simulations also allows for conduct-
ing non-equilibrium simulations where for example a few
select modes are heated or cooled by, e.g., an external
driving force or a thermostat. Therefore, mode projec-
tion is an excellent method for studying detailed phonon
dynamics in any crystalline system using MD simulations
in combination with dynasor.
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FIG. 5. Mode projection analysis in BaZrO3 at 300K and 15.6GPa. Harmonic phonon dispersion (a) computed with
phonopy at the lattice-parameter corresponding to 15.6GPa at 300K. Here, the selected modes for phonon mode projection
are highlighted in blue (A), red (B), and orange (C). The mode coordinates Q(t) (b,d,f) and momenta P (t) (c,e,g) are shown
as a function of time. For the acoustic mode (A) the eigenvector is imaginary and consequently Q and P are as well, whereas
the two zone-boundary modes (B, C) are real. The mode ACFs ⟨Q(0)Q∗(t)⟩ are shown in (h, i, j) and their Fourier transforms
in (k, l, m). For the A and B modes the ACFs are hardly distinguishable between Q and P , hence the latter are not shown,
whereas they differ significantly for the overdamped mode C. The spectrum for P in (m) is scaled with an arbitrary factor to
be comparable to the spectrum of Q.

C. CsPbI3

In the final example, we analyze the prototypical halide
perovskite CsPbI3, using the MLIP in NEP format from
Ref. 46 to conduct the underlying MD simulations.

The ground state of CsPbI3 is a non-perovskite phase,
often referred to as the δ- or needle-like phase, with space
group Pnma. Upon heating, the material undergoes a
transition to a cubic perovskite phase (Pm3m) around
600K. When cooling the material, it first undergoes a
transition to a tetragonal phase (I4/mcm) around 540K
and then to an orthorhombic perovskite phase (Pnma)
around 430K [44]. To gain insight into the atomic mech-
anisms occurring in CsPbI3 when undergoing these phase
transitions, computed correlation functions are weighted
with X-ray form factors and neutron scattering lengths,
and compared to relevant experiments, in order to study

the structure and dynamics, respectively. Additional in-
sight into the dynamics is provided via SED calculations.

Structure: X-ray Diffraction

We begin by showing how phase transitions within the
perovskite can be identified by computing and analyzing
the static structure factor S(q), as done in Ref. 47 for an-
other perovskite. S(q) is computed for all q < 2.2 rad/Å
that are commensurate with the supercell, which consists
of approximately 40 000 atoms. For each temperature
S(q) was computed from 100 snapshots, evenly spaced
by 1 ps.

The simulated diffraction data closely resemble the
data from Ref. 44 in terms of additional peaks and peak
splitting at the phase transitions (Fig. 6), although the
lower phase transition temperature is about 100K lower
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FIG. 6. Heatmaps of (a) XRD intensities from experimental measurements [44] and (b) simulated, X-ray weighted, spherically
averaged static structure factor, S(q), for CsPbI3 as a function of temperature. Dashed vertical lines indicate the phase
transition temperatures. The experimental and simulated spectra are scaled with arbitrary factors to align the peak intensities.

with this MLIP compared to the experiment, a feature
that is intrinsic to the exchange-correlation functional
used for underlying reference calculations [46].

Here, we convert q-points to the scattering angle 2θ
used in the experiment through Eq. (4) with the X-ray
wavelength λ = 0.413 906Å from Ref. 44.

At the upper transition two additional peaks appear
at q-values of 1.58 rad/Å and 1.86 rad/Å, corresponding
to q-pointts [1.5, 0.5, 0.0] and [1.5, 0.5, 1.0] in the cubic
structure. The reason for this is that one phonon mode
in the cubic structure, located at [0.5, 0.5, 0] (M-point),
condenses and freezes in at this transition. Additionally,
the peak at 1.4 rad/Å, corresponding to [1, 1, 0] in the
cubic structure, splits as the system becomes tetragonal.

At the lower transition, additional modes condense giv-
ing rise to new peaks around 1.65 rad/Å, corresponding
to [1.5, 0.5, 0.5] (R-point), and at 1.5 and 1.8 rad/Å cor-
responding to [0.5, 1, 1] and [1.5, 1, 1] (X-points), respec-
tively. Existing peaks also split as a result of the struc-
ture transitioning from the tetragonal to the orthorhom-
bic phase. A difference between simulation and experi-
ment is that the peak splitting is larger in the computed
structure factor (Fig. 6b), which is due to the simulations
predicting larger differences between the lattice parame-
ters in the orthorhombic phase than what is observed in
the experiment, which means that peaks at, e.g., 2π/a
and 2π/c are farther apart.

Dynamics: Inelastic Neutron Scattering

Having identified the phase transitions from simula-
tions, we turn to studying the dynamics in CsPbI3 in
the cubic perovskite α-phase and in the non-perovskite
δ-phase. INS measurements reveal a large discrepancy
between the low frequency (0-2meV) behavior between

these two phases (Fig. 7a) [48]. This discrepancy is
well captured by the computed dynamic structure factor.
Here, both the measured and simulated dynamic struc-
ture factor is averaged over q-points in the range 0.2–
3.5 rad/Å. The elastic peak arising at ω = 0 manifests
itself as a delta-function in the computed structure fac-
tor, while it gives rise to a broader peak centered around
ω = 0 in experiments due to the finite resolution. The
simulated data therefore does not capture the intensity
increase below 0.5meV.

In order to understand the underlying reason for the
differing behavior in dynamics between the α- and the δ-
phases at low frequencies, we compute the SED across the
entire Brillouin zone for both phases (Fig. 7b,c). Here, we
see that the δ-phase exhibits clearly distinguishable and
sharper phonon modes with little broadening compared
to the cubic perovskite, which has very broad modes.
The δ-phase has only a few, and mostly acoustic, modes
contributing to intensities in the low frequencies range, 0–
2meV, whereas the cubic perovskite phase shows notably
large intensities for low frequencies at the R-point and M-
point. These modes at R and M are overdamped and thus
the largest reason for the substantial discrepancy between
the two phases in the INS measurements (Fig. 7a).

IV. CONCLUSIONS

We have demonstrated the utility of the dynasor
package in version 2.X via a broad range of examples. By
means of three different phases of Ni3Al and the two per-
ovskites BaZrO3 and CsPbI3, we have explored a number
of possible insights into the atomic-scale dynamics that
can be obtained directly from MD-based correlation func-
tions computed with dynasor. For Ni3Al, the raw corre-
lation functions used for studying dynamics were current
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FIG. 7. (a) INS measurements from Ref. 48 and computed dynamic structure factor, S(q, ω), for CsPbI3. (b) SED for the
non-perovskite δ-phase at 550K. (c) SED for the cubic perovskite α-phase at 600K.

correlations, for BaZrO3 phonon mode ACFs were ana-
lyzed, and for CsPbI3 the phonon SED was computed.
The insights we gained from these approaches include un-
derstanding partial contributions to the phonon disper-
sions, being able to compare spectra for, e.g., solid and
liquid phases, which would not be possible with pertur-
bative approaches, and exploring the nature of phonon
modes and the role they play during, e.g., phase transi-
tions by employing SED and phonon mode projection.

Furthermore, we have illustrated agreement with scat-
tering experiments relying on X-rays, electrons and neu-
trons to probe these materials. For solid Ni3Al, this
has been shown by comparing spherically averaged X-
ray weighted static structure factors and powder XRD
patterns. For BaZrO3 it was shown by comparing simu-
lated and measured electron beam diffraction intensities.
For CsPbI3, good agreement was seen between spher-
ically averaged X-ray weighted static structure factors
and measured XRD patterns, as well as between neutron
weighted dynamic structure factors and inelastic neutron
scattering experiments. This has given us insight into the
process of studying structure and dynamics using MD-
based correlation functions, which allows for identifica-
tion of phase transitions as the correlation functions can
be computed as a function of temperature. In addition,
the reason for the differences between the INS spectra of
two phases of CsPbI3 was explained using the simulated,
neutron weighted dynamic structure factor in combina-
tion with the SED.

It would be possible to take the comparison to exper-
iment one step further, beyond weighting with probe-
specific weights, and fully include the details of the mea-
surement setup by convoluting the computed structure

factors with resolution functions. This would allow for
quantitative predictions of instrument-specific spectra,
which could further aid both interpretation and planning
of experiments, and extending dynasor in this direction
is actively pursued.

In conclusion, MD-based correlation functions allow
for the study of intricate details of structural and dy-
namical material properties, including effects of temper-
ature, for all types of condensed materials, ranging from
crystalline to liquid. dynasor enables such analysis by
enabling the computation and post-processing of these
correlation functions, with weights readily available for
the three probes, facilitating direct comparison to exper-
iment.
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