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Structurally driven asymmetric miscibility in the phase diagram of W-Ti

Mattias Ångqvist, J. Magnus Rahm, Leili Gharaee, and Paul Erhart*

Chalmers University of Technology, Department of Physics, Gothenburg, Sweden

(Received 9 April 2019; revised manuscript received 17 June 2019; published 29 July 2019)

Phase diagrams for multicomponent systems represent crucial information for understanding and designing
materials but are very time consuming to assess experimentally. Computational modeling plays an increasingly
important role in this regard but has been largely focused on systems with matching lattice structures and/or stable
boundary phases. Here, using a combination of density functional theory calculations, alloy cluster expansions,
free energy integration, and Monte Carlo simulations, we obtain the phase diagram of W-Ti, a system that
features metastable boundary phases on both sides of the phase diagram. We find that the mixing energy on
the body-centered cubic (BCC) lattice is asymmetric and negative with a minimum of about −120 meV/atom,
whereas for the hexagonal closed packed (HCP) lattice the mixing energy is positive. By combining these data
with a model for the vibrational free energy, we propose a revision of the W-rich end of the phase diagram with
a much larger solubility of Ti in BCC-W than previous assessments. Finally, by comparison with the W-V and
W-Re systems, we demonstrate how strongly asymmetric phase diagrams can arise from a subtle energy balance
of stable and metastable lattice structures.
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I. INTRODUCTION

Metallic alloys play a crucial role in technology and are of
continuing interest in basic research. The most simple alloys
comprise two components; these so-called binary systems can
usually be categorized according to whether the interaction
between the two constituents is repulsive (positive mixing
energy) or attractive (negative mixing energy). In the former
case, examples of which include Cu-Ag [1–3] and Fe-Cu
[1,4–6], one commonly observes a wide two-phase region
(often referred to as the miscibility gap). Attractive interac-
tions, on the other hand, give rise to the formation of solid
solutions, e.g., in Au-Ag [1,7] or W-V [1,8], and the formation
of intermetallic phases as in the case of Fe-Pt [1,9–11] or
Ni-Al [1,12,13].

The interaction between the constituents is usually sym-
metric, in the sense that if A dissolves in B, so does B in
A. Exceptions from this behavior are rather uncommon; a
prominent example is the Fe-Cr system [14,15], for which
the dissolution of Cr in Fe is energetically favorable, whereas
the opposite applies for Fe in Cr [16,17]. As a result of this
inversion in the mixing energy, the phase diagram is very
asymmetric with a large solubility on the Fe-rich and a very
small solubility on the Cr-rich side. This behavior, which
at first sight might be unexpected given a very small size
mismatch and identical lattice structures, can be rationalized
in terms of the magnetic structure [17,18] with Fe and Cr
preferring ferro and antiferromagnetic ordering, respectively.

Here, we show that strongly asymmetric phase diagrams
can also be obtained in nonmagnetic systems as a result of an
asymmetry in lattice structures and their energetics. In doing
so, we also demonstrate the usage of the variance constrained
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semigrand canonical Monte Carlo technique [19,20] for ex-
tracting the complete free energy surfaces. Specifically, we
consider the W-Ti system. Titanium exhibits a temperature
driven transition from a low-temperature hexagonal closed-
packed (HCP) phase (α-Ti) to a high-temperature body cen-
tered cubic (BCC) phase (β-Ti) that is stabilized by vibrations
[21]. Tungsten is a refractory metal that maintains a BCC
structure up to the melting point. Close-packed structures
including HCP are much higher in energy and can only be
stabilized at very high pressures [22,23].

The W-Ti system is also of interest because its experi-
mental assessment is aggravated by the high melting point of
tungsten and the accompanying slow kinetics, which render
the systematic exploration of the phase diagram, in particular
the W-rich side, very cumbersome. Since experimental data
points for tungsten concentrations �30% are only available
down to 1473 K [24,25], the W-Ti system has been as-
sessed using rather severe assumptions [25–28]. It must be
emphasized, however, that in spite of slow kinetics the low-
temperature phase diagrams of refractory alloy systems have a
bearing, e.g., for the behavior under intense irradiation condi-
tions such as in fusion reactors, in so far as they determine the
thermodynamic driving forces. Tungsten alloys in particular
are being considered for key components in fusion reactors
that must sustain extreme mechanical and irradiation loads for
prolonged periods of time [29–31].

In the following, using a combination of density functional
theory (DFT) calculations, alloy cluster expansions (CEs),
Monte Carlo (MC) simulations in the variance constrained
semi-grand canonical (VCSGC) ensemble, and thermody-
namic data for the pure elements [32], we provide a re-
assessment of the W-Ti phase diagram below the solidus
line. We demonstrate (i) that the solubility of Ti in W
exceeds 20% down to very low temperatures (�300 K)
in stark contrast to previous thermodynamic assessments
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[26–28] while the inverse solubility is practically zero up to
the HCP-BCC transition. Furthermore, it is shown (ii) that
this asymmetry originates from a change of sign of the BCC-
HCP free energy difference as a function of composition,
which remains comparably small in magnitude. In addition to
providing a new perspective on the W-Ti system, the present
results illustrate how strongly asymmetric phase diagrams can
arise in nonmagnetic systems, and illustrate a methodology
that can handle multiple miscibility gaps in systems with
several different lattice types.

The remainder of this paper is organized as follows. The
next section provides an overview of the computational tech-
niques employed in this work. The thermodynamic framework
used to analyze the free energy landscapes and construct the
phase diagram is outlined in Sec. II D. The results of our
computations are presented in Sec. III, after we discuss the
implications for the W-Ti system in particular and put the
present results in context in Sec. IV.

II. COMPUTATIONAL METHODOLOGY

A. Alloy cluster expansions

In the present work, we employ lattice Hamiltonians to
represent the energy of the system as a function of compo-
sition and distribution of the elements. These alloy CEs can
be written in the general form [33]

�E = �E0 +
∑

α

mαJα�α (σ), (1)

where �E denotes the mixing energy. The summation runs
over all symmetry inequivalent clusters α with multiplicity
mα and effective cluster interaction (ECI) Jα . The cluster
correlations �α are computed as symmetrized averages of
products over the pseudospin vector σ. The latter represent the
occupation of lattice sites by W (σ = −1) and Ti (σ = +1).

In the present work, we employed the ICET package [34] for
the construction and sampling of CEs. We considered cluster
spaces with up to 220 distinct clusters including clusters up
to fifth order (quintuplets). Inclusion of clusters of high order
was necessary due to the very asymmetric shape of the mixing
energy as a function of composition (see below).

For training of CEs, we systematically enumerated all
structures with up to 12 atoms in the unit cell [35,36], which
yields 10 846 and 5777 structures for BCC and HCP lattices,
respectively. Based on this pool of structures, we relaxed and
evaluated the energy of more than 1,700 BCC and 900 HCP
structures using DFT as described in Sec. II C. Since both
BCC-Ti [21] and HCP-W are structurally unstable, several
configurations did not maintain their initial lattice structure
[37]. To exclude these structures, each configuration was
mapped backed onto its respective ideal lattice structure. BCC
structures were removed from the pool of structures if the
displacement of any atom exceeded 0.25 Å or the tetragonal
shear exceeded by 0.2 [38], resulting in a total of 1133
structures. HCP structures were removed if a structure had
a negative mixing energy or a Ti concentration below 50%,
resulting in 105 structures.

We have previously shown that the automatic relevance
detection regression (ARDR) optimization algorithm yields
sparse solutions with low cross-validation (CV) scores, often

outperforming both least absolute shrinkage and selection
operator (LASSO) and recursive feature elimination (RFE)
approaches [34]. The λ-threshold parameter in ARDR con-
trols the sparsity of the model with smaller values producing
sparser solutions at the cost of higher validation-root-mean-
square error (RMSE) scores. Sparser solutions are commonly
both more transferable and also computationally less expen-
sive to sample. We therefore increased λ until the RMSE score
converged. Here, CV scores were estimated by the shuffle-
and-split method with 50 splits using 90/10% of the structures
for training/validation.

B. Monte Carlo simulations

The final CEs were sampled using Monte Carlo (MC)
simulations. In order to be able to construct the full free energy
landscape of the crystalline phases (see Sec. II D below), we
require the free energy for BCC and HCP phases separately,
as a continuous function of composition. This prevents us
from using the semigrand canonical (SGC) ensemble. While
the latter does provide access to the first derivative of the
free energy with respect to composition, it does not allow
sampling multiphase regions, which as will be seen below
are present for both BCC and HCP lattices. To overcome this
limitation we employ the VCSGC ensemble. It includes an ad-
ditional term in the partition function that effectively imposes
a constraint on the fluctuations of the concentration, which
diverge in multiphase regions. The VCSGC-MC approach has
been successfully employed previously to describe multiphase
equilibria in, e.g., Fe-Cr [19] and Fe-Cu alloys [39,40]. The
VCSGC ensemble is sampled by randomly selecting a site in
the system, swapping its chemical identity, and accepting this
trial move with probability [19]

P = min{1, exp[−β�E − κ�NB(φ + �NB/N + 2NB/N )]}.
(2)

Here, �E is the energy change associated with the move,
�NB is the change in the number of particles of type B, N
is the total number of sites (atoms) in the simulation cell, and
φ and κ are the average and variance constraint parameters.
We employed κ = 200 throughout; this choice provides a con-
tiguous sampling of the concentration axis while maintaining
a high acceptance rate and, in our experience, works almost
universally for the systems that we have considered so far.
The average constraint parameter φ was varied in steps of 0.02
from −2.2 to 0.2. In the VCSGC ensemble, the first derivative
of the free energy is related to the (ensemble) average of the
concentration 〈cB〉 = 〈NB〉/N ,

β∂�F/∂c = κ (φ + 2〈cB〉), (3)

which allows one to obtain the free energy of mixing.
MC simulations were carried out at temperatures between

300 and 1800 K in 100-K intervals using 5 × 5 × 5 and 4 ×
4 × 4 supercells of the primitive unit cell for BCC and HCP
structures, respectively. At each value of φ, the configuration
was equilibrated for 10 000 trial steps, followed by 90 000 trial
steps for gathering statistics.
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C. Density functional theory calculations

DFT calculations were carried out using the projector
augmented wave method [41,42] as implemented in the VASP

[43,44]. Electronic semicore states (W-5p, Ti-3p) were treated
as a part of the valence and calculations employed a plane
wave energy cutoff of 450 eV. Brillouin zone integrations
were carried out using �-centered k-point grids with an av-
erage spacing of 0.15 Å−1, corresponding to a 19 × 19 × 19
mesh relative to the primitive BCC cell and a 18 × 18 × 9
mesh relative to the primitive HCP cell. These computational
settings are very tight and have been shown previously to yield
well converged results [45].

Using first-order Methfessel-Paxton smearing with a width
of 0.2 eV, both ionic positions and cell shapes were relaxed
until residual forces were below 5 meV/Å and stresses be-
low 0.5 kbar. The total energy of the final structures was
subsequently computed without further relaxation using the
tetrahedron method with Blöchl corrections.

Exchange and correlation effects were described using
the van der Waals density functional (vdW-DF) method that
captures nonlocal correlations [46,47] in combination with
a consistent description of exchange (vdW-DF-cx) [48] as
implemented in Vienna ab initio simulation package VASP

[49,50]. We have recently established that this functional
provides a description of the thermophysical properties of
nonmagnetic transition metals that is at least on par with
but usually exceeds other constraint-based functionals [51],
notably PBE [52] and PBEsol [53]. To assess the effect of
the exchange-correlation functional, we conducted supple-
mentary calculations using the latter functionals for selected
structures close to the BCC convex hull.

D. Thermodynamic methodology

In order to construct the phase diagram, we consider the
free energy landscape of the W-Ti system as a function of
temperature T , W concentration c, and structure α. From
the MC simulations described above, we can extract the
mixing free energy �Gmix

α (c, T ) for α = BCC or HCP, which
includes the contributions due to mixing energy �Hmix

α (c, T )
and configurational entropy �Smix

α (c, T ). Here, since ionic
and cell relaxations are implicitly included in the ECIs, we
have �Gmix

α ≈ �F mix
α and from here on we will therefore refer

only to �G and �H .
To obtain the full Gibbs free energy, we must also take into

account the vibrational contributions, which are not accounted
for in the CE. Since a full evaluation of the vibrational contri-
bution as a function of composition is very demanding due to
the importance of anharmonic contributions for Ti-rich BCC
and W-rich HCP structures, we here approximate the vibra-
tional contribution by a linear interpolation of the elemental
free energies plus a correction for the strong anharmonicity of
the metastable BCC-Ti phase. We thus write the total Gibbs
free energy for phase α as

Gα (c, T ) = c
[
GW

α (T ) − GW
α (298.15 K)

]
+ (1 − c)

[
GTi

α (T ) − GTi
α (298.15 K)

]
+ GCE

α (c) + �H anh
α (c) (4)
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FIG. 1. Mixing energy for all (a) BCC and (b) HCP structures,
for which DFT reference calculations were performed. (c) Com-
parison of the mixing energy computed using different exchange-
correlation functionals for selected BCC structures.

and for the sake of visualization the free energy of mixing as

�Gα,mix(c, T ) = Gα (c, T ) − c GBCC(1, T )

− (1 − c) GHCP(0, T ). (5)

For both GW
α (T ) and GTi

α (T ), we resort to thermody-
namic assessments available from the CALPHAD framework
[32]. Equation (4) contains an anharmonic correction term
�H anh

α (c), which is motivated by an analysis of the lattice
energy of BCC structure that was carried out using ab initio
molecular dynamics (MD) simulations with the VASP package
and the PBE exchange-correlation functional [52]. In these
simulations, supercells comprising 54 atoms were sampled
using a time step of 1 fs for up to 10 ps using a Nosé-Hoover
thermostat.

III. RESULTS

A. Cluster expansions of mixing energies

The DFT calculations reveal a negative mixing energy for
BCC structures [Fig. 1(a)]. The shape of the mixing energy
is very asymmetric with several structures along the convex
hull. The lowest mixing energy is obtained for a structure
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FIG. 2. Effective cluster interactions (ECIs) for the cluster
expansion for the BCC lattice.

at 80% W. This structure has space group 166 (R3̄m) and
contains five atoms in the primitive unit cell [54]. For selected
structures along the convex hull, we recalculated the mixing
energies using the PBE and PBEsol functionals [Fig. 1(c)].
In particular between the PBEsol and vdW-DF-cx functionals
the deviations are below one percent.

In the CE formalism employed in the present work, re-
producing the asymmetric shape of the mixing energy re-
quired including clusters up to fifth order and extending over
rather long range [Fig. 2(a)]. The final CE to be used in
the MC simulations was obtained by training on the whole
pool of structures with the ARDR optimization algorithm (see
Sec. II A for details). The average root mean square error over
the validation sets is 3.3 meV/atom and the final CE generally
achieves very good agreement with the DFT reference data
[Fig. 1(a)]. The accuracy and predictiveness of the CE is also
evident from the small errors of the mixing energy [Fig. 1(a)].

In contrast to the BCC lattice, the mixing energy for the
HCP lattice is positive yet also asymmetric [Fig. 1(b)]. Here,
the average root mean square error over the validation sets
is 5.6 meV/atom. The sign difference between the mixing
energies on BCC and HCP lattices is not per-se unusual as the
sensitivity of solution energies to crystal structure has been
previously demonstrated and analyzed, for example, for 4d
metals [55].

B. Anharmonicity

In classical simulations the average potential energy of a
system approaches its static value as the temperature goes to
zero. This behavior is observed for example for BCC-W as
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FIG. 3. (a) Difference between the average potential energy at
finite temperature and the static lattice energy in the BCC phase for
W-Ti at different concentrations as obtained from ab initio molecular
dynamics (MD) simulations. The concentration dependence of this
difference is in this work accounted for by Eq. (6), which is shown
in the inset of (a). (b) Impact of the anharmonic correction (grey
area) on the free energy of mixing (blue line) for the BCC phase at
298.15 K.

simulated with ab initio MD [Fig. 3(a)]. The average potential
energy of the BCC-Ti phase simulated in the same way does,
however, not approach its static value but rather extrapolates
to a value of �H0

dyn-stat, Ti = −56.1 meV/atom. This behavior
originates from the metastable character of the BCC-Ti phase
and its mechanical instability at 0 K, which implies a strongly
anharmonic potential well. By contrast, both BCC-W and
HCP-Ti are stable at zero temperature and their dynamical
behavior up to moderate temperatures can be comfortably
described within the quasi-harmonic approximation [51].

The BCC-CE is based on the static BCC-Ti energy. At
finite temperatures, the free energy difference at 0 K between
the BCC-Ti and HCP-Ti phases is thus severely overestimated
(GCE

BCC-Ti − GCE
HCP-Ti = 103.8 meV/atom), unlike the

CALPHAD assessment, which implicitly takes the correction
into account (GCALPHAD

BCC-Ti − GCALPHAD
HCP-Ti = 47.3 meV/atom
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at the lowest available temperature). By inclusion of
the term �H0

dyn-stat, Ti = −56.1 meV/atom, we obtain
excellent agreement (GCE

BCC-Ti − GCE
HCP-Ti + �H0

dyn-stat =
47.7 meV/atom) with the CALPHAD assessment [Fig. 3(b)].

To achieve a consistent thermodynamic description we
must account for the variation of �H0

dyn-stat with composi-
tion, i.e., we must express �H anh

α (c) in Eq. (4). Unfortu-
nately, a comprehensive analysis of anharmonic behavior is
already computationally demanding for the elemental phases
[23,56,57]. In the present case, we therefore make the basic
assumption that �H anh

α (c) smoothly approaches �H0
dyn-stat, Ti

with decreasing Ti concentration. We chose a simple cubic
functional form [inset of Fig. 3(a)]

�H anh
BCC(c) = �H0

dyn-stat, Ti

{
(1 − c/cs)3 c < cs,

0 c � cs.
(6)

Equation (6) contains a single parameter cs that determines
the concentration at which the correction is fully applied.
The thermodynamic analysis presented below was conducted
using a value of cs = 0.5, motivated by qualitative agreement
with ab initio MD calculations of BCC-Ti with, respectively,
1.85% and 3.70% W [inset of Fig. 3(a)].

We note that a similar correction should in fact also be
considered for HCP-W versus BCC-W. As a result of the
much larger energy difference between these structures, this
effect is, however, insignificant for the phase diagram and has
not been considered further (also see Sec. IV).

C. Free energy landscape

The CEs for BCC and HCP lattices were sampled by MC
simulations as detailed in Sec. II B. The (finite temperature)
BCC mixing energy maintains the asymmetric shape of the
zero-temperature data [Fig. 4(a)]. It also clearly reveals the
emergence of a particularly stable configuration at 80% W,
which corresponds to the ground state described above.

From the MC simulations, we furthermore obtained the
first derivative of the free energy with respect to concentration
via Eq. (3), which was integrated using the trapezoidal rule to
yield the mixing free energy [Fig. 4(b)]. Below the free energy
of mixing will be used to construct the convex hull and the
phase diagram.

By combining mixing free energy and energy, one can
extract the entropy of mixing according to

�Smix = (�Hmix − �Gmix)/T . (7)

At low temperatures, the actual mixing entropy deviates
strongly from that of an ideal solution and the ordered struc-
ture at 80% W is clearly visible as a pronounced reduction
in the mixing entropy [Fig. 4(c)]. At higher temperatures,
this feature is smoothed out and the mixing entropy becomes
closer to that of an ideal solution. Nonetheless, the very
pronounced features in the entropy clearly demonstrate the
importance of an accurate treatment of alloy thermodynamics
beyond simple approximations.

In the case of the HCP structures, mixing energies, free
energies, and entropies were obtained in similar fashion as
for the BCC lattice. Due to the positive mixing energy, these
quantities are, however, much closer to those of an ideal so-
lution and hence are not shown here explicitly. Their determi-
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FIG. 4. (a) Mixing energy, (b) free energy of mixing, and
(c) mixing entropy as a function of composition from VCSGC-MC
simulations based on the CE constructed for BCC in this work.

nation is nonetheless important in order to obtain a consistent
and comprehensive description of the thermodynamics of the
relevant crystalline phases.

D. Phase diagram

After having determined the free energies of both BCC
and HCP phases, one can construct the full temperature,
composition, and structure dependent free energy landscape,
from which the phase diagram can be extracted. To this end,
the free energies for the different phases were combined
as described in Sec. II D. In accordance with experimental
reality, our analysis yields three distinct stable crystalline
phases, namely, a Ti-rich HCP phase (HCP-Ti), a Ti-rich BCC
phase (BCC-Ti), and a W-rich BCC phase (BCC-W).

At a temperature of 500 K, the HCP-Ti phase is in equilib-
rium with BCC-W [Fig. 5(a)] with the latter phase exhibiting
a wide stability range with a solubility limit of 67% W.
This substantially differs from the values �80% predicted
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by CALPHAD assessments based on partial experimental
data supplemented by approximations for the mixing energy
[27,28,58]. Similarly, at a temperature of 800 K we obtain all
three phases [Fig. 5(b)].

In order to obtain a description of the phase diagram
at all intermediate temperatures, we followed the com-
mon approach in alloy thermodynamics of representing
the free energy of mixing in terms of a Redlich-Kister
x expansion

�G(x, T ) = x(1 − x)
n∑

p=0

Lp(T )(1 − 2x)p, (8)

up to order n = 3. We then represented the temperature de-
pendence of each of the eight (four per lattice) Redlich-Kister
coefficients Lp by third-order polynomials. The interpolated
mixing free energies are in very good agreement with our
VCSGC-MC data (see points and blue lines in the bottom row
of Fig. 5), which allows us to extract the phase boundaries as
a continuous function of temperature.

The thus obtained phase diagram (Fig. 6) shows the same
phases and phase equilibria as the experimental one. The
upper temperature of the BCC-Ti+BCC-W two-phase region
is predicted at 1360 K, which is approximately 160 K lower
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than experiment, and the position of the maximum is predicted
at a W concentration of 39% as opposed to approximately
30% in the experiments. The large high-temperature solubility
results from a negative mixing energy on the BCC lattice,
which also gives rise to finite solubility limit of >20% for Ti in
BCC-W down to very low temperatures (�300 K). The eutec-
toid on the Ti-rich side of the phase diagram is underestimated
compared to experiment (657 K versus 1013 K), which comes
with an overestimation of the eutectoid point (19% versus
9%). The larger errors on the Ti-rich side are unsurprising
given the difficulties associated with the strong anharmonicity
of BCC-Ti, which are only treated approximately in this work.
We note that we tested different values for cs parameter in
Eq. (6) and found the general shape of the phase diagram to
be unaffected. Larger (smaller) values of cs shift the BCC-W
solubility limit further to the W-rich side and tend to increase
(decrease) the maximum of the BCC-Ti+BCC-W two phase
region.

IV. DISCUSSION AND CONCLUSIONS

A. Relevance for the W-Ti system

Above we have demonstrated that the solubility of Ti
in BCC-W at low temperatures is larger than previously
predicted and remains finite as the temperature approaches
zero. This conclusion was reached by combining DFT cal-
culations with effective lattice Hamiltonians, Monte Carlo
simulations, and thermodynamic modeling. By comparison,
previous studies were based on experimental data, which is
only available at temperatures above 1473 K. We note that
while the low temperature regions of the phase diagrams
of refractory metals are exceedingly difficult to sample in
equilibrium, they are nonetheless relevant as they determine
the driving forces under extreme nonequilibrium situations
such as encountered under ion irradiation.
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FIG. 7. Schematic illustration of mixing energies for BCC struc-
tures of W-V, W-Ti, and W-Re based on data from Ref. [59]. In the
case of the latter two alloys, the energy offset in the Ti/Re-rich limit
represents the HCP-BCC energy difference. The figure illustrate that
the occurrence of a finite solubility at low temperatures in the case of
W-Ti is the result of a combination of a negative mixing energy on
the BCC lattice and not-too-large HCP-BCC energy difference.

B. General implications

While the present finding pertains to our understanding of
the W-Ti phase diagram, it has more general implications for
alloy thermodynamics. As outlined in the introduction, binary
phase diagrams of metals that exhibit strongly asymmetric
solubility are relatively rare. While as demonstrated in the
case of the Fe-Cr system, they can arise from competing forms
of magnetic order, here we show that this effect can also
be observed in nonmagnetic systems as a result of different
lattice structures.

To illustrate this effect, consider the mixing energies of
W-V (BCC) and W-Re (BCC and HCP) in comparison with
W-Ti (Fig. 7; data from Ref. [59]). In the case of W-V both
end members are BCC, the mixing energy is negative and
the phase diagram shows an extended miscibility range (and
is symmetric). In the case of W-Re, the calculations yield
a negative mixing energy for BCC and an almost vanishing
mixing energy for the HCP lattice, very similar to the case of
W-Ti described above. The (free) energy difference between
HCP-Re (the ground state) and BCC-Re is, however, much
larger than in the case of Ti. As a result, the negative mixing
energy of the BCC lattice is shifted upward such that the

solubility of Re in BCC-W is rather small and approaches zero
with vanishing temperature.

The comparison with W-V and W-Re demonstrates that
the occurrence of an asymmetric phase diagram in W-Ti is
the result of a negative mixing energy on the BCC lattice in
combination with a HCP-BCC energy difference that is not
too large. This reasoning implies that similar behavior can
be expected in other systems that combine different lattice
structures with elements that have metastable structures. By
extension, this should also apply to effective (“quasi”) phase
diagrams between compounds.

C. Computational modeling

Using conventional sampling techniques based on either
the semigrand canonical or canonical ensembles, one cannot
simultaneously sample multiphase regions and derivatives of
the free energy [60]. In the present work, however, we have
tackled a system that combines different lattice structures
with miscibility gaps. This required the ability to obtain the
free energy profile for the different phases as a continuous
function of composition (and temperature). Here, we were
able to achieve this by using the VCSGC-MC approach, and
have thereby demonstrated the power of this methodology
to extract free energies and phase diagram information. This
suggests that in the future the VCSGC-MC method can be of
great utility as the reach of ab initio alloy thermodynamics
widens to address more complex and demanding challenges.

D. Short comings and outlook

Arguably the biggest approximation adopted in the present
work concerns the description of anharmonic contributions to
the free energy. As alluded to above, a direct assessment of the
vibrational contributions to the free energy as a function of
composition is computationally very demanding [23,56,57].
While for vibrationally stable systems this can be achieved
within the harmonic approximation [61–63], a more compre-
hensive treatment of the anharmonicity in alloys is one of
the remaining challenges in the development of computational
alloy thermodynamics.
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