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Céline Durniak,2 Piotr Rozyczko,2 Thomas Holm Rod,2 and Paul Erhart1, ∗

1Chalmers University of Technology, Department of Physics, Gothenburg, Sweden
2Data Management and Software Centre, European Spallation Source, Copenhagen, Denmark

Alloy cluster expansions (CEs) provide an accurate and computationally efficient mapping of the potential
energy surface of multi-component systems that enables comprehensive sampling of the many-dimensional con-
figuration space. Here, we introduce ICET, a flexible, extensible, and computationally efficient software package
for the construction and sampling of CEs. ICET is largely written in Python for easy integration in comprehen-
sive workflows, including first-principles calculations for the generation of reference data and machine learning
libraries for training and validation. The package enables training using a variety of linear regression algorithms
with and without regularization, Bayesian regression, feature selection, and cross-validation. It also provides
complementary functionality for structure enumeration and mapping as well as data management and analysis.
Potential applications are illustrated by two examples, including the computation of the phase diagram of a
prototypical metallic alloy and the analysis of chemical ordering in an inorganic semiconductor.

I. INTRODUCTION

Ordering phenomena are ubiquitous in materials science,
physics, and chemistry. They are particularly relevant in
multi-component systems, where they are associated for ex-
ample with phase transitions, segregation as well as chemical
order.1 The underlying energetics can usually be assessed by
first-principles calculations, based on e.g., density functional
theory (DFT), with good accuracy. The computational cost
of such calculations, however, precludes a statistically ade-
quate sampling of the relevant configuration space. In this
context, alloy cluster expansions (CEs) in combination with
Monte Carlo (MC) simulations provide a powerful means to
balance computational efficiency and accuracy.2,3

The CE approach has been widely and very successfully
adopted to analyze for example phase diagrams in metallic4,5

and semiconducting alloys,6–8 including surfaces9–15 as well
as nanoparticles.16–23 CEs have also been applied to study
the temperature and composition dependence of ordering
in various materials.24–28 The CE approach is not limited
to the mapping of total and mixing energies but can also
be applied to model for example activation barriers,29 vi-
brational properties,30,31 chemical expansion,26 or transport
properties.25

Here, we introduce the integrated cluster expansion toolkit
(ICET) to enable efficient construction and sampling of CEs.
ICET is designed to be modular, extensible, and flexible, while
maintaining high computational efficiency. This enables inte-
gration of ICET in extended workflows, reflecting the ongo-
ing shift toward machine learning and large data initiatives
in computational material science.32,33 ICET is primarily de-
veloped in Python whereas computationally more demanding
parts are written in C++, providing performance while main-
taining portability and ease-of-use. This approach enables
easy integration for example with countless first-principles
codes and analysis tools accessible via the atomic simula-
tion environment (ASE)34 as well as state-of-the-art regression
techniques via SCIKIT-LEARN.35

ICET provides a feature set that is comparable to or extends
beyond earlier monolithic codes, such as the ATAT,36–38 the

UNCLE39 or CASM codes.40 Since ICET is written in Python,
it is, however, straightforward to add new functionality. This
enables one for example to implement advanced algorithms
for finding ground states.41,42 ICET is available under an open-
source license and hosted on GITLAB to encourage commu-
nity participation. Current functionality includes for example:

• support for multiple species and multiple coexisting sub-
lattices, e.g., Ba8−xSrxGayGe46−y or Au1−xPdx:Hy
• advanced linear regression techniques with regularization

(including compressive sensing43), cross-validation, and
ensemble optimization via SCIKIT-LEARN35

• MC simulations in various ensembles using observers and
multiple CEs in parallel via the MCHAMMER module

• supplemental functionality including e.g., structure enum-
eration,44,45 structure mapping, convex hull extraction,46

and ground state finding42

The remainder of this paper is organized as follows. The
next section describes the methodologies implemented in
ICET, including an overview of the CE formalism, algorithms
available for CE construction, and the MCHAMMER module
for sampling CEs via MC simulations. The components and
workflow of ICET are summarized in Sect. V. Section VI
demonstrates the potential of ICET via examples. The first ex-
ample addresses the construction and sampling of CEs for the
Ag–Pd system as well as the subsequent generation of a phase
diagram from these data. The second example summarizes the
application of ICET for the simulation of chemical ordering in
a semiconducting system, specifically an inorganic clathrate.

II. CLUSTER EXPANSION FORMALISM

A. Clusters and orbits

The objective of a CE is to describe the variation of a prop-
erty of interest, most commonly the energy, with the chemical
configuration, i.e. the distribution of different species over a
lattice. To this end, the structure is decomposed into a set of
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FIG. 1. Illustration of clusters on a BCC lattice. The clusters are ordered by radius from top to bottom, with the size given in units of the
lattice constant a0. The cluster radius is defined as the average distance of the sites to the center of the cluster.

clusters, where a cluster of order k is defined as a list of k
sites. Clusters are commonly referred to by order as singlets,
pairs, triplets and so on.

The clusters are subject to the symmetry of the underly-
ing lattice, as described by the associated space group (for
periodic systems) or point group (for non-extended systems).
Clusters that can be mapped onto each other as a result of the
application of an intrinsic symmetry operation of the lattice,
are said to belong to the same orbit (Fig. 2). Each orbit in turn
is represented by a symmetry inequivalent cluster, from which
every other cluster of the orbit can be generated by application
of the symmetry operations and a permutation of the sites.

While the number of clusters is in principle infinite, the
short-ranged nature of physical interactions implies that clus-
ters with notable contributions to the CE are commonly
shorter-ranged and few-bodied. It is therefore customary to
only include clusters up a certain size and order, as shown for
the case of a BCC lattice in Fig. 1.

B. Point functions

It can be formally shown that a CE is able to represent any
function of the configurationQ(σ) if one can construct a com-
plete orthogonal basis.2 Here, σ denotes the occupation vec-

Pair Triplet Quadruplet

FIG. 2. Examples for pair (green), triplet (orange) and quadruplet
(blue) clusters on a square lattice. The representative (symmetry in-
equivalent) clusters are shown in dark colors, whereas examples for
other clusters in the orbits are shaded.

tor, the N elements of which indicate the species that resides
on the corresponding site. To obtain a practical procedure, for
each lattice point p one can define M orthogonal point func-
tions Θn(σp)

Θn(σp) =


1 if n = 0

− cos (π(n+ 1)σp/M) if n is odd
− sin (πnσp/M) if n is even,

where M is the allowed number of species and n goes from 0
to M − 1. These point functions form an orthogonal set over
all possible occupation numbers,37

〈Θn,Θn′〉 =

M−1∑
σp=0

Θn(σp)Θn′(σp) =

{
0 if n 6= n′

6= 0 if n = n′.

In the case of multiple sublatticesM can assume different val-
ues for different sublattices. For example, in the case of the
zincblende alloy Al1−x−yGaxInyAs1−zSbz , M = 3 for the
cation and M = 2 for the anion lattice.

C. CE expression

A set of functions Πα(σ) in the MN -dimensional configu-
ration space can now be constructed as products of point func-
tions,

Πα(σ) = Θn1
(σ1)Θn2

(σ2) . . .Θnl
(σl).

Here, α = [n1, n2, . . . nl], where ni are point function in-
dices and l is the number of sites in the structure. Each α
corresponds to a cluster in the sense that ni = 0 if site i is not
part of the cluster (such that the corresponding point function
is 1) and nonzero otherwise. In the binary case, there is one
α for each cluster, each having elements that are either 0 or 1.
In systems with more than two components, there are multiple
α corresponding to the same cluster, due to the the possible
combinations of nonzero point function indices ni.

It can be shown that the functions Πα(σ) form a complete
orthogonal set, so that any function of the configuration can
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be expressed as

Q(σ) =
∑
α

JαΠα(σ).

All basis functions Πα have one configuration invariant com-
ponent that is equal to 1 when α = 0. One can therefore omit
the latter from the basis functions and instead use one config-
uration invariant term Q0. Furthermore, taking into account
the symmetry of the clusters the summation can be carried out
over orbits (or representative clusters) rather than all clusters,
which yields the full CE expression

Q(σ) = Q0 +
∑
α

〈Πα′(σ)〉αmαJα. (1)

The 〈. . .〉α bracket indicates the average over the basis func-
tions for all α′ that are symmetry equivalent to α. The effec-
tive cluster interactions (ECIs) Jα are the free parameters of
the CE and the target of the training procedure described in
the next section. Finally, mα denotes the multiplicity of the
representative cluster α.

III. CLUSTER EXPANSION CONSTRUCTION

A. Matrix form

To obtain a CE for a specific material one must determine
the ECIs. To this end, one requires reference data in the form
of a set of configurations {σ1,σ2, . . . ,σn} as well as an as-
sociated vector of target data QT = [Q1, Q2, . . . Qn], which
is usually obtained from first-principles calculations. Equa-
tion (1) can be cast in the form

Q = ΠJ , (2)

where the rows of Π are given by

Πi =
[
1,
〈
Πα′

1
(σi)

〉
α1
mα1 , . . . ,

〈
Πα′

n
(σi)

〉
αn

mαn

]
,

(3)

and J denotes the ECIs with J0 = Q0. Note that it can some-
times be useful to excludemα from Π and let the target values
Q refer to the primitive unit cell. This will ensure all elements
in Π are in the interval [−1, 1] and avoids a bias due to the
number of elements in σ.

B. Linear regression techniques

Following the decomposition of a lattice into clusters and
the construction of the sensing matrix, it remains to determine
the ECIs by solving the linear system given by Eq. (2). This
is equivalent to finding the parameter vector J that minimizes
‖ΠJ −Q‖2. In principle a solution can be determined by
conventional least-squares, which works well in the overde-
termined limit. Due to the computational cost associated with

DFT calculations the linear system is, however, often under-
determined and/or rows of the sensing matrix Π are corre-
lated. At the same time, the nearsightedness of physical inter-
actions suggests that the solution vector J be sparse.43 We are
thus faced with the task of feature selection, a common pro-
cess in machine learning, which yields models that are less
prone to overfitting and more transferable. It can also reduce
the computational expense during sampling (see Sect. IV).

To achieve sparse solutions and combat overfitting one can
include regularization terms in the objective function in the
form of the `1 or `2-norm of the solution vector. Consider, for
example, elastic net regularization, for which

Jopt = argmin
J

{
‖ΠJ −Q‖22 + α‖J‖1 + β‖J‖22

}
.

For α = 0 this expression reduces to Ridge regression
while for β = 0 one obtains the expression commonly
used for solving the least absolute shrinkage and selection
operator (LASSO) problem. Other techniques include the
split-Bregman algorithm, which has been previously used
for constructing CEs,43 as well as recursive feature elimina-
tion (RFE), which iteratively removes the weakest parame-
ters from a model and can be applied to different objective
functions. Furthermore, there are Bayesian linear regression
techniques such as automatic relevance detection regression
(ARDR), which provide probabilistic models of the regression
problem at hand, and Bayesian compressive sampling.47 The
parameters that are intrinsic to a regression algorithm, such as
α in the case of LASSO or the allowed number of features in
the case of RFE, are known as hyper-parameters.

The performance of different models can be assessed by
cross-validation (CV). To this end, the available reference data
is split into training and validation sets. The former is used to
fit a model, whereas the latter is used to measure the predictive
power of the model, usually via the root-mean-square error
(RMSE)

RMSE =

√
1

Ns

∑
i

(
Qmodel
i −Qtarget

i

)2
,

where the summation extends over the Ns structures com-
prising the validation set. To reduce the statistical error, the
RMSE is furthermore averaged over several different splits of
the reference data.

ICET supports various regression techniques, including the
ones named above, via the SCIKIT-LEARN machine learning
library35 and allows one to compute CV scores in a number
of different ways. Since sensing matrix and target data are
readily available via the Python interface, one can also inter-
face directly with SCIKIT-LEARN or other machine learning
libraries. ICET also provides functionality for generating en-
sembles of models from a single sensing matrix. Thereby it
is possible to check the sensitivity and stability of more ad-
vanced prediction, as illustrated in the examples below.
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IV. CLUSTER EXPANSION SAMPLING

A CE can be employed in a number of different ways, in-
cluding finding ground states,42 but it is most commonly sam-
pled using MC simulations. For this purpose, ICET includes
the MCHAMMER module, which supports various thermody-
namic ensembles and provides supplemental functionality for
data management and analysis.

MC sampling is carried out using the Metropolis algorithm,
in which a trial is accepted with probability

P = min {1, exp (−β∆ψ)} .

Here, β = 1/kBT and ∆ψ is the change in the thermody-
namic potential associated with the ensemble being sampled
(excluding the entropy term).

In the case of the canonical ({Ni}V T ) ensemble the ther-
modynamic potential equals the internal energy, ψ = E, and a
trial step involves swapping the species of two sites (conserv-
ing the concentrations).

Especially when exploring phase diagrams it is often use-
ful to sample along the concentration axes. This can be
achieved for example by using the semi-grand canonical
(SGC) (N{∆µi}V T ) ensemble. In this case, the trial move
involves only one site, for which the occupation is swapped
and the underlying thermodynamic potential is ψ = E −
N
∑
i=2 ci∆µi, where N is the total number of sites, ci is the

concentration of species i, and ∆µi = µi − µ1 the chemical
potential difference of species i relative to the first species.

In the SGC ensemble the mapping from chemical poten-
tial difference to concentration is multi-valued in two-phase
regions. It therefore cannot be used to sample across misci-
bility gaps. This shortcoming can be overcome by employ-
ing the variance-constrained semi-grand canonical (VCSGC)
ensemble,48 which uses the same trial move as the SGC en-
semble but for which ψ = E + NkBT κ̄(c + φ̄/2)2. The in-
tensive parameters φ̄ and κ̄ constrain respectively the average
and the fluctuation of the concentration.

The choice of ensemble is motivated by the characteris-
tics of the system and the objective of the simulations. The
canonical ensemble conserves concentrations, which makes it
ideal for studying systems at specific compositions, extract-
ing structural order parameters or obtaining ground states by
simulated annealing. The SGC and VCSGC ensembles, on
the other hand, allow the composition to be continuously var-
ied and by extension the integration of the free energy. In the
SGC ensemble, the concentration derivative of the canonical
free energy is given (for simplicity for a binary system) by

∂∆F/∂c = −N∆µ. (4)

This relation is, however, useful only in single-phase re-
gions of the phase diagram, where ∆µ maps to one and only
one concentration. In SGC simulations, multi-phase regions
manifest themselves by discontinuous jumps between phase
boundaries. Such discontinuities, if carefully studied, can be
exploited for tracking phase boundaries but hinder integration
of the free energy.38

In the VCSGC ensemble, the canonical free energy deriva-
tive is (for a sufficiently large system) given by48

∂∆F/∂c = −2NkBT κ̄
(
〈c〉+ φ̄/2

)
, (5)

where 〈c〉 is the average observed concentration. Unlike the
SGC ensemble, the mapping between φ̄ and concentration is
always one-to-one for a sufficiently large value of κ̄, whence
the free energy can be recovered by integration across multi-
phase regions. The phase diagram can then be constructed
with standard techniques for free energy minimization.

MC simulations in both the SGC and VCSGC ensembles
are illustrated in Sect. VI A whereas the canonical ensemble
is employed in Sect. VI B.

V. WORKFLOW

ICET integrates the CE formalism (Sect. II) with linear re-
gression (Sect. III) and sampling techniques (Sect. IV) into
one workflow (Fig. 3). Assuming reference data, say from
DFT calculations, is available for a set of structures that have
been generated for example by enumeration44 the construction
and sampling of a CE proceeds as follows.

Prototype structure

1. Cluster space

Cutoff radii for
each order Active species

Input structures
with reference data

2. Structure container

4. Cluster expansion

3. Optimizer

  fit matrix and
 target values

  parameters

5. CE Calculator Property prediction

MC simulations via mchammer

Supercell
structure

Supercell
structure

FIG. 3. Illustration of the ICET workflow. Entities represented
by Python objects are shown in blue, input parameters and data in
orange, and additional functionalities in green.
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FIG. 4. Construction of CEs for Ag–Pd. (a) RMSE obtained by
CV and (b) number of features (non-zero parameters) as a function
of the number of training structures. (c) CV-RMSE as a function of
the number of features using a training set size of 563 structures.

1. The first step involves constructing a cluster space, which
requires a prototype structure, a set of cutoff radii that de-
fine which clusters to include in the expansion, and a spec-
ification as to which species are allowed on each site. In-
ternally, the SPGLIB library49 is employed to find the sym-
metries of the underlying lattice.

2. Next, cluster vectors are computed according to Eq. (3) for
all structures in the reference set and compiled into a struc-
ture container, which holds the sensing matrix Π as well as
the vector of target valuesQ.

3. Then linear regression techniques in combination with CV
are employed to solve Eq. (2) and find an optimal parame-
ter vector J . Here, externally provided optimization algo-
rithms from, e.g., SCIKIT-LEARN and SCIPY can be used.

4. Parameters and cluster space are subsequently combined
to obtain the actual CE, which can be used to predict the
property in question for arbitrary supercells of the proto-
type structure.

5. For efficient sampling one can also set up a CE calculator
for a specific supercell to be used in MC simulations via
the MCHAMMER module.

This workflow is supplemented by a number of tools, which
enable one for example to enumerate structures,44 extract the
convex hull, map relaxed structures onto ideal lattices, or find
ground states.42

A full description of the different entities involved in this
process and the Python objects that describe them can be
found in the ICET user guide.50

VI. APPLICATIONS

A. Phase diagram of the Ag–Pd system

1. Reference calculations

As a first example for the application of ICET, we de-
scribe the construction of a CE for the face-centered cubic
(FCC) Ag–Pd alloy. To this end, a database of 631 refer-
ence structures corresponding to all distinct supercells with
up to 8 atoms was set up using the structure enumeration fea-
ture of ICET. More refined structure selection approaches are
available43 but are not considered in this example.

Reference calculations were then carried out using DFT
calculations using the projector augmented method51,52 as
implemented in VASP.53,54 The van-der-Waals density func-
tional method55,56 with consistent exchange,57 which has been
shown to be very well suited for transition metals,58 was em-
ployed to represent the exchange-correlation potential. The
Brillouin zone was sampled using k-point grids equivalent to
a 18 × 18 × 18-mesh for the primitive FCC unit cell and
the plane wave cutoff energy was set to 384 eV. Both the
atomic positions and the cell metric were relaxed until resid-
ual forces and stress were less than 10 meV/Å and 0.8 GPa,
respectively. Relaxations were carried out using first-order
Methfessel-Paxton smearing with a width of 0.1 eV. Final en-
ergy calculations were carried out using for the relaxed struc-
tures the tetrahedron method with Blöchl corrections using a
smearing width of 0.05 eV.

2. Construction of CE models

Next a cluster space was set up, including clusters up to
fourth order with cutoffs of 3.3 a0, 1.6 a0, and 1.5 a0 in units
of the lattice parameter a0 for pairs, triplets, and quadruplets,
respectively. The resulting cluster space contained 81 param-
eters, including 1 zerolet, 1 singlet, 24 pairs, 20 triplets, and
35 quadruplets. In principle, ICET does not impose limits on
cluster order or size.

In order to study the convergence with respect to the num-
ber of training structures we computed the learning curve us-
ing the RMSE score averaged over the validation set using
the CV estimator functionality in ICET. The latter generates
an estimate for the CV-RMSE score by using the shuffle-split
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method with 50 splits, while the final CE is obtained by train-
ing against the complete data set. Four different optimization
methods were compared, including singular value decompo-
sition, LASSO, RFE based on ordinary least-squares (OLS),
and ARDR (Fig. 4a).

In the overdetermined region all methods yield similar
CV-RMSE scores; in the underdetermined region, though,
LASSO and ARDR outperform the other two methods. While
LASSO and ARDR have almost identical CV scores there is,
however, a significant difference in the number of features,
i.e. non-zero parameters (Fig. 4b). To study this behavior
further we analyzed the CV-RMSE score as a function of the
number of features in the solution (Fig. 4c). To this end, we
used a training set of 563 structures and scanned the hyper-
parameters of the regression algorithms to control the sparsity
of the solution.

This analysis reveals that ARDR and RFE with OLS yield
CEs with a very low CV-RMSE of 2 meV/atom using only 30
features. LASSO reaches the same level but yields about 50
features. In this case, ARDR is thus the method of choice
since it converges as quickly with the number of training
structures as LASSO but yields a smaller number of orbits
with non-zero ECIs (Fig. 5), which leads to a more transfer-
able model and reduces the computational cost for sampling.

3. Phase diagram from MC simulations

To construct a phase diagram for the Ag–Pd system, we
employed the MCHAMMER module for sampling a 5 × 5 × 5
conventional FCC supercell (500 sites) in both the SGC and
VCSGC ensembles. We carried out 200,000 MC trial steps
with the SGC ensemble at 105 values of ∆µ in the range
[−1.04, 1.04] and the same number of trial steps with the
VCSGC ensemble at κ̄ = 200 and 105 values of φ̄ in the
range [−2.3, 0.3]. Simulations were run at 25 K intervals be-
tween 100 and 900 K, corresponding in total to approximately
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FIG. 6. Ag–Pd system. (a) Free energy derivative ∂F/∂c ob-
tained by MC sampling in the SGC and VCSGC ensembles. The
SGC ensemble cannot yield stable solutions in the two-phase region
(inset). (b) Free energy of mixing obtained by numerical integration
in the VCSGC ensemble. The inset indicates the behavior between
c = 0.5 and 1.0 where the free energy is concave at low tempera-
ture. (c) Phase diagram constructed from the free energy landscape
using CEs obtained using the CV estimator (green line) as well as the
ensemble optimizer (orange lines). Experimental data (dotted black
line) from Ref. 59 obtained via the CALPHAD method.

6.9× 108 trial steps or 1.4× 106 MC cycles.
Simulations were first carried out for the CE described

above that was constructed using the CV estimator with
ARDR and the full dataset of 631 structures (CV-RMSE
2 meV/atom).

The free energy derivatives extracted from the SGC and
VCSGC simulations (using Eqs. (4) and (5)) coincide every-
where except for a region on the Pd-rich side at lower tem-
peratures where the SGC simulations exhibit a discontinuity,
which is the hallmark of a two-phase region (Fig. 6a). In this
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situation, the full free energy can thus only be recovered from
the VCSGC simulations (Fig. 6b). The two-phase region is
manifested by a concave region in the free energy of mixing
(inset in Fig. 6b).

To construct the phase diagram, we fitted the free energy
of mixing Fig. 6b) to third-order Redlich–Kister polynomi-
als at each temperature separately and then fitted the tem-
perature dependence of the polynomial expansion coefficients
to conventional third-order polynomials. This representa-
tion provides a continuous and smooth map of the free en-
ergy in both temperature and composition, akin to the CAL-
PHAD approach.59 The predicted phase diagram exhibits a
pronounced miscibility gap on the Pd-rich side with a critical
temperature Tc of 718 K. This is overall in good agreement
with the experimental result,59 except for an overestimation
of Tc, which has been experimentally determined as approxi-
mately 610 K.

To illustrate the sensitivity of the phase diagram to varia-
tions in the training set, we also considered a set of ten CEs
that were obtained using the ARDR method via the ensemble
optimizer functionality of ICET. The latter approach enables
one to generate a series of CEs that are trained in identical
fashion but are based on different training sets. The latter are
generated by selection with replacement (bagging) from the
reference data set such that the number of structures in the
training sets equals the number of reference structures. The
thus obtained CEs are numerically very similar to the CE ob-
tained using the CV estimator approach before (Fig. 4). Using
this set of CEs enabled us to estimate not only the error in the
mixing energies but its impact on the final phase diagram.

The CE obtained by averaging the ECIs over all CEs in the
ensemble yields a Tc of 742 K that is only slightly higher than
the CE generated using the CV estimator. The individual CEs
yield, however, a larger variation, spanning the range from
673 to 803 K. This demonstrates that CV-RMSE alone is an
insufficient measure of the quality of a CE. Rather a more
careful assessment of the quantity of interest must be carried
out if an accurate estimate is required.

B. Chemical ordering in an inorganic clathrate

1. Background and reference structures

The CE approach is not limited to metallic system and the
prediction of phase diagrams. It is also very useful to model
for example the degree of ordering as a function of temper-
ature and composition. The latter can in turn can be experi-
mentally assessed using diffraction techniques based on X-ray
or neutron scattering.60 Here, this possibility is illustrated by
using ICET to predict the site occupancy factors (SOFs) in the
inorganic clathrate Ba8AlxSi46−x.

Clathrates are inclusion compounds with a lattice struc-
ture that can trap atomic or small molecular species.
Ba8AlxSi46−x falls into the class of type-I clathrates, which
belong to spacegroup Pm3̄n.61 In this case, the host lattice is
made up of Al and Si atoms, which occupy Wyckoff sites 6c,
16i, and 24k, whereas Ba atoms reside inside the cages for

charge balance. Al and Si do not occupy the framework sites
randomly but exhibit some degree of ordering, which results
from a delicate balance between energy and entropy and can
be experimentally accessed via the SOFs. While for a com-
pletely random distribution at, e.g., x = 12 one would expect
SOFs of 12/46=26% for all sites, in Ba8AlxSi46−x one ob-
serves values in the range from close to zero to 80%.62 De-
tailed studies of this behavior, including careful comparison
with experiment, have been published elsewhere.25–27 Here,
we focus on the construction and sampling of CEs for this
system, in particular highlighting the analysis capabilities pro-
vided by ICET.

2. CE construction

The unit cell contains 46 framework sites, which prevents
an enumeration approach for structure generation. Instead,
240 occupations of the primitive unit cell for x = (13 . . . 16)
were produced by randomly distributing Al and Si atoms over
the host lattice. The structures were relaxed using DFT calcu-
lations using a similar procedure as for the Ag–Pd structures
described above. The PBE exchange-correlation functional
was used63 with a plane wave energy cutoff of 319 eV and a
Γ-centered 3×3×3 k-point mesh. The other parameters were
identical to those given in Sect. VI A.

A cluster basis was constructed using a cutoff of 0.49 a0
for both pairs and triplets, resulting in 13 and 23 symmetry
inequivalent clusters, respectively. CEs were generated using
ARDR, LASSO, and RFE with OLS in conjunction with the
CV estimator functionality based on the shuffle-split method
with 50 splits.

RFE with OLS yields both fast convergence with training
set size and sparse solutions (Fig. 7a,b). LASSO and ARDR
require almost twice as many training structures to achieve
similar CV-RMSE values. ARDR provides sparse solutions
that are similar to those obtained by RFE with OLS. The CE
models obtained by LASSO, however, have a much larger
number of features (Fig. 7c). These trends are similar to the
case of Ag–Pd (Sect. VI A) except for the roles of ARDR and
RFE with OLS being reversed.

3. CE sampling

To predict the SOFs as a function of temperature, we em-
ployed the MCHAMMER module for sampling a 2 × 2 × 2
supercell (268 sites) in the canonical ensemble at x = 12, for
which experimental data is available,62 using a simulated an-
nealing approach. The temperature was decreased from 1200
to 0 K at a rate of 100 K/10,000 MC cycles, corresponding to
a total of almost 48 million trial steps. The SOFs were mon-
itored during the simulation using the observer functionality
of ICET, which enables one to compute various quantities of
interest at specified intervals along the trajectory.

The simulations were first carried out using the CE obtained
using RFE with OLS and a set of 240 structures. To estimate



8

2

3

4

5

R
M

S
E

(m
eV

/a
to

m
) a) ARDR

LASSO
RFE with OLS

0 50 100 150 200

Number of training structures

0

10

20

30

40

N
um

be
ro

ff
ea

tu
re

s b)

0 10 20 30 40

Number of features

2.0

2.5

3.0

3.5

4.0

R
M

S
E

(m
eV

/s
ite

)

c)

ARDR
LASSO
RFE with OLS

FIG. 7. Construction of CEs for Ba8AlxSi46−x. (a) CV-RMSE
and (b) number of features as a function of the number of training
structures. (c) CV-RMSE as a function of the number of features
obtained by varying the hyper-parameters of the respective methods
using a fixed training set comprising 240 structures.

the statistical reliability of the thus predicted SOFs, we fur-
thermore ran the simulations for an ensemble of models that
were generated from the available data (bagging), in almost
identical fashion as for the Ag–Pd models described above.

At the composition of x = 12 the number of nearest neigh-
bor Al–Al pairs is zero over the entire temperature range. This
behavior is due to Al–Al bonds being energetically unfavor-
able, which is familiar from the Loewenstein rule for zeolites.
While the Al–Al pair distribution is experimentally practically
impossible to access, diffraction experiments can provide in-
formation about the SOFs, which are ultimately the result
of the interplay of energy and entropy.60 The SOFs obtained
from MC simulations exhibit a systematic variation with tem-
perature and strongly deviate from the random limit, which
would correspond to approximately 35% (Fig. 8). At tem-
peratures below approximately 600 K the SOFs converge and
the structure adopts a well ordered configuration. The ground
state at this stoichiometry corresponds to Al SOFs of 100%,
37.5%, and 0% for Wyckoff sites 6c, 16i, and 24k, respec-
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FIG. 8. Al SOFs as a function of temperature in Ba8AlxSi46−x with
x = 12 from simulated annealing. Simulations were carried out
for an ensemble of CE models obtained by different 90-10 splits of
the reference data set (thin shaded lines) as well as the CE obtained
by averaging over the ensemble (bold line). Experimental data from
Ref. 62.

tively, in agreement with earlier simulations.26,27

The calculated SOFs compare very well with the available
experimental data in the temperature interval between 800 and
900 K.62 This is very reasonable since it is likely that kinetic
factors prevent full ordering in the experiments. A more ex-
tensive analysis of the SOFs as both a function of temperature
and composition26 shows very good comparison with experi-
ment over the entire composition range,60,62 which further val-
idates the present approach. The ground state configurations
obtained in the zero-temperature limit are valuable in them-
selves as they provide ordered prototypes, which can be used
for further analyses of e.g., electrical25 and thermal transport
properties.64

VII. CONCLUSIONS

In the present paper, we have introduced the ICET Python
package for the construction and sampling of alloy CEs.
Thanks to its modular design it can be readily extended and
combined with other Python packages to achieve complex
functionalities. It thereby also provides an excellent environ-
ment for method development, including the adaptation of fur-
ther machine learning techniques (e.g., genetic algorithms65)
and the integration in extended workflows, e.g., in the con-
text of high-throughput computing.32,33 ICET also provides a
number of supplementary features pertaining, e.g., to structure
enumeration and mapping as well as data analysis.

ICET readily supports a variety of different methods for
constructing CEs, as demonstrated specifically for the metallic
alloy Ag–Pd and the inorganic clathrate Ba8AlxSi46−x. Sev-
eral different regression methods were compared, illustrating
a balance between the sparsity of the solution and the accu-
racy of the final CE. While for Ag–Pd the ARDR method pro-
vided the best performance, yielding both low CV scores and
a sparse solution, RFE based on OLS achieved the best results
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in the case of Ba8AlxSi46−x. Regression using LASSO led to
less optimal solutions in both situations, an observation that
we have also made in the case of force constant models.66,67

ICET also allows construction of ensembles of CE models,
which provides a powerful means to investigate the sensitivity
of a prediction to variations in the underlying model. Specifi-
cally, this enables one to extrapolate the impact of the statisti-
cal uncertainty in CE models to complex observables such as
a phase diagram or SOFs. In the case of the Ag–Pd system,
this approach was for example adopted to demonstrate that a
set of models with numerically similar CV scores can yield
variations in the critical temperature on the order of 100 K,
providing an estimate of average and standard deviation. The
same approach was employed for the Ba8AlxSi46−x system
to determine the statistical uncertainty of the predicted tem-
perature dependence of the SOFs.

The MCHAMMER module of ICET includes functionality
for extracting additional information from MC trajectories,
as illustrated by the application to the inorganic clathrate
Ba8AlxSi46−x. This allows one to observe for example struc-
tural order parameters throughout a simulation, including
SOFs, neighbor counts, or short-range order parameters.68

Overall ICET package is thus well suited for efficient

construction and sampling of CEs, for example in high-
throughput schemes. For such applications one must, how-
ever, not only consider the computational effort but also the
amount of human intervention required. In the future, it is
therefore desirable to set up protocols that further automatize
the selection of e.g., regression method, hyper-parameters,
and training set size.

ICET is provided under an open-source license. Its develop-
ment is hosted on GITLAB to encourage community participa-
tion and the most recent released version can be conveniently
installed via PYPI. A comprehensive user guide with an ex-
tensive tutorial section is available online.50
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