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Calculations within density functional theory on the basis of the local density approximation are carried out
to study the properties of intrinsic point defects in aluminum antimonide. Special care is taken to address
finite-size effects, band gap error, and symmetry reduction in the defect structures. The correction of the band
gap is based on a set of GW calculations. The most important defects are identified to be the aluminum
interstitial Ali,Al

1+ , the antimony antisites SbAl
0 and SbAl

1+, and the aluminum vacancy VAl
3−. The intrinsic defect and

charge carrier concentrations in the impurity-free material are calculated by self-consistently solving the charge
neutrality equation. The impurity-free material is found to be n-type conducting at finite temperatures.
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I. INTRODUCTION

Aluminum antimonide is receiving much renewed interest
for applications ranging from ionizing radiation detection to
microelectronics and optoelectronics. For gamma radiation
detection, AlSb is particularly promising as a novel material
that enables high-energy-resolution detection at room tem-
perature due to its indirect band gap of 1.6 eV, the high
atomic number of Sb, and the potentially high electron and
hole mobilities of up to several hundred cm2 V−1 s−1 at room
temperature.1,2 Improved materials for high resolution, room
temperature gamma radiation detectors are critically needed
for applications in nuclear nonproliferation and monitoring,
homeland security, and also medical and space imaging ap-
plications. Such detectors operate by counting the number of
electron-hole pairs created in the semiconductor upon inter-
action with a gamma ray. Thus, a small band gap is generally
desired to maximize the number of generated carriers, which
increases the signal and reduces the shot noise. However, if
the band gap is too small, excess thermal noise is generated
from carriers thermally excited across the gap. At room tem-
perature, a gap of �1.6 eV is nearly optimal. In a similar
vein, low intrinsic carrier concentrations in the material are
desired to reduce the background noise. Furthermore, high
energy resolution �adequate counting statistics� is achieved
by maximizing the efficiency of charge collection, which re-
quires high carrier mobilities and long carrier lifetimes. An
indirect band gap can be advantageous for maximizing car-
rier lifetimes by quenching radiative recombination. Finally,
a high atomic number is desired to increase the stopping
power for high energy radiation, which reduces the required
size of the device. Presently, the purity of large single-crystal
growths of AlSb limits its performance for radiation detec-
tion application.

In microelectronics, AlSb and related alloys containing In
are finding use in advanced field-effect transistor designs that
promise higher switching speeds and lower power consump-
tion as compared to silicon devices.3,4 The material has also
found use in high current density, high speed resonant tunnel
diodes.5 In optoelectronics, thin films of AlSb are used in
active regions and superlattice structures for claddings in
novel type-II infrared cascade lasers.6–8 Such lasers, which
emit wavelengths at around 3–4.3 �m, find application in
remote atmospheric chemical sensing, for example. Alumi-
num antimonide is particularly interesting in these applica-

tions because it has a large 2.1 eV conduction band offset
with InAs, which often comprises the other key component
in the active layers of these devices.

In the present work, we present a careful analysis of the
thermodynamic and electronic properties of intrinsic point
defects in AlSb, since the electronic and transport properties
of the material can be degraded by detrimental defects. The
main goals of this study are to identify the most important
intrinsic point defects and to establish the concentrations of
defects and charge carriers in thermal equilibrium. This work
is part of a larger effort to understand the fundamental mi-
croscopic limits of performance of this and other semicon-
ductor materials. Future work will focus on extrinsic impu-
rities in the material as well as the implications on carrier
transport properties.

Our major findings in this work are that the dominant
native defects in AlSb are aluminum interstitials, antimony
antisites, and aluminum vacancies, depending on chemical
environment and doping. The equilibrium concentration of
total native defects near the melting temperature is found to
be in the 1016–1017 cm−3 range, while at lower temperatures,
concentrations down to 1010 cm−3 or lower are expected. The
electron chemical potential in a pure material is near the
middle of the band gap; however, the material naturally tends
to be slightly n-type doped by charged aluminum intersti-
tials.

The paper is organized as follows. In Sec. II, we review
the thermodynamic formalism we use to derive defect forma-
tion energies and concentrations from first principles calcu-
lations, and describe the computational details that underlie
the present work. In Sec. III, we report the relaxed defect
geometries, defect formation energies, total defect concentra-
tions, and net charge carrier concentrtions, which are ob-
tained by self-consistently solving the charge neutrality con-
dition. Finally, in Sec. IV, we discuss the intrinsic limitations
of AlSb on the basis of our results and the relation to experi-
mental data. The Appendix contains a brief derivation of the
band gap correction scheme utilized in the present work.

II. METHODOLOGY

A. Point defect thermodynamics

A material in thermodynamic equilibrium must contain a
certain number of point defects at finite temperature due to
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entropy. The temperature dependence of the equilibrium de-
fect concentration can be shown to obey the following
relation:9

c = c0 exp�−
�GD

kBT
� , �1�

where c0 denotes the concentration of possible defect sites,
kB is Boltzmann’s constant, and T is the absolute tempera-
ture. The Gibbs energy of defect formation, �GD, can be
split into three distinct terms as follows:

�GD = �ED + T�SD + p�VD. �2�

The formation entropy �SD is typically on the order of 1kB,
so the entropy term hardly exceeds 0.1 eV even at elevated
temperatures. In some cases, entropic effects could play a
role in stabilizing a defect at high temperatures when the
enthalpy differences are small. We do not explicitly treat this
effect here, but point out cases in our results where it may be
important. The formation volume �VD describes the pressure
dependence of the Gibbs energy of formation and is typically
some small fraction of the atomic volume, so it can be ne-
glected at ordinary pressures. The most important contribu-
tion is the defect formation energy �ED. In the following, we
therefore focus on the formation energy and, for simplicity,
ignore both the entropy and volume terms.

For a binary compound, the formation energy for a defect
in charge state q is given by10,11

�ED = ED −
1

2
�nAl + nSb��AlSb

bulk −
1

2
�nAl − nSb���Al

bulk − �Sb
bulk�

−
1

2
�nAl − nSb��� + q�EVBM + �e� , �3�

where ED is the total energy of the system containing the
defect, ni denotes the number of atoms of type i, �i

bulk is the
chemical potential of component i in its reference state, and
we have written the terms using explicit labels for AlSb. By
neglecting entropic contributions, the chemical potentials of
the reference phases can be replaced by their cohesive ener-
gies at 0 K. The formation energy depends on the chemical
environment via the parameter ��, which describes the
variation of the chemical potentials under different condi-
tions. The range of �� is constrained by the formation en-
ergy of AlSb by ������Hf

AlSb, where for the present con-
vention ��=−�Hf

AlSb and ��= +�Hf
AlSb correspond to Al-

and Sb-rich conditions, respectively. Finally, the formation
energy also depends on the electron chemical potential, �e,
which is measured with respect to the valence band maxi-
mum, EVBM.

B. Computational details

The energy terms in Eq. �3� were calculated by using
density functional theory �DFT� in the local density approxi-
mation �LDA� using the Vienna Ab initio simulation
package12–15 �VASP� and the projector augmented-wave
method.16,17 Defect formation energies were obtained by us-
ing supercells of various sizes containing 32, 64, 128, and

216 atoms. Extrapolation was used to account for finite-size
effects as described in detail in Sec. II C. Brillouin zone
integrations were performed with k-point grids generated by
using the Monkhorst–Pack scheme.18 For the 32- and 64-
atom cells, a nonshifted 6�6�6 mesh was used, while for
the 128-atom cell, a shifted 3�3�3 grid was used. For the
216-atom cell, a nonshifted 4�4�4 mesh was constructed.
The plane wave cutoff energy was set to 300 eV, and Gauss-
ian smearing with a width of 0.1 eV was used to determine
the occupation numbers. For charged defect calculations, a
homogeneous background charge was employed �by omit-
ting the G=0 term in the potential� to ensure charge neutral-
ity of the entire cell.

Atomic relaxations were performed to determine the equi-
librium structures of the defects, with ionic forces converged
to 20 meV /Å and all calculations performed at the theoreti-
cal equilibrium volume. Relaxations from various random-
ized initial configurations were performed to avoid high-
symmetry local energy minima in the structures.

C. Finite-size corrections

In the supercell approximation, there are spurious interac-
tions between defects and their periodic images, which lead
to systematic errors.19,20 For neutral defects, the leading error
is due to elastic interactions, which cause an overestimation
of the formation energy. The strain energy of a pointlike
inclusion can be derived from linear elasticity theory and can
be shown to fall off roughly with L−3, where L is the distance
between periodic images.21,22 Therefore, the formation en-
ergy in the dilute limit �L→�� can be obtained by finite-size
scaling with L−3, which removes the elastic strain compo-
nent.

Makov and Payne considered the convergence of the en-
ergy of charged systems in periodic systems and proposed a
correction on the basis of a multipole expansion.23 The lead-
ing term corresponds to the monopole-monopole interaction
and scales with L−1. This term can be analytically determined
if the static dielectric constant of the medium, �, and the
Madelung constant of the Bravais lattice of the supercell, �,
are known:23,24

�Emp = −
q2�

2L�
. �4�

The next higher-order term in the expansion is the
monopole-quadrupole interaction which scales as L−3. Even
higher-order terms �O�L−n� ,n	5� are usually small and,
therefore, neglected. In the present work, we have applied
the monopole-monopole correction term by using the experi-
mental value for the static dielectric constant ��=12�. Then,
since both the elastic and the monopole-quadrupole interac-
tions scale with L−3, we employed finite-size scaling with L−3

to correct for these terms. This extrapolation scheme gave
very small extrapolation errors as shown in Tables I and II.
The results of the finite-size scaling procedure are illustrated
in Fig. 1 for the most important defects. Figure 1 clearly
illustrates the effect of the monopole-monopole correction
term, which tremendously reduces the variation between the
supercells. The remaining higher-order variations are very
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TABLE I. Formation energies, in eV, of intrinsic point defects under Al-rich ���=−�Hf� and Sb-rich
���= +�Hf� conditions for an electron chemical potential at the valence band maximum ��e=0 eV in Eq.
�3��. Both the as-calculated and the band-gap-corrected formation energies are given. The number of occu-
pied �unoccupied� conduction �valence� band states defined through Eq. �A4� is given in the third column
��ze,h�, where negative �positive� values correspond to electrons �holes�. The extrapolation error, in eV, of the
finite-size scaling procedure is given in brackets in the last column.

Defect q �ze,h

As-calculated Corrected

Al-rich Sb-rich Al-rich Sb-rich

VSb −3 5.42 5.70 �0.04�
−2 4.48 4.76 �0.04�
−1 0 3.47 3.75 3.91 4.19 �0.08�
0 3.29 3.56 �0.07�

+1 0 2.93 3.21 2.49 2.76 �0.04�
+2 3.24 3.52 �0.08�
+3 3.76 4.03 �0.12�

AlSb −3 4.72 5.27 �0.05�
−2 0 3.17 3.72 4.06 4.61 �0.02�
−1 +1 2.68 3.24 3.57 4.12 �0.01�
0 +2 2.46 3.01 3.35 3.90 �0.03�

Ali,Al −2 5.01 5.29 �0.06�
−1 −2 3.51 3.78 4.28 4.56 �0.03�
0 −1 2.22 2.49 2.38 2.66 �0.01�

+1 0 1.15 1.43 0.71 0.98 �0.01�
+2 +1 1.44 1.72 1.00 1.27 �0.02�
+3 1.95 2.22 �0.06�

Ali,Sb −2 5.49 5.77 �0.07�
−1 −2 4.01 4.28 4.78 5.06 �0.03�
0 −1 2.75 3.03 2.91 3.19 �0.01�

+1 0 1.73 2.01 1.29 1.56 �0.01�
+2 +1 1.68 1.96 1.24 1.51 �0.01�
+3 2.00 2.28 �0.01�

VAl −3 0 3.99 3.72 5.32 5.04 �0.02�
−2 +1 3.35 3.07 4.68 4.40 �0.02�
−1 +2 2.94 2.66 4.27 3.99 �0.03�
0 +3 2.75 2.47 4.08 3.80 �0.04�

SbAl −1 3.25 2.70 �0.03�
0 0 2.03 1.48 2.03 1.48 �0.02�

+1 +1 1.52 0.97 1.52 0.97 �0.01�
+2 +2 1.40 0.85 1.40 0.85 �0.01�

Sbi,Sb +2 3.63 3.35 �0.01�

Sbi,Al −2 6.32 6.04 �0.10�
−1 −4 4.84 4.57 5.94 5.66 �0.02�
0 −3 3.92 3.65 4.41 4.13 �
0.01�

+1 −2 3.16 2.88 3.04 2.77 �0.13�
+2 −1 2.93 2.66 2.21 1.93 �0.01�

Sbi,hex −2 6.24 5.96 �0.09�
−1 −4 4.96 4.68 6.06 5.78 �0.02�
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well captured by the L−3 finite-size scaling. In addition, the
potential alignment correction described in Ref. 19 is implic-
itly taken into account by our extrapolation scheme.25

D. Band gap corrections

The underestimation of the band gap �by the LDA� affects
the formation energies, as discussed in detail in the Appen-
dix. A simple correction scheme based on the band energy
was proposed by Persson et al.26 and is further motivated in
the Appendix. The correction amounts to the following term
which is added to the as-calculated formation energies:

�Ecorr = �q + �zh��EVB + �ze�ECB, �5�

where �EVB and �ECB are shifts of the valence �VB� and
conduction band �CB� edges, respectively, to correct the
band gap, while �zh and �ze are the number of unoccupied
valence and occupied conduction band states, respectively.

In the present work, the energy offsets �EVB and �ECB
were obtained from G0W0 calculations27 within the single
plasmon-pole model as implemented in ABINIT.28–30 Non-
self-consistent G0W0 calculations were employed to properly

refer the quasiparticle energies to the same potential zero as
the LDA eigenvalues. Fritz-Haber-Institute norm-conserving
pseudopotentials31 in the Troullier–Martins scheme32 were
used with a cutoff energy of 30 hartree. The other relevant
cutoff energies used in the calculation were 5 hartree for the
self-energy wave functions, 6 hartree for the exchange part
of the self-energy, and 6 hartree for the screening matrix.
The number of bands in the self-energy and screening matrix
calculations were 100 and 150, respectively.

In Table I, we report both the as-calculated formation en-
ergies �including finite-size scaling� and the band-gap-
corrected formation energies. The correction terms can be
reproduced by using the values for �zh and �ze included in
the table. Note that we extracted �zh and �ze values only for
the most important defects for which an unambiguous dis-
tinction between valence and conduction band states was
possible. A direct comparison of the as-calculated and band-
gap-corrected values is shown in Fig. 3 and is discussed later
in Sec. III C.

The defect concentrations calculated in Sec. III D were
obtained by using the band-gap-corrected formation energies
and the GW band gap.

III. RESULTS

A. Bulk properties

As described in Sec. II A and evident in Eq. �3�, the de-
termination of defect formation energies requires that we
also calculate bulk properties of the solid and its constituents
in reference states. The reference states for Al and Sb are
face-centered cubic �fcc� and rhombohedral solids, respec-
tively.

For fcc aluminum, we obtain a lattice constant of 3.99 Å
and a cohesive energy of −4.19 eV/atom, which compare
reasonably well with the experimental values of 4.05 Å �at
room temperature33� and −3.38 eV/atom.34 The underestima-
tion of the lattice constant and the overestimation of the co-
hesive energy are typical for LDA calculations. Antimony

has a rhombohedral ground-state structure �R3̄mh, space
group No. 166, Strukturbericht symbol A7�, for which the
DFT calculations yield a lattice constant of 4.46 Å and a
rhombohedral angle of 59.0° �experimental values:33 4.50 Å
and 57.1°� and a cohesive energy of −4.81 eV/atom �experi-
mental value:34 −2.72 eV/atom�.

At ambient conditions, bulk aluminum antimonide adopts

the zinc-blende structure �F4̄3m, space group No. 216, Struk-
turbericht symbol B3�. The DFT calculated lattice constant is
6.12 Å, which in good agreement with the experimental
value of 6.13 Å �300 K�. The calculated bulk modulus of

TABLE I. �Continued.�

Defect q �ze,h

As-calculated Corrected

Al-rich Sb-rich Al-rich Sb-rich

Sbi,hex 0 −3 3.93 3.66 4.42 4.14 �0.01�
+1 −2 3.14 2.86 3.02 2.75 �0.01�
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FIG. 1. �Color online� Illustration of finite-size scaling of for-
mation energies to infinite dilution �concentration→0% � for three
of the most important defects, with no band gap corrections and
��e=0 eV. The small filled and large open symbols respectively
show the data without and with the monopole-monopole correction
term. Note that, particularly for the charged aluminum vacancy, the
monopole-monopole correction is the dominant size-dependent
term. The monopole-monopole correction does not apply for neutral
defects.
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56 GPa compares well with the experimental value of
59 GPa. The DFT calculations furthermore yield a formation
enthalpy of −0.28 eV / f.u. �experimental value:
−0.84 eV / f.u.�. The direct and indirect band gaps are calcu-
lated as 1.53 and 1.12 eV, respectively, while the experimen-
tal values are 2.30 and 1.62 eV at 300 K.35 Our calculated
values for the lattice constant, bulk modulus, and band gap
generally agree with prior DFT results in the literature.36–40

From the GW calculations, we obtain direct and indirect
band gaps of 2.31 and 1.64 eV, respectively, which are in
excellent agreement with the experimental values cited
above. The shifts of the valence and conduction band edges
showed small variations with the k vector, so we calculated

�EVB and �ECB, which appear in Eq. �5�, as weighted aver-
ages over all k points included in the calculations. The shifts
thus obtained are �EVB=−0.44 eV and �ECB=0.16 eV.

B. Defect structures

We considered all possible native defects in AlSb up to
split interstitials. In total, this amounts to 18 different defects
�two vacancies, two antisite defects, four tetrahedral intersti-
tials, two hexagonal interstitials, and eight split interstitials�,
not all of which are stable. For each defect, we investigated a
series of charge states, generally from q=−3 to q= +3, as
appropriate. Defect complexes were not considered.

Vacancies. In the ideal zinc-blende structure, both Al and
Sb sites possess tetrahedral symmetry with nearest neighbor
distance of 2.65 Å. If one removes a single atom and allows
the system to relax from randomized positions, the aluminum
vacancy VAl maintains the Td symmetry for all relevant
charge states and the surrounding antimony ions relax inward
from 0.36 Å �for q=0� to 0.38 Å �for q=−3� �see, for ex-
ample, Fig. 2�a��. This behavior is typical of cation vacancies
in III-V and II-VI zinc-blende semiconductors, where a
dimerization transformation of the atoms surrounding the va-
cancy is generally not energetically favorable.41 In contrast,
the antimony vacancy VSb exhibits a Jahn–Teller distortion to
a local tetragonal symmetry for all but the positive charge
states. The relaxed configuration for VSb

3+ is shown in Fig.
2�b� representatively, which also indicates the pairing of Al
atoms in the first neighbor shell of the vacancy.

Antisites. Both AlSb and SbAl antisite defects maintain the
Td symmetry for all relevant charge states. In the case of
AlSb, the surrounding aluminum ions relax inward, while for
SbAl, the nearest neighbor antimony ions relax outward �cf.
Figs. 2�c� and 2�d��. These relaxations occur as expected
based on the atomic radii.

Tetrahedral interstitials. In the zinc-blende structure,
there are two distinct tetrahedral sites: one centered on an Al
tetrahedron �4d site� and one centered on an Sb tetrahedron
�4b site�. Thus, there are four possible types of tetrahedral
interstitials: Ali,Al and Sbi,Al on the 4d site; Ali,Sb and Sbi,Sb
on the 4b site.

Both kinds of tetrahedral aluminum interstitials
�Ali,Al ,Ali,Sb� maintain the Td symmetry after relaxation,
with the neighboring ions relaxing outward as shown in Figs.
2�f� and 2�g�. The Sbi,Sb configuration is unstable in all but
the +2 charge state; in all other charge states, the interstitial
atom relaxes either onto a hexagonal site or forms a split
interstitial. Conversely, Sbi,Al is stable in all of its charge
states, but does exhibit Jahn–Teller distortions as illustrated
in Fig. 2�h�.

Hexagonal interstitials. The hexagonal interstitial is lo-
cated at Wyckoff position 16e. The aluminum hexagonal in-
terstitial Ali,hex was found to be unstable for all charge states,
with the Al atom observed to relax into the Ali,Al configura-
tion even when starting from ideal positions. For the anti-
mony hexagonal interstitial Sbi,hex, the +2 charge state was
found to relax directly into the Sbi,Al position, whereas for
charge states +1 and −2, the interstitial atom remained in the
hexagonal site. The other charge states when perturbed from

TABLE II. As-calculated formation energies for the split-
interstitial configurations that were found to be stable or metastable.
Values are given for both Al-rich and Sb-rich conditions. The ex-
trapolation error of the finite-size scaling procedure is given in
brackets in the last column. Values are in eV.

Defect q Al-rich Sb-rich

�Al-Al�Al	100
 −2 6.93 7.20 �0.11�
−1 5.48 5.76 �0.08�
0 4.27 4.54 0.06

+1 3.31 3.58 �0.06�
+2 3.38 3.65 �0.02�

�Al-Al�Al	110
 −2 4.74 5.02 �0.04�
−1 3.32 3.60 �0.02�
0 2.68 2.96 �
0.01�

+1 2.36 2.64 �0.01�
+2 2.54 2.82 �0.01�

�Al-Sb�Sb	110
 −2 5.68 5.96 �0.06�
−1 4.34 4.61 �0.04�
0 3.34 3.62 �0.01�

+1 2.68 2.96 �0.01�
+2 1.68 1.96 �0.01�

�Sb-Al�Al	100
 −2 5.94 5.67 �0.11�
−1 4.53 4.26 �0.09�
0 3.91 3.63 �0.03�

�Sb-Al�Al	110
 −2 5.70 5.42 �0.08�
−1 4.26 3.98 �0.05�
0 3.46 3.19 �0.01�

+1 3.01 2.74 �0.07�
+2 3.00 2.72 �0.01�

�Sb-Sb�Sb	100
 +1 3.72 3.44 �0.02�
+2 3.72 3.44 �0.01�

�Sb-Sb�Sb	110
 −2 5.13 4.85 �0.11�
−1 3.72 3.45 �0.08�
0 3.28 3.00 �0.05�

+1 3.17 2.90 �0.03�
+2 3.45 3.18 �0.04�
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the ideal position relax into the �Sb-Sb�Sb	110
 split intersti-
tial, described below.

Split interstitials. Split interstitial configurations, in which
two atoms share one atom site, have been extensively dis-
cussed in the literature for the zinc-blende structure.11,42–47

We have carried out an exhaustive exploration of the struc-
tures of these defects in AlSb. The following cases were
considered: two Al atoms oriented along 	100
 sharing one
Al site ��Al-Al�Al	100
�, the same atoms but oriented along
	110
 ��Al-Al�Al	110
�, one Al atom and one Sb atom oriented
along 	100
 sharing one Al site ��Sb-Al�Al	100
�, and the same
combination of atoms oriented along 	110
 ��Sb-Al�Al	110
�.
Four more configurations are obtained, which correspond to
the same combinations above but sharing an Sb site.

Most of these configurations are actually found to be un-
stable with respect to other interstitial configurations. The
results of these calculations are summarized in Table III,

which shows which configurations were found to be stable
and which ones were unstable or only conditionally stable
with respect to alternative interstitial configurations. In cer-
tain cases, a structure relaxed starting from the ideal atomic
coordinates maintained the starting symmetry after relax-
ation, but when started from randomized coordinates, the
structure relaxed to a different configuration; these cases are
indicated in Table III with a superscript “a” and listing the
lower energy relaxed structure. The cases simply marked
“Stable” in Table III relaxed to the ideal symmetry configu-
ration for all starting configurations.

For completeness, we note that the split interstitial
�Sb-Al�Al	100
 in charge states q=0, −1, and −2 is displaced
along 	100
 from the ideal position, such that the Sb intersti-
tial is located in between two regular Sb atoms along the
	110
 direction. These structures are indicated in Table III
with a superscript “b”.

3.70 Å

(a) V
3−

Al

3.71 Å

2.85 Å

(b) V
1−

Sb

2.49 Å

(c) Al2−Sb

2.92 Å

(d) Sb0
Al
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Al

o109.52.65 Å

(e) conventional cell

2.77 Å

(f) Al1+
i,Al

2.77 Å

(g) Al1+
i,Sb

100o

2.78 Å

4.26 Å

4.65 Å

(h) Sb1+

i,Al
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(i) (Al − Al)0
Al�100�

FIG. 2. �Color online� Relaxed defect geometries for ��a� and �b�� vacancies, ��c� and �d�� antisites, ��f�–�h�� several tetrahedral intersti-
tials, and �i� one split interstitial. �e� The conventional 8-atom unit cell is shown for reference. Purple �dark gray� and beige �light gray� balls
represent antimony and aluminum atoms, respectively. Note that the negatively charged antimony vacancy in �b� shows a pronounced
Jahn–Teller distortion. �Indicated bond lengths were taken from 216-atom supercells.�

TABLE III. Stability of split-interstitial configurations.

Charge state +2 +1 0 −1 −2

�Al-Al�Al	100
 Ali,Sb
a Stable Ali,Al

a �Al-Al�Al	110

a �Al-Al�Al	110


a

�Al-Al�Al	110
 Ali,Al
a Ali,Al

a Stable Stable Stable

�Al-Sb�Sb	100
 Ali,Al Ali,Al Ali,Al Ali,Al Ali,Al

�Al-Sb�Sb	110
 Ali,Al Stable Stable Stable Stable

�Sb-Sb�Sb	100
 Sbi,Al
a Sbi,Al

a �Sb-Sb�Sb	110
 �Sb-Sb�Sb	110
 �Sb-Sb�Sb	110


�Sb-Sb�Sb	110
 Stable Stable Stable Stable Stable

�Sb-Al�Al	100
 �Sb-Sb�Sb	110
 �Sb-Sb�Sb	110
 Stableb Stableb Stableb

�Sb-Al�Al	110
 Stable Stable Stable Stable Stable

aRelaxations starting from the idealized positions maintained the initial symmetry, but when started from
randomized positions, relaxed to the indicated structure.
bSplit interstitial displaced along 	100
 from ideal position.
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C. Formation energies

The defect formation energies calculated by using Eq. �3�
for Al-rich and Sb-rich conditions and an electron chemical
potential at the valence band maximum are given in Tables I
and II. The formation energies for the dominant defects �low-
est �ED� are shown as a function of the electron chemical
potential in Fig. 3.

Figure 3 also illustrates the effect of the band gap correc-
tion described in Sec. II D. In the top row, we show the
formation energies after the finite-size scaling procedure was
applied, but without the band gap correction. The bottom
row shows the results including the band gap corrections. It
is apparent that as the band gap correction is applied, donor
and acceptor levels track the conduction and valence band
edges, respectively. This feature is independent of the rela-
tive values of �EVB and �ECB in Eq. �5�.

It is interesting to compare the band-gap-corrected forma-
tion energies in the bottom panel of Fig. 3 with those in the
top panel if the band gap is simply extended to the experi-
mental value by shifting the conduction band upward. Con-
siderable differences are observed between the two cases,
with the values corrected by using the scheme presented here
being more consistent. In fact, we observe that, qualitatively,
the results obtained by applying no correction at all are more
similar to the corrected results than what is obtained by as-
signing the band gap error fully to the conduction band.48,49

Furthermore, a correction procedure often suggested in

literature45 to simply shift the ionization energies of donor-
like defects to track the conduction band minimum �implic-
itly leaving the ionization energies of acceptorlike defects
tracking the valence band maximum�, without accounting for
the occupation of states, does not properly correct the errors
in the formation energies. The scheme employed here results
in an identical shift of the ionization energies, but also cor-
rects the errors in the formation energies. However, we note
that this scheme still neglects both level relaxations and
changes in the double counting term.

We believe that the method presented here is the most
consistent way to address the LDA band gap problem. Our
use of GW calculations provides a first principles approach
to calculating the correction terms. We find that neglecting to
include the band gap correction terms in the formation ener-
gies leads to significant errors in the prediction of defect
concentrations and of which defects are dominant.

D. Defect and charge carrier concentrations

With the formation energies known, the equilibrium de-
fect concentrations for a given chemical potential difference
�� can be calculated by using Eq. �1�. The defect concen-
trations depend on the electron chemical potential via Eq.
�3�. In the absence of extrinsic defects, the electron chemical
potential is constrained by the charge neutrality condition
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FIG. 3. �Color online� Dependence of the formation energies on the electron chemical potential under Al-rich �left, ��=−�Hf�,
stoichiometric �center, ��=0 eV�, and Sb-rich �right, ��= +�Hf� conditions for the most important point defects. The top panels show the
formation energies based on the as-calculated values, while the bottom panels show the results of applying the band gap correction term of
Eq. �5�. The slope of each line is determined by the charge state, according to Eq. �3� ��Hf

calc=−0.28 eV�.
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0 = ne − nh − �
i

defects

qici, �6�

since the intrinsic concentrations of electrons and holes, ne
and nh, respectively, are given by

ne =� D�E�f�E;�e�dE , �7a�

nh =� D�E��1 − f�E;�e��dE . �7b�

Here, D�E� is the electronic density of states and f�E ;�e�
= 
1+e�E−�e�/kBT�−1 is the Fermi–Dirac distribution. The im-
plicit dependence of the charge neutrality condition on the
electron chemical potential �e is apparent from Eqs. �7a� and
�7b�. To obtain the charge carrier and defect concentrations,
then, we must iteratively solve Eq. �6� to self-consistently
determine the intrinsic electron chemical potential.

The defect concentrations calculated by using the band-
gap-corrected formation energies are shown in Fig. 4 for a
representative temperature of 1300 K �Tmelt

AlSb=1327 K�, with
the line thicknesses indicating the charge state �q�. Figure 5
shows the dependence of the total defect and net electron
concentrations on the chemical environment �chemical po-
tential difference ��� for a variety of temperatures. For all
cases shown here, the intrinsic �self-consistent� electron
chemical potential is located near the middle of the gap,
although there are slightly more electrons than holes in the
material �intrinsically n-type material�.

IV. DISCUSSION

An inspection of the G0W0-corrected results in the lower
panels of Fig. 3 shows that four different defects have the
lowest formation energy and are thus the most abundant,
depending on the values of the electron chemical potential �e
and the chemical potential difference ��. The aluminum tet-
rahedral interstitial Ali,Al

1+ is the dominant defect for �e in the
lower half of the band gap �p-type material�, while the alu-
minum vacancy VAl

3− is dominant for �e in the upper half of
the band gap �n-type material�. For Al-rich conditions �left
panel in Fig. 3�, the AlSb

2− antisite defect can also be important
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FIG. 4. �Color online� Concentrations of individual defects at a
temperature of 1300 K as a function of the chemical potential dif-
ference ��. Line thicknesses scale with charge state. Under Sb-rich
conditions, the dominant defect is the neutral SbAl

0 antisite, whereas
under Al-rich conditions, the positively charged aluminum intersti-
tial Ali,Al

1+ is dominant. The crossover point between Ali,Al
1+ and SbAl

0

�open circle� determines the minimum in the total defect concentra-
tion shown in Fig. 5�a�, while the crossover point between Ali,Al

1+

and SbAl
1+ �filled circle� determines the minimum in the net electron

concentration shown in Fig. 5�b�. The horizontal bar marks the
calculated range of variation of �� given by the formation enthalpy
of the compound �−�Hf ���� +�Hf, with �Hf

calc=−0.28 eV�.
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FIG. 5. �Color online� �a� Equilibrium total defect concentration
and �b� net electron concentration �ne−nh� at different temperatures
as a function of the chemical potential difference. Note that the
minimum in the total defect concentration corresponds to the cross-
over point between Ali,Al

1+ and SbAl
0 , while the minimum in the net

electron concentration corresponds to the crossover point between
Ali,Al

1+ and SbAl
1+, as indicated in Fig. 4. The dominant defects on the

Sb-rich side are SbAl and on the Al-rich side are Ali,Al. The hori-
zontal bar marks the calculated range of variation of �� given by
the formation enthalpy of the compound �−�Hf ���� +�Hf, with
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calc=−0.28 eV�.
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when the material is lightly doped n-type �near the crossing
with VAl

3−�, particularly considering the uncertainty in the
range of ��calc vs ��expt and the possible errors in the for-
mation energies of up to �0.1 eV from entropic effects. For
Sb-rich conditions �right panel in Fig. 3�, the SbAl antisite
defect �neutral or positively charged� is important over a
wide range of �e, from the p-type regime to near the middle
of the gap. However, we note that for �e near the middle of
the gap �intrinsic or compensated material�, the dominant
charged native defect is always Ali,Al

1+ , since the relevant SbAl
0

defect is uncharged.
In the absence of impurities, the intrinsic electron chemi-

cal potential is located near the middle of the band gap �see
Sec. III D�. Under this condition, the two relevant defects are
therefore the Ali,Al

1+ interstitial and the SbAl antisite, as illus-
trated clearly in Fig. 4. By comparison with Fig. 5�a�, we see
that the transition point between Ali,Al

1+ and SbAl
0 , which oc-

curs close to ��=0 eV, corresponds to the minimum in the
total defect concentration. In Fig. 5�a�, the dominant defect
on the Sb-rich �left� side is SbAl

0 , while on the Al-rich �right�
side it is Ali,Al

1+ . Near the transition �minimum in the curve�,
the two concentrations are comparable. In contrast, the mini-
mum in the net electron concentration in Fig. 5�b� is located
on the Sb-rich side, which corresponds to the crossing of the
concentrations of Ali,Al

1+ and SbAl
1+ in Fig. 4. Since the charge

neutrality condition �Eq. �6�� depends only on the concentra-
tions of charged defects, the neutral SbAl

0 antisites do not
contribute to charge compensation or net electron concentra-
tion.

As mentioned in Sec. III D, the calculated electron con-
centration slightly exceeds the hole concentration for pure
material, which yields n-type intrinsic material irrespective
of the chemical environment characterized by ��. This be-
havior results because the formation energies of acceptor-
type defects �VAl

3−� always exceed the formation energies of
donor-type defects �Ali,Al

1+ , SbAl
1+� when the electron chemical

potential is close to the middle of the band gap �see Fig. 3�.
It should be noted that this situation can change if the mate-
rial is extrinsically doped. For a p-doped material, the donor-
type native defects remain dominant and partially compen-
sate the extrinsic dopant. For a n-doped material, the
ordering of the formation energies is reversed, but the then-
dominant acceptor-type native defects still partially compen-
sate the extrinsic dopant.

The temperatures indicated in Figs. 4 and 5 refer to ther-
mal equilibrium conditions at those temperatures. In practice,
these temperatures can be interpreted as corresponding to
annealing temperatures, with the chemical potential differ-
ence referring to the chemical environment of the annealing
process �e.g., an Sb overpressure corresponds to Sb-rich con-
ditions; conversely, growth is often performed under Al-rich
conditions�. The highest temperature considered here,
1300 K, is just below the melting point of 1327 K and might
represent melt growth conditions. However, growth is typi-
cally performed too rapidly to allow equilibrium to be
achieved and the nonequilibrium grown-in defect concentra-
tions will be higher than predicted here. The curves in Fig. 5
essentially represent the predicted concentrations for infi-
nitely long anneals at the specified temperatures.

At 1300 K, the calculated net electron concentration var-
ies roughly between 1016 and 1017 cm−3 depending on the

chemical potential difference, ��. If all defects are assumed
to be sufficiently mobile down to 700 K so that the material
can reach thermal equilibrium at that temperature, then the
lowermost curves in Fig. 5 predict a net electron concentra-
tion of 1010–1011 cm−3 and a total defect concentration be-
tween 1010 and 1012 cm−3. Since the diffusivity exponentially
depends on the inverse temperature, the defect mobilities
sharply decrease with temperature. Therefore, as the tem-
perature is further lowered, the system will no longer be able
to reach the equilibrium concentration in reasonable time,
which requires excess defects either to diffuse to the surface
or to anneal by recombination. In contrast to lattice defects,
the intrinsic electron and hole concentrations, ne and nh,
readily adjust to temperature changes. The freezing in of the
defect concentrations is therefore expected to crucially affect
the charge neutrality condition upon cooling to low �e.g.,
room� temperatures �in particular, if there are no extrinsic
dopants�. However, since the diffusivities of the individual
defects are currently unknown, we cannot quantitatively de-
scribe this freezing in of the defect distributions in the
present study; thus, predictions of the charge carrier and de-
fect concentrations near room temperature and below may be
unreliable. The determination of diffusivities for specific de-
fects, to account for the kinetics of defects freezing in, will
be the subject of future work.

Experimentally, AlSb crystals grown from the melt have
often been found to display p-type conductivity.50 The
present finding that the pure material behaves intrinsically n
type is, however, not in contradiction with this observation.
A typical experimental setup employs a graphite susceptor
and an alumina crucible, with quartz tubes used for melting
Sb, all which are potential sources of various impurities,
most importantly carbon, oxygen, silicon, and aluminum.50

In particular, carbon impurities act as acceptors, so uninten-
tional p-type doping is very likely, which is supported by a
chemical analysis of grown AlSb crystals and measurements
on intentionally doped samples.50 The measured levels of
carbon impurities and the experimental observation that the
material becomes intrinsic at around 1000 K �Ref. 35� are
consistent with our calculated excess native electron concen-
tration at that temperature. A detailed study of the role of
extrinsic defects in AlSb is beyond the scope of the present
work: however, the results of ongoing work to elucidate the
effects of impurities and to investigate ways to optimize the
electronic properties of the material by intentional doping are
forthcoming.

V. CONCLUSIONS

In summary, we have employed density functional theory
calculations to study the properties of intrinsic point defects
in aluminum antimonide. An exhaustive set of defect
configurations—including vacancies, antisites, and intersti-
tials �tetrahedral, hexagonal, and split�, with all relevant
charge states—was considered based on knowledge of other
III-V compounds. Relaxed atomic structures of each defect
were carefully determined, and formation energies were cal-
culated to evaluate the equilibrium concentrations of each
defect. Strain and electrostatic artifacts related to the use of
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the supercell approach were carefully removed by employing
a finite-size scaling procedure, which involved performing a
series of calculations for each defect with supercell sizes
ranging from 32 to 216 atoms. The underestimation of the
band gap due to the local density approximation was taken
into account by applying an a posteriori correction scheme
that utilized separate GW calculations to obtain valence and
conduction band offsets, which enter the correction.

Aluminum interstitials �Ali,Al
1+ �, antimony antisites �SbAl

0 ,
SbAl

1+�, and aluminum vacancies �VAl
3−� were found to be the

most dominant defects, depending on the electron chemical
potential and the chemical potential difference �chemical en-
vironment� of the system. We observe that Ali,Al

1+ interstitials
and SbAl antisites dominate under Al-rich and Sb-rich condi-
tions, respectively. Calculated formation energies were em-
ployed in solving the charge neutrality condition to obtain
self-consistent defect concentrations and intrinsic electron
chemical potential for the pure material at various tempera-
tures. We find the material to be intrinsically weakly n type
and predict both the total defect and the net electron concen-
trations. Near the melting point, the equilibrium concentra-
tion of native defects is predicted to be in the
1016–1017 cm−3 range, while at lower temperatures, it is ex-
pected that concentrations down to the 1010 cm−3 range or
lower can be achieved. The net excess electron density in a
bulk grown material might be as high as 109–1011 cm−3 due
to defects freezing in during melt solidification.

For an extrinsically doped material, which we do not treat
explicitly in detail in this work, the dominant native defects
depend on the nature of the doping. For n-doped material,
VAl

3− and AlSb
2− tend to be important, while for p-doped mate-

rial, Ali,Al
1+ and SbAl

1+ are important, depending on chemical
environment �Al-rich vs Sb-rich�. Some amount of self-
compensation from the native defects occurs in both cases.

Finally, we note that the present work is part of a con-
certed research effort, which ultimately aims to provide a
complete and consistent picture of the point defect properties
of AlSb and the relations to carrier transport properties. We
are engaged in further theoretical and experimental work to
explore the role of extrinsic defects, as well as the scattering
behavior of defects on carrier transport. In this context, the
present study forms the basis for these future studies, which
will be the subjects of forthcoming reports.
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APPENDIX: BAND GAP CORRECTION OF DEFECT
FORMATION ENERGIES

While DFT calculations typically give very reasonable
values for energy differences within a group of bands �e.g.,

the valence band�, energy differences between different
groups of bands �i.e., band gaps, e.g., between the valence
and conduction bands� are much less reliable. This shortcom-
ing particularly affects the differences between the valence
and conduction bands, which gives rise to the well-known
band gap error.

The incorrect description of the energy differences be-
tween different groups of bands can affect the total energy.
The most sensitive contribution is the band energy which is
given by

Eb = �
i

�
k

f ik�ik, �A1�

where i and k run over bands and k points, respectively, and
f ik and �ik are the occupation numbers and eigenvalues, re-
spectively. Without loss of generality, one can divide the
band energy into separate sums over the valence and conduc-
tion band states, as

Eb = �
i

VB

�
k

f ik�ik + �
i

CB

�
k

f ik�ik. �A2�

If one assumes rigid levels, which is a reasonable approxi-
mation in many cases, the errors in the energy differences
between two groups of bands �i.e., across a band gap� can be
corrected by adding constant energy shifts to the valence and
conduction band states:

�ik → �ik + �EVB for the valence band,

�ik → �ik + �ECB for the conduction band.

The sum of the band shifts, �EVB+�ECB, equals the band
gap error. The expression for the corrected band energy then
reads

Ẽb = �
i

VB

�
k

f ik��ik + �EVB� + �
i

CB

�
k

f ik��ik + �ECB� .

�A3�

By taking the difference between Eqs. �A2� and �A3�, one
obtains the band energy correction term

�Eb
corr = �Ẽb − Eb�defect − �Ẽb − Eb�ideal

= �EVB�
i

VB

�
k

�f ik − 1�

�zh

+ �ECB�
i

CB

�
k

f ik,

�ze �A4�

where �zh is simply the number of unoccupied states in the
valence band and �ze is the number of occupied states in the
conduction band.

According to Eq. �3�, the defect formation energy
of charged defects further depends on the position of the
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valence band maximum. The total correction term for the
formation energy thus reads

�Ecorr = �q + �zh��EVB + �ze�ECB. �A5�

The energy offsets �EVB and �ECB can be obtained, for
example, from GW calculations, which for many systems
provide band gaps and structures in good agreement with
experiment.

It is important to realize that this scheme neglects both
level relaxations and changes in the double counting term. If
these limitations are acceptable, this method offers a simple
a posteriori correction of the formation energies. It should
furthermore be noted that transition levels are not affected by
the relative weight of �EVB and �ECB. Upon application of
this correction scheme, acceptor levels track the valence
band maximum while donor transitions follow the conduc-
tion band minimum.
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